xref: /openbmc/linux/mm/vmalloc.c (revision 586b4106)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48 
49 #include "internal.h"
50 #include "pgalloc-track.h"
51 
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54 
55 static int __init set_nohugeiomap(char *str)
56 {
57 	ioremap_max_page_shift = PAGE_SHIFT;
58 	return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
64 
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67 
68 static int __init set_nohugevmalloc(char *str)
69 {
70 	vmap_allow_huge = false;
71 	return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77 
78 bool is_vmalloc_addr(const void *x)
79 {
80 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 
82 	return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85 
86 struct vfree_deferred {
87 	struct llist_head list;
88 	struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91 
92 /*** Page table manipulation functions ***/
93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 			phys_addr_t phys_addr, pgprot_t prot,
95 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 	pte_t *pte;
98 	u64 pfn;
99 	unsigned long size = PAGE_SIZE;
100 
101 	pfn = phys_addr >> PAGE_SHIFT;
102 	pte = pte_alloc_kernel_track(pmd, addr, mask);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		BUG_ON(!pte_none(ptep_get(pte)));
107 
108 #ifdef CONFIG_HUGETLB_PAGE
109 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 		if (size != PAGE_SIZE) {
111 			pte_t entry = pfn_pte(pfn, prot);
112 
113 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 			set_huge_pte_at(&init_mm, addr, pte, entry, size);
115 			pfn += PFN_DOWN(size);
116 			continue;
117 		}
118 #endif
119 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 		pfn++;
121 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
122 	*mask |= PGTBL_PTE_MODIFIED;
123 	return 0;
124 }
125 
126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 			phys_addr_t phys_addr, pgprot_t prot,
128 			unsigned int max_page_shift)
129 {
130 	if (max_page_shift < PMD_SHIFT)
131 		return 0;
132 
133 	if (!arch_vmap_pmd_supported(prot))
134 		return 0;
135 
136 	if ((end - addr) != PMD_SIZE)
137 		return 0;
138 
139 	if (!IS_ALIGNED(addr, PMD_SIZE))
140 		return 0;
141 
142 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 		return 0;
144 
145 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 		return 0;
147 
148 	return pmd_set_huge(pmd, phys_addr, prot);
149 }
150 
151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 			phys_addr_t phys_addr, pgprot_t prot,
153 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 	pmd_t *pmd;
156 	unsigned long next;
157 
158 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 	if (!pmd)
160 		return -ENOMEM;
161 	do {
162 		next = pmd_addr_end(addr, end);
163 
164 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 					max_page_shift)) {
166 			*mask |= PGTBL_PMD_MODIFIED;
167 			continue;
168 		}
169 
170 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 			return -ENOMEM;
172 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 	return 0;
174 }
175 
176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 			phys_addr_t phys_addr, pgprot_t prot,
178 			unsigned int max_page_shift)
179 {
180 	if (max_page_shift < PUD_SHIFT)
181 		return 0;
182 
183 	if (!arch_vmap_pud_supported(prot))
184 		return 0;
185 
186 	if ((end - addr) != PUD_SIZE)
187 		return 0;
188 
189 	if (!IS_ALIGNED(addr, PUD_SIZE))
190 		return 0;
191 
192 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 		return 0;
194 
195 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 		return 0;
197 
198 	return pud_set_huge(pud, phys_addr, prot);
199 }
200 
201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 			phys_addr_t phys_addr, pgprot_t prot,
203 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 	pud_t *pud;
206 	unsigned long next;
207 
208 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 	if (!pud)
210 		return -ENOMEM;
211 	do {
212 		next = pud_addr_end(addr, end);
213 
214 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 					max_page_shift)) {
216 			*mask |= PGTBL_PUD_MODIFIED;
217 			continue;
218 		}
219 
220 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 					max_page_shift, mask))
222 			return -ENOMEM;
223 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 	return 0;
225 }
226 
227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 			phys_addr_t phys_addr, pgprot_t prot,
229 			unsigned int max_page_shift)
230 {
231 	if (max_page_shift < P4D_SHIFT)
232 		return 0;
233 
234 	if (!arch_vmap_p4d_supported(prot))
235 		return 0;
236 
237 	if ((end - addr) != P4D_SIZE)
238 		return 0;
239 
240 	if (!IS_ALIGNED(addr, P4D_SIZE))
241 		return 0;
242 
243 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 		return 0;
245 
246 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 		return 0;
248 
249 	return p4d_set_huge(p4d, phys_addr, prot);
250 }
251 
252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 			phys_addr_t phys_addr, pgprot_t prot,
254 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 	p4d_t *p4d;
257 	unsigned long next;
258 
259 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 	if (!p4d)
261 		return -ENOMEM;
262 	do {
263 		next = p4d_addr_end(addr, end);
264 
265 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 					max_page_shift)) {
267 			*mask |= PGTBL_P4D_MODIFIED;
268 			continue;
269 		}
270 
271 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 					max_page_shift, mask))
273 			return -ENOMEM;
274 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 	return 0;
276 }
277 
278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 			phys_addr_t phys_addr, pgprot_t prot,
280 			unsigned int max_page_shift)
281 {
282 	pgd_t *pgd;
283 	unsigned long start;
284 	unsigned long next;
285 	int err;
286 	pgtbl_mod_mask mask = 0;
287 
288 	might_sleep();
289 	BUG_ON(addr >= end);
290 
291 	start = addr;
292 	pgd = pgd_offset_k(addr);
293 	do {
294 		next = pgd_addr_end(addr, end);
295 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 					max_page_shift, &mask);
297 		if (err)
298 			break;
299 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300 
301 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 		arch_sync_kernel_mappings(start, end);
303 
304 	return err;
305 }
306 
307 int ioremap_page_range(unsigned long addr, unsigned long end,
308 		phys_addr_t phys_addr, pgprot_t prot)
309 {
310 	int err;
311 
312 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 				 ioremap_max_page_shift);
314 	flush_cache_vmap(addr, end);
315 	if (!err)
316 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 					       ioremap_max_page_shift);
318 	return err;
319 }
320 
321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 			     pgtbl_mod_mask *mask)
323 {
324 	pte_t *pte;
325 
326 	pte = pte_offset_kernel(pmd, addr);
327 	do {
328 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 	} while (pte++, addr += PAGE_SIZE, addr != end);
331 	*mask |= PGTBL_PTE_MODIFIED;
332 }
333 
334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 			     pgtbl_mod_mask *mask)
336 {
337 	pmd_t *pmd;
338 	unsigned long next;
339 	int cleared;
340 
341 	pmd = pmd_offset(pud, addr);
342 	do {
343 		next = pmd_addr_end(addr, end);
344 
345 		cleared = pmd_clear_huge(pmd);
346 		if (cleared || pmd_bad(*pmd))
347 			*mask |= PGTBL_PMD_MODIFIED;
348 
349 		if (cleared)
350 			continue;
351 		if (pmd_none_or_clear_bad(pmd))
352 			continue;
353 		vunmap_pte_range(pmd, addr, next, mask);
354 
355 		cond_resched();
356 	} while (pmd++, addr = next, addr != end);
357 }
358 
359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 			     pgtbl_mod_mask *mask)
361 {
362 	pud_t *pud;
363 	unsigned long next;
364 	int cleared;
365 
366 	pud = pud_offset(p4d, addr);
367 	do {
368 		next = pud_addr_end(addr, end);
369 
370 		cleared = pud_clear_huge(pud);
371 		if (cleared || pud_bad(*pud))
372 			*mask |= PGTBL_PUD_MODIFIED;
373 
374 		if (cleared)
375 			continue;
376 		if (pud_none_or_clear_bad(pud))
377 			continue;
378 		vunmap_pmd_range(pud, addr, next, mask);
379 	} while (pud++, addr = next, addr != end);
380 }
381 
382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 			     pgtbl_mod_mask *mask)
384 {
385 	p4d_t *p4d;
386 	unsigned long next;
387 
388 	p4d = p4d_offset(pgd, addr);
389 	do {
390 		next = p4d_addr_end(addr, end);
391 
392 		p4d_clear_huge(p4d);
393 		if (p4d_bad(*p4d))
394 			*mask |= PGTBL_P4D_MODIFIED;
395 
396 		if (p4d_none_or_clear_bad(p4d))
397 			continue;
398 		vunmap_pud_range(p4d, addr, next, mask);
399 	} while (p4d++, addr = next, addr != end);
400 }
401 
402 /*
403  * vunmap_range_noflush is similar to vunmap_range, but does not
404  * flush caches or TLBs.
405  *
406  * The caller is responsible for calling flush_cache_vmap() before calling
407  * this function, and flush_tlb_kernel_range after it has returned
408  * successfully (and before the addresses are expected to cause a page fault
409  * or be re-mapped for something else, if TLB flushes are being delayed or
410  * coalesced).
411  *
412  * This is an internal function only. Do not use outside mm/.
413  */
414 void __vunmap_range_noflush(unsigned long start, unsigned long end)
415 {
416 	unsigned long next;
417 	pgd_t *pgd;
418 	unsigned long addr = start;
419 	pgtbl_mod_mask mask = 0;
420 
421 	BUG_ON(addr >= end);
422 	pgd = pgd_offset_k(addr);
423 	do {
424 		next = pgd_addr_end(addr, end);
425 		if (pgd_bad(*pgd))
426 			mask |= PGTBL_PGD_MODIFIED;
427 		if (pgd_none_or_clear_bad(pgd))
428 			continue;
429 		vunmap_p4d_range(pgd, addr, next, &mask);
430 	} while (pgd++, addr = next, addr != end);
431 
432 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 		arch_sync_kernel_mappings(start, end);
434 }
435 
436 void vunmap_range_noflush(unsigned long start, unsigned long end)
437 {
438 	kmsan_vunmap_range_noflush(start, end);
439 	__vunmap_range_noflush(start, end);
440 }
441 
442 /**
443  * vunmap_range - unmap kernel virtual addresses
444  * @addr: start of the VM area to unmap
445  * @end: end of the VM area to unmap (non-inclusive)
446  *
447  * Clears any present PTEs in the virtual address range, flushes TLBs and
448  * caches. Any subsequent access to the address before it has been re-mapped
449  * is a kernel bug.
450  */
451 void vunmap_range(unsigned long addr, unsigned long end)
452 {
453 	flush_cache_vunmap(addr, end);
454 	vunmap_range_noflush(addr, end);
455 	flush_tlb_kernel_range(addr, end);
456 }
457 
458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 		pgtbl_mod_mask *mask)
461 {
462 	pte_t *pte;
463 
464 	/*
465 	 * nr is a running index into the array which helps higher level
466 	 * callers keep track of where we're up to.
467 	 */
468 
469 	pte = pte_alloc_kernel_track(pmd, addr, mask);
470 	if (!pte)
471 		return -ENOMEM;
472 	do {
473 		struct page *page = pages[*nr];
474 
475 		if (WARN_ON(!pte_none(ptep_get(pte))))
476 			return -EBUSY;
477 		if (WARN_ON(!page))
478 			return -ENOMEM;
479 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 			return -EINVAL;
481 
482 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
483 		(*nr)++;
484 	} while (pte++, addr += PAGE_SIZE, addr != end);
485 	*mask |= PGTBL_PTE_MODIFIED;
486 	return 0;
487 }
488 
489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
490 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 		pgtbl_mod_mask *mask)
492 {
493 	pmd_t *pmd;
494 	unsigned long next;
495 
496 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
497 	if (!pmd)
498 		return -ENOMEM;
499 	do {
500 		next = pmd_addr_end(addr, end);
501 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
502 			return -ENOMEM;
503 	} while (pmd++, addr = next, addr != end);
504 	return 0;
505 }
506 
507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
508 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 		pgtbl_mod_mask *mask)
510 {
511 	pud_t *pud;
512 	unsigned long next;
513 
514 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
515 	if (!pud)
516 		return -ENOMEM;
517 	do {
518 		next = pud_addr_end(addr, end);
519 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
520 			return -ENOMEM;
521 	} while (pud++, addr = next, addr != end);
522 	return 0;
523 }
524 
525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
526 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 		pgtbl_mod_mask *mask)
528 {
529 	p4d_t *p4d;
530 	unsigned long next;
531 
532 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
533 	if (!p4d)
534 		return -ENOMEM;
535 	do {
536 		next = p4d_addr_end(addr, end);
537 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
538 			return -ENOMEM;
539 	} while (p4d++, addr = next, addr != end);
540 	return 0;
541 }
542 
543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 		pgprot_t prot, struct page **pages)
545 {
546 	unsigned long start = addr;
547 	pgd_t *pgd;
548 	unsigned long next;
549 	int err = 0;
550 	int nr = 0;
551 	pgtbl_mod_mask mask = 0;
552 
553 	BUG_ON(addr >= end);
554 	pgd = pgd_offset_k(addr);
555 	do {
556 		next = pgd_addr_end(addr, end);
557 		if (pgd_bad(*pgd))
558 			mask |= PGTBL_PGD_MODIFIED;
559 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
560 		if (err)
561 			return err;
562 	} while (pgd++, addr = next, addr != end);
563 
564 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 		arch_sync_kernel_mappings(start, end);
566 
567 	return 0;
568 }
569 
570 /*
571  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572  * flush caches.
573  *
574  * The caller is responsible for calling flush_cache_vmap() after this
575  * function returns successfully and before the addresses are accessed.
576  *
577  * This is an internal function only. Do not use outside mm/.
578  */
579 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
580 		pgprot_t prot, struct page **pages, unsigned int page_shift)
581 {
582 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583 
584 	WARN_ON(page_shift < PAGE_SHIFT);
585 
586 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 			page_shift == PAGE_SHIFT)
588 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
589 
590 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 		int err;
592 
593 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
594 					page_to_phys(pages[i]), prot,
595 					page_shift);
596 		if (err)
597 			return err;
598 
599 		addr += 1UL << page_shift;
600 	}
601 
602 	return 0;
603 }
604 
605 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 		pgprot_t prot, struct page **pages, unsigned int page_shift)
607 {
608 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 						 page_shift);
610 
611 	if (ret)
612 		return ret;
613 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614 }
615 
616 /**
617  * vmap_pages_range - map pages to a kernel virtual address
618  * @addr: start of the VM area to map
619  * @end: end of the VM area to map (non-inclusive)
620  * @prot: page protection flags to use
621  * @pages: pages to map (always PAGE_SIZE pages)
622  * @page_shift: maximum shift that the pages may be mapped with, @pages must
623  * be aligned and contiguous up to at least this shift.
624  *
625  * RETURNS:
626  * 0 on success, -errno on failure.
627  */
628 static int vmap_pages_range(unsigned long addr, unsigned long end,
629 		pgprot_t prot, struct page **pages, unsigned int page_shift)
630 {
631 	int err;
632 
633 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 	flush_cache_vmap(addr, end);
635 	return err;
636 }
637 
638 int is_vmalloc_or_module_addr(const void *x)
639 {
640 	/*
641 	 * ARM, x86-64 and sparc64 put modules in a special place,
642 	 * and fall back on vmalloc() if that fails. Others
643 	 * just put it in the vmalloc space.
644 	 */
645 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
646 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
647 	if (addr >= MODULES_VADDR && addr < MODULES_END)
648 		return 1;
649 #endif
650 	return is_vmalloc_addr(x);
651 }
652 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
653 
654 /*
655  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656  * return the tail page that corresponds to the base page address, which
657  * matches small vmap mappings.
658  */
659 struct page *vmalloc_to_page(const void *vmalloc_addr)
660 {
661 	unsigned long addr = (unsigned long) vmalloc_addr;
662 	struct page *page = NULL;
663 	pgd_t *pgd = pgd_offset_k(addr);
664 	p4d_t *p4d;
665 	pud_t *pud;
666 	pmd_t *pmd;
667 	pte_t *ptep, pte;
668 
669 	/*
670 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 	 * architectures that do not vmalloc module space
672 	 */
673 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
674 
675 	if (pgd_none(*pgd))
676 		return NULL;
677 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 		return NULL; /* XXX: no allowance for huge pgd */
679 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 		return NULL;
681 
682 	p4d = p4d_offset(pgd, addr);
683 	if (p4d_none(*p4d))
684 		return NULL;
685 	if (p4d_leaf(*p4d))
686 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 		return NULL;
689 
690 	pud = pud_offset(p4d, addr);
691 	if (pud_none(*pud))
692 		return NULL;
693 	if (pud_leaf(*pud))
694 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 	if (WARN_ON_ONCE(pud_bad(*pud)))
696 		return NULL;
697 
698 	pmd = pmd_offset(pud, addr);
699 	if (pmd_none(*pmd))
700 		return NULL;
701 	if (pmd_leaf(*pmd))
702 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
704 		return NULL;
705 
706 	ptep = pte_offset_kernel(pmd, addr);
707 	pte = ptep_get(ptep);
708 	if (pte_present(pte))
709 		page = pte_page(pte);
710 
711 	return page;
712 }
713 EXPORT_SYMBOL(vmalloc_to_page);
714 
715 /*
716  * Map a vmalloc()-space virtual address to the physical page frame number.
717  */
718 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
719 {
720 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
721 }
722 EXPORT_SYMBOL(vmalloc_to_pfn);
723 
724 
725 /*** Global kva allocator ***/
726 
727 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
728 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
729 
730 
731 static DEFINE_SPINLOCK(vmap_area_lock);
732 static DEFINE_SPINLOCK(free_vmap_area_lock);
733 /* Export for kexec only */
734 LIST_HEAD(vmap_area_list);
735 static struct rb_root vmap_area_root = RB_ROOT;
736 static bool vmap_initialized __read_mostly;
737 
738 static struct rb_root purge_vmap_area_root = RB_ROOT;
739 static LIST_HEAD(purge_vmap_area_list);
740 static DEFINE_SPINLOCK(purge_vmap_area_lock);
741 
742 /*
743  * This kmem_cache is used for vmap_area objects. Instead of
744  * allocating from slab we reuse an object from this cache to
745  * make things faster. Especially in "no edge" splitting of
746  * free block.
747  */
748 static struct kmem_cache *vmap_area_cachep;
749 
750 /*
751  * This linked list is used in pair with free_vmap_area_root.
752  * It gives O(1) access to prev/next to perform fast coalescing.
753  */
754 static LIST_HEAD(free_vmap_area_list);
755 
756 /*
757  * This augment red-black tree represents the free vmap space.
758  * All vmap_area objects in this tree are sorted by va->va_start
759  * address. It is used for allocation and merging when a vmap
760  * object is released.
761  *
762  * Each vmap_area node contains a maximum available free block
763  * of its sub-tree, right or left. Therefore it is possible to
764  * find a lowest match of free area.
765  */
766 static struct rb_root free_vmap_area_root = RB_ROOT;
767 
768 /*
769  * Preload a CPU with one object for "no edge" split case. The
770  * aim is to get rid of allocations from the atomic context, thus
771  * to use more permissive allocation masks.
772  */
773 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
774 
775 static __always_inline unsigned long
776 va_size(struct vmap_area *va)
777 {
778 	return (va->va_end - va->va_start);
779 }
780 
781 static __always_inline unsigned long
782 get_subtree_max_size(struct rb_node *node)
783 {
784 	struct vmap_area *va;
785 
786 	va = rb_entry_safe(node, struct vmap_area, rb_node);
787 	return va ? va->subtree_max_size : 0;
788 }
789 
790 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
791 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
792 
793 static void reclaim_and_purge_vmap_areas(void);
794 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
795 static void drain_vmap_area_work(struct work_struct *work);
796 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
797 
798 static atomic_long_t nr_vmalloc_pages;
799 
800 unsigned long vmalloc_nr_pages(void)
801 {
802 	return atomic_long_read(&nr_vmalloc_pages);
803 }
804 
805 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
806 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
807 {
808 	struct vmap_area *va = NULL;
809 	struct rb_node *n = vmap_area_root.rb_node;
810 
811 	addr = (unsigned long)kasan_reset_tag((void *)addr);
812 
813 	while (n) {
814 		struct vmap_area *tmp;
815 
816 		tmp = rb_entry(n, struct vmap_area, rb_node);
817 		if (tmp->va_end > addr) {
818 			va = tmp;
819 			if (tmp->va_start <= addr)
820 				break;
821 
822 			n = n->rb_left;
823 		} else
824 			n = n->rb_right;
825 	}
826 
827 	return va;
828 }
829 
830 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
831 {
832 	struct rb_node *n = root->rb_node;
833 
834 	addr = (unsigned long)kasan_reset_tag((void *)addr);
835 
836 	while (n) {
837 		struct vmap_area *va;
838 
839 		va = rb_entry(n, struct vmap_area, rb_node);
840 		if (addr < va->va_start)
841 			n = n->rb_left;
842 		else if (addr >= va->va_end)
843 			n = n->rb_right;
844 		else
845 			return va;
846 	}
847 
848 	return NULL;
849 }
850 
851 /*
852  * This function returns back addresses of parent node
853  * and its left or right link for further processing.
854  *
855  * Otherwise NULL is returned. In that case all further
856  * steps regarding inserting of conflicting overlap range
857  * have to be declined and actually considered as a bug.
858  */
859 static __always_inline struct rb_node **
860 find_va_links(struct vmap_area *va,
861 	struct rb_root *root, struct rb_node *from,
862 	struct rb_node **parent)
863 {
864 	struct vmap_area *tmp_va;
865 	struct rb_node **link;
866 
867 	if (root) {
868 		link = &root->rb_node;
869 		if (unlikely(!*link)) {
870 			*parent = NULL;
871 			return link;
872 		}
873 	} else {
874 		link = &from;
875 	}
876 
877 	/*
878 	 * Go to the bottom of the tree. When we hit the last point
879 	 * we end up with parent rb_node and correct direction, i name
880 	 * it link, where the new va->rb_node will be attached to.
881 	 */
882 	do {
883 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
884 
885 		/*
886 		 * During the traversal we also do some sanity check.
887 		 * Trigger the BUG() if there are sides(left/right)
888 		 * or full overlaps.
889 		 */
890 		if (va->va_end <= tmp_va->va_start)
891 			link = &(*link)->rb_left;
892 		else if (va->va_start >= tmp_va->va_end)
893 			link = &(*link)->rb_right;
894 		else {
895 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
896 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
897 
898 			return NULL;
899 		}
900 	} while (*link);
901 
902 	*parent = &tmp_va->rb_node;
903 	return link;
904 }
905 
906 static __always_inline struct list_head *
907 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
908 {
909 	struct list_head *list;
910 
911 	if (unlikely(!parent))
912 		/*
913 		 * The red-black tree where we try to find VA neighbors
914 		 * before merging or inserting is empty, i.e. it means
915 		 * there is no free vmap space. Normally it does not
916 		 * happen but we handle this case anyway.
917 		 */
918 		return NULL;
919 
920 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
921 	return (&parent->rb_right == link ? list->next : list);
922 }
923 
924 static __always_inline void
925 __link_va(struct vmap_area *va, struct rb_root *root,
926 	struct rb_node *parent, struct rb_node **link,
927 	struct list_head *head, bool augment)
928 {
929 	/*
930 	 * VA is still not in the list, but we can
931 	 * identify its future previous list_head node.
932 	 */
933 	if (likely(parent)) {
934 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
935 		if (&parent->rb_right != link)
936 			head = head->prev;
937 	}
938 
939 	/* Insert to the rb-tree */
940 	rb_link_node(&va->rb_node, parent, link);
941 	if (augment) {
942 		/*
943 		 * Some explanation here. Just perform simple insertion
944 		 * to the tree. We do not set va->subtree_max_size to
945 		 * its current size before calling rb_insert_augmented().
946 		 * It is because we populate the tree from the bottom
947 		 * to parent levels when the node _is_ in the tree.
948 		 *
949 		 * Therefore we set subtree_max_size to zero after insertion,
950 		 * to let __augment_tree_propagate_from() puts everything to
951 		 * the correct order later on.
952 		 */
953 		rb_insert_augmented(&va->rb_node,
954 			root, &free_vmap_area_rb_augment_cb);
955 		va->subtree_max_size = 0;
956 	} else {
957 		rb_insert_color(&va->rb_node, root);
958 	}
959 
960 	/* Address-sort this list */
961 	list_add(&va->list, head);
962 }
963 
964 static __always_inline void
965 link_va(struct vmap_area *va, struct rb_root *root,
966 	struct rb_node *parent, struct rb_node **link,
967 	struct list_head *head)
968 {
969 	__link_va(va, root, parent, link, head, false);
970 }
971 
972 static __always_inline void
973 link_va_augment(struct vmap_area *va, struct rb_root *root,
974 	struct rb_node *parent, struct rb_node **link,
975 	struct list_head *head)
976 {
977 	__link_va(va, root, parent, link, head, true);
978 }
979 
980 static __always_inline void
981 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
982 {
983 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
984 		return;
985 
986 	if (augment)
987 		rb_erase_augmented(&va->rb_node,
988 			root, &free_vmap_area_rb_augment_cb);
989 	else
990 		rb_erase(&va->rb_node, root);
991 
992 	list_del_init(&va->list);
993 	RB_CLEAR_NODE(&va->rb_node);
994 }
995 
996 static __always_inline void
997 unlink_va(struct vmap_area *va, struct rb_root *root)
998 {
999 	__unlink_va(va, root, false);
1000 }
1001 
1002 static __always_inline void
1003 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1004 {
1005 	__unlink_va(va, root, true);
1006 }
1007 
1008 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1009 /*
1010  * Gets called when remove the node and rotate.
1011  */
1012 static __always_inline unsigned long
1013 compute_subtree_max_size(struct vmap_area *va)
1014 {
1015 	return max3(va_size(va),
1016 		get_subtree_max_size(va->rb_node.rb_left),
1017 		get_subtree_max_size(va->rb_node.rb_right));
1018 }
1019 
1020 static void
1021 augment_tree_propagate_check(void)
1022 {
1023 	struct vmap_area *va;
1024 	unsigned long computed_size;
1025 
1026 	list_for_each_entry(va, &free_vmap_area_list, list) {
1027 		computed_size = compute_subtree_max_size(va);
1028 		if (computed_size != va->subtree_max_size)
1029 			pr_emerg("tree is corrupted: %lu, %lu\n",
1030 				va_size(va), va->subtree_max_size);
1031 	}
1032 }
1033 #endif
1034 
1035 /*
1036  * This function populates subtree_max_size from bottom to upper
1037  * levels starting from VA point. The propagation must be done
1038  * when VA size is modified by changing its va_start/va_end. Or
1039  * in case of newly inserting of VA to the tree.
1040  *
1041  * It means that __augment_tree_propagate_from() must be called:
1042  * - After VA has been inserted to the tree(free path);
1043  * - After VA has been shrunk(allocation path);
1044  * - After VA has been increased(merging path).
1045  *
1046  * Please note that, it does not mean that upper parent nodes
1047  * and their subtree_max_size are recalculated all the time up
1048  * to the root node.
1049  *
1050  *       4--8
1051  *        /\
1052  *       /  \
1053  *      /    \
1054  *    2--2  8--8
1055  *
1056  * For example if we modify the node 4, shrinking it to 2, then
1057  * no any modification is required. If we shrink the node 2 to 1
1058  * its subtree_max_size is updated only, and set to 1. If we shrink
1059  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1060  * node becomes 4--6.
1061  */
1062 static __always_inline void
1063 augment_tree_propagate_from(struct vmap_area *va)
1064 {
1065 	/*
1066 	 * Populate the tree from bottom towards the root until
1067 	 * the calculated maximum available size of checked node
1068 	 * is equal to its current one.
1069 	 */
1070 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1071 
1072 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1073 	augment_tree_propagate_check();
1074 #endif
1075 }
1076 
1077 static void
1078 insert_vmap_area(struct vmap_area *va,
1079 	struct rb_root *root, struct list_head *head)
1080 {
1081 	struct rb_node **link;
1082 	struct rb_node *parent;
1083 
1084 	link = find_va_links(va, root, NULL, &parent);
1085 	if (link)
1086 		link_va(va, root, parent, link, head);
1087 }
1088 
1089 static void
1090 insert_vmap_area_augment(struct vmap_area *va,
1091 	struct rb_node *from, struct rb_root *root,
1092 	struct list_head *head)
1093 {
1094 	struct rb_node **link;
1095 	struct rb_node *parent;
1096 
1097 	if (from)
1098 		link = find_va_links(va, NULL, from, &parent);
1099 	else
1100 		link = find_va_links(va, root, NULL, &parent);
1101 
1102 	if (link) {
1103 		link_va_augment(va, root, parent, link, head);
1104 		augment_tree_propagate_from(va);
1105 	}
1106 }
1107 
1108 /*
1109  * Merge de-allocated chunk of VA memory with previous
1110  * and next free blocks. If coalesce is not done a new
1111  * free area is inserted. If VA has been merged, it is
1112  * freed.
1113  *
1114  * Please note, it can return NULL in case of overlap
1115  * ranges, followed by WARN() report. Despite it is a
1116  * buggy behaviour, a system can be alive and keep
1117  * ongoing.
1118  */
1119 static __always_inline struct vmap_area *
1120 __merge_or_add_vmap_area(struct vmap_area *va,
1121 	struct rb_root *root, struct list_head *head, bool augment)
1122 {
1123 	struct vmap_area *sibling;
1124 	struct list_head *next;
1125 	struct rb_node **link;
1126 	struct rb_node *parent;
1127 	bool merged = false;
1128 
1129 	/*
1130 	 * Find a place in the tree where VA potentially will be
1131 	 * inserted, unless it is merged with its sibling/siblings.
1132 	 */
1133 	link = find_va_links(va, root, NULL, &parent);
1134 	if (!link)
1135 		return NULL;
1136 
1137 	/*
1138 	 * Get next node of VA to check if merging can be done.
1139 	 */
1140 	next = get_va_next_sibling(parent, link);
1141 	if (unlikely(next == NULL))
1142 		goto insert;
1143 
1144 	/*
1145 	 * start            end
1146 	 * |                |
1147 	 * |<------VA------>|<-----Next----->|
1148 	 *                  |                |
1149 	 *                  start            end
1150 	 */
1151 	if (next != head) {
1152 		sibling = list_entry(next, struct vmap_area, list);
1153 		if (sibling->va_start == va->va_end) {
1154 			sibling->va_start = va->va_start;
1155 
1156 			/* Free vmap_area object. */
1157 			kmem_cache_free(vmap_area_cachep, va);
1158 
1159 			/* Point to the new merged area. */
1160 			va = sibling;
1161 			merged = true;
1162 		}
1163 	}
1164 
1165 	/*
1166 	 * start            end
1167 	 * |                |
1168 	 * |<-----Prev----->|<------VA------>|
1169 	 *                  |                |
1170 	 *                  start            end
1171 	 */
1172 	if (next->prev != head) {
1173 		sibling = list_entry(next->prev, struct vmap_area, list);
1174 		if (sibling->va_end == va->va_start) {
1175 			/*
1176 			 * If both neighbors are coalesced, it is important
1177 			 * to unlink the "next" node first, followed by merging
1178 			 * with "previous" one. Otherwise the tree might not be
1179 			 * fully populated if a sibling's augmented value is
1180 			 * "normalized" because of rotation operations.
1181 			 */
1182 			if (merged)
1183 				__unlink_va(va, root, augment);
1184 
1185 			sibling->va_end = va->va_end;
1186 
1187 			/* Free vmap_area object. */
1188 			kmem_cache_free(vmap_area_cachep, va);
1189 
1190 			/* Point to the new merged area. */
1191 			va = sibling;
1192 			merged = true;
1193 		}
1194 	}
1195 
1196 insert:
1197 	if (!merged)
1198 		__link_va(va, root, parent, link, head, augment);
1199 
1200 	return va;
1201 }
1202 
1203 static __always_inline struct vmap_area *
1204 merge_or_add_vmap_area(struct vmap_area *va,
1205 	struct rb_root *root, struct list_head *head)
1206 {
1207 	return __merge_or_add_vmap_area(va, root, head, false);
1208 }
1209 
1210 static __always_inline struct vmap_area *
1211 merge_or_add_vmap_area_augment(struct vmap_area *va,
1212 	struct rb_root *root, struct list_head *head)
1213 {
1214 	va = __merge_or_add_vmap_area(va, root, head, true);
1215 	if (va)
1216 		augment_tree_propagate_from(va);
1217 
1218 	return va;
1219 }
1220 
1221 static __always_inline bool
1222 is_within_this_va(struct vmap_area *va, unsigned long size,
1223 	unsigned long align, unsigned long vstart)
1224 {
1225 	unsigned long nva_start_addr;
1226 
1227 	if (va->va_start > vstart)
1228 		nva_start_addr = ALIGN(va->va_start, align);
1229 	else
1230 		nva_start_addr = ALIGN(vstart, align);
1231 
1232 	/* Can be overflowed due to big size or alignment. */
1233 	if (nva_start_addr + size < nva_start_addr ||
1234 			nva_start_addr < vstart)
1235 		return false;
1236 
1237 	return (nva_start_addr + size <= va->va_end);
1238 }
1239 
1240 /*
1241  * Find the first free block(lowest start address) in the tree,
1242  * that will accomplish the request corresponding to passing
1243  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1244  * a search length is adjusted to account for worst case alignment
1245  * overhead.
1246  */
1247 static __always_inline struct vmap_area *
1248 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1249 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1250 {
1251 	struct vmap_area *va;
1252 	struct rb_node *node;
1253 	unsigned long length;
1254 
1255 	/* Start from the root. */
1256 	node = root->rb_node;
1257 
1258 	/* Adjust the search size for alignment overhead. */
1259 	length = adjust_search_size ? size + align - 1 : size;
1260 
1261 	while (node) {
1262 		va = rb_entry(node, struct vmap_area, rb_node);
1263 
1264 		if (get_subtree_max_size(node->rb_left) >= length &&
1265 				vstart < va->va_start) {
1266 			node = node->rb_left;
1267 		} else {
1268 			if (is_within_this_va(va, size, align, vstart))
1269 				return va;
1270 
1271 			/*
1272 			 * Does not make sense to go deeper towards the right
1273 			 * sub-tree if it does not have a free block that is
1274 			 * equal or bigger to the requested search length.
1275 			 */
1276 			if (get_subtree_max_size(node->rb_right) >= length) {
1277 				node = node->rb_right;
1278 				continue;
1279 			}
1280 
1281 			/*
1282 			 * OK. We roll back and find the first right sub-tree,
1283 			 * that will satisfy the search criteria. It can happen
1284 			 * due to "vstart" restriction or an alignment overhead
1285 			 * that is bigger then PAGE_SIZE.
1286 			 */
1287 			while ((node = rb_parent(node))) {
1288 				va = rb_entry(node, struct vmap_area, rb_node);
1289 				if (is_within_this_va(va, size, align, vstart))
1290 					return va;
1291 
1292 				if (get_subtree_max_size(node->rb_right) >= length &&
1293 						vstart <= va->va_start) {
1294 					/*
1295 					 * Shift the vstart forward. Please note, we update it with
1296 					 * parent's start address adding "1" because we do not want
1297 					 * to enter same sub-tree after it has already been checked
1298 					 * and no suitable free block found there.
1299 					 */
1300 					vstart = va->va_start + 1;
1301 					node = node->rb_right;
1302 					break;
1303 				}
1304 			}
1305 		}
1306 	}
1307 
1308 	return NULL;
1309 }
1310 
1311 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1312 #include <linux/random.h>
1313 
1314 static struct vmap_area *
1315 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1316 	unsigned long align, unsigned long vstart)
1317 {
1318 	struct vmap_area *va;
1319 
1320 	list_for_each_entry(va, head, list) {
1321 		if (!is_within_this_va(va, size, align, vstart))
1322 			continue;
1323 
1324 		return va;
1325 	}
1326 
1327 	return NULL;
1328 }
1329 
1330 static void
1331 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1332 			     unsigned long size, unsigned long align)
1333 {
1334 	struct vmap_area *va_1, *va_2;
1335 	unsigned long vstart;
1336 	unsigned int rnd;
1337 
1338 	get_random_bytes(&rnd, sizeof(rnd));
1339 	vstart = VMALLOC_START + rnd;
1340 
1341 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1342 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1343 
1344 	if (va_1 != va_2)
1345 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1346 			va_1, va_2, vstart);
1347 }
1348 #endif
1349 
1350 enum fit_type {
1351 	NOTHING_FIT = 0,
1352 	FL_FIT_TYPE = 1,	/* full fit */
1353 	LE_FIT_TYPE = 2,	/* left edge fit */
1354 	RE_FIT_TYPE = 3,	/* right edge fit */
1355 	NE_FIT_TYPE = 4		/* no edge fit */
1356 };
1357 
1358 static __always_inline enum fit_type
1359 classify_va_fit_type(struct vmap_area *va,
1360 	unsigned long nva_start_addr, unsigned long size)
1361 {
1362 	enum fit_type type;
1363 
1364 	/* Check if it is within VA. */
1365 	if (nva_start_addr < va->va_start ||
1366 			nva_start_addr + size > va->va_end)
1367 		return NOTHING_FIT;
1368 
1369 	/* Now classify. */
1370 	if (va->va_start == nva_start_addr) {
1371 		if (va->va_end == nva_start_addr + size)
1372 			type = FL_FIT_TYPE;
1373 		else
1374 			type = LE_FIT_TYPE;
1375 	} else if (va->va_end == nva_start_addr + size) {
1376 		type = RE_FIT_TYPE;
1377 	} else {
1378 		type = NE_FIT_TYPE;
1379 	}
1380 
1381 	return type;
1382 }
1383 
1384 static __always_inline int
1385 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1386 		      struct vmap_area *va, unsigned long nva_start_addr,
1387 		      unsigned long size)
1388 {
1389 	struct vmap_area *lva = NULL;
1390 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1391 
1392 	if (type == FL_FIT_TYPE) {
1393 		/*
1394 		 * No need to split VA, it fully fits.
1395 		 *
1396 		 * |               |
1397 		 * V      NVA      V
1398 		 * |---------------|
1399 		 */
1400 		unlink_va_augment(va, root);
1401 		kmem_cache_free(vmap_area_cachep, va);
1402 	} else if (type == LE_FIT_TYPE) {
1403 		/*
1404 		 * Split left edge of fit VA.
1405 		 *
1406 		 * |       |
1407 		 * V  NVA  V   R
1408 		 * |-------|-------|
1409 		 */
1410 		va->va_start += size;
1411 	} else if (type == RE_FIT_TYPE) {
1412 		/*
1413 		 * Split right edge of fit VA.
1414 		 *
1415 		 *         |       |
1416 		 *     L   V  NVA  V
1417 		 * |-------|-------|
1418 		 */
1419 		va->va_end = nva_start_addr;
1420 	} else if (type == NE_FIT_TYPE) {
1421 		/*
1422 		 * Split no edge of fit VA.
1423 		 *
1424 		 *     |       |
1425 		 *   L V  NVA  V R
1426 		 * |---|-------|---|
1427 		 */
1428 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1429 		if (unlikely(!lva)) {
1430 			/*
1431 			 * For percpu allocator we do not do any pre-allocation
1432 			 * and leave it as it is. The reason is it most likely
1433 			 * never ends up with NE_FIT_TYPE splitting. In case of
1434 			 * percpu allocations offsets and sizes are aligned to
1435 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1436 			 * are its main fitting cases.
1437 			 *
1438 			 * There are a few exceptions though, as an example it is
1439 			 * a first allocation (early boot up) when we have "one"
1440 			 * big free space that has to be split.
1441 			 *
1442 			 * Also we can hit this path in case of regular "vmap"
1443 			 * allocations, if "this" current CPU was not preloaded.
1444 			 * See the comment in alloc_vmap_area() why. If so, then
1445 			 * GFP_NOWAIT is used instead to get an extra object for
1446 			 * split purpose. That is rare and most time does not
1447 			 * occur.
1448 			 *
1449 			 * What happens if an allocation gets failed. Basically,
1450 			 * an "overflow" path is triggered to purge lazily freed
1451 			 * areas to free some memory, then, the "retry" path is
1452 			 * triggered to repeat one more time. See more details
1453 			 * in alloc_vmap_area() function.
1454 			 */
1455 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1456 			if (!lva)
1457 				return -1;
1458 		}
1459 
1460 		/*
1461 		 * Build the remainder.
1462 		 */
1463 		lva->va_start = va->va_start;
1464 		lva->va_end = nva_start_addr;
1465 
1466 		/*
1467 		 * Shrink this VA to remaining size.
1468 		 */
1469 		va->va_start = nva_start_addr + size;
1470 	} else {
1471 		return -1;
1472 	}
1473 
1474 	if (type != FL_FIT_TYPE) {
1475 		augment_tree_propagate_from(va);
1476 
1477 		if (lva)	/* type == NE_FIT_TYPE */
1478 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1479 	}
1480 
1481 	return 0;
1482 }
1483 
1484 /*
1485  * Returns a start address of the newly allocated area, if success.
1486  * Otherwise a vend is returned that indicates failure.
1487  */
1488 static __always_inline unsigned long
1489 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1490 	unsigned long size, unsigned long align,
1491 	unsigned long vstart, unsigned long vend)
1492 {
1493 	bool adjust_search_size = true;
1494 	unsigned long nva_start_addr;
1495 	struct vmap_area *va;
1496 	int ret;
1497 
1498 	/*
1499 	 * Do not adjust when:
1500 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1501 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1502 	 *      aligned anyway;
1503 	 *   b) a short range where a requested size corresponds to exactly
1504 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1505 	 *      With adjusted search length an allocation would not succeed.
1506 	 */
1507 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1508 		adjust_search_size = false;
1509 
1510 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1511 	if (unlikely(!va))
1512 		return vend;
1513 
1514 	if (va->va_start > vstart)
1515 		nva_start_addr = ALIGN(va->va_start, align);
1516 	else
1517 		nva_start_addr = ALIGN(vstart, align);
1518 
1519 	/* Check the "vend" restriction. */
1520 	if (nva_start_addr + size > vend)
1521 		return vend;
1522 
1523 	/* Update the free vmap_area. */
1524 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1525 	if (WARN_ON_ONCE(ret))
1526 		return vend;
1527 
1528 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1529 	find_vmap_lowest_match_check(root, head, size, align);
1530 #endif
1531 
1532 	return nva_start_addr;
1533 }
1534 
1535 /*
1536  * Free a region of KVA allocated by alloc_vmap_area
1537  */
1538 static void free_vmap_area(struct vmap_area *va)
1539 {
1540 	/*
1541 	 * Remove from the busy tree/list.
1542 	 */
1543 	spin_lock(&vmap_area_lock);
1544 	unlink_va(va, &vmap_area_root);
1545 	spin_unlock(&vmap_area_lock);
1546 
1547 	/*
1548 	 * Insert/Merge it back to the free tree/list.
1549 	 */
1550 	spin_lock(&free_vmap_area_lock);
1551 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1552 	spin_unlock(&free_vmap_area_lock);
1553 }
1554 
1555 static inline void
1556 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1557 {
1558 	struct vmap_area *va = NULL;
1559 
1560 	/*
1561 	 * Preload this CPU with one extra vmap_area object. It is used
1562 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1563 	 * a CPU that does an allocation is preloaded.
1564 	 *
1565 	 * We do it in non-atomic context, thus it allows us to use more
1566 	 * permissive allocation masks to be more stable under low memory
1567 	 * condition and high memory pressure.
1568 	 */
1569 	if (!this_cpu_read(ne_fit_preload_node))
1570 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1571 
1572 	spin_lock(lock);
1573 
1574 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1575 		kmem_cache_free(vmap_area_cachep, va);
1576 }
1577 
1578 /*
1579  * Allocate a region of KVA of the specified size and alignment, within the
1580  * vstart and vend.
1581  */
1582 static struct vmap_area *alloc_vmap_area(unsigned long size,
1583 				unsigned long align,
1584 				unsigned long vstart, unsigned long vend,
1585 				int node, gfp_t gfp_mask,
1586 				unsigned long va_flags)
1587 {
1588 	struct vmap_area *va;
1589 	unsigned long freed;
1590 	unsigned long addr;
1591 	int purged = 0;
1592 	int ret;
1593 
1594 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1595 		return ERR_PTR(-EINVAL);
1596 
1597 	if (unlikely(!vmap_initialized))
1598 		return ERR_PTR(-EBUSY);
1599 
1600 	might_sleep();
1601 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1602 
1603 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1604 	if (unlikely(!va))
1605 		return ERR_PTR(-ENOMEM);
1606 
1607 	/*
1608 	 * Only scan the relevant parts containing pointers to other objects
1609 	 * to avoid false negatives.
1610 	 */
1611 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1612 
1613 retry:
1614 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1615 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1616 		size, align, vstart, vend);
1617 	spin_unlock(&free_vmap_area_lock);
1618 
1619 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1620 
1621 	/*
1622 	 * If an allocation fails, the "vend" address is
1623 	 * returned. Therefore trigger the overflow path.
1624 	 */
1625 	if (unlikely(addr == vend))
1626 		goto overflow;
1627 
1628 	va->va_start = addr;
1629 	va->va_end = addr + size;
1630 	va->vm = NULL;
1631 	va->flags = va_flags;
1632 
1633 	spin_lock(&vmap_area_lock);
1634 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1635 	spin_unlock(&vmap_area_lock);
1636 
1637 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1638 	BUG_ON(va->va_start < vstart);
1639 	BUG_ON(va->va_end > vend);
1640 
1641 	ret = kasan_populate_vmalloc(addr, size);
1642 	if (ret) {
1643 		free_vmap_area(va);
1644 		return ERR_PTR(ret);
1645 	}
1646 
1647 	return va;
1648 
1649 overflow:
1650 	if (!purged) {
1651 		reclaim_and_purge_vmap_areas();
1652 		purged = 1;
1653 		goto retry;
1654 	}
1655 
1656 	freed = 0;
1657 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1658 
1659 	if (freed > 0) {
1660 		purged = 0;
1661 		goto retry;
1662 	}
1663 
1664 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1665 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1666 			size);
1667 
1668 	kmem_cache_free(vmap_area_cachep, va);
1669 	return ERR_PTR(-EBUSY);
1670 }
1671 
1672 int register_vmap_purge_notifier(struct notifier_block *nb)
1673 {
1674 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1675 }
1676 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1677 
1678 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1679 {
1680 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1681 }
1682 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1683 
1684 /*
1685  * lazy_max_pages is the maximum amount of virtual address space we gather up
1686  * before attempting to purge with a TLB flush.
1687  *
1688  * There is a tradeoff here: a larger number will cover more kernel page tables
1689  * and take slightly longer to purge, but it will linearly reduce the number of
1690  * global TLB flushes that must be performed. It would seem natural to scale
1691  * this number up linearly with the number of CPUs (because vmapping activity
1692  * could also scale linearly with the number of CPUs), however it is likely
1693  * that in practice, workloads might be constrained in other ways that mean
1694  * vmap activity will not scale linearly with CPUs. Also, I want to be
1695  * conservative and not introduce a big latency on huge systems, so go with
1696  * a less aggressive log scale. It will still be an improvement over the old
1697  * code, and it will be simple to change the scale factor if we find that it
1698  * becomes a problem on bigger systems.
1699  */
1700 static unsigned long lazy_max_pages(void)
1701 {
1702 	unsigned int log;
1703 
1704 	log = fls(num_online_cpus());
1705 
1706 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1707 }
1708 
1709 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1710 
1711 /*
1712  * Serialize vmap purging.  There is no actual critical section protected
1713  * by this lock, but we want to avoid concurrent calls for performance
1714  * reasons and to make the pcpu_get_vm_areas more deterministic.
1715  */
1716 static DEFINE_MUTEX(vmap_purge_lock);
1717 
1718 /* for per-CPU blocks */
1719 static void purge_fragmented_blocks_allcpus(void);
1720 
1721 /*
1722  * Purges all lazily-freed vmap areas.
1723  */
1724 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1725 {
1726 	unsigned long resched_threshold;
1727 	unsigned int num_purged_areas = 0;
1728 	struct list_head local_purge_list;
1729 	struct vmap_area *va, *n_va;
1730 
1731 	lockdep_assert_held(&vmap_purge_lock);
1732 
1733 	spin_lock(&purge_vmap_area_lock);
1734 	purge_vmap_area_root = RB_ROOT;
1735 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1736 	spin_unlock(&purge_vmap_area_lock);
1737 
1738 	if (unlikely(list_empty(&local_purge_list)))
1739 		goto out;
1740 
1741 	start = min(start,
1742 		list_first_entry(&local_purge_list,
1743 			struct vmap_area, list)->va_start);
1744 
1745 	end = max(end,
1746 		list_last_entry(&local_purge_list,
1747 			struct vmap_area, list)->va_end);
1748 
1749 	flush_tlb_kernel_range(start, end);
1750 	resched_threshold = lazy_max_pages() << 1;
1751 
1752 	spin_lock(&free_vmap_area_lock);
1753 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1754 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1755 		unsigned long orig_start = va->va_start;
1756 		unsigned long orig_end = va->va_end;
1757 
1758 		/*
1759 		 * Finally insert or merge lazily-freed area. It is
1760 		 * detached and there is no need to "unlink" it from
1761 		 * anything.
1762 		 */
1763 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1764 				&free_vmap_area_list);
1765 
1766 		if (!va)
1767 			continue;
1768 
1769 		if (is_vmalloc_or_module_addr((void *)orig_start))
1770 			kasan_release_vmalloc(orig_start, orig_end,
1771 					      va->va_start, va->va_end);
1772 
1773 		atomic_long_sub(nr, &vmap_lazy_nr);
1774 		num_purged_areas++;
1775 
1776 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1777 			cond_resched_lock(&free_vmap_area_lock);
1778 	}
1779 	spin_unlock(&free_vmap_area_lock);
1780 
1781 out:
1782 	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1783 	return num_purged_areas > 0;
1784 }
1785 
1786 /*
1787  * Reclaim vmap areas by purging fragmented blocks and purge_vmap_area_list.
1788  */
1789 static void reclaim_and_purge_vmap_areas(void)
1790 
1791 {
1792 	mutex_lock(&vmap_purge_lock);
1793 	purge_fragmented_blocks_allcpus();
1794 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1795 	mutex_unlock(&vmap_purge_lock);
1796 }
1797 
1798 static void drain_vmap_area_work(struct work_struct *work)
1799 {
1800 	unsigned long nr_lazy;
1801 
1802 	do {
1803 		mutex_lock(&vmap_purge_lock);
1804 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1805 		mutex_unlock(&vmap_purge_lock);
1806 
1807 		/* Recheck if further work is required. */
1808 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809 	} while (nr_lazy > lazy_max_pages());
1810 }
1811 
1812 /*
1813  * Free a vmap area, caller ensuring that the area has been unmapped,
1814  * unlinked and flush_cache_vunmap had been called for the correct
1815  * range previously.
1816  */
1817 static void free_vmap_area_noflush(struct vmap_area *va)
1818 {
1819 	unsigned long nr_lazy_max = lazy_max_pages();
1820 	unsigned long va_start = va->va_start;
1821 	unsigned long nr_lazy;
1822 
1823 	if (WARN_ON_ONCE(!list_empty(&va->list)))
1824 		return;
1825 
1826 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827 				PAGE_SHIFT, &vmap_lazy_nr);
1828 
1829 	/*
1830 	 * Merge or place it to the purge tree/list.
1831 	 */
1832 	spin_lock(&purge_vmap_area_lock);
1833 	merge_or_add_vmap_area(va,
1834 		&purge_vmap_area_root, &purge_vmap_area_list);
1835 	spin_unlock(&purge_vmap_area_lock);
1836 
1837 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838 
1839 	/* After this point, we may free va at any time */
1840 	if (unlikely(nr_lazy > nr_lazy_max))
1841 		schedule_work(&drain_vmap_work);
1842 }
1843 
1844 /*
1845  * Free and unmap a vmap area
1846  */
1847 static void free_unmap_vmap_area(struct vmap_area *va)
1848 {
1849 	flush_cache_vunmap(va->va_start, va->va_end);
1850 	vunmap_range_noflush(va->va_start, va->va_end);
1851 	if (debug_pagealloc_enabled_static())
1852 		flush_tlb_kernel_range(va->va_start, va->va_end);
1853 
1854 	free_vmap_area_noflush(va);
1855 }
1856 
1857 struct vmap_area *find_vmap_area(unsigned long addr)
1858 {
1859 	struct vmap_area *va;
1860 
1861 	spin_lock(&vmap_area_lock);
1862 	va = __find_vmap_area(addr, &vmap_area_root);
1863 	spin_unlock(&vmap_area_lock);
1864 
1865 	return va;
1866 }
1867 
1868 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869 {
1870 	struct vmap_area *va;
1871 
1872 	spin_lock(&vmap_area_lock);
1873 	va = __find_vmap_area(addr, &vmap_area_root);
1874 	if (va)
1875 		unlink_va(va, &vmap_area_root);
1876 	spin_unlock(&vmap_area_lock);
1877 
1878 	return va;
1879 }
1880 
1881 /*** Per cpu kva allocator ***/
1882 
1883 /*
1884  * vmap space is limited especially on 32 bit architectures. Ensure there is
1885  * room for at least 16 percpu vmap blocks per CPU.
1886  */
1887 /*
1888  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1890  * instead (we just need a rough idea)
1891  */
1892 #if BITS_PER_LONG == 32
1893 #define VMALLOC_SPACE		(128UL*1024*1024)
1894 #else
1895 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1896 #endif
1897 
1898 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1899 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1900 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1901 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1902 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1903 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1904 #define VMAP_BBMAP_BITS		\
1905 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1906 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1907 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1908 
1909 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1910 
1911 /*
1912  * Purge threshold to prevent overeager purging of fragmented blocks for
1913  * regular operations: Purge if vb->free is less than 1/4 of the capacity.
1914  */
1915 #define VMAP_PURGE_THRESHOLD	(VMAP_BBMAP_BITS / 4)
1916 
1917 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
1918 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
1919 #define VMAP_FLAGS_MASK		0x3
1920 
1921 struct vmap_block_queue {
1922 	spinlock_t lock;
1923 	struct list_head free;
1924 
1925 	/*
1926 	 * An xarray requires an extra memory dynamically to
1927 	 * be allocated. If it is an issue, we can use rb-tree
1928 	 * instead.
1929 	 */
1930 	struct xarray vmap_blocks;
1931 };
1932 
1933 struct vmap_block {
1934 	spinlock_t lock;
1935 	struct vmap_area *va;
1936 	unsigned long free, dirty;
1937 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1938 	unsigned long dirty_min, dirty_max; /*< dirty range */
1939 	struct list_head free_list;
1940 	struct rcu_head rcu_head;
1941 	struct list_head purge;
1942 	unsigned int cpu;
1943 };
1944 
1945 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1946 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1947 
1948 /*
1949  * In order to fast access to any "vmap_block" associated with a
1950  * specific address, we use a hash.
1951  *
1952  * A per-cpu vmap_block_queue is used in both ways, to serialize
1953  * an access to free block chains among CPUs(alloc path) and it
1954  * also acts as a vmap_block hash(alloc/free paths). It means we
1955  * overload it, since we already have the per-cpu array which is
1956  * used as a hash table. When used as a hash a 'cpu' passed to
1957  * per_cpu() is not actually a CPU but rather a hash index.
1958  *
1959  * A hash function is addr_to_vb_xa() which hashes any address
1960  * to a specific index(in a hash) it belongs to. This then uses a
1961  * per_cpu() macro to access an array with generated index.
1962  *
1963  * An example:
1964  *
1965  *  CPU_1  CPU_2  CPU_0
1966  *    |      |      |
1967  *    V      V      V
1968  * 0     10     20     30     40     50     60
1969  * |------|------|------|------|------|------|...<vmap address space>
1970  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
1971  *
1972  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1973  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1974  *
1975  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1976  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1977  *
1978  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1979  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1980  *
1981  * This technique almost always avoids lock contention on insert/remove,
1982  * however xarray spinlocks protect against any contention that remains.
1983  */
1984 static struct xarray *
1985 addr_to_vb_xa(unsigned long addr)
1986 {
1987 	int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
1988 
1989 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
1990 }
1991 
1992 /*
1993  * We should probably have a fallback mechanism to allocate virtual memory
1994  * out of partially filled vmap blocks. However vmap block sizing should be
1995  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1996  * big problem.
1997  */
1998 
1999 static unsigned long addr_to_vb_idx(unsigned long addr)
2000 {
2001 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
2002 	addr /= VMAP_BLOCK_SIZE;
2003 	return addr;
2004 }
2005 
2006 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2007 {
2008 	unsigned long addr;
2009 
2010 	addr = va_start + (pages_off << PAGE_SHIFT);
2011 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2012 	return (void *)addr;
2013 }
2014 
2015 /**
2016  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2017  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2018  * @order:    how many 2^order pages should be occupied in newly allocated block
2019  * @gfp_mask: flags for the page level allocator
2020  *
2021  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2022  */
2023 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2024 {
2025 	struct vmap_block_queue *vbq;
2026 	struct vmap_block *vb;
2027 	struct vmap_area *va;
2028 	struct xarray *xa;
2029 	unsigned long vb_idx;
2030 	int node, err;
2031 	void *vaddr;
2032 
2033 	node = numa_node_id();
2034 
2035 	vb = kmalloc_node(sizeof(struct vmap_block),
2036 			gfp_mask & GFP_RECLAIM_MASK, node);
2037 	if (unlikely(!vb))
2038 		return ERR_PTR(-ENOMEM);
2039 
2040 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2041 					VMALLOC_START, VMALLOC_END,
2042 					node, gfp_mask,
2043 					VMAP_RAM|VMAP_BLOCK);
2044 	if (IS_ERR(va)) {
2045 		kfree(vb);
2046 		return ERR_CAST(va);
2047 	}
2048 
2049 	vaddr = vmap_block_vaddr(va->va_start, 0);
2050 	spin_lock_init(&vb->lock);
2051 	vb->va = va;
2052 	/* At least something should be left free */
2053 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2054 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2055 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2056 	vb->dirty = 0;
2057 	vb->dirty_min = VMAP_BBMAP_BITS;
2058 	vb->dirty_max = 0;
2059 	bitmap_set(vb->used_map, 0, (1UL << order));
2060 	INIT_LIST_HEAD(&vb->free_list);
2061 
2062 	xa = addr_to_vb_xa(va->va_start);
2063 	vb_idx = addr_to_vb_idx(va->va_start);
2064 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2065 	if (err) {
2066 		kfree(vb);
2067 		free_vmap_area(va);
2068 		return ERR_PTR(err);
2069 	}
2070 	/*
2071 	 * list_add_tail_rcu could happened in another core
2072 	 * rather than vb->cpu due to task migration, which
2073 	 * is safe as list_add_tail_rcu will ensure the list's
2074 	 * integrity together with list_for_each_rcu from read
2075 	 * side.
2076 	 */
2077 	vb->cpu = raw_smp_processor_id();
2078 	vbq = per_cpu_ptr(&vmap_block_queue, vb->cpu);
2079 	spin_lock(&vbq->lock);
2080 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2081 	spin_unlock(&vbq->lock);
2082 
2083 	return vaddr;
2084 }
2085 
2086 static void free_vmap_block(struct vmap_block *vb)
2087 {
2088 	struct vmap_block *tmp;
2089 	struct xarray *xa;
2090 
2091 	xa = addr_to_vb_xa(vb->va->va_start);
2092 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2093 	BUG_ON(tmp != vb);
2094 
2095 	spin_lock(&vmap_area_lock);
2096 	unlink_va(vb->va, &vmap_area_root);
2097 	spin_unlock(&vmap_area_lock);
2098 
2099 	free_vmap_area_noflush(vb->va);
2100 	kfree_rcu(vb, rcu_head);
2101 }
2102 
2103 static bool purge_fragmented_block(struct vmap_block *vb,
2104 		struct list_head *purge_list, bool force_purge)
2105 {
2106 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, vb->cpu);
2107 
2108 	if (vb->free + vb->dirty != VMAP_BBMAP_BITS ||
2109 	    vb->dirty == VMAP_BBMAP_BITS)
2110 		return false;
2111 
2112 	/* Don't overeagerly purge usable blocks unless requested */
2113 	if (!(force_purge || vb->free < VMAP_PURGE_THRESHOLD))
2114 		return false;
2115 
2116 	/* prevent further allocs after releasing lock */
2117 	WRITE_ONCE(vb->free, 0);
2118 	/* prevent purging it again */
2119 	WRITE_ONCE(vb->dirty, VMAP_BBMAP_BITS);
2120 	vb->dirty_min = 0;
2121 	vb->dirty_max = VMAP_BBMAP_BITS;
2122 	spin_lock(&vbq->lock);
2123 	list_del_rcu(&vb->free_list);
2124 	spin_unlock(&vbq->lock);
2125 	list_add_tail(&vb->purge, purge_list);
2126 	return true;
2127 }
2128 
2129 static void free_purged_blocks(struct list_head *purge_list)
2130 {
2131 	struct vmap_block *vb, *n_vb;
2132 
2133 	list_for_each_entry_safe(vb, n_vb, purge_list, purge) {
2134 		list_del(&vb->purge);
2135 		free_vmap_block(vb);
2136 	}
2137 }
2138 
2139 static void purge_fragmented_blocks(int cpu)
2140 {
2141 	LIST_HEAD(purge);
2142 	struct vmap_block *vb;
2143 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2144 
2145 	rcu_read_lock();
2146 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2147 		unsigned long free = READ_ONCE(vb->free);
2148 		unsigned long dirty = READ_ONCE(vb->dirty);
2149 
2150 		if (free + dirty != VMAP_BBMAP_BITS ||
2151 		    dirty == VMAP_BBMAP_BITS)
2152 			continue;
2153 
2154 		spin_lock(&vb->lock);
2155 		purge_fragmented_block(vb, &purge, true);
2156 		spin_unlock(&vb->lock);
2157 	}
2158 	rcu_read_unlock();
2159 	free_purged_blocks(&purge);
2160 }
2161 
2162 static void purge_fragmented_blocks_allcpus(void)
2163 {
2164 	int cpu;
2165 
2166 	for_each_possible_cpu(cpu)
2167 		purge_fragmented_blocks(cpu);
2168 }
2169 
2170 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2171 {
2172 	struct vmap_block_queue *vbq;
2173 	struct vmap_block *vb;
2174 	void *vaddr = NULL;
2175 	unsigned int order;
2176 
2177 	BUG_ON(offset_in_page(size));
2178 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2179 	if (WARN_ON(size == 0)) {
2180 		/*
2181 		 * Allocating 0 bytes isn't what caller wants since
2182 		 * get_order(0) returns funny result. Just warn and terminate
2183 		 * early.
2184 		 */
2185 		return NULL;
2186 	}
2187 	order = get_order(size);
2188 
2189 	rcu_read_lock();
2190 	vbq = raw_cpu_ptr(&vmap_block_queue);
2191 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2192 		unsigned long pages_off;
2193 
2194 		if (READ_ONCE(vb->free) < (1UL << order))
2195 			continue;
2196 
2197 		spin_lock(&vb->lock);
2198 		if (vb->free < (1UL << order)) {
2199 			spin_unlock(&vb->lock);
2200 			continue;
2201 		}
2202 
2203 		pages_off = VMAP_BBMAP_BITS - vb->free;
2204 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2205 		WRITE_ONCE(vb->free, vb->free - (1UL << order));
2206 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2207 		if (vb->free == 0) {
2208 			spin_lock(&vbq->lock);
2209 			list_del_rcu(&vb->free_list);
2210 			spin_unlock(&vbq->lock);
2211 		}
2212 
2213 		spin_unlock(&vb->lock);
2214 		break;
2215 	}
2216 
2217 	rcu_read_unlock();
2218 
2219 	/* Allocate new block if nothing was found */
2220 	if (!vaddr)
2221 		vaddr = new_vmap_block(order, gfp_mask);
2222 
2223 	return vaddr;
2224 }
2225 
2226 static void vb_free(unsigned long addr, unsigned long size)
2227 {
2228 	unsigned long offset;
2229 	unsigned int order;
2230 	struct vmap_block *vb;
2231 	struct xarray *xa;
2232 
2233 	BUG_ON(offset_in_page(size));
2234 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2235 
2236 	flush_cache_vunmap(addr, addr + size);
2237 
2238 	order = get_order(size);
2239 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2240 
2241 	xa = addr_to_vb_xa(addr);
2242 	vb = xa_load(xa, addr_to_vb_idx(addr));
2243 
2244 	spin_lock(&vb->lock);
2245 	bitmap_clear(vb->used_map, offset, (1UL << order));
2246 	spin_unlock(&vb->lock);
2247 
2248 	vunmap_range_noflush(addr, addr + size);
2249 
2250 	if (debug_pagealloc_enabled_static())
2251 		flush_tlb_kernel_range(addr, addr + size);
2252 
2253 	spin_lock(&vb->lock);
2254 
2255 	/* Expand the not yet TLB flushed dirty range */
2256 	vb->dirty_min = min(vb->dirty_min, offset);
2257 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2258 
2259 	WRITE_ONCE(vb->dirty, vb->dirty + (1UL << order));
2260 	if (vb->dirty == VMAP_BBMAP_BITS) {
2261 		BUG_ON(vb->free);
2262 		spin_unlock(&vb->lock);
2263 		free_vmap_block(vb);
2264 	} else
2265 		spin_unlock(&vb->lock);
2266 }
2267 
2268 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2269 {
2270 	LIST_HEAD(purge_list);
2271 	int cpu;
2272 
2273 	if (unlikely(!vmap_initialized))
2274 		return;
2275 
2276 	mutex_lock(&vmap_purge_lock);
2277 
2278 	for_each_possible_cpu(cpu) {
2279 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2280 		struct vmap_block *vb;
2281 		unsigned long idx;
2282 
2283 		rcu_read_lock();
2284 		xa_for_each(&vbq->vmap_blocks, idx, vb) {
2285 			spin_lock(&vb->lock);
2286 
2287 			/*
2288 			 * Try to purge a fragmented block first. If it's
2289 			 * not purgeable, check whether there is dirty
2290 			 * space to be flushed.
2291 			 */
2292 			if (!purge_fragmented_block(vb, &purge_list, false) &&
2293 			    vb->dirty_max && vb->dirty != VMAP_BBMAP_BITS) {
2294 				unsigned long va_start = vb->va->va_start;
2295 				unsigned long s, e;
2296 
2297 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2298 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2299 
2300 				start = min(s, start);
2301 				end   = max(e, end);
2302 
2303 				/* Prevent that this is flushed again */
2304 				vb->dirty_min = VMAP_BBMAP_BITS;
2305 				vb->dirty_max = 0;
2306 
2307 				flush = 1;
2308 			}
2309 			spin_unlock(&vb->lock);
2310 		}
2311 		rcu_read_unlock();
2312 	}
2313 	free_purged_blocks(&purge_list);
2314 
2315 	if (!__purge_vmap_area_lazy(start, end) && flush)
2316 		flush_tlb_kernel_range(start, end);
2317 	mutex_unlock(&vmap_purge_lock);
2318 }
2319 
2320 /**
2321  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2322  *
2323  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2324  * to amortize TLB flushing overheads. What this means is that any page you
2325  * have now, may, in a former life, have been mapped into kernel virtual
2326  * address by the vmap layer and so there might be some CPUs with TLB entries
2327  * still referencing that page (additional to the regular 1:1 kernel mapping).
2328  *
2329  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2330  * be sure that none of the pages we have control over will have any aliases
2331  * from the vmap layer.
2332  */
2333 void vm_unmap_aliases(void)
2334 {
2335 	unsigned long start = ULONG_MAX, end = 0;
2336 	int flush = 0;
2337 
2338 	_vm_unmap_aliases(start, end, flush);
2339 }
2340 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2341 
2342 /**
2343  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2344  * @mem: the pointer returned by vm_map_ram
2345  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2346  */
2347 void vm_unmap_ram(const void *mem, unsigned int count)
2348 {
2349 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2350 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2351 	struct vmap_area *va;
2352 
2353 	might_sleep();
2354 	BUG_ON(!addr);
2355 	BUG_ON(addr < VMALLOC_START);
2356 	BUG_ON(addr > VMALLOC_END);
2357 	BUG_ON(!PAGE_ALIGNED(addr));
2358 
2359 	kasan_poison_vmalloc(mem, size);
2360 
2361 	if (likely(count <= VMAP_MAX_ALLOC)) {
2362 		debug_check_no_locks_freed(mem, size);
2363 		vb_free(addr, size);
2364 		return;
2365 	}
2366 
2367 	va = find_unlink_vmap_area(addr);
2368 	if (WARN_ON_ONCE(!va))
2369 		return;
2370 
2371 	debug_check_no_locks_freed((void *)va->va_start,
2372 				    (va->va_end - va->va_start));
2373 	free_unmap_vmap_area(va);
2374 }
2375 EXPORT_SYMBOL(vm_unmap_ram);
2376 
2377 /**
2378  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2379  * @pages: an array of pointers to the pages to be mapped
2380  * @count: number of pages
2381  * @node: prefer to allocate data structures on this node
2382  *
2383  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2384  * faster than vmap so it's good.  But if you mix long-life and short-life
2385  * objects with vm_map_ram(), it could consume lots of address space through
2386  * fragmentation (especially on a 32bit machine).  You could see failures in
2387  * the end.  Please use this function for short-lived objects.
2388  *
2389  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2390  */
2391 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2392 {
2393 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2394 	unsigned long addr;
2395 	void *mem;
2396 
2397 	if (likely(count <= VMAP_MAX_ALLOC)) {
2398 		mem = vb_alloc(size, GFP_KERNEL);
2399 		if (IS_ERR(mem))
2400 			return NULL;
2401 		addr = (unsigned long)mem;
2402 	} else {
2403 		struct vmap_area *va;
2404 		va = alloc_vmap_area(size, PAGE_SIZE,
2405 				VMALLOC_START, VMALLOC_END,
2406 				node, GFP_KERNEL, VMAP_RAM);
2407 		if (IS_ERR(va))
2408 			return NULL;
2409 
2410 		addr = va->va_start;
2411 		mem = (void *)addr;
2412 	}
2413 
2414 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2415 				pages, PAGE_SHIFT) < 0) {
2416 		vm_unmap_ram(mem, count);
2417 		return NULL;
2418 	}
2419 
2420 	/*
2421 	 * Mark the pages as accessible, now that they are mapped.
2422 	 * With hardware tag-based KASAN, marking is skipped for
2423 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2424 	 */
2425 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2426 
2427 	return mem;
2428 }
2429 EXPORT_SYMBOL(vm_map_ram);
2430 
2431 static struct vm_struct *vmlist __initdata;
2432 
2433 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2434 {
2435 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2436 	return vm->page_order;
2437 #else
2438 	return 0;
2439 #endif
2440 }
2441 
2442 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2443 {
2444 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2445 	vm->page_order = order;
2446 #else
2447 	BUG_ON(order != 0);
2448 #endif
2449 }
2450 
2451 /**
2452  * vm_area_add_early - add vmap area early during boot
2453  * @vm: vm_struct to add
2454  *
2455  * This function is used to add fixed kernel vm area to vmlist before
2456  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2457  * should contain proper values and the other fields should be zero.
2458  *
2459  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2460  */
2461 void __init vm_area_add_early(struct vm_struct *vm)
2462 {
2463 	struct vm_struct *tmp, **p;
2464 
2465 	BUG_ON(vmap_initialized);
2466 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2467 		if (tmp->addr >= vm->addr) {
2468 			BUG_ON(tmp->addr < vm->addr + vm->size);
2469 			break;
2470 		} else
2471 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2472 	}
2473 	vm->next = *p;
2474 	*p = vm;
2475 }
2476 
2477 /**
2478  * vm_area_register_early - register vmap area early during boot
2479  * @vm: vm_struct to register
2480  * @align: requested alignment
2481  *
2482  * This function is used to register kernel vm area before
2483  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2484  * proper values on entry and other fields should be zero.  On return,
2485  * vm->addr contains the allocated address.
2486  *
2487  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2488  */
2489 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2490 {
2491 	unsigned long addr = ALIGN(VMALLOC_START, align);
2492 	struct vm_struct *cur, **p;
2493 
2494 	BUG_ON(vmap_initialized);
2495 
2496 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2497 		if ((unsigned long)cur->addr - addr >= vm->size)
2498 			break;
2499 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2500 	}
2501 
2502 	BUG_ON(addr > VMALLOC_END - vm->size);
2503 	vm->addr = (void *)addr;
2504 	vm->next = *p;
2505 	*p = vm;
2506 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2507 }
2508 
2509 static void vmap_init_free_space(void)
2510 {
2511 	unsigned long vmap_start = 1;
2512 	const unsigned long vmap_end = ULONG_MAX;
2513 	struct vmap_area *busy, *free;
2514 
2515 	/*
2516 	 *     B     F     B     B     B     F
2517 	 * -|-----|.....|-----|-----|-----|.....|-
2518 	 *  |           The KVA space           |
2519 	 *  |<--------------------------------->|
2520 	 */
2521 	list_for_each_entry(busy, &vmap_area_list, list) {
2522 		if (busy->va_start - vmap_start > 0) {
2523 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2524 			if (!WARN_ON_ONCE(!free)) {
2525 				free->va_start = vmap_start;
2526 				free->va_end = busy->va_start;
2527 
2528 				insert_vmap_area_augment(free, NULL,
2529 					&free_vmap_area_root,
2530 						&free_vmap_area_list);
2531 			}
2532 		}
2533 
2534 		vmap_start = busy->va_end;
2535 	}
2536 
2537 	if (vmap_end - vmap_start > 0) {
2538 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2539 		if (!WARN_ON_ONCE(!free)) {
2540 			free->va_start = vmap_start;
2541 			free->va_end = vmap_end;
2542 
2543 			insert_vmap_area_augment(free, NULL,
2544 				&free_vmap_area_root,
2545 					&free_vmap_area_list);
2546 		}
2547 	}
2548 }
2549 
2550 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2551 	struct vmap_area *va, unsigned long flags, const void *caller)
2552 {
2553 	vm->flags = flags;
2554 	vm->addr = (void *)va->va_start;
2555 	vm->size = va->va_end - va->va_start;
2556 	vm->caller = caller;
2557 	va->vm = vm;
2558 }
2559 
2560 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2561 			      unsigned long flags, const void *caller)
2562 {
2563 	spin_lock(&vmap_area_lock);
2564 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2565 	spin_unlock(&vmap_area_lock);
2566 }
2567 
2568 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2569 {
2570 	/*
2571 	 * Before removing VM_UNINITIALIZED,
2572 	 * we should make sure that vm has proper values.
2573 	 * Pair with smp_rmb() in show_numa_info().
2574 	 */
2575 	smp_wmb();
2576 	vm->flags &= ~VM_UNINITIALIZED;
2577 }
2578 
2579 static struct vm_struct *__get_vm_area_node(unsigned long size,
2580 		unsigned long align, unsigned long shift, unsigned long flags,
2581 		unsigned long start, unsigned long end, int node,
2582 		gfp_t gfp_mask, const void *caller)
2583 {
2584 	struct vmap_area *va;
2585 	struct vm_struct *area;
2586 	unsigned long requested_size = size;
2587 
2588 	BUG_ON(in_interrupt());
2589 	size = ALIGN(size, 1ul << shift);
2590 	if (unlikely(!size))
2591 		return NULL;
2592 
2593 	if (flags & VM_IOREMAP)
2594 		align = 1ul << clamp_t(int, get_count_order_long(size),
2595 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2596 
2597 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2598 	if (unlikely(!area))
2599 		return NULL;
2600 
2601 	if (!(flags & VM_NO_GUARD))
2602 		size += PAGE_SIZE;
2603 
2604 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2605 	if (IS_ERR(va)) {
2606 		kfree(area);
2607 		return NULL;
2608 	}
2609 
2610 	setup_vmalloc_vm(area, va, flags, caller);
2611 
2612 	/*
2613 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2614 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2615 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2616 	 * getting mapped in __vmalloc_node_range().
2617 	 * With hardware tag-based KASAN, marking is skipped for
2618 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2619 	 */
2620 	if (!(flags & VM_ALLOC))
2621 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2622 						    KASAN_VMALLOC_PROT_NORMAL);
2623 
2624 	return area;
2625 }
2626 
2627 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2628 				       unsigned long start, unsigned long end,
2629 				       const void *caller)
2630 {
2631 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2632 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2633 }
2634 
2635 /**
2636  * get_vm_area - reserve a contiguous kernel virtual area
2637  * @size:	 size of the area
2638  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2639  *
2640  * Search an area of @size in the kernel virtual mapping area,
2641  * and reserved it for out purposes.  Returns the area descriptor
2642  * on success or %NULL on failure.
2643  *
2644  * Return: the area descriptor on success or %NULL on failure.
2645  */
2646 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2647 {
2648 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2649 				  VMALLOC_START, VMALLOC_END,
2650 				  NUMA_NO_NODE, GFP_KERNEL,
2651 				  __builtin_return_address(0));
2652 }
2653 
2654 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2655 				const void *caller)
2656 {
2657 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2658 				  VMALLOC_START, VMALLOC_END,
2659 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2660 }
2661 
2662 /**
2663  * find_vm_area - find a continuous kernel virtual area
2664  * @addr:	  base address
2665  *
2666  * Search for the kernel VM area starting at @addr, and return it.
2667  * It is up to the caller to do all required locking to keep the returned
2668  * pointer valid.
2669  *
2670  * Return: the area descriptor on success or %NULL on failure.
2671  */
2672 struct vm_struct *find_vm_area(const void *addr)
2673 {
2674 	struct vmap_area *va;
2675 
2676 	va = find_vmap_area((unsigned long)addr);
2677 	if (!va)
2678 		return NULL;
2679 
2680 	return va->vm;
2681 }
2682 
2683 /**
2684  * remove_vm_area - find and remove a continuous kernel virtual area
2685  * @addr:	    base address
2686  *
2687  * Search for the kernel VM area starting at @addr, and remove it.
2688  * This function returns the found VM area, but using it is NOT safe
2689  * on SMP machines, except for its size or flags.
2690  *
2691  * Return: the area descriptor on success or %NULL on failure.
2692  */
2693 struct vm_struct *remove_vm_area(const void *addr)
2694 {
2695 	struct vmap_area *va;
2696 	struct vm_struct *vm;
2697 
2698 	might_sleep();
2699 
2700 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2701 			addr))
2702 		return NULL;
2703 
2704 	va = find_unlink_vmap_area((unsigned long)addr);
2705 	if (!va || !va->vm)
2706 		return NULL;
2707 	vm = va->vm;
2708 
2709 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2710 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2711 	kasan_free_module_shadow(vm);
2712 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2713 
2714 	free_unmap_vmap_area(va);
2715 	return vm;
2716 }
2717 
2718 static inline void set_area_direct_map(const struct vm_struct *area,
2719 				       int (*set_direct_map)(struct page *page))
2720 {
2721 	int i;
2722 
2723 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2724 	for (i = 0; i < area->nr_pages; i++)
2725 		if (page_address(area->pages[i]))
2726 			set_direct_map(area->pages[i]);
2727 }
2728 
2729 /*
2730  * Flush the vm mapping and reset the direct map.
2731  */
2732 static void vm_reset_perms(struct vm_struct *area)
2733 {
2734 	unsigned long start = ULONG_MAX, end = 0;
2735 	unsigned int page_order = vm_area_page_order(area);
2736 	int flush_dmap = 0;
2737 	int i;
2738 
2739 	/*
2740 	 * Find the start and end range of the direct mappings to make sure that
2741 	 * the vm_unmap_aliases() flush includes the direct map.
2742 	 */
2743 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2744 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2745 
2746 		if (addr) {
2747 			unsigned long page_size;
2748 
2749 			page_size = PAGE_SIZE << page_order;
2750 			start = min(addr, start);
2751 			end = max(addr + page_size, end);
2752 			flush_dmap = 1;
2753 		}
2754 	}
2755 
2756 	/*
2757 	 * Set direct map to something invalid so that it won't be cached if
2758 	 * there are any accesses after the TLB flush, then flush the TLB and
2759 	 * reset the direct map permissions to the default.
2760 	 */
2761 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2762 	_vm_unmap_aliases(start, end, flush_dmap);
2763 	set_area_direct_map(area, set_direct_map_default_noflush);
2764 }
2765 
2766 static void delayed_vfree_work(struct work_struct *w)
2767 {
2768 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2769 	struct llist_node *t, *llnode;
2770 
2771 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2772 		vfree(llnode);
2773 }
2774 
2775 /**
2776  * vfree_atomic - release memory allocated by vmalloc()
2777  * @addr:	  memory base address
2778  *
2779  * This one is just like vfree() but can be called in any atomic context
2780  * except NMIs.
2781  */
2782 void vfree_atomic(const void *addr)
2783 {
2784 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2785 
2786 	BUG_ON(in_nmi());
2787 	kmemleak_free(addr);
2788 
2789 	/*
2790 	 * Use raw_cpu_ptr() because this can be called from preemptible
2791 	 * context. Preemption is absolutely fine here, because the llist_add()
2792 	 * implementation is lockless, so it works even if we are adding to
2793 	 * another cpu's list. schedule_work() should be fine with this too.
2794 	 */
2795 	if (addr && llist_add((struct llist_node *)addr, &p->list))
2796 		schedule_work(&p->wq);
2797 }
2798 
2799 /**
2800  * vfree - Release memory allocated by vmalloc()
2801  * @addr:  Memory base address
2802  *
2803  * Free the virtually continuous memory area starting at @addr, as obtained
2804  * from one of the vmalloc() family of APIs.  This will usually also free the
2805  * physical memory underlying the virtual allocation, but that memory is
2806  * reference counted, so it will not be freed until the last user goes away.
2807  *
2808  * If @addr is NULL, no operation is performed.
2809  *
2810  * Context:
2811  * May sleep if called *not* from interrupt context.
2812  * Must not be called in NMI context (strictly speaking, it could be
2813  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2814  * conventions for vfree() arch-dependent would be a really bad idea).
2815  */
2816 void vfree(const void *addr)
2817 {
2818 	struct vm_struct *vm;
2819 	int i;
2820 
2821 	if (unlikely(in_interrupt())) {
2822 		vfree_atomic(addr);
2823 		return;
2824 	}
2825 
2826 	BUG_ON(in_nmi());
2827 	kmemleak_free(addr);
2828 	might_sleep();
2829 
2830 	if (!addr)
2831 		return;
2832 
2833 	vm = remove_vm_area(addr);
2834 	if (unlikely(!vm)) {
2835 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2836 				addr);
2837 		return;
2838 	}
2839 
2840 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2841 		vm_reset_perms(vm);
2842 	for (i = 0; i < vm->nr_pages; i++) {
2843 		struct page *page = vm->pages[i];
2844 
2845 		BUG_ON(!page);
2846 		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2847 		/*
2848 		 * High-order allocs for huge vmallocs are split, so
2849 		 * can be freed as an array of order-0 allocations
2850 		 */
2851 		__free_page(page);
2852 		cond_resched();
2853 	}
2854 	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2855 	kvfree(vm->pages);
2856 	kfree(vm);
2857 }
2858 EXPORT_SYMBOL(vfree);
2859 
2860 /**
2861  * vunmap - release virtual mapping obtained by vmap()
2862  * @addr:   memory base address
2863  *
2864  * Free the virtually contiguous memory area starting at @addr,
2865  * which was created from the page array passed to vmap().
2866  *
2867  * Must not be called in interrupt context.
2868  */
2869 void vunmap(const void *addr)
2870 {
2871 	struct vm_struct *vm;
2872 
2873 	BUG_ON(in_interrupt());
2874 	might_sleep();
2875 
2876 	if (!addr)
2877 		return;
2878 	vm = remove_vm_area(addr);
2879 	if (unlikely(!vm)) {
2880 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2881 				addr);
2882 		return;
2883 	}
2884 	kfree(vm);
2885 }
2886 EXPORT_SYMBOL(vunmap);
2887 
2888 /**
2889  * vmap - map an array of pages into virtually contiguous space
2890  * @pages: array of page pointers
2891  * @count: number of pages to map
2892  * @flags: vm_area->flags
2893  * @prot: page protection for the mapping
2894  *
2895  * Maps @count pages from @pages into contiguous kernel virtual space.
2896  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2897  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2898  * are transferred from the caller to vmap(), and will be freed / dropped when
2899  * vfree() is called on the return value.
2900  *
2901  * Return: the address of the area or %NULL on failure
2902  */
2903 void *vmap(struct page **pages, unsigned int count,
2904 	   unsigned long flags, pgprot_t prot)
2905 {
2906 	struct vm_struct *area;
2907 	unsigned long addr;
2908 	unsigned long size;		/* In bytes */
2909 
2910 	might_sleep();
2911 
2912 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2913 		return NULL;
2914 
2915 	/*
2916 	 * Your top guard is someone else's bottom guard. Not having a top
2917 	 * guard compromises someone else's mappings too.
2918 	 */
2919 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2920 		flags &= ~VM_NO_GUARD;
2921 
2922 	if (count > totalram_pages())
2923 		return NULL;
2924 
2925 	size = (unsigned long)count << PAGE_SHIFT;
2926 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2927 	if (!area)
2928 		return NULL;
2929 
2930 	addr = (unsigned long)area->addr;
2931 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2932 				pages, PAGE_SHIFT) < 0) {
2933 		vunmap(area->addr);
2934 		return NULL;
2935 	}
2936 
2937 	if (flags & VM_MAP_PUT_PAGES) {
2938 		area->pages = pages;
2939 		area->nr_pages = count;
2940 	}
2941 	return area->addr;
2942 }
2943 EXPORT_SYMBOL(vmap);
2944 
2945 #ifdef CONFIG_VMAP_PFN
2946 struct vmap_pfn_data {
2947 	unsigned long	*pfns;
2948 	pgprot_t	prot;
2949 	unsigned int	idx;
2950 };
2951 
2952 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2953 {
2954 	struct vmap_pfn_data *data = private;
2955 	unsigned long pfn = data->pfns[data->idx];
2956 	pte_t ptent;
2957 
2958 	if (WARN_ON_ONCE(pfn_valid(pfn)))
2959 		return -EINVAL;
2960 
2961 	ptent = pte_mkspecial(pfn_pte(pfn, data->prot));
2962 	set_pte_at(&init_mm, addr, pte, ptent);
2963 
2964 	data->idx++;
2965 	return 0;
2966 }
2967 
2968 /**
2969  * vmap_pfn - map an array of PFNs into virtually contiguous space
2970  * @pfns: array of PFNs
2971  * @count: number of pages to map
2972  * @prot: page protection for the mapping
2973  *
2974  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2975  * the start address of the mapping.
2976  */
2977 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2978 {
2979 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2980 	struct vm_struct *area;
2981 
2982 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2983 			__builtin_return_address(0));
2984 	if (!area)
2985 		return NULL;
2986 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2987 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2988 		free_vm_area(area);
2989 		return NULL;
2990 	}
2991 
2992 	flush_cache_vmap((unsigned long)area->addr,
2993 			 (unsigned long)area->addr + count * PAGE_SIZE);
2994 
2995 	return area->addr;
2996 }
2997 EXPORT_SYMBOL_GPL(vmap_pfn);
2998 #endif /* CONFIG_VMAP_PFN */
2999 
3000 static inline unsigned int
3001 vm_area_alloc_pages(gfp_t gfp, int nid,
3002 		unsigned int order, unsigned int nr_pages, struct page **pages)
3003 {
3004 	unsigned int nr_allocated = 0;
3005 	gfp_t alloc_gfp = gfp;
3006 	bool nofail = gfp & __GFP_NOFAIL;
3007 	struct page *page;
3008 	int i;
3009 
3010 	/*
3011 	 * For order-0 pages we make use of bulk allocator, if
3012 	 * the page array is partly or not at all populated due
3013 	 * to fails, fallback to a single page allocator that is
3014 	 * more permissive.
3015 	 */
3016 	if (!order) {
3017 		/* bulk allocator doesn't support nofail req. officially */
3018 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
3019 
3020 		while (nr_allocated < nr_pages) {
3021 			unsigned int nr, nr_pages_request;
3022 
3023 			/*
3024 			 * A maximum allowed request is hard-coded and is 100
3025 			 * pages per call. That is done in order to prevent a
3026 			 * long preemption off scenario in the bulk-allocator
3027 			 * so the range is [1:100].
3028 			 */
3029 			nr_pages_request = min(100U, nr_pages - nr_allocated);
3030 
3031 			/* memory allocation should consider mempolicy, we can't
3032 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
3033 			 * otherwise memory may be allocated in only one node,
3034 			 * but mempolicy wants to alloc memory by interleaving.
3035 			 */
3036 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
3037 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
3038 							nr_pages_request,
3039 							pages + nr_allocated);
3040 
3041 			else
3042 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
3043 							nr_pages_request,
3044 							pages + nr_allocated);
3045 
3046 			nr_allocated += nr;
3047 			cond_resched();
3048 
3049 			/*
3050 			 * If zero or pages were obtained partly,
3051 			 * fallback to a single page allocator.
3052 			 */
3053 			if (nr != nr_pages_request)
3054 				break;
3055 		}
3056 	} else if (gfp & __GFP_NOFAIL) {
3057 		/*
3058 		 * Higher order nofail allocations are really expensive and
3059 		 * potentially dangerous (pre-mature OOM, disruptive reclaim
3060 		 * and compaction etc.
3061 		 */
3062 		alloc_gfp &= ~__GFP_NOFAIL;
3063 	}
3064 
3065 	/* High-order pages or fallback path if "bulk" fails. */
3066 	while (nr_allocated < nr_pages) {
3067 		if (!nofail && fatal_signal_pending(current))
3068 			break;
3069 
3070 		if (nid == NUMA_NO_NODE)
3071 			page = alloc_pages(alloc_gfp, order);
3072 		else
3073 			page = alloc_pages_node(nid, alloc_gfp, order);
3074 		if (unlikely(!page)) {
3075 			if (!nofail)
3076 				break;
3077 
3078 			/* fall back to the zero order allocations */
3079 			alloc_gfp |= __GFP_NOFAIL;
3080 			order = 0;
3081 			continue;
3082 		}
3083 
3084 		/*
3085 		 * Higher order allocations must be able to be treated as
3086 		 * indepdenent small pages by callers (as they can with
3087 		 * small-page vmallocs). Some drivers do their own refcounting
3088 		 * on vmalloc_to_page() pages, some use page->mapping,
3089 		 * page->lru, etc.
3090 		 */
3091 		if (order)
3092 			split_page(page, order);
3093 
3094 		/*
3095 		 * Careful, we allocate and map page-order pages, but
3096 		 * tracking is done per PAGE_SIZE page so as to keep the
3097 		 * vm_struct APIs independent of the physical/mapped size.
3098 		 */
3099 		for (i = 0; i < (1U << order); i++)
3100 			pages[nr_allocated + i] = page + i;
3101 
3102 		cond_resched();
3103 		nr_allocated += 1U << order;
3104 	}
3105 
3106 	return nr_allocated;
3107 }
3108 
3109 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3110 				 pgprot_t prot, unsigned int page_shift,
3111 				 int node)
3112 {
3113 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3114 	bool nofail = gfp_mask & __GFP_NOFAIL;
3115 	unsigned long addr = (unsigned long)area->addr;
3116 	unsigned long size = get_vm_area_size(area);
3117 	unsigned long array_size;
3118 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3119 	unsigned int page_order;
3120 	unsigned int flags;
3121 	int ret;
3122 
3123 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3124 
3125 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3126 		gfp_mask |= __GFP_HIGHMEM;
3127 
3128 	/* Please note that the recursion is strictly bounded. */
3129 	if (array_size > PAGE_SIZE) {
3130 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3131 					area->caller);
3132 	} else {
3133 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3134 	}
3135 
3136 	if (!area->pages) {
3137 		warn_alloc(gfp_mask, NULL,
3138 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3139 			nr_small_pages * PAGE_SIZE, array_size);
3140 		free_vm_area(area);
3141 		return NULL;
3142 	}
3143 
3144 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3145 	page_order = vm_area_page_order(area);
3146 
3147 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3148 		node, page_order, nr_small_pages, area->pages);
3149 
3150 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3151 	if (gfp_mask & __GFP_ACCOUNT) {
3152 		int i;
3153 
3154 		for (i = 0; i < area->nr_pages; i++)
3155 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3156 	}
3157 
3158 	/*
3159 	 * If not enough pages were obtained to accomplish an
3160 	 * allocation request, free them via vfree() if any.
3161 	 */
3162 	if (area->nr_pages != nr_small_pages) {
3163 		/*
3164 		 * vm_area_alloc_pages() can fail due to insufficient memory but
3165 		 * also:-
3166 		 *
3167 		 * - a pending fatal signal
3168 		 * - insufficient huge page-order pages
3169 		 *
3170 		 * Since we always retry allocations at order-0 in the huge page
3171 		 * case a warning for either is spurious.
3172 		 */
3173 		if (!fatal_signal_pending(current) && page_order == 0)
3174 			warn_alloc(gfp_mask, NULL,
3175 				"vmalloc error: size %lu, failed to allocate pages",
3176 				area->nr_pages * PAGE_SIZE);
3177 		goto fail;
3178 	}
3179 
3180 	/*
3181 	 * page tables allocations ignore external gfp mask, enforce it
3182 	 * by the scope API
3183 	 */
3184 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3185 		flags = memalloc_nofs_save();
3186 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3187 		flags = memalloc_noio_save();
3188 
3189 	do {
3190 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3191 			page_shift);
3192 		if (nofail && (ret < 0))
3193 			schedule_timeout_uninterruptible(1);
3194 	} while (nofail && (ret < 0));
3195 
3196 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3197 		memalloc_nofs_restore(flags);
3198 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3199 		memalloc_noio_restore(flags);
3200 
3201 	if (ret < 0) {
3202 		warn_alloc(gfp_mask, NULL,
3203 			"vmalloc error: size %lu, failed to map pages",
3204 			area->nr_pages * PAGE_SIZE);
3205 		goto fail;
3206 	}
3207 
3208 	return area->addr;
3209 
3210 fail:
3211 	vfree(area->addr);
3212 	return NULL;
3213 }
3214 
3215 /**
3216  * __vmalloc_node_range - allocate virtually contiguous memory
3217  * @size:		  allocation size
3218  * @align:		  desired alignment
3219  * @start:		  vm area range start
3220  * @end:		  vm area range end
3221  * @gfp_mask:		  flags for the page level allocator
3222  * @prot:		  protection mask for the allocated pages
3223  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3224  * @node:		  node to use for allocation or NUMA_NO_NODE
3225  * @caller:		  caller's return address
3226  *
3227  * Allocate enough pages to cover @size from the page level
3228  * allocator with @gfp_mask flags. Please note that the full set of gfp
3229  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3230  * supported.
3231  * Zone modifiers are not supported. From the reclaim modifiers
3232  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3233  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3234  * __GFP_RETRY_MAYFAIL are not supported).
3235  *
3236  * __GFP_NOWARN can be used to suppress failures messages.
3237  *
3238  * Map them into contiguous kernel virtual space, using a pagetable
3239  * protection of @prot.
3240  *
3241  * Return: the address of the area or %NULL on failure
3242  */
3243 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3244 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3245 			pgprot_t prot, unsigned long vm_flags, int node,
3246 			const void *caller)
3247 {
3248 	struct vm_struct *area;
3249 	void *ret;
3250 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3251 	unsigned long real_size = size;
3252 	unsigned long real_align = align;
3253 	unsigned int shift = PAGE_SHIFT;
3254 
3255 	if (WARN_ON_ONCE(!size))
3256 		return NULL;
3257 
3258 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3259 		warn_alloc(gfp_mask, NULL,
3260 			"vmalloc error: size %lu, exceeds total pages",
3261 			real_size);
3262 		return NULL;
3263 	}
3264 
3265 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3266 		unsigned long size_per_node;
3267 
3268 		/*
3269 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3270 		 * others like modules don't yet expect huge pages in
3271 		 * their allocations due to apply_to_page_range not
3272 		 * supporting them.
3273 		 */
3274 
3275 		size_per_node = size;
3276 		if (node == NUMA_NO_NODE)
3277 			size_per_node /= num_online_nodes();
3278 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3279 			shift = PMD_SHIFT;
3280 		else
3281 			shift = arch_vmap_pte_supported_shift(size_per_node);
3282 
3283 		align = max(real_align, 1UL << shift);
3284 		size = ALIGN(real_size, 1UL << shift);
3285 	}
3286 
3287 again:
3288 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3289 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3290 				  gfp_mask, caller);
3291 	if (!area) {
3292 		bool nofail = gfp_mask & __GFP_NOFAIL;
3293 		warn_alloc(gfp_mask, NULL,
3294 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3295 			real_size, (nofail) ? ". Retrying." : "");
3296 		if (nofail) {
3297 			schedule_timeout_uninterruptible(1);
3298 			goto again;
3299 		}
3300 		goto fail;
3301 	}
3302 
3303 	/*
3304 	 * Prepare arguments for __vmalloc_area_node() and
3305 	 * kasan_unpoison_vmalloc().
3306 	 */
3307 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3308 		if (kasan_hw_tags_enabled()) {
3309 			/*
3310 			 * Modify protection bits to allow tagging.
3311 			 * This must be done before mapping.
3312 			 */
3313 			prot = arch_vmap_pgprot_tagged(prot);
3314 
3315 			/*
3316 			 * Skip page_alloc poisoning and zeroing for physical
3317 			 * pages backing VM_ALLOC mapping. Memory is instead
3318 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3319 			 */
3320 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3321 		}
3322 
3323 		/* Take note that the mapping is PAGE_KERNEL. */
3324 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3325 	}
3326 
3327 	/* Allocate physical pages and map them into vmalloc space. */
3328 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3329 	if (!ret)
3330 		goto fail;
3331 
3332 	/*
3333 	 * Mark the pages as accessible, now that they are mapped.
3334 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3335 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3336 	 * to make sure that memory is initialized under the same conditions.
3337 	 * Tag-based KASAN modes only assign tags to normal non-executable
3338 	 * allocations, see __kasan_unpoison_vmalloc().
3339 	 */
3340 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3341 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3342 	    (gfp_mask & __GFP_SKIP_ZERO))
3343 		kasan_flags |= KASAN_VMALLOC_INIT;
3344 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3345 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3346 
3347 	/*
3348 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3349 	 * flag. It means that vm_struct is not fully initialized.
3350 	 * Now, it is fully initialized, so remove this flag here.
3351 	 */
3352 	clear_vm_uninitialized_flag(area);
3353 
3354 	size = PAGE_ALIGN(size);
3355 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3356 		kmemleak_vmalloc(area, size, gfp_mask);
3357 
3358 	return area->addr;
3359 
3360 fail:
3361 	if (shift > PAGE_SHIFT) {
3362 		shift = PAGE_SHIFT;
3363 		align = real_align;
3364 		size = real_size;
3365 		goto again;
3366 	}
3367 
3368 	return NULL;
3369 }
3370 
3371 /**
3372  * __vmalloc_node - allocate virtually contiguous memory
3373  * @size:	    allocation size
3374  * @align:	    desired alignment
3375  * @gfp_mask:	    flags for the page level allocator
3376  * @node:	    node to use for allocation or NUMA_NO_NODE
3377  * @caller:	    caller's return address
3378  *
3379  * Allocate enough pages to cover @size from the page level allocator with
3380  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3381  *
3382  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3383  * and __GFP_NOFAIL are not supported
3384  *
3385  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3386  * with mm people.
3387  *
3388  * Return: pointer to the allocated memory or %NULL on error
3389  */
3390 void *__vmalloc_node(unsigned long size, unsigned long align,
3391 			    gfp_t gfp_mask, int node, const void *caller)
3392 {
3393 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3394 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3395 }
3396 /*
3397  * This is only for performance analysis of vmalloc and stress purpose.
3398  * It is required by vmalloc test module, therefore do not use it other
3399  * than that.
3400  */
3401 #ifdef CONFIG_TEST_VMALLOC_MODULE
3402 EXPORT_SYMBOL_GPL(__vmalloc_node);
3403 #endif
3404 
3405 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3406 {
3407 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3408 				__builtin_return_address(0));
3409 }
3410 EXPORT_SYMBOL(__vmalloc);
3411 
3412 /**
3413  * vmalloc - allocate virtually contiguous memory
3414  * @size:    allocation size
3415  *
3416  * Allocate enough pages to cover @size from the page level
3417  * allocator and map them into contiguous kernel virtual space.
3418  *
3419  * For tight control over page level allocator and protection flags
3420  * use __vmalloc() instead.
3421  *
3422  * Return: pointer to the allocated memory or %NULL on error
3423  */
3424 void *vmalloc(unsigned long size)
3425 {
3426 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3427 				__builtin_return_address(0));
3428 }
3429 EXPORT_SYMBOL(vmalloc);
3430 
3431 /**
3432  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3433  * @size:      allocation size
3434  * @gfp_mask:  flags for the page level allocator
3435  *
3436  * Allocate enough pages to cover @size from the page level
3437  * allocator and map them into contiguous kernel virtual space.
3438  * If @size is greater than or equal to PMD_SIZE, allow using
3439  * huge pages for the memory
3440  *
3441  * Return: pointer to the allocated memory or %NULL on error
3442  */
3443 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3444 {
3445 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3446 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3447 				    NUMA_NO_NODE, __builtin_return_address(0));
3448 }
3449 EXPORT_SYMBOL_GPL(vmalloc_huge);
3450 
3451 /**
3452  * vzalloc - allocate virtually contiguous memory with zero fill
3453  * @size:    allocation size
3454  *
3455  * Allocate enough pages to cover @size from the page level
3456  * allocator and map them into contiguous kernel virtual space.
3457  * The memory allocated is set to zero.
3458  *
3459  * For tight control over page level allocator and protection flags
3460  * use __vmalloc() instead.
3461  *
3462  * Return: pointer to the allocated memory or %NULL on error
3463  */
3464 void *vzalloc(unsigned long size)
3465 {
3466 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3467 				__builtin_return_address(0));
3468 }
3469 EXPORT_SYMBOL(vzalloc);
3470 
3471 /**
3472  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3473  * @size: allocation size
3474  *
3475  * The resulting memory area is zeroed so it can be mapped to userspace
3476  * without leaking data.
3477  *
3478  * Return: pointer to the allocated memory or %NULL on error
3479  */
3480 void *vmalloc_user(unsigned long size)
3481 {
3482 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3483 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3484 				    VM_USERMAP, NUMA_NO_NODE,
3485 				    __builtin_return_address(0));
3486 }
3487 EXPORT_SYMBOL(vmalloc_user);
3488 
3489 /**
3490  * vmalloc_node - allocate memory on a specific node
3491  * @size:	  allocation size
3492  * @node:	  numa node
3493  *
3494  * Allocate enough pages to cover @size from the page level
3495  * allocator and map them into contiguous kernel virtual space.
3496  *
3497  * For tight control over page level allocator and protection flags
3498  * use __vmalloc() instead.
3499  *
3500  * Return: pointer to the allocated memory or %NULL on error
3501  */
3502 void *vmalloc_node(unsigned long size, int node)
3503 {
3504 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3505 			__builtin_return_address(0));
3506 }
3507 EXPORT_SYMBOL(vmalloc_node);
3508 
3509 /**
3510  * vzalloc_node - allocate memory on a specific node with zero fill
3511  * @size:	allocation size
3512  * @node:	numa node
3513  *
3514  * Allocate enough pages to cover @size from the page level
3515  * allocator and map them into contiguous kernel virtual space.
3516  * The memory allocated is set to zero.
3517  *
3518  * Return: pointer to the allocated memory or %NULL on error
3519  */
3520 void *vzalloc_node(unsigned long size, int node)
3521 {
3522 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3523 				__builtin_return_address(0));
3524 }
3525 EXPORT_SYMBOL(vzalloc_node);
3526 
3527 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3528 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3529 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3530 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3531 #else
3532 /*
3533  * 64b systems should always have either DMA or DMA32 zones. For others
3534  * GFP_DMA32 should do the right thing and use the normal zone.
3535  */
3536 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3537 #endif
3538 
3539 /**
3540  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3541  * @size:	allocation size
3542  *
3543  * Allocate enough 32bit PA addressable pages to cover @size from the
3544  * page level allocator and map them into contiguous kernel virtual space.
3545  *
3546  * Return: pointer to the allocated memory or %NULL on error
3547  */
3548 void *vmalloc_32(unsigned long size)
3549 {
3550 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3551 			__builtin_return_address(0));
3552 }
3553 EXPORT_SYMBOL(vmalloc_32);
3554 
3555 /**
3556  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3557  * @size:	     allocation size
3558  *
3559  * The resulting memory area is 32bit addressable and zeroed so it can be
3560  * mapped to userspace without leaking data.
3561  *
3562  * Return: pointer to the allocated memory or %NULL on error
3563  */
3564 void *vmalloc_32_user(unsigned long size)
3565 {
3566 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3567 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3568 				    VM_USERMAP, NUMA_NO_NODE,
3569 				    __builtin_return_address(0));
3570 }
3571 EXPORT_SYMBOL(vmalloc_32_user);
3572 
3573 /*
3574  * Atomically zero bytes in the iterator.
3575  *
3576  * Returns the number of zeroed bytes.
3577  */
3578 static size_t zero_iter(struct iov_iter *iter, size_t count)
3579 {
3580 	size_t remains = count;
3581 
3582 	while (remains > 0) {
3583 		size_t num, copied;
3584 
3585 		num = min_t(size_t, remains, PAGE_SIZE);
3586 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3587 		remains -= copied;
3588 
3589 		if (copied < num)
3590 			break;
3591 	}
3592 
3593 	return count - remains;
3594 }
3595 
3596 /*
3597  * small helper routine, copy contents to iter from addr.
3598  * If the page is not present, fill zero.
3599  *
3600  * Returns the number of copied bytes.
3601  */
3602 static size_t aligned_vread_iter(struct iov_iter *iter,
3603 				 const char *addr, size_t count)
3604 {
3605 	size_t remains = count;
3606 	struct page *page;
3607 
3608 	while (remains > 0) {
3609 		unsigned long offset, length;
3610 		size_t copied = 0;
3611 
3612 		offset = offset_in_page(addr);
3613 		length = PAGE_SIZE - offset;
3614 		if (length > remains)
3615 			length = remains;
3616 		page = vmalloc_to_page(addr);
3617 		/*
3618 		 * To do safe access to this _mapped_ area, we need lock. But
3619 		 * adding lock here means that we need to add overhead of
3620 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3621 		 * used. Instead of that, we'll use an local mapping via
3622 		 * copy_page_to_iter_nofault() and accept a small overhead in
3623 		 * this access function.
3624 		 */
3625 		if (page)
3626 			copied = copy_page_to_iter_nofault(page, offset,
3627 							   length, iter);
3628 		else
3629 			copied = zero_iter(iter, length);
3630 
3631 		addr += copied;
3632 		remains -= copied;
3633 
3634 		if (copied != length)
3635 			break;
3636 	}
3637 
3638 	return count - remains;
3639 }
3640 
3641 /*
3642  * Read from a vm_map_ram region of memory.
3643  *
3644  * Returns the number of copied bytes.
3645  */
3646 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3647 				  size_t count, unsigned long flags)
3648 {
3649 	char *start;
3650 	struct vmap_block *vb;
3651 	struct xarray *xa;
3652 	unsigned long offset;
3653 	unsigned int rs, re;
3654 	size_t remains, n;
3655 
3656 	/*
3657 	 * If it's area created by vm_map_ram() interface directly, but
3658 	 * not further subdividing and delegating management to vmap_block,
3659 	 * handle it here.
3660 	 */
3661 	if (!(flags & VMAP_BLOCK))
3662 		return aligned_vread_iter(iter, addr, count);
3663 
3664 	remains = count;
3665 
3666 	/*
3667 	 * Area is split into regions and tracked with vmap_block, read out
3668 	 * each region and zero fill the hole between regions.
3669 	 */
3670 	xa = addr_to_vb_xa((unsigned long) addr);
3671 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3672 	if (!vb)
3673 		goto finished_zero;
3674 
3675 	spin_lock(&vb->lock);
3676 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3677 		spin_unlock(&vb->lock);
3678 		goto finished_zero;
3679 	}
3680 
3681 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3682 		size_t copied;
3683 
3684 		if (remains == 0)
3685 			goto finished;
3686 
3687 		start = vmap_block_vaddr(vb->va->va_start, rs);
3688 
3689 		if (addr < start) {
3690 			size_t to_zero = min_t(size_t, start - addr, remains);
3691 			size_t zeroed = zero_iter(iter, to_zero);
3692 
3693 			addr += zeroed;
3694 			remains -= zeroed;
3695 
3696 			if (remains == 0 || zeroed != to_zero)
3697 				goto finished;
3698 		}
3699 
3700 		/*it could start reading from the middle of used region*/
3701 		offset = offset_in_page(addr);
3702 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3703 		if (n > remains)
3704 			n = remains;
3705 
3706 		copied = aligned_vread_iter(iter, start + offset, n);
3707 
3708 		addr += copied;
3709 		remains -= copied;
3710 
3711 		if (copied != n)
3712 			goto finished;
3713 	}
3714 
3715 	spin_unlock(&vb->lock);
3716 
3717 finished_zero:
3718 	/* zero-fill the left dirty or free regions */
3719 	return count - remains + zero_iter(iter, remains);
3720 finished:
3721 	/* We couldn't copy/zero everything */
3722 	spin_unlock(&vb->lock);
3723 	return count - remains;
3724 }
3725 
3726 /**
3727  * vread_iter() - read vmalloc area in a safe way to an iterator.
3728  * @iter:         the iterator to which data should be written.
3729  * @addr:         vm address.
3730  * @count:        number of bytes to be read.
3731  *
3732  * This function checks that addr is a valid vmalloc'ed area, and
3733  * copy data from that area to a given buffer. If the given memory range
3734  * of [addr...addr+count) includes some valid address, data is copied to
3735  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3736  * IOREMAP area is treated as memory hole and no copy is done.
3737  *
3738  * If [addr...addr+count) doesn't includes any intersects with alive
3739  * vm_struct area, returns 0. @buf should be kernel's buffer.
3740  *
3741  * Note: In usual ops, vread() is never necessary because the caller
3742  * should know vmalloc() area is valid and can use memcpy().
3743  * This is for routines which have to access vmalloc area without
3744  * any information, as /proc/kcore.
3745  *
3746  * Return: number of bytes for which addr and buf should be increased
3747  * (same number as @count) or %0 if [addr...addr+count) doesn't
3748  * include any intersection with valid vmalloc area
3749  */
3750 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3751 {
3752 	struct vmap_area *va;
3753 	struct vm_struct *vm;
3754 	char *vaddr;
3755 	size_t n, size, flags, remains;
3756 
3757 	addr = kasan_reset_tag(addr);
3758 
3759 	/* Don't allow overflow */
3760 	if ((unsigned long) addr + count < count)
3761 		count = -(unsigned long) addr;
3762 
3763 	remains = count;
3764 
3765 	spin_lock(&vmap_area_lock);
3766 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3767 	if (!va)
3768 		goto finished_zero;
3769 
3770 	/* no intersects with alive vmap_area */
3771 	if ((unsigned long)addr + remains <= va->va_start)
3772 		goto finished_zero;
3773 
3774 	list_for_each_entry_from(va, &vmap_area_list, list) {
3775 		size_t copied;
3776 
3777 		if (remains == 0)
3778 			goto finished;
3779 
3780 		vm = va->vm;
3781 		flags = va->flags & VMAP_FLAGS_MASK;
3782 		/*
3783 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3784 		 * be set together with VMAP_RAM.
3785 		 */
3786 		WARN_ON(flags == VMAP_BLOCK);
3787 
3788 		if (!vm && !flags)
3789 			continue;
3790 
3791 		if (vm && (vm->flags & VM_UNINITIALIZED))
3792 			continue;
3793 
3794 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3795 		smp_rmb();
3796 
3797 		vaddr = (char *) va->va_start;
3798 		size = vm ? get_vm_area_size(vm) : va_size(va);
3799 
3800 		if (addr >= vaddr + size)
3801 			continue;
3802 
3803 		if (addr < vaddr) {
3804 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
3805 			size_t zeroed = zero_iter(iter, to_zero);
3806 
3807 			addr += zeroed;
3808 			remains -= zeroed;
3809 
3810 			if (remains == 0 || zeroed != to_zero)
3811 				goto finished;
3812 		}
3813 
3814 		n = vaddr + size - addr;
3815 		if (n > remains)
3816 			n = remains;
3817 
3818 		if (flags & VMAP_RAM)
3819 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
3820 		else if (!(vm->flags & VM_IOREMAP))
3821 			copied = aligned_vread_iter(iter, addr, n);
3822 		else /* IOREMAP area is treated as memory hole */
3823 			copied = zero_iter(iter, n);
3824 
3825 		addr += copied;
3826 		remains -= copied;
3827 
3828 		if (copied != n)
3829 			goto finished;
3830 	}
3831 
3832 finished_zero:
3833 	spin_unlock(&vmap_area_lock);
3834 	/* zero-fill memory holes */
3835 	return count - remains + zero_iter(iter, remains);
3836 finished:
3837 	/* Nothing remains, or We couldn't copy/zero everything. */
3838 	spin_unlock(&vmap_area_lock);
3839 
3840 	return count - remains;
3841 }
3842 
3843 /**
3844  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3845  * @vma:		vma to cover
3846  * @uaddr:		target user address to start at
3847  * @kaddr:		virtual address of vmalloc kernel memory
3848  * @pgoff:		offset from @kaddr to start at
3849  * @size:		size of map area
3850  *
3851  * Returns:	0 for success, -Exxx on failure
3852  *
3853  * This function checks that @kaddr is a valid vmalloc'ed area,
3854  * and that it is big enough to cover the range starting at
3855  * @uaddr in @vma. Will return failure if that criteria isn't
3856  * met.
3857  *
3858  * Similar to remap_pfn_range() (see mm/memory.c)
3859  */
3860 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3861 				void *kaddr, unsigned long pgoff,
3862 				unsigned long size)
3863 {
3864 	struct vm_struct *area;
3865 	unsigned long off;
3866 	unsigned long end_index;
3867 
3868 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3869 		return -EINVAL;
3870 
3871 	size = PAGE_ALIGN(size);
3872 
3873 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3874 		return -EINVAL;
3875 
3876 	area = find_vm_area(kaddr);
3877 	if (!area)
3878 		return -EINVAL;
3879 
3880 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3881 		return -EINVAL;
3882 
3883 	if (check_add_overflow(size, off, &end_index) ||
3884 	    end_index > get_vm_area_size(area))
3885 		return -EINVAL;
3886 	kaddr += off;
3887 
3888 	do {
3889 		struct page *page = vmalloc_to_page(kaddr);
3890 		int ret;
3891 
3892 		ret = vm_insert_page(vma, uaddr, page);
3893 		if (ret)
3894 			return ret;
3895 
3896 		uaddr += PAGE_SIZE;
3897 		kaddr += PAGE_SIZE;
3898 		size -= PAGE_SIZE;
3899 	} while (size > 0);
3900 
3901 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3902 
3903 	return 0;
3904 }
3905 
3906 /**
3907  * remap_vmalloc_range - map vmalloc pages to userspace
3908  * @vma:		vma to cover (map full range of vma)
3909  * @addr:		vmalloc memory
3910  * @pgoff:		number of pages into addr before first page to map
3911  *
3912  * Returns:	0 for success, -Exxx on failure
3913  *
3914  * This function checks that addr is a valid vmalloc'ed area, and
3915  * that it is big enough to cover the vma. Will return failure if
3916  * that criteria isn't met.
3917  *
3918  * Similar to remap_pfn_range() (see mm/memory.c)
3919  */
3920 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3921 						unsigned long pgoff)
3922 {
3923 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3924 					   addr, pgoff,
3925 					   vma->vm_end - vma->vm_start);
3926 }
3927 EXPORT_SYMBOL(remap_vmalloc_range);
3928 
3929 void free_vm_area(struct vm_struct *area)
3930 {
3931 	struct vm_struct *ret;
3932 	ret = remove_vm_area(area->addr);
3933 	BUG_ON(ret != area);
3934 	kfree(area);
3935 }
3936 EXPORT_SYMBOL_GPL(free_vm_area);
3937 
3938 #ifdef CONFIG_SMP
3939 static struct vmap_area *node_to_va(struct rb_node *n)
3940 {
3941 	return rb_entry_safe(n, struct vmap_area, rb_node);
3942 }
3943 
3944 /**
3945  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3946  * @addr: target address
3947  *
3948  * Returns: vmap_area if it is found. If there is no such area
3949  *   the first highest(reverse order) vmap_area is returned
3950  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3951  *   if there are no any areas before @addr.
3952  */
3953 static struct vmap_area *
3954 pvm_find_va_enclose_addr(unsigned long addr)
3955 {
3956 	struct vmap_area *va, *tmp;
3957 	struct rb_node *n;
3958 
3959 	n = free_vmap_area_root.rb_node;
3960 	va = NULL;
3961 
3962 	while (n) {
3963 		tmp = rb_entry(n, struct vmap_area, rb_node);
3964 		if (tmp->va_start <= addr) {
3965 			va = tmp;
3966 			if (tmp->va_end >= addr)
3967 				break;
3968 
3969 			n = n->rb_right;
3970 		} else {
3971 			n = n->rb_left;
3972 		}
3973 	}
3974 
3975 	return va;
3976 }
3977 
3978 /**
3979  * pvm_determine_end_from_reverse - find the highest aligned address
3980  * of free block below VMALLOC_END
3981  * @va:
3982  *   in - the VA we start the search(reverse order);
3983  *   out - the VA with the highest aligned end address.
3984  * @align: alignment for required highest address
3985  *
3986  * Returns: determined end address within vmap_area
3987  */
3988 static unsigned long
3989 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3990 {
3991 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3992 	unsigned long addr;
3993 
3994 	if (likely(*va)) {
3995 		list_for_each_entry_from_reverse((*va),
3996 				&free_vmap_area_list, list) {
3997 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3998 			if ((*va)->va_start < addr)
3999 				return addr;
4000 		}
4001 	}
4002 
4003 	return 0;
4004 }
4005 
4006 /**
4007  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
4008  * @offsets: array containing offset of each area
4009  * @sizes: array containing size of each area
4010  * @nr_vms: the number of areas to allocate
4011  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
4012  *
4013  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
4014  *	    vm_structs on success, %NULL on failure
4015  *
4016  * Percpu allocator wants to use congruent vm areas so that it can
4017  * maintain the offsets among percpu areas.  This function allocates
4018  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
4019  * be scattered pretty far, distance between two areas easily going up
4020  * to gigabytes.  To avoid interacting with regular vmallocs, these
4021  * areas are allocated from top.
4022  *
4023  * Despite its complicated look, this allocator is rather simple. It
4024  * does everything top-down and scans free blocks from the end looking
4025  * for matching base. While scanning, if any of the areas do not fit the
4026  * base address is pulled down to fit the area. Scanning is repeated till
4027  * all the areas fit and then all necessary data structures are inserted
4028  * and the result is returned.
4029  */
4030 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
4031 				     const size_t *sizes, int nr_vms,
4032 				     size_t align)
4033 {
4034 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
4035 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
4036 	struct vmap_area **vas, *va;
4037 	struct vm_struct **vms;
4038 	int area, area2, last_area, term_area;
4039 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
4040 	bool purged = false;
4041 
4042 	/* verify parameters and allocate data structures */
4043 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
4044 	for (last_area = 0, area = 0; area < nr_vms; area++) {
4045 		start = offsets[area];
4046 		end = start + sizes[area];
4047 
4048 		/* is everything aligned properly? */
4049 		BUG_ON(!IS_ALIGNED(offsets[area], align));
4050 		BUG_ON(!IS_ALIGNED(sizes[area], align));
4051 
4052 		/* detect the area with the highest address */
4053 		if (start > offsets[last_area])
4054 			last_area = area;
4055 
4056 		for (area2 = area + 1; area2 < nr_vms; area2++) {
4057 			unsigned long start2 = offsets[area2];
4058 			unsigned long end2 = start2 + sizes[area2];
4059 
4060 			BUG_ON(start2 < end && start < end2);
4061 		}
4062 	}
4063 	last_end = offsets[last_area] + sizes[last_area];
4064 
4065 	if (vmalloc_end - vmalloc_start < last_end) {
4066 		WARN_ON(true);
4067 		return NULL;
4068 	}
4069 
4070 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4071 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4072 	if (!vas || !vms)
4073 		goto err_free2;
4074 
4075 	for (area = 0; area < nr_vms; area++) {
4076 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4077 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4078 		if (!vas[area] || !vms[area])
4079 			goto err_free;
4080 	}
4081 retry:
4082 	spin_lock(&free_vmap_area_lock);
4083 
4084 	/* start scanning - we scan from the top, begin with the last area */
4085 	area = term_area = last_area;
4086 	start = offsets[area];
4087 	end = start + sizes[area];
4088 
4089 	va = pvm_find_va_enclose_addr(vmalloc_end);
4090 	base = pvm_determine_end_from_reverse(&va, align) - end;
4091 
4092 	while (true) {
4093 		/*
4094 		 * base might have underflowed, add last_end before
4095 		 * comparing.
4096 		 */
4097 		if (base + last_end < vmalloc_start + last_end)
4098 			goto overflow;
4099 
4100 		/*
4101 		 * Fitting base has not been found.
4102 		 */
4103 		if (va == NULL)
4104 			goto overflow;
4105 
4106 		/*
4107 		 * If required width exceeds current VA block, move
4108 		 * base downwards and then recheck.
4109 		 */
4110 		if (base + end > va->va_end) {
4111 			base = pvm_determine_end_from_reverse(&va, align) - end;
4112 			term_area = area;
4113 			continue;
4114 		}
4115 
4116 		/*
4117 		 * If this VA does not fit, move base downwards and recheck.
4118 		 */
4119 		if (base + start < va->va_start) {
4120 			va = node_to_va(rb_prev(&va->rb_node));
4121 			base = pvm_determine_end_from_reverse(&va, align) - end;
4122 			term_area = area;
4123 			continue;
4124 		}
4125 
4126 		/*
4127 		 * This area fits, move on to the previous one.  If
4128 		 * the previous one is the terminal one, we're done.
4129 		 */
4130 		area = (area + nr_vms - 1) % nr_vms;
4131 		if (area == term_area)
4132 			break;
4133 
4134 		start = offsets[area];
4135 		end = start + sizes[area];
4136 		va = pvm_find_va_enclose_addr(base + end);
4137 	}
4138 
4139 	/* we've found a fitting base, insert all va's */
4140 	for (area = 0; area < nr_vms; area++) {
4141 		int ret;
4142 
4143 		start = base + offsets[area];
4144 		size = sizes[area];
4145 
4146 		va = pvm_find_va_enclose_addr(start);
4147 		if (WARN_ON_ONCE(va == NULL))
4148 			/* It is a BUG(), but trigger recovery instead. */
4149 			goto recovery;
4150 
4151 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
4152 					    &free_vmap_area_list,
4153 					    va, start, size);
4154 		if (WARN_ON_ONCE(unlikely(ret)))
4155 			/* It is a BUG(), but trigger recovery instead. */
4156 			goto recovery;
4157 
4158 		/* Allocated area. */
4159 		va = vas[area];
4160 		va->va_start = start;
4161 		va->va_end = start + size;
4162 	}
4163 
4164 	spin_unlock(&free_vmap_area_lock);
4165 
4166 	/* populate the kasan shadow space */
4167 	for (area = 0; area < nr_vms; area++) {
4168 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4169 			goto err_free_shadow;
4170 	}
4171 
4172 	/* insert all vm's */
4173 	spin_lock(&vmap_area_lock);
4174 	for (area = 0; area < nr_vms; area++) {
4175 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4176 
4177 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4178 				 pcpu_get_vm_areas);
4179 	}
4180 	spin_unlock(&vmap_area_lock);
4181 
4182 	/*
4183 	 * Mark allocated areas as accessible. Do it now as a best-effort
4184 	 * approach, as they can be mapped outside of vmalloc code.
4185 	 * With hardware tag-based KASAN, marking is skipped for
4186 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4187 	 */
4188 	for (area = 0; area < nr_vms; area++)
4189 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4190 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4191 
4192 	kfree(vas);
4193 	return vms;
4194 
4195 recovery:
4196 	/*
4197 	 * Remove previously allocated areas. There is no
4198 	 * need in removing these areas from the busy tree,
4199 	 * because they are inserted only on the final step
4200 	 * and when pcpu_get_vm_areas() is success.
4201 	 */
4202 	while (area--) {
4203 		orig_start = vas[area]->va_start;
4204 		orig_end = vas[area]->va_end;
4205 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4206 				&free_vmap_area_list);
4207 		if (va)
4208 			kasan_release_vmalloc(orig_start, orig_end,
4209 				va->va_start, va->va_end);
4210 		vas[area] = NULL;
4211 	}
4212 
4213 overflow:
4214 	spin_unlock(&free_vmap_area_lock);
4215 	if (!purged) {
4216 		reclaim_and_purge_vmap_areas();
4217 		purged = true;
4218 
4219 		/* Before "retry", check if we recover. */
4220 		for (area = 0; area < nr_vms; area++) {
4221 			if (vas[area])
4222 				continue;
4223 
4224 			vas[area] = kmem_cache_zalloc(
4225 				vmap_area_cachep, GFP_KERNEL);
4226 			if (!vas[area])
4227 				goto err_free;
4228 		}
4229 
4230 		goto retry;
4231 	}
4232 
4233 err_free:
4234 	for (area = 0; area < nr_vms; area++) {
4235 		if (vas[area])
4236 			kmem_cache_free(vmap_area_cachep, vas[area]);
4237 
4238 		kfree(vms[area]);
4239 	}
4240 err_free2:
4241 	kfree(vas);
4242 	kfree(vms);
4243 	return NULL;
4244 
4245 err_free_shadow:
4246 	spin_lock(&free_vmap_area_lock);
4247 	/*
4248 	 * We release all the vmalloc shadows, even the ones for regions that
4249 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4250 	 * being able to tolerate this case.
4251 	 */
4252 	for (area = 0; area < nr_vms; area++) {
4253 		orig_start = vas[area]->va_start;
4254 		orig_end = vas[area]->va_end;
4255 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4256 				&free_vmap_area_list);
4257 		if (va)
4258 			kasan_release_vmalloc(orig_start, orig_end,
4259 				va->va_start, va->va_end);
4260 		vas[area] = NULL;
4261 		kfree(vms[area]);
4262 	}
4263 	spin_unlock(&free_vmap_area_lock);
4264 	kfree(vas);
4265 	kfree(vms);
4266 	return NULL;
4267 }
4268 
4269 /**
4270  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4271  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4272  * @nr_vms: the number of allocated areas
4273  *
4274  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4275  */
4276 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4277 {
4278 	int i;
4279 
4280 	for (i = 0; i < nr_vms; i++)
4281 		free_vm_area(vms[i]);
4282 	kfree(vms);
4283 }
4284 #endif	/* CONFIG_SMP */
4285 
4286 #ifdef CONFIG_PRINTK
4287 bool vmalloc_dump_obj(void *object)
4288 {
4289 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4290 	const void *caller;
4291 	struct vm_struct *vm;
4292 	struct vmap_area *va;
4293 	unsigned long addr;
4294 	unsigned int nr_pages;
4295 
4296 	if (!spin_trylock(&vmap_area_lock))
4297 		return false;
4298 	va = __find_vmap_area((unsigned long)objp, &vmap_area_root);
4299 	if (!va) {
4300 		spin_unlock(&vmap_area_lock);
4301 		return false;
4302 	}
4303 
4304 	vm = va->vm;
4305 	if (!vm) {
4306 		spin_unlock(&vmap_area_lock);
4307 		return false;
4308 	}
4309 	addr = (unsigned long)vm->addr;
4310 	caller = vm->caller;
4311 	nr_pages = vm->nr_pages;
4312 	spin_unlock(&vmap_area_lock);
4313 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4314 		nr_pages, addr, caller);
4315 	return true;
4316 }
4317 #endif
4318 
4319 #ifdef CONFIG_PROC_FS
4320 static void *s_start(struct seq_file *m, loff_t *pos)
4321 	__acquires(&vmap_purge_lock)
4322 	__acquires(&vmap_area_lock)
4323 {
4324 	mutex_lock(&vmap_purge_lock);
4325 	spin_lock(&vmap_area_lock);
4326 
4327 	return seq_list_start(&vmap_area_list, *pos);
4328 }
4329 
4330 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4331 {
4332 	return seq_list_next(p, &vmap_area_list, pos);
4333 }
4334 
4335 static void s_stop(struct seq_file *m, void *p)
4336 	__releases(&vmap_area_lock)
4337 	__releases(&vmap_purge_lock)
4338 {
4339 	spin_unlock(&vmap_area_lock);
4340 	mutex_unlock(&vmap_purge_lock);
4341 }
4342 
4343 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4344 {
4345 	if (IS_ENABLED(CONFIG_NUMA)) {
4346 		unsigned int nr, *counters = m->private;
4347 		unsigned int step = 1U << vm_area_page_order(v);
4348 
4349 		if (!counters)
4350 			return;
4351 
4352 		if (v->flags & VM_UNINITIALIZED)
4353 			return;
4354 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4355 		smp_rmb();
4356 
4357 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4358 
4359 		for (nr = 0; nr < v->nr_pages; nr += step)
4360 			counters[page_to_nid(v->pages[nr])] += step;
4361 		for_each_node_state(nr, N_HIGH_MEMORY)
4362 			if (counters[nr])
4363 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4364 	}
4365 }
4366 
4367 static void show_purge_info(struct seq_file *m)
4368 {
4369 	struct vmap_area *va;
4370 
4371 	spin_lock(&purge_vmap_area_lock);
4372 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4373 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4374 			(void *)va->va_start, (void *)va->va_end,
4375 			va->va_end - va->va_start);
4376 	}
4377 	spin_unlock(&purge_vmap_area_lock);
4378 }
4379 
4380 static int s_show(struct seq_file *m, void *p)
4381 {
4382 	struct vmap_area *va;
4383 	struct vm_struct *v;
4384 
4385 	va = list_entry(p, struct vmap_area, list);
4386 
4387 	if (!va->vm) {
4388 		if (va->flags & VMAP_RAM)
4389 			seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4390 				(void *)va->va_start, (void *)va->va_end,
4391 				va->va_end - va->va_start);
4392 
4393 		goto final;
4394 	}
4395 
4396 	v = va->vm;
4397 
4398 	seq_printf(m, "0x%pK-0x%pK %7ld",
4399 		v->addr, v->addr + v->size, v->size);
4400 
4401 	if (v->caller)
4402 		seq_printf(m, " %pS", v->caller);
4403 
4404 	if (v->nr_pages)
4405 		seq_printf(m, " pages=%d", v->nr_pages);
4406 
4407 	if (v->phys_addr)
4408 		seq_printf(m, " phys=%pa", &v->phys_addr);
4409 
4410 	if (v->flags & VM_IOREMAP)
4411 		seq_puts(m, " ioremap");
4412 
4413 	if (v->flags & VM_ALLOC)
4414 		seq_puts(m, " vmalloc");
4415 
4416 	if (v->flags & VM_MAP)
4417 		seq_puts(m, " vmap");
4418 
4419 	if (v->flags & VM_USERMAP)
4420 		seq_puts(m, " user");
4421 
4422 	if (v->flags & VM_DMA_COHERENT)
4423 		seq_puts(m, " dma-coherent");
4424 
4425 	if (is_vmalloc_addr(v->pages))
4426 		seq_puts(m, " vpages");
4427 
4428 	show_numa_info(m, v);
4429 	seq_putc(m, '\n');
4430 
4431 	/*
4432 	 * As a final step, dump "unpurged" areas.
4433 	 */
4434 final:
4435 	if (list_is_last(&va->list, &vmap_area_list))
4436 		show_purge_info(m);
4437 
4438 	return 0;
4439 }
4440 
4441 static const struct seq_operations vmalloc_op = {
4442 	.start = s_start,
4443 	.next = s_next,
4444 	.stop = s_stop,
4445 	.show = s_show,
4446 };
4447 
4448 static int __init proc_vmalloc_init(void)
4449 {
4450 	if (IS_ENABLED(CONFIG_NUMA))
4451 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4452 				&vmalloc_op,
4453 				nr_node_ids * sizeof(unsigned int), NULL);
4454 	else
4455 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4456 	return 0;
4457 }
4458 module_init(proc_vmalloc_init);
4459 
4460 #endif
4461 
4462 void __init vmalloc_init(void)
4463 {
4464 	struct vmap_area *va;
4465 	struct vm_struct *tmp;
4466 	int i;
4467 
4468 	/*
4469 	 * Create the cache for vmap_area objects.
4470 	 */
4471 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4472 
4473 	for_each_possible_cpu(i) {
4474 		struct vmap_block_queue *vbq;
4475 		struct vfree_deferred *p;
4476 
4477 		vbq = &per_cpu(vmap_block_queue, i);
4478 		spin_lock_init(&vbq->lock);
4479 		INIT_LIST_HEAD(&vbq->free);
4480 		p = &per_cpu(vfree_deferred, i);
4481 		init_llist_head(&p->list);
4482 		INIT_WORK(&p->wq, delayed_vfree_work);
4483 		xa_init(&vbq->vmap_blocks);
4484 	}
4485 
4486 	/* Import existing vmlist entries. */
4487 	for (tmp = vmlist; tmp; tmp = tmp->next) {
4488 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4489 		if (WARN_ON_ONCE(!va))
4490 			continue;
4491 
4492 		va->va_start = (unsigned long)tmp->addr;
4493 		va->va_end = va->va_start + tmp->size;
4494 		va->vm = tmp;
4495 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4496 	}
4497 
4498 	/*
4499 	 * Now we can initialize a free vmap space.
4500 	 */
4501 	vmap_init_free_space();
4502 	vmap_initialized = true;
4503 }
4504