xref: /openbmc/linux/mm/vmalloc.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #include "internal.h"
47 #include "pgalloc-track.h"
48 
49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
51 
52 static int __init set_nohugeiomap(char *str)
53 {
54 	ioremap_max_page_shift = PAGE_SHIFT;
55 	return 0;
56 }
57 early_param("nohugeiomap", set_nohugeiomap);
58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
61 
62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63 static bool __ro_after_init vmap_allow_huge = true;
64 
65 static int __init set_nohugevmalloc(char *str)
66 {
67 	vmap_allow_huge = false;
68 	return 0;
69 }
70 early_param("nohugevmalloc", set_nohugevmalloc);
71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 static const bool vmap_allow_huge = false;
73 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
74 
75 bool is_vmalloc_addr(const void *x)
76 {
77 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
78 
79 	return addr >= VMALLOC_START && addr < VMALLOC_END;
80 }
81 EXPORT_SYMBOL(is_vmalloc_addr);
82 
83 struct vfree_deferred {
84 	struct llist_head list;
85 	struct work_struct wq;
86 };
87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
88 
89 static void __vunmap(const void *, int);
90 
91 static void free_work(struct work_struct *w)
92 {
93 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
94 	struct llist_node *t, *llnode;
95 
96 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97 		__vunmap((void *)llnode, 1);
98 }
99 
100 /*** Page table manipulation functions ***/
101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102 			phys_addr_t phys_addr, pgprot_t prot,
103 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
104 {
105 	pte_t *pte;
106 	u64 pfn;
107 	unsigned long size = PAGE_SIZE;
108 
109 	pfn = phys_addr >> PAGE_SHIFT;
110 	pte = pte_alloc_kernel_track(pmd, addr, mask);
111 	if (!pte)
112 		return -ENOMEM;
113 	do {
114 		BUG_ON(!pte_none(*pte));
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 		if (size != PAGE_SIZE) {
119 			pte_t entry = pfn_pte(pfn, prot);
120 
121 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 			set_huge_pte_at(&init_mm, addr, pte, entry);
123 			pfn += PFN_DOWN(size);
124 			continue;
125 		}
126 #endif
127 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 		pfn++;
129 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
130 	*mask |= PGTBL_PTE_MODIFIED;
131 	return 0;
132 }
133 
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 			phys_addr_t phys_addr, pgprot_t prot,
136 			unsigned int max_page_shift)
137 {
138 	if (max_page_shift < PMD_SHIFT)
139 		return 0;
140 
141 	if (!arch_vmap_pmd_supported(prot))
142 		return 0;
143 
144 	if ((end - addr) != PMD_SIZE)
145 		return 0;
146 
147 	if (!IS_ALIGNED(addr, PMD_SIZE))
148 		return 0;
149 
150 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 		return 0;
152 
153 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 		return 0;
155 
156 	return pmd_set_huge(pmd, phys_addr, prot);
157 }
158 
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 			phys_addr_t phys_addr, pgprot_t prot,
161 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 
172 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 					max_page_shift)) {
174 			*mask |= PGTBL_PMD_MODIFIED;
175 			continue;
176 		}
177 
178 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 			return -ENOMEM;
180 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 	return 0;
182 }
183 
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 			phys_addr_t phys_addr, pgprot_t prot,
186 			unsigned int max_page_shift)
187 {
188 	if (max_page_shift < PUD_SHIFT)
189 		return 0;
190 
191 	if (!arch_vmap_pud_supported(prot))
192 		return 0;
193 
194 	if ((end - addr) != PUD_SIZE)
195 		return 0;
196 
197 	if (!IS_ALIGNED(addr, PUD_SIZE))
198 		return 0;
199 
200 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 		return 0;
202 
203 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 		return 0;
205 
206 	return pud_set_huge(pud, phys_addr, prot);
207 }
208 
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 			phys_addr_t phys_addr, pgprot_t prot,
211 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 	pud_t *pud;
214 	unsigned long next;
215 
216 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 	if (!pud)
218 		return -ENOMEM;
219 	do {
220 		next = pud_addr_end(addr, end);
221 
222 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 					max_page_shift)) {
224 			*mask |= PGTBL_PUD_MODIFIED;
225 			continue;
226 		}
227 
228 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 					max_page_shift, mask))
230 			return -ENOMEM;
231 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 	return 0;
233 }
234 
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 			phys_addr_t phys_addr, pgprot_t prot,
237 			unsigned int max_page_shift)
238 {
239 	if (max_page_shift < P4D_SHIFT)
240 		return 0;
241 
242 	if (!arch_vmap_p4d_supported(prot))
243 		return 0;
244 
245 	if ((end - addr) != P4D_SIZE)
246 		return 0;
247 
248 	if (!IS_ALIGNED(addr, P4D_SIZE))
249 		return 0;
250 
251 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 		return 0;
253 
254 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 		return 0;
256 
257 	return p4d_set_huge(p4d, phys_addr, prot);
258 }
259 
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 			phys_addr_t phys_addr, pgprot_t prot,
262 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 	p4d_t *p4d;
265 	unsigned long next;
266 
267 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 	if (!p4d)
269 		return -ENOMEM;
270 	do {
271 		next = p4d_addr_end(addr, end);
272 
273 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 					max_page_shift)) {
275 			*mask |= PGTBL_P4D_MODIFIED;
276 			continue;
277 		}
278 
279 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 					max_page_shift, mask))
281 			return -ENOMEM;
282 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 	return 0;
284 }
285 
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 			phys_addr_t phys_addr, pgprot_t prot,
288 			unsigned int max_page_shift)
289 {
290 	pgd_t *pgd;
291 	unsigned long start;
292 	unsigned long next;
293 	int err;
294 	pgtbl_mod_mask mask = 0;
295 
296 	might_sleep();
297 	BUG_ON(addr >= end);
298 
299 	start = addr;
300 	pgd = pgd_offset_k(addr);
301 	do {
302 		next = pgd_addr_end(addr, end);
303 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 					max_page_shift, &mask);
305 		if (err)
306 			break;
307 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 
309 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 		arch_sync_kernel_mappings(start, end);
311 
312 	return err;
313 }
314 
315 int ioremap_page_range(unsigned long addr, unsigned long end,
316 		phys_addr_t phys_addr, pgprot_t prot)
317 {
318 	int err;
319 
320 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 				 ioremap_max_page_shift);
322 	flush_cache_vmap(addr, end);
323 	return err;
324 }
325 
326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
327 			     pgtbl_mod_mask *mask)
328 {
329 	pte_t *pte;
330 
331 	pte = pte_offset_kernel(pmd, addr);
332 	do {
333 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
334 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
335 	} while (pte++, addr += PAGE_SIZE, addr != end);
336 	*mask |= PGTBL_PTE_MODIFIED;
337 }
338 
339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
340 			     pgtbl_mod_mask *mask)
341 {
342 	pmd_t *pmd;
343 	unsigned long next;
344 	int cleared;
345 
346 	pmd = pmd_offset(pud, addr);
347 	do {
348 		next = pmd_addr_end(addr, end);
349 
350 		cleared = pmd_clear_huge(pmd);
351 		if (cleared || pmd_bad(*pmd))
352 			*mask |= PGTBL_PMD_MODIFIED;
353 
354 		if (cleared)
355 			continue;
356 		if (pmd_none_or_clear_bad(pmd))
357 			continue;
358 		vunmap_pte_range(pmd, addr, next, mask);
359 
360 		cond_resched();
361 	} while (pmd++, addr = next, addr != end);
362 }
363 
364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
365 			     pgtbl_mod_mask *mask)
366 {
367 	pud_t *pud;
368 	unsigned long next;
369 	int cleared;
370 
371 	pud = pud_offset(p4d, addr);
372 	do {
373 		next = pud_addr_end(addr, end);
374 
375 		cleared = pud_clear_huge(pud);
376 		if (cleared || pud_bad(*pud))
377 			*mask |= PGTBL_PUD_MODIFIED;
378 
379 		if (cleared)
380 			continue;
381 		if (pud_none_or_clear_bad(pud))
382 			continue;
383 		vunmap_pmd_range(pud, addr, next, mask);
384 	} while (pud++, addr = next, addr != end);
385 }
386 
387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
388 			     pgtbl_mod_mask *mask)
389 {
390 	p4d_t *p4d;
391 	unsigned long next;
392 
393 	p4d = p4d_offset(pgd, addr);
394 	do {
395 		next = p4d_addr_end(addr, end);
396 
397 		p4d_clear_huge(p4d);
398 		if (p4d_bad(*p4d))
399 			*mask |= PGTBL_P4D_MODIFIED;
400 
401 		if (p4d_none_or_clear_bad(p4d))
402 			continue;
403 		vunmap_pud_range(p4d, addr, next, mask);
404 	} while (p4d++, addr = next, addr != end);
405 }
406 
407 /*
408  * vunmap_range_noflush is similar to vunmap_range, but does not
409  * flush caches or TLBs.
410  *
411  * The caller is responsible for calling flush_cache_vmap() before calling
412  * this function, and flush_tlb_kernel_range after it has returned
413  * successfully (and before the addresses are expected to cause a page fault
414  * or be re-mapped for something else, if TLB flushes are being delayed or
415  * coalesced).
416  *
417  * This is an internal function only. Do not use outside mm/.
418  */
419 void vunmap_range_noflush(unsigned long start, unsigned long end)
420 {
421 	unsigned long next;
422 	pgd_t *pgd;
423 	unsigned long addr = start;
424 	pgtbl_mod_mask mask = 0;
425 
426 	BUG_ON(addr >= end);
427 	pgd = pgd_offset_k(addr);
428 	do {
429 		next = pgd_addr_end(addr, end);
430 		if (pgd_bad(*pgd))
431 			mask |= PGTBL_PGD_MODIFIED;
432 		if (pgd_none_or_clear_bad(pgd))
433 			continue;
434 		vunmap_p4d_range(pgd, addr, next, &mask);
435 	} while (pgd++, addr = next, addr != end);
436 
437 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
438 		arch_sync_kernel_mappings(start, end);
439 }
440 
441 /**
442  * vunmap_range - unmap kernel virtual addresses
443  * @addr: start of the VM area to unmap
444  * @end: end of the VM area to unmap (non-inclusive)
445  *
446  * Clears any present PTEs in the virtual address range, flushes TLBs and
447  * caches. Any subsequent access to the address before it has been re-mapped
448  * is a kernel bug.
449  */
450 void vunmap_range(unsigned long addr, unsigned long end)
451 {
452 	flush_cache_vunmap(addr, end);
453 	vunmap_range_noflush(addr, end);
454 	flush_tlb_kernel_range(addr, end);
455 }
456 
457 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
458 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
459 		pgtbl_mod_mask *mask)
460 {
461 	pte_t *pte;
462 
463 	/*
464 	 * nr is a running index into the array which helps higher level
465 	 * callers keep track of where we're up to.
466 	 */
467 
468 	pte = pte_alloc_kernel_track(pmd, addr, mask);
469 	if (!pte)
470 		return -ENOMEM;
471 	do {
472 		struct page *page = pages[*nr];
473 
474 		if (WARN_ON(!pte_none(*pte)))
475 			return -EBUSY;
476 		if (WARN_ON(!page))
477 			return -ENOMEM;
478 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
479 			return -EINVAL;
480 
481 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
482 		(*nr)++;
483 	} while (pte++, addr += PAGE_SIZE, addr != end);
484 	*mask |= PGTBL_PTE_MODIFIED;
485 	return 0;
486 }
487 
488 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
489 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
490 		pgtbl_mod_mask *mask)
491 {
492 	pmd_t *pmd;
493 	unsigned long next;
494 
495 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
496 	if (!pmd)
497 		return -ENOMEM;
498 	do {
499 		next = pmd_addr_end(addr, end);
500 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
501 			return -ENOMEM;
502 	} while (pmd++, addr = next, addr != end);
503 	return 0;
504 }
505 
506 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
507 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
508 		pgtbl_mod_mask *mask)
509 {
510 	pud_t *pud;
511 	unsigned long next;
512 
513 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
514 	if (!pud)
515 		return -ENOMEM;
516 	do {
517 		next = pud_addr_end(addr, end);
518 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
519 			return -ENOMEM;
520 	} while (pud++, addr = next, addr != end);
521 	return 0;
522 }
523 
524 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
525 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
526 		pgtbl_mod_mask *mask)
527 {
528 	p4d_t *p4d;
529 	unsigned long next;
530 
531 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
532 	if (!p4d)
533 		return -ENOMEM;
534 	do {
535 		next = p4d_addr_end(addr, end);
536 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
537 			return -ENOMEM;
538 	} while (p4d++, addr = next, addr != end);
539 	return 0;
540 }
541 
542 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
543 		pgprot_t prot, struct page **pages)
544 {
545 	unsigned long start = addr;
546 	pgd_t *pgd;
547 	unsigned long next;
548 	int err = 0;
549 	int nr = 0;
550 	pgtbl_mod_mask mask = 0;
551 
552 	BUG_ON(addr >= end);
553 	pgd = pgd_offset_k(addr);
554 	do {
555 		next = pgd_addr_end(addr, end);
556 		if (pgd_bad(*pgd))
557 			mask |= PGTBL_PGD_MODIFIED;
558 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
559 		if (err)
560 			return err;
561 	} while (pgd++, addr = next, addr != end);
562 
563 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
564 		arch_sync_kernel_mappings(start, end);
565 
566 	return 0;
567 }
568 
569 /*
570  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
571  * flush caches.
572  *
573  * The caller is responsible for calling flush_cache_vmap() after this
574  * function returns successfully and before the addresses are accessed.
575  *
576  * This is an internal function only. Do not use outside mm/.
577  */
578 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
579 		pgprot_t prot, struct page **pages, unsigned int page_shift)
580 {
581 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
582 
583 	WARN_ON(page_shift < PAGE_SHIFT);
584 
585 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
586 			page_shift == PAGE_SHIFT)
587 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
588 
589 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
590 		int err;
591 
592 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
593 					page_to_phys(pages[i]), prot,
594 					page_shift);
595 		if (err)
596 			return err;
597 
598 		addr += 1UL << page_shift;
599 	}
600 
601 	return 0;
602 }
603 
604 /**
605  * vmap_pages_range - map pages to a kernel virtual address
606  * @addr: start of the VM area to map
607  * @end: end of the VM area to map (non-inclusive)
608  * @prot: page protection flags to use
609  * @pages: pages to map (always PAGE_SIZE pages)
610  * @page_shift: maximum shift that the pages may be mapped with, @pages must
611  * be aligned and contiguous up to at least this shift.
612  *
613  * RETURNS:
614  * 0 on success, -errno on failure.
615  */
616 static int vmap_pages_range(unsigned long addr, unsigned long end,
617 		pgprot_t prot, struct page **pages, unsigned int page_shift)
618 {
619 	int err;
620 
621 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
622 	flush_cache_vmap(addr, end);
623 	return err;
624 }
625 
626 int is_vmalloc_or_module_addr(const void *x)
627 {
628 	/*
629 	 * ARM, x86-64 and sparc64 put modules in a special place,
630 	 * and fall back on vmalloc() if that fails. Others
631 	 * just put it in the vmalloc space.
632 	 */
633 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
634 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
635 	if (addr >= MODULES_VADDR && addr < MODULES_END)
636 		return 1;
637 #endif
638 	return is_vmalloc_addr(x);
639 }
640 
641 /*
642  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
643  * return the tail page that corresponds to the base page address, which
644  * matches small vmap mappings.
645  */
646 struct page *vmalloc_to_page(const void *vmalloc_addr)
647 {
648 	unsigned long addr = (unsigned long) vmalloc_addr;
649 	struct page *page = NULL;
650 	pgd_t *pgd = pgd_offset_k(addr);
651 	p4d_t *p4d;
652 	pud_t *pud;
653 	pmd_t *pmd;
654 	pte_t *ptep, pte;
655 
656 	/*
657 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
658 	 * architectures that do not vmalloc module space
659 	 */
660 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
661 
662 	if (pgd_none(*pgd))
663 		return NULL;
664 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
665 		return NULL; /* XXX: no allowance for huge pgd */
666 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
667 		return NULL;
668 
669 	p4d = p4d_offset(pgd, addr);
670 	if (p4d_none(*p4d))
671 		return NULL;
672 	if (p4d_leaf(*p4d))
673 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
674 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
675 		return NULL;
676 
677 	pud = pud_offset(p4d, addr);
678 	if (pud_none(*pud))
679 		return NULL;
680 	if (pud_leaf(*pud))
681 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
682 	if (WARN_ON_ONCE(pud_bad(*pud)))
683 		return NULL;
684 
685 	pmd = pmd_offset(pud, addr);
686 	if (pmd_none(*pmd))
687 		return NULL;
688 	if (pmd_leaf(*pmd))
689 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
690 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
691 		return NULL;
692 
693 	ptep = pte_offset_map(pmd, addr);
694 	pte = *ptep;
695 	if (pte_present(pte))
696 		page = pte_page(pte);
697 	pte_unmap(ptep);
698 
699 	return page;
700 }
701 EXPORT_SYMBOL(vmalloc_to_page);
702 
703 /*
704  * Map a vmalloc()-space virtual address to the physical page frame number.
705  */
706 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
707 {
708 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
709 }
710 EXPORT_SYMBOL(vmalloc_to_pfn);
711 
712 
713 /*** Global kva allocator ***/
714 
715 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
716 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
717 
718 
719 static DEFINE_SPINLOCK(vmap_area_lock);
720 static DEFINE_SPINLOCK(free_vmap_area_lock);
721 /* Export for kexec only */
722 LIST_HEAD(vmap_area_list);
723 static struct rb_root vmap_area_root = RB_ROOT;
724 static bool vmap_initialized __read_mostly;
725 
726 static struct rb_root purge_vmap_area_root = RB_ROOT;
727 static LIST_HEAD(purge_vmap_area_list);
728 static DEFINE_SPINLOCK(purge_vmap_area_lock);
729 
730 /*
731  * This kmem_cache is used for vmap_area objects. Instead of
732  * allocating from slab we reuse an object from this cache to
733  * make things faster. Especially in "no edge" splitting of
734  * free block.
735  */
736 static struct kmem_cache *vmap_area_cachep;
737 
738 /*
739  * This linked list is used in pair with free_vmap_area_root.
740  * It gives O(1) access to prev/next to perform fast coalescing.
741  */
742 static LIST_HEAD(free_vmap_area_list);
743 
744 /*
745  * This augment red-black tree represents the free vmap space.
746  * All vmap_area objects in this tree are sorted by va->va_start
747  * address. It is used for allocation and merging when a vmap
748  * object is released.
749  *
750  * Each vmap_area node contains a maximum available free block
751  * of its sub-tree, right or left. Therefore it is possible to
752  * find a lowest match of free area.
753  */
754 static struct rb_root free_vmap_area_root = RB_ROOT;
755 
756 /*
757  * Preload a CPU with one object for "no edge" split case. The
758  * aim is to get rid of allocations from the atomic context, thus
759  * to use more permissive allocation masks.
760  */
761 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
762 
763 static __always_inline unsigned long
764 va_size(struct vmap_area *va)
765 {
766 	return (va->va_end - va->va_start);
767 }
768 
769 static __always_inline unsigned long
770 get_subtree_max_size(struct rb_node *node)
771 {
772 	struct vmap_area *va;
773 
774 	va = rb_entry_safe(node, struct vmap_area, rb_node);
775 	return va ? va->subtree_max_size : 0;
776 }
777 
778 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
779 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
780 
781 static void purge_vmap_area_lazy(void);
782 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
783 static void drain_vmap_area_work(struct work_struct *work);
784 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
785 
786 static atomic_long_t nr_vmalloc_pages;
787 
788 unsigned long vmalloc_nr_pages(void)
789 {
790 	return atomic_long_read(&nr_vmalloc_pages);
791 }
792 
793 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
794 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
795 {
796 	struct vmap_area *va = NULL;
797 	struct rb_node *n = vmap_area_root.rb_node;
798 
799 	addr = (unsigned long)kasan_reset_tag((void *)addr);
800 
801 	while (n) {
802 		struct vmap_area *tmp;
803 
804 		tmp = rb_entry(n, struct vmap_area, rb_node);
805 		if (tmp->va_end > addr) {
806 			va = tmp;
807 			if (tmp->va_start <= addr)
808 				break;
809 
810 			n = n->rb_left;
811 		} else
812 			n = n->rb_right;
813 	}
814 
815 	return va;
816 }
817 
818 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
819 {
820 	struct rb_node *n = root->rb_node;
821 
822 	addr = (unsigned long)kasan_reset_tag((void *)addr);
823 
824 	while (n) {
825 		struct vmap_area *va;
826 
827 		va = rb_entry(n, struct vmap_area, rb_node);
828 		if (addr < va->va_start)
829 			n = n->rb_left;
830 		else if (addr >= va->va_end)
831 			n = n->rb_right;
832 		else
833 			return va;
834 	}
835 
836 	return NULL;
837 }
838 
839 /*
840  * This function returns back addresses of parent node
841  * and its left or right link for further processing.
842  *
843  * Otherwise NULL is returned. In that case all further
844  * steps regarding inserting of conflicting overlap range
845  * have to be declined and actually considered as a bug.
846  */
847 static __always_inline struct rb_node **
848 find_va_links(struct vmap_area *va,
849 	struct rb_root *root, struct rb_node *from,
850 	struct rb_node **parent)
851 {
852 	struct vmap_area *tmp_va;
853 	struct rb_node **link;
854 
855 	if (root) {
856 		link = &root->rb_node;
857 		if (unlikely(!*link)) {
858 			*parent = NULL;
859 			return link;
860 		}
861 	} else {
862 		link = &from;
863 	}
864 
865 	/*
866 	 * Go to the bottom of the tree. When we hit the last point
867 	 * we end up with parent rb_node and correct direction, i name
868 	 * it link, where the new va->rb_node will be attached to.
869 	 */
870 	do {
871 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
872 
873 		/*
874 		 * During the traversal we also do some sanity check.
875 		 * Trigger the BUG() if there are sides(left/right)
876 		 * or full overlaps.
877 		 */
878 		if (va->va_end <= tmp_va->va_start)
879 			link = &(*link)->rb_left;
880 		else if (va->va_start >= tmp_va->va_end)
881 			link = &(*link)->rb_right;
882 		else {
883 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
884 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
885 
886 			return NULL;
887 		}
888 	} while (*link);
889 
890 	*parent = &tmp_va->rb_node;
891 	return link;
892 }
893 
894 static __always_inline struct list_head *
895 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
896 {
897 	struct list_head *list;
898 
899 	if (unlikely(!parent))
900 		/*
901 		 * The red-black tree where we try to find VA neighbors
902 		 * before merging or inserting is empty, i.e. it means
903 		 * there is no free vmap space. Normally it does not
904 		 * happen but we handle this case anyway.
905 		 */
906 		return NULL;
907 
908 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
909 	return (&parent->rb_right == link ? list->next : list);
910 }
911 
912 static __always_inline void
913 __link_va(struct vmap_area *va, struct rb_root *root,
914 	struct rb_node *parent, struct rb_node **link,
915 	struct list_head *head, bool augment)
916 {
917 	/*
918 	 * VA is still not in the list, but we can
919 	 * identify its future previous list_head node.
920 	 */
921 	if (likely(parent)) {
922 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
923 		if (&parent->rb_right != link)
924 			head = head->prev;
925 	}
926 
927 	/* Insert to the rb-tree */
928 	rb_link_node(&va->rb_node, parent, link);
929 	if (augment) {
930 		/*
931 		 * Some explanation here. Just perform simple insertion
932 		 * to the tree. We do not set va->subtree_max_size to
933 		 * its current size before calling rb_insert_augmented().
934 		 * It is because we populate the tree from the bottom
935 		 * to parent levels when the node _is_ in the tree.
936 		 *
937 		 * Therefore we set subtree_max_size to zero after insertion,
938 		 * to let __augment_tree_propagate_from() puts everything to
939 		 * the correct order later on.
940 		 */
941 		rb_insert_augmented(&va->rb_node,
942 			root, &free_vmap_area_rb_augment_cb);
943 		va->subtree_max_size = 0;
944 	} else {
945 		rb_insert_color(&va->rb_node, root);
946 	}
947 
948 	/* Address-sort this list */
949 	list_add(&va->list, head);
950 }
951 
952 static __always_inline void
953 link_va(struct vmap_area *va, struct rb_root *root,
954 	struct rb_node *parent, struct rb_node **link,
955 	struct list_head *head)
956 {
957 	__link_va(va, root, parent, link, head, false);
958 }
959 
960 static __always_inline void
961 link_va_augment(struct vmap_area *va, struct rb_root *root,
962 	struct rb_node *parent, struct rb_node **link,
963 	struct list_head *head)
964 {
965 	__link_va(va, root, parent, link, head, true);
966 }
967 
968 static __always_inline void
969 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
970 {
971 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
972 		return;
973 
974 	if (augment)
975 		rb_erase_augmented(&va->rb_node,
976 			root, &free_vmap_area_rb_augment_cb);
977 	else
978 		rb_erase(&va->rb_node, root);
979 
980 	list_del_init(&va->list);
981 	RB_CLEAR_NODE(&va->rb_node);
982 }
983 
984 static __always_inline void
985 unlink_va(struct vmap_area *va, struct rb_root *root)
986 {
987 	__unlink_va(va, root, false);
988 }
989 
990 static __always_inline void
991 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
992 {
993 	__unlink_va(va, root, true);
994 }
995 
996 #if DEBUG_AUGMENT_PROPAGATE_CHECK
997 /*
998  * Gets called when remove the node and rotate.
999  */
1000 static __always_inline unsigned long
1001 compute_subtree_max_size(struct vmap_area *va)
1002 {
1003 	return max3(va_size(va),
1004 		get_subtree_max_size(va->rb_node.rb_left),
1005 		get_subtree_max_size(va->rb_node.rb_right));
1006 }
1007 
1008 static void
1009 augment_tree_propagate_check(void)
1010 {
1011 	struct vmap_area *va;
1012 	unsigned long computed_size;
1013 
1014 	list_for_each_entry(va, &free_vmap_area_list, list) {
1015 		computed_size = compute_subtree_max_size(va);
1016 		if (computed_size != va->subtree_max_size)
1017 			pr_emerg("tree is corrupted: %lu, %lu\n",
1018 				va_size(va), va->subtree_max_size);
1019 	}
1020 }
1021 #endif
1022 
1023 /*
1024  * This function populates subtree_max_size from bottom to upper
1025  * levels starting from VA point. The propagation must be done
1026  * when VA size is modified by changing its va_start/va_end. Or
1027  * in case of newly inserting of VA to the tree.
1028  *
1029  * It means that __augment_tree_propagate_from() must be called:
1030  * - After VA has been inserted to the tree(free path);
1031  * - After VA has been shrunk(allocation path);
1032  * - After VA has been increased(merging path).
1033  *
1034  * Please note that, it does not mean that upper parent nodes
1035  * and their subtree_max_size are recalculated all the time up
1036  * to the root node.
1037  *
1038  *       4--8
1039  *        /\
1040  *       /  \
1041  *      /    \
1042  *    2--2  8--8
1043  *
1044  * For example if we modify the node 4, shrinking it to 2, then
1045  * no any modification is required. If we shrink the node 2 to 1
1046  * its subtree_max_size is updated only, and set to 1. If we shrink
1047  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1048  * node becomes 4--6.
1049  */
1050 static __always_inline void
1051 augment_tree_propagate_from(struct vmap_area *va)
1052 {
1053 	/*
1054 	 * Populate the tree from bottom towards the root until
1055 	 * the calculated maximum available size of checked node
1056 	 * is equal to its current one.
1057 	 */
1058 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1059 
1060 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1061 	augment_tree_propagate_check();
1062 #endif
1063 }
1064 
1065 static void
1066 insert_vmap_area(struct vmap_area *va,
1067 	struct rb_root *root, struct list_head *head)
1068 {
1069 	struct rb_node **link;
1070 	struct rb_node *parent;
1071 
1072 	link = find_va_links(va, root, NULL, &parent);
1073 	if (link)
1074 		link_va(va, root, parent, link, head);
1075 }
1076 
1077 static void
1078 insert_vmap_area_augment(struct vmap_area *va,
1079 	struct rb_node *from, struct rb_root *root,
1080 	struct list_head *head)
1081 {
1082 	struct rb_node **link;
1083 	struct rb_node *parent;
1084 
1085 	if (from)
1086 		link = find_va_links(va, NULL, from, &parent);
1087 	else
1088 		link = find_va_links(va, root, NULL, &parent);
1089 
1090 	if (link) {
1091 		link_va_augment(va, root, parent, link, head);
1092 		augment_tree_propagate_from(va);
1093 	}
1094 }
1095 
1096 /*
1097  * Merge de-allocated chunk of VA memory with previous
1098  * and next free blocks. If coalesce is not done a new
1099  * free area is inserted. If VA has been merged, it is
1100  * freed.
1101  *
1102  * Please note, it can return NULL in case of overlap
1103  * ranges, followed by WARN() report. Despite it is a
1104  * buggy behaviour, a system can be alive and keep
1105  * ongoing.
1106  */
1107 static __always_inline struct vmap_area *
1108 __merge_or_add_vmap_area(struct vmap_area *va,
1109 	struct rb_root *root, struct list_head *head, bool augment)
1110 {
1111 	struct vmap_area *sibling;
1112 	struct list_head *next;
1113 	struct rb_node **link;
1114 	struct rb_node *parent;
1115 	bool merged = false;
1116 
1117 	/*
1118 	 * Find a place in the tree where VA potentially will be
1119 	 * inserted, unless it is merged with its sibling/siblings.
1120 	 */
1121 	link = find_va_links(va, root, NULL, &parent);
1122 	if (!link)
1123 		return NULL;
1124 
1125 	/*
1126 	 * Get next node of VA to check if merging can be done.
1127 	 */
1128 	next = get_va_next_sibling(parent, link);
1129 	if (unlikely(next == NULL))
1130 		goto insert;
1131 
1132 	/*
1133 	 * start            end
1134 	 * |                |
1135 	 * |<------VA------>|<-----Next----->|
1136 	 *                  |                |
1137 	 *                  start            end
1138 	 */
1139 	if (next != head) {
1140 		sibling = list_entry(next, struct vmap_area, list);
1141 		if (sibling->va_start == va->va_end) {
1142 			sibling->va_start = va->va_start;
1143 
1144 			/* Free vmap_area object. */
1145 			kmem_cache_free(vmap_area_cachep, va);
1146 
1147 			/* Point to the new merged area. */
1148 			va = sibling;
1149 			merged = true;
1150 		}
1151 	}
1152 
1153 	/*
1154 	 * start            end
1155 	 * |                |
1156 	 * |<-----Prev----->|<------VA------>|
1157 	 *                  |                |
1158 	 *                  start            end
1159 	 */
1160 	if (next->prev != head) {
1161 		sibling = list_entry(next->prev, struct vmap_area, list);
1162 		if (sibling->va_end == va->va_start) {
1163 			/*
1164 			 * If both neighbors are coalesced, it is important
1165 			 * to unlink the "next" node first, followed by merging
1166 			 * with "previous" one. Otherwise the tree might not be
1167 			 * fully populated if a sibling's augmented value is
1168 			 * "normalized" because of rotation operations.
1169 			 */
1170 			if (merged)
1171 				__unlink_va(va, root, augment);
1172 
1173 			sibling->va_end = va->va_end;
1174 
1175 			/* Free vmap_area object. */
1176 			kmem_cache_free(vmap_area_cachep, va);
1177 
1178 			/* Point to the new merged area. */
1179 			va = sibling;
1180 			merged = true;
1181 		}
1182 	}
1183 
1184 insert:
1185 	if (!merged)
1186 		__link_va(va, root, parent, link, head, augment);
1187 
1188 	return va;
1189 }
1190 
1191 static __always_inline struct vmap_area *
1192 merge_or_add_vmap_area(struct vmap_area *va,
1193 	struct rb_root *root, struct list_head *head)
1194 {
1195 	return __merge_or_add_vmap_area(va, root, head, false);
1196 }
1197 
1198 static __always_inline struct vmap_area *
1199 merge_or_add_vmap_area_augment(struct vmap_area *va,
1200 	struct rb_root *root, struct list_head *head)
1201 {
1202 	va = __merge_or_add_vmap_area(va, root, head, true);
1203 	if (va)
1204 		augment_tree_propagate_from(va);
1205 
1206 	return va;
1207 }
1208 
1209 static __always_inline bool
1210 is_within_this_va(struct vmap_area *va, unsigned long size,
1211 	unsigned long align, unsigned long vstart)
1212 {
1213 	unsigned long nva_start_addr;
1214 
1215 	if (va->va_start > vstart)
1216 		nva_start_addr = ALIGN(va->va_start, align);
1217 	else
1218 		nva_start_addr = ALIGN(vstart, align);
1219 
1220 	/* Can be overflowed due to big size or alignment. */
1221 	if (nva_start_addr + size < nva_start_addr ||
1222 			nva_start_addr < vstart)
1223 		return false;
1224 
1225 	return (nva_start_addr + size <= va->va_end);
1226 }
1227 
1228 /*
1229  * Find the first free block(lowest start address) in the tree,
1230  * that will accomplish the request corresponding to passing
1231  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1232  * a search length is adjusted to account for worst case alignment
1233  * overhead.
1234  */
1235 static __always_inline struct vmap_area *
1236 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1237 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1238 {
1239 	struct vmap_area *va;
1240 	struct rb_node *node;
1241 	unsigned long length;
1242 
1243 	/* Start from the root. */
1244 	node = root->rb_node;
1245 
1246 	/* Adjust the search size for alignment overhead. */
1247 	length = adjust_search_size ? size + align - 1 : size;
1248 
1249 	while (node) {
1250 		va = rb_entry(node, struct vmap_area, rb_node);
1251 
1252 		if (get_subtree_max_size(node->rb_left) >= length &&
1253 				vstart < va->va_start) {
1254 			node = node->rb_left;
1255 		} else {
1256 			if (is_within_this_va(va, size, align, vstart))
1257 				return va;
1258 
1259 			/*
1260 			 * Does not make sense to go deeper towards the right
1261 			 * sub-tree if it does not have a free block that is
1262 			 * equal or bigger to the requested search length.
1263 			 */
1264 			if (get_subtree_max_size(node->rb_right) >= length) {
1265 				node = node->rb_right;
1266 				continue;
1267 			}
1268 
1269 			/*
1270 			 * OK. We roll back and find the first right sub-tree,
1271 			 * that will satisfy the search criteria. It can happen
1272 			 * due to "vstart" restriction or an alignment overhead
1273 			 * that is bigger then PAGE_SIZE.
1274 			 */
1275 			while ((node = rb_parent(node))) {
1276 				va = rb_entry(node, struct vmap_area, rb_node);
1277 				if (is_within_this_va(va, size, align, vstart))
1278 					return va;
1279 
1280 				if (get_subtree_max_size(node->rb_right) >= length &&
1281 						vstart <= va->va_start) {
1282 					/*
1283 					 * Shift the vstart forward. Please note, we update it with
1284 					 * parent's start address adding "1" because we do not want
1285 					 * to enter same sub-tree after it has already been checked
1286 					 * and no suitable free block found there.
1287 					 */
1288 					vstart = va->va_start + 1;
1289 					node = node->rb_right;
1290 					break;
1291 				}
1292 			}
1293 		}
1294 	}
1295 
1296 	return NULL;
1297 }
1298 
1299 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1300 #include <linux/random.h>
1301 
1302 static struct vmap_area *
1303 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1304 	unsigned long align, unsigned long vstart)
1305 {
1306 	struct vmap_area *va;
1307 
1308 	list_for_each_entry(va, head, list) {
1309 		if (!is_within_this_va(va, size, align, vstart))
1310 			continue;
1311 
1312 		return va;
1313 	}
1314 
1315 	return NULL;
1316 }
1317 
1318 static void
1319 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1320 			     unsigned long size, unsigned long align)
1321 {
1322 	struct vmap_area *va_1, *va_2;
1323 	unsigned long vstart;
1324 	unsigned int rnd;
1325 
1326 	get_random_bytes(&rnd, sizeof(rnd));
1327 	vstart = VMALLOC_START + rnd;
1328 
1329 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1330 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1331 
1332 	if (va_1 != va_2)
1333 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1334 			va_1, va_2, vstart);
1335 }
1336 #endif
1337 
1338 enum fit_type {
1339 	NOTHING_FIT = 0,
1340 	FL_FIT_TYPE = 1,	/* full fit */
1341 	LE_FIT_TYPE = 2,	/* left edge fit */
1342 	RE_FIT_TYPE = 3,	/* right edge fit */
1343 	NE_FIT_TYPE = 4		/* no edge fit */
1344 };
1345 
1346 static __always_inline enum fit_type
1347 classify_va_fit_type(struct vmap_area *va,
1348 	unsigned long nva_start_addr, unsigned long size)
1349 {
1350 	enum fit_type type;
1351 
1352 	/* Check if it is within VA. */
1353 	if (nva_start_addr < va->va_start ||
1354 			nva_start_addr + size > va->va_end)
1355 		return NOTHING_FIT;
1356 
1357 	/* Now classify. */
1358 	if (va->va_start == nva_start_addr) {
1359 		if (va->va_end == nva_start_addr + size)
1360 			type = FL_FIT_TYPE;
1361 		else
1362 			type = LE_FIT_TYPE;
1363 	} else if (va->va_end == nva_start_addr + size) {
1364 		type = RE_FIT_TYPE;
1365 	} else {
1366 		type = NE_FIT_TYPE;
1367 	}
1368 
1369 	return type;
1370 }
1371 
1372 static __always_inline int
1373 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1374 		      struct vmap_area *va, unsigned long nva_start_addr,
1375 		      unsigned long size)
1376 {
1377 	struct vmap_area *lva = NULL;
1378 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1379 
1380 	if (type == FL_FIT_TYPE) {
1381 		/*
1382 		 * No need to split VA, it fully fits.
1383 		 *
1384 		 * |               |
1385 		 * V      NVA      V
1386 		 * |---------------|
1387 		 */
1388 		unlink_va_augment(va, root);
1389 		kmem_cache_free(vmap_area_cachep, va);
1390 	} else if (type == LE_FIT_TYPE) {
1391 		/*
1392 		 * Split left edge of fit VA.
1393 		 *
1394 		 * |       |
1395 		 * V  NVA  V   R
1396 		 * |-------|-------|
1397 		 */
1398 		va->va_start += size;
1399 	} else if (type == RE_FIT_TYPE) {
1400 		/*
1401 		 * Split right edge of fit VA.
1402 		 *
1403 		 *         |       |
1404 		 *     L   V  NVA  V
1405 		 * |-------|-------|
1406 		 */
1407 		va->va_end = nva_start_addr;
1408 	} else if (type == NE_FIT_TYPE) {
1409 		/*
1410 		 * Split no edge of fit VA.
1411 		 *
1412 		 *     |       |
1413 		 *   L V  NVA  V R
1414 		 * |---|-------|---|
1415 		 */
1416 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1417 		if (unlikely(!lva)) {
1418 			/*
1419 			 * For percpu allocator we do not do any pre-allocation
1420 			 * and leave it as it is. The reason is it most likely
1421 			 * never ends up with NE_FIT_TYPE splitting. In case of
1422 			 * percpu allocations offsets and sizes are aligned to
1423 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1424 			 * are its main fitting cases.
1425 			 *
1426 			 * There are a few exceptions though, as an example it is
1427 			 * a first allocation (early boot up) when we have "one"
1428 			 * big free space that has to be split.
1429 			 *
1430 			 * Also we can hit this path in case of regular "vmap"
1431 			 * allocations, if "this" current CPU was not preloaded.
1432 			 * See the comment in alloc_vmap_area() why. If so, then
1433 			 * GFP_NOWAIT is used instead to get an extra object for
1434 			 * split purpose. That is rare and most time does not
1435 			 * occur.
1436 			 *
1437 			 * What happens if an allocation gets failed. Basically,
1438 			 * an "overflow" path is triggered to purge lazily freed
1439 			 * areas to free some memory, then, the "retry" path is
1440 			 * triggered to repeat one more time. See more details
1441 			 * in alloc_vmap_area() function.
1442 			 */
1443 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1444 			if (!lva)
1445 				return -1;
1446 		}
1447 
1448 		/*
1449 		 * Build the remainder.
1450 		 */
1451 		lva->va_start = va->va_start;
1452 		lva->va_end = nva_start_addr;
1453 
1454 		/*
1455 		 * Shrink this VA to remaining size.
1456 		 */
1457 		va->va_start = nva_start_addr + size;
1458 	} else {
1459 		return -1;
1460 	}
1461 
1462 	if (type != FL_FIT_TYPE) {
1463 		augment_tree_propagate_from(va);
1464 
1465 		if (lva)	/* type == NE_FIT_TYPE */
1466 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 /*
1473  * Returns a start address of the newly allocated area, if success.
1474  * Otherwise a vend is returned that indicates failure.
1475  */
1476 static __always_inline unsigned long
1477 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1478 	unsigned long size, unsigned long align,
1479 	unsigned long vstart, unsigned long vend)
1480 {
1481 	bool adjust_search_size = true;
1482 	unsigned long nva_start_addr;
1483 	struct vmap_area *va;
1484 	int ret;
1485 
1486 	/*
1487 	 * Do not adjust when:
1488 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1489 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1490 	 *      aligned anyway;
1491 	 *   b) a short range where a requested size corresponds to exactly
1492 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1493 	 *      With adjusted search length an allocation would not succeed.
1494 	 */
1495 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1496 		adjust_search_size = false;
1497 
1498 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1499 	if (unlikely(!va))
1500 		return vend;
1501 
1502 	if (va->va_start > vstart)
1503 		nva_start_addr = ALIGN(va->va_start, align);
1504 	else
1505 		nva_start_addr = ALIGN(vstart, align);
1506 
1507 	/* Check the "vend" restriction. */
1508 	if (nva_start_addr + size > vend)
1509 		return vend;
1510 
1511 	/* Update the free vmap_area. */
1512 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1513 	if (WARN_ON_ONCE(ret))
1514 		return vend;
1515 
1516 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1517 	find_vmap_lowest_match_check(root, head, size, align);
1518 #endif
1519 
1520 	return nva_start_addr;
1521 }
1522 
1523 /*
1524  * Free a region of KVA allocated by alloc_vmap_area
1525  */
1526 static void free_vmap_area(struct vmap_area *va)
1527 {
1528 	/*
1529 	 * Remove from the busy tree/list.
1530 	 */
1531 	spin_lock(&vmap_area_lock);
1532 	unlink_va(va, &vmap_area_root);
1533 	spin_unlock(&vmap_area_lock);
1534 
1535 	/*
1536 	 * Insert/Merge it back to the free tree/list.
1537 	 */
1538 	spin_lock(&free_vmap_area_lock);
1539 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1540 	spin_unlock(&free_vmap_area_lock);
1541 }
1542 
1543 static inline void
1544 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1545 {
1546 	struct vmap_area *va = NULL;
1547 
1548 	/*
1549 	 * Preload this CPU with one extra vmap_area object. It is used
1550 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1551 	 * a CPU that does an allocation is preloaded.
1552 	 *
1553 	 * We do it in non-atomic context, thus it allows us to use more
1554 	 * permissive allocation masks to be more stable under low memory
1555 	 * condition and high memory pressure.
1556 	 */
1557 	if (!this_cpu_read(ne_fit_preload_node))
1558 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1559 
1560 	spin_lock(lock);
1561 
1562 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1563 		kmem_cache_free(vmap_area_cachep, va);
1564 }
1565 
1566 /*
1567  * Allocate a region of KVA of the specified size and alignment, within the
1568  * vstart and vend.
1569  */
1570 static struct vmap_area *alloc_vmap_area(unsigned long size,
1571 				unsigned long align,
1572 				unsigned long vstart, unsigned long vend,
1573 				int node, gfp_t gfp_mask)
1574 {
1575 	struct vmap_area *va;
1576 	unsigned long freed;
1577 	unsigned long addr;
1578 	int purged = 0;
1579 	int ret;
1580 
1581 	BUG_ON(!size);
1582 	BUG_ON(offset_in_page(size));
1583 	BUG_ON(!is_power_of_2(align));
1584 
1585 	if (unlikely(!vmap_initialized))
1586 		return ERR_PTR(-EBUSY);
1587 
1588 	might_sleep();
1589 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1590 
1591 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1592 	if (unlikely(!va))
1593 		return ERR_PTR(-ENOMEM);
1594 
1595 	/*
1596 	 * Only scan the relevant parts containing pointers to other objects
1597 	 * to avoid false negatives.
1598 	 */
1599 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1600 
1601 retry:
1602 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1603 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1604 		size, align, vstart, vend);
1605 	spin_unlock(&free_vmap_area_lock);
1606 
1607 	/*
1608 	 * If an allocation fails, the "vend" address is
1609 	 * returned. Therefore trigger the overflow path.
1610 	 */
1611 	if (unlikely(addr == vend))
1612 		goto overflow;
1613 
1614 	va->va_start = addr;
1615 	va->va_end = addr + size;
1616 	va->vm = NULL;
1617 
1618 	spin_lock(&vmap_area_lock);
1619 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1620 	spin_unlock(&vmap_area_lock);
1621 
1622 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1623 	BUG_ON(va->va_start < vstart);
1624 	BUG_ON(va->va_end > vend);
1625 
1626 	ret = kasan_populate_vmalloc(addr, size);
1627 	if (ret) {
1628 		free_vmap_area(va);
1629 		return ERR_PTR(ret);
1630 	}
1631 
1632 	return va;
1633 
1634 overflow:
1635 	if (!purged) {
1636 		purge_vmap_area_lazy();
1637 		purged = 1;
1638 		goto retry;
1639 	}
1640 
1641 	freed = 0;
1642 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1643 
1644 	if (freed > 0) {
1645 		purged = 0;
1646 		goto retry;
1647 	}
1648 
1649 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1650 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1651 			size);
1652 
1653 	kmem_cache_free(vmap_area_cachep, va);
1654 	return ERR_PTR(-EBUSY);
1655 }
1656 
1657 int register_vmap_purge_notifier(struct notifier_block *nb)
1658 {
1659 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1660 }
1661 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1662 
1663 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1664 {
1665 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1666 }
1667 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1668 
1669 /*
1670  * lazy_max_pages is the maximum amount of virtual address space we gather up
1671  * before attempting to purge with a TLB flush.
1672  *
1673  * There is a tradeoff here: a larger number will cover more kernel page tables
1674  * and take slightly longer to purge, but it will linearly reduce the number of
1675  * global TLB flushes that must be performed. It would seem natural to scale
1676  * this number up linearly with the number of CPUs (because vmapping activity
1677  * could also scale linearly with the number of CPUs), however it is likely
1678  * that in practice, workloads might be constrained in other ways that mean
1679  * vmap activity will not scale linearly with CPUs. Also, I want to be
1680  * conservative and not introduce a big latency on huge systems, so go with
1681  * a less aggressive log scale. It will still be an improvement over the old
1682  * code, and it will be simple to change the scale factor if we find that it
1683  * becomes a problem on bigger systems.
1684  */
1685 static unsigned long lazy_max_pages(void)
1686 {
1687 	unsigned int log;
1688 
1689 	log = fls(num_online_cpus());
1690 
1691 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1692 }
1693 
1694 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1695 
1696 /*
1697  * Serialize vmap purging.  There is no actual critical section protected
1698  * by this lock, but we want to avoid concurrent calls for performance
1699  * reasons and to make the pcpu_get_vm_areas more deterministic.
1700  */
1701 static DEFINE_MUTEX(vmap_purge_lock);
1702 
1703 /* for per-CPU blocks */
1704 static void purge_fragmented_blocks_allcpus(void);
1705 
1706 /*
1707  * Purges all lazily-freed vmap areas.
1708  */
1709 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1710 {
1711 	unsigned long resched_threshold;
1712 	struct list_head local_purge_list;
1713 	struct vmap_area *va, *n_va;
1714 
1715 	lockdep_assert_held(&vmap_purge_lock);
1716 
1717 	spin_lock(&purge_vmap_area_lock);
1718 	purge_vmap_area_root = RB_ROOT;
1719 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1720 	spin_unlock(&purge_vmap_area_lock);
1721 
1722 	if (unlikely(list_empty(&local_purge_list)))
1723 		return false;
1724 
1725 	start = min(start,
1726 		list_first_entry(&local_purge_list,
1727 			struct vmap_area, list)->va_start);
1728 
1729 	end = max(end,
1730 		list_last_entry(&local_purge_list,
1731 			struct vmap_area, list)->va_end);
1732 
1733 	flush_tlb_kernel_range(start, end);
1734 	resched_threshold = lazy_max_pages() << 1;
1735 
1736 	spin_lock(&free_vmap_area_lock);
1737 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1738 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1739 		unsigned long orig_start = va->va_start;
1740 		unsigned long orig_end = va->va_end;
1741 
1742 		/*
1743 		 * Finally insert or merge lazily-freed area. It is
1744 		 * detached and there is no need to "unlink" it from
1745 		 * anything.
1746 		 */
1747 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1748 				&free_vmap_area_list);
1749 
1750 		if (!va)
1751 			continue;
1752 
1753 		if (is_vmalloc_or_module_addr((void *)orig_start))
1754 			kasan_release_vmalloc(orig_start, orig_end,
1755 					      va->va_start, va->va_end);
1756 
1757 		atomic_long_sub(nr, &vmap_lazy_nr);
1758 
1759 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1760 			cond_resched_lock(&free_vmap_area_lock);
1761 	}
1762 	spin_unlock(&free_vmap_area_lock);
1763 	return true;
1764 }
1765 
1766 /*
1767  * Kick off a purge of the outstanding lazy areas.
1768  */
1769 static void purge_vmap_area_lazy(void)
1770 {
1771 	mutex_lock(&vmap_purge_lock);
1772 	purge_fragmented_blocks_allcpus();
1773 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1774 	mutex_unlock(&vmap_purge_lock);
1775 }
1776 
1777 static void drain_vmap_area_work(struct work_struct *work)
1778 {
1779 	unsigned long nr_lazy;
1780 
1781 	do {
1782 		mutex_lock(&vmap_purge_lock);
1783 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1784 		mutex_unlock(&vmap_purge_lock);
1785 
1786 		/* Recheck if further work is required. */
1787 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1788 	} while (nr_lazy > lazy_max_pages());
1789 }
1790 
1791 /*
1792  * Free a vmap area, caller ensuring that the area has been unmapped
1793  * and flush_cache_vunmap had been called for the correct range
1794  * previously.
1795  */
1796 static void free_vmap_area_noflush(struct vmap_area *va)
1797 {
1798 	unsigned long nr_lazy;
1799 
1800 	spin_lock(&vmap_area_lock);
1801 	unlink_va(va, &vmap_area_root);
1802 	spin_unlock(&vmap_area_lock);
1803 
1804 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1805 				PAGE_SHIFT, &vmap_lazy_nr);
1806 
1807 	/*
1808 	 * Merge or place it to the purge tree/list.
1809 	 */
1810 	spin_lock(&purge_vmap_area_lock);
1811 	merge_or_add_vmap_area(va,
1812 		&purge_vmap_area_root, &purge_vmap_area_list);
1813 	spin_unlock(&purge_vmap_area_lock);
1814 
1815 	/* After this point, we may free va at any time */
1816 	if (unlikely(nr_lazy > lazy_max_pages()))
1817 		schedule_work(&drain_vmap_work);
1818 }
1819 
1820 /*
1821  * Free and unmap a vmap area
1822  */
1823 static void free_unmap_vmap_area(struct vmap_area *va)
1824 {
1825 	flush_cache_vunmap(va->va_start, va->va_end);
1826 	vunmap_range_noflush(va->va_start, va->va_end);
1827 	if (debug_pagealloc_enabled_static())
1828 		flush_tlb_kernel_range(va->va_start, va->va_end);
1829 
1830 	free_vmap_area_noflush(va);
1831 }
1832 
1833 struct vmap_area *find_vmap_area(unsigned long addr)
1834 {
1835 	struct vmap_area *va;
1836 
1837 	spin_lock(&vmap_area_lock);
1838 	va = __find_vmap_area(addr, &vmap_area_root);
1839 	spin_unlock(&vmap_area_lock);
1840 
1841 	return va;
1842 }
1843 
1844 /*** Per cpu kva allocator ***/
1845 
1846 /*
1847  * vmap space is limited especially on 32 bit architectures. Ensure there is
1848  * room for at least 16 percpu vmap blocks per CPU.
1849  */
1850 /*
1851  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1852  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1853  * instead (we just need a rough idea)
1854  */
1855 #if BITS_PER_LONG == 32
1856 #define VMALLOC_SPACE		(128UL*1024*1024)
1857 #else
1858 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1859 #endif
1860 
1861 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1862 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1863 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1864 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1865 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1866 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1867 #define VMAP_BBMAP_BITS		\
1868 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1869 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1870 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1871 
1872 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1873 
1874 struct vmap_block_queue {
1875 	spinlock_t lock;
1876 	struct list_head free;
1877 };
1878 
1879 struct vmap_block {
1880 	spinlock_t lock;
1881 	struct vmap_area *va;
1882 	unsigned long free, dirty;
1883 	unsigned long dirty_min, dirty_max; /*< dirty range */
1884 	struct list_head free_list;
1885 	struct rcu_head rcu_head;
1886 	struct list_head purge;
1887 };
1888 
1889 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1890 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1891 
1892 /*
1893  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1894  * in the free path. Could get rid of this if we change the API to return a
1895  * "cookie" from alloc, to be passed to free. But no big deal yet.
1896  */
1897 static DEFINE_XARRAY(vmap_blocks);
1898 
1899 /*
1900  * We should probably have a fallback mechanism to allocate virtual memory
1901  * out of partially filled vmap blocks. However vmap block sizing should be
1902  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1903  * big problem.
1904  */
1905 
1906 static unsigned long addr_to_vb_idx(unsigned long addr)
1907 {
1908 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1909 	addr /= VMAP_BLOCK_SIZE;
1910 	return addr;
1911 }
1912 
1913 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1914 {
1915 	unsigned long addr;
1916 
1917 	addr = va_start + (pages_off << PAGE_SHIFT);
1918 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1919 	return (void *)addr;
1920 }
1921 
1922 /**
1923  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1924  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1925  * @order:    how many 2^order pages should be occupied in newly allocated block
1926  * @gfp_mask: flags for the page level allocator
1927  *
1928  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1929  */
1930 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1931 {
1932 	struct vmap_block_queue *vbq;
1933 	struct vmap_block *vb;
1934 	struct vmap_area *va;
1935 	unsigned long vb_idx;
1936 	int node, err;
1937 	void *vaddr;
1938 
1939 	node = numa_node_id();
1940 
1941 	vb = kmalloc_node(sizeof(struct vmap_block),
1942 			gfp_mask & GFP_RECLAIM_MASK, node);
1943 	if (unlikely(!vb))
1944 		return ERR_PTR(-ENOMEM);
1945 
1946 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1947 					VMALLOC_START, VMALLOC_END,
1948 					node, gfp_mask);
1949 	if (IS_ERR(va)) {
1950 		kfree(vb);
1951 		return ERR_CAST(va);
1952 	}
1953 
1954 	vaddr = vmap_block_vaddr(va->va_start, 0);
1955 	spin_lock_init(&vb->lock);
1956 	vb->va = va;
1957 	/* At least something should be left free */
1958 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1959 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1960 	vb->dirty = 0;
1961 	vb->dirty_min = VMAP_BBMAP_BITS;
1962 	vb->dirty_max = 0;
1963 	INIT_LIST_HEAD(&vb->free_list);
1964 
1965 	vb_idx = addr_to_vb_idx(va->va_start);
1966 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1967 	if (err) {
1968 		kfree(vb);
1969 		free_vmap_area(va);
1970 		return ERR_PTR(err);
1971 	}
1972 
1973 	vbq = raw_cpu_ptr(&vmap_block_queue);
1974 	spin_lock(&vbq->lock);
1975 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1976 	spin_unlock(&vbq->lock);
1977 
1978 	return vaddr;
1979 }
1980 
1981 static void free_vmap_block(struct vmap_block *vb)
1982 {
1983 	struct vmap_block *tmp;
1984 
1985 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1986 	BUG_ON(tmp != vb);
1987 
1988 	free_vmap_area_noflush(vb->va);
1989 	kfree_rcu(vb, rcu_head);
1990 }
1991 
1992 static void purge_fragmented_blocks(int cpu)
1993 {
1994 	LIST_HEAD(purge);
1995 	struct vmap_block *vb;
1996 	struct vmap_block *n_vb;
1997 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1998 
1999 	rcu_read_lock();
2000 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2001 
2002 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2003 			continue;
2004 
2005 		spin_lock(&vb->lock);
2006 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2007 			vb->free = 0; /* prevent further allocs after releasing lock */
2008 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2009 			vb->dirty_min = 0;
2010 			vb->dirty_max = VMAP_BBMAP_BITS;
2011 			spin_lock(&vbq->lock);
2012 			list_del_rcu(&vb->free_list);
2013 			spin_unlock(&vbq->lock);
2014 			spin_unlock(&vb->lock);
2015 			list_add_tail(&vb->purge, &purge);
2016 		} else
2017 			spin_unlock(&vb->lock);
2018 	}
2019 	rcu_read_unlock();
2020 
2021 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2022 		list_del(&vb->purge);
2023 		free_vmap_block(vb);
2024 	}
2025 }
2026 
2027 static void purge_fragmented_blocks_allcpus(void)
2028 {
2029 	int cpu;
2030 
2031 	for_each_possible_cpu(cpu)
2032 		purge_fragmented_blocks(cpu);
2033 }
2034 
2035 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2036 {
2037 	struct vmap_block_queue *vbq;
2038 	struct vmap_block *vb;
2039 	void *vaddr = NULL;
2040 	unsigned int order;
2041 
2042 	BUG_ON(offset_in_page(size));
2043 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2044 	if (WARN_ON(size == 0)) {
2045 		/*
2046 		 * Allocating 0 bytes isn't what caller wants since
2047 		 * get_order(0) returns funny result. Just warn and terminate
2048 		 * early.
2049 		 */
2050 		return NULL;
2051 	}
2052 	order = get_order(size);
2053 
2054 	rcu_read_lock();
2055 	vbq = raw_cpu_ptr(&vmap_block_queue);
2056 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2057 		unsigned long pages_off;
2058 
2059 		spin_lock(&vb->lock);
2060 		if (vb->free < (1UL << order)) {
2061 			spin_unlock(&vb->lock);
2062 			continue;
2063 		}
2064 
2065 		pages_off = VMAP_BBMAP_BITS - vb->free;
2066 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2067 		vb->free -= 1UL << order;
2068 		if (vb->free == 0) {
2069 			spin_lock(&vbq->lock);
2070 			list_del_rcu(&vb->free_list);
2071 			spin_unlock(&vbq->lock);
2072 		}
2073 
2074 		spin_unlock(&vb->lock);
2075 		break;
2076 	}
2077 
2078 	rcu_read_unlock();
2079 
2080 	/* Allocate new block if nothing was found */
2081 	if (!vaddr)
2082 		vaddr = new_vmap_block(order, gfp_mask);
2083 
2084 	return vaddr;
2085 }
2086 
2087 static void vb_free(unsigned long addr, unsigned long size)
2088 {
2089 	unsigned long offset;
2090 	unsigned int order;
2091 	struct vmap_block *vb;
2092 
2093 	BUG_ON(offset_in_page(size));
2094 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2095 
2096 	flush_cache_vunmap(addr, addr + size);
2097 
2098 	order = get_order(size);
2099 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2100 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2101 
2102 	vunmap_range_noflush(addr, addr + size);
2103 
2104 	if (debug_pagealloc_enabled_static())
2105 		flush_tlb_kernel_range(addr, addr + size);
2106 
2107 	spin_lock(&vb->lock);
2108 
2109 	/* Expand dirty range */
2110 	vb->dirty_min = min(vb->dirty_min, offset);
2111 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2112 
2113 	vb->dirty += 1UL << order;
2114 	if (vb->dirty == VMAP_BBMAP_BITS) {
2115 		BUG_ON(vb->free);
2116 		spin_unlock(&vb->lock);
2117 		free_vmap_block(vb);
2118 	} else
2119 		spin_unlock(&vb->lock);
2120 }
2121 
2122 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2123 {
2124 	int cpu;
2125 
2126 	if (unlikely(!vmap_initialized))
2127 		return;
2128 
2129 	might_sleep();
2130 
2131 	for_each_possible_cpu(cpu) {
2132 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2133 		struct vmap_block *vb;
2134 
2135 		rcu_read_lock();
2136 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2137 			spin_lock(&vb->lock);
2138 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2139 				unsigned long va_start = vb->va->va_start;
2140 				unsigned long s, e;
2141 
2142 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2143 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2144 
2145 				start = min(s, start);
2146 				end   = max(e, end);
2147 
2148 				flush = 1;
2149 			}
2150 			spin_unlock(&vb->lock);
2151 		}
2152 		rcu_read_unlock();
2153 	}
2154 
2155 	mutex_lock(&vmap_purge_lock);
2156 	purge_fragmented_blocks_allcpus();
2157 	if (!__purge_vmap_area_lazy(start, end) && flush)
2158 		flush_tlb_kernel_range(start, end);
2159 	mutex_unlock(&vmap_purge_lock);
2160 }
2161 
2162 /**
2163  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2164  *
2165  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2166  * to amortize TLB flushing overheads. What this means is that any page you
2167  * have now, may, in a former life, have been mapped into kernel virtual
2168  * address by the vmap layer and so there might be some CPUs with TLB entries
2169  * still referencing that page (additional to the regular 1:1 kernel mapping).
2170  *
2171  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2172  * be sure that none of the pages we have control over will have any aliases
2173  * from the vmap layer.
2174  */
2175 void vm_unmap_aliases(void)
2176 {
2177 	unsigned long start = ULONG_MAX, end = 0;
2178 	int flush = 0;
2179 
2180 	_vm_unmap_aliases(start, end, flush);
2181 }
2182 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2183 
2184 /**
2185  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2186  * @mem: the pointer returned by vm_map_ram
2187  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2188  */
2189 void vm_unmap_ram(const void *mem, unsigned int count)
2190 {
2191 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2192 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2193 	struct vmap_area *va;
2194 
2195 	might_sleep();
2196 	BUG_ON(!addr);
2197 	BUG_ON(addr < VMALLOC_START);
2198 	BUG_ON(addr > VMALLOC_END);
2199 	BUG_ON(!PAGE_ALIGNED(addr));
2200 
2201 	kasan_poison_vmalloc(mem, size);
2202 
2203 	if (likely(count <= VMAP_MAX_ALLOC)) {
2204 		debug_check_no_locks_freed(mem, size);
2205 		vb_free(addr, size);
2206 		return;
2207 	}
2208 
2209 	va = find_vmap_area(addr);
2210 	BUG_ON(!va);
2211 	debug_check_no_locks_freed((void *)va->va_start,
2212 				    (va->va_end - va->va_start));
2213 	free_unmap_vmap_area(va);
2214 }
2215 EXPORT_SYMBOL(vm_unmap_ram);
2216 
2217 /**
2218  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2219  * @pages: an array of pointers to the pages to be mapped
2220  * @count: number of pages
2221  * @node: prefer to allocate data structures on this node
2222  *
2223  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2224  * faster than vmap so it's good.  But if you mix long-life and short-life
2225  * objects with vm_map_ram(), it could consume lots of address space through
2226  * fragmentation (especially on a 32bit machine).  You could see failures in
2227  * the end.  Please use this function for short-lived objects.
2228  *
2229  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2230  */
2231 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2232 {
2233 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2234 	unsigned long addr;
2235 	void *mem;
2236 
2237 	if (likely(count <= VMAP_MAX_ALLOC)) {
2238 		mem = vb_alloc(size, GFP_KERNEL);
2239 		if (IS_ERR(mem))
2240 			return NULL;
2241 		addr = (unsigned long)mem;
2242 	} else {
2243 		struct vmap_area *va;
2244 		va = alloc_vmap_area(size, PAGE_SIZE,
2245 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2246 		if (IS_ERR(va))
2247 			return NULL;
2248 
2249 		addr = va->va_start;
2250 		mem = (void *)addr;
2251 	}
2252 
2253 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2254 				pages, PAGE_SHIFT) < 0) {
2255 		vm_unmap_ram(mem, count);
2256 		return NULL;
2257 	}
2258 
2259 	/*
2260 	 * Mark the pages as accessible, now that they are mapped.
2261 	 * With hardware tag-based KASAN, marking is skipped for
2262 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2263 	 */
2264 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2265 
2266 	return mem;
2267 }
2268 EXPORT_SYMBOL(vm_map_ram);
2269 
2270 static struct vm_struct *vmlist __initdata;
2271 
2272 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2273 {
2274 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2275 	return vm->page_order;
2276 #else
2277 	return 0;
2278 #endif
2279 }
2280 
2281 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2282 {
2283 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2284 	vm->page_order = order;
2285 #else
2286 	BUG_ON(order != 0);
2287 #endif
2288 }
2289 
2290 /**
2291  * vm_area_add_early - add vmap area early during boot
2292  * @vm: vm_struct to add
2293  *
2294  * This function is used to add fixed kernel vm area to vmlist before
2295  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2296  * should contain proper values and the other fields should be zero.
2297  *
2298  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2299  */
2300 void __init vm_area_add_early(struct vm_struct *vm)
2301 {
2302 	struct vm_struct *tmp, **p;
2303 
2304 	BUG_ON(vmap_initialized);
2305 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2306 		if (tmp->addr >= vm->addr) {
2307 			BUG_ON(tmp->addr < vm->addr + vm->size);
2308 			break;
2309 		} else
2310 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2311 	}
2312 	vm->next = *p;
2313 	*p = vm;
2314 }
2315 
2316 /**
2317  * vm_area_register_early - register vmap area early during boot
2318  * @vm: vm_struct to register
2319  * @align: requested alignment
2320  *
2321  * This function is used to register kernel vm area before
2322  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2323  * proper values on entry and other fields should be zero.  On return,
2324  * vm->addr contains the allocated address.
2325  *
2326  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2327  */
2328 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2329 {
2330 	unsigned long addr = ALIGN(VMALLOC_START, align);
2331 	struct vm_struct *cur, **p;
2332 
2333 	BUG_ON(vmap_initialized);
2334 
2335 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2336 		if ((unsigned long)cur->addr - addr >= vm->size)
2337 			break;
2338 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2339 	}
2340 
2341 	BUG_ON(addr > VMALLOC_END - vm->size);
2342 	vm->addr = (void *)addr;
2343 	vm->next = *p;
2344 	*p = vm;
2345 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2346 }
2347 
2348 static void vmap_init_free_space(void)
2349 {
2350 	unsigned long vmap_start = 1;
2351 	const unsigned long vmap_end = ULONG_MAX;
2352 	struct vmap_area *busy, *free;
2353 
2354 	/*
2355 	 *     B     F     B     B     B     F
2356 	 * -|-----|.....|-----|-----|-----|.....|-
2357 	 *  |           The KVA space           |
2358 	 *  |<--------------------------------->|
2359 	 */
2360 	list_for_each_entry(busy, &vmap_area_list, list) {
2361 		if (busy->va_start - vmap_start > 0) {
2362 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2363 			if (!WARN_ON_ONCE(!free)) {
2364 				free->va_start = vmap_start;
2365 				free->va_end = busy->va_start;
2366 
2367 				insert_vmap_area_augment(free, NULL,
2368 					&free_vmap_area_root,
2369 						&free_vmap_area_list);
2370 			}
2371 		}
2372 
2373 		vmap_start = busy->va_end;
2374 	}
2375 
2376 	if (vmap_end - vmap_start > 0) {
2377 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2378 		if (!WARN_ON_ONCE(!free)) {
2379 			free->va_start = vmap_start;
2380 			free->va_end = vmap_end;
2381 
2382 			insert_vmap_area_augment(free, NULL,
2383 				&free_vmap_area_root,
2384 					&free_vmap_area_list);
2385 		}
2386 	}
2387 }
2388 
2389 void __init vmalloc_init(void)
2390 {
2391 	struct vmap_area *va;
2392 	struct vm_struct *tmp;
2393 	int i;
2394 
2395 	/*
2396 	 * Create the cache for vmap_area objects.
2397 	 */
2398 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2399 
2400 	for_each_possible_cpu(i) {
2401 		struct vmap_block_queue *vbq;
2402 		struct vfree_deferred *p;
2403 
2404 		vbq = &per_cpu(vmap_block_queue, i);
2405 		spin_lock_init(&vbq->lock);
2406 		INIT_LIST_HEAD(&vbq->free);
2407 		p = &per_cpu(vfree_deferred, i);
2408 		init_llist_head(&p->list);
2409 		INIT_WORK(&p->wq, free_work);
2410 	}
2411 
2412 	/* Import existing vmlist entries. */
2413 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2414 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2415 		if (WARN_ON_ONCE(!va))
2416 			continue;
2417 
2418 		va->va_start = (unsigned long)tmp->addr;
2419 		va->va_end = va->va_start + tmp->size;
2420 		va->vm = tmp;
2421 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2422 	}
2423 
2424 	/*
2425 	 * Now we can initialize a free vmap space.
2426 	 */
2427 	vmap_init_free_space();
2428 	vmap_initialized = true;
2429 }
2430 
2431 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2432 	struct vmap_area *va, unsigned long flags, const void *caller)
2433 {
2434 	vm->flags = flags;
2435 	vm->addr = (void *)va->va_start;
2436 	vm->size = va->va_end - va->va_start;
2437 	vm->caller = caller;
2438 	va->vm = vm;
2439 }
2440 
2441 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2442 			      unsigned long flags, const void *caller)
2443 {
2444 	spin_lock(&vmap_area_lock);
2445 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2446 	spin_unlock(&vmap_area_lock);
2447 }
2448 
2449 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2450 {
2451 	/*
2452 	 * Before removing VM_UNINITIALIZED,
2453 	 * we should make sure that vm has proper values.
2454 	 * Pair with smp_rmb() in show_numa_info().
2455 	 */
2456 	smp_wmb();
2457 	vm->flags &= ~VM_UNINITIALIZED;
2458 }
2459 
2460 static struct vm_struct *__get_vm_area_node(unsigned long size,
2461 		unsigned long align, unsigned long shift, unsigned long flags,
2462 		unsigned long start, unsigned long end, int node,
2463 		gfp_t gfp_mask, const void *caller)
2464 {
2465 	struct vmap_area *va;
2466 	struct vm_struct *area;
2467 	unsigned long requested_size = size;
2468 
2469 	BUG_ON(in_interrupt());
2470 	size = ALIGN(size, 1ul << shift);
2471 	if (unlikely(!size))
2472 		return NULL;
2473 
2474 	if (flags & VM_IOREMAP)
2475 		align = 1ul << clamp_t(int, get_count_order_long(size),
2476 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2477 
2478 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2479 	if (unlikely(!area))
2480 		return NULL;
2481 
2482 	if (!(flags & VM_NO_GUARD))
2483 		size += PAGE_SIZE;
2484 
2485 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2486 	if (IS_ERR(va)) {
2487 		kfree(area);
2488 		return NULL;
2489 	}
2490 
2491 	setup_vmalloc_vm(area, va, flags, caller);
2492 
2493 	/*
2494 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2495 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2496 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2497 	 * getting mapped in __vmalloc_node_range().
2498 	 * With hardware tag-based KASAN, marking is skipped for
2499 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2500 	 */
2501 	if (!(flags & VM_ALLOC))
2502 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2503 						    KASAN_VMALLOC_PROT_NORMAL);
2504 
2505 	return area;
2506 }
2507 
2508 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2509 				       unsigned long start, unsigned long end,
2510 				       const void *caller)
2511 {
2512 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2513 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2514 }
2515 
2516 /**
2517  * get_vm_area - reserve a contiguous kernel virtual area
2518  * @size:	 size of the area
2519  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2520  *
2521  * Search an area of @size in the kernel virtual mapping area,
2522  * and reserved it for out purposes.  Returns the area descriptor
2523  * on success or %NULL on failure.
2524  *
2525  * Return: the area descriptor on success or %NULL on failure.
2526  */
2527 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2528 {
2529 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2530 				  VMALLOC_START, VMALLOC_END,
2531 				  NUMA_NO_NODE, GFP_KERNEL,
2532 				  __builtin_return_address(0));
2533 }
2534 
2535 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2536 				const void *caller)
2537 {
2538 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2539 				  VMALLOC_START, VMALLOC_END,
2540 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2541 }
2542 
2543 /**
2544  * find_vm_area - find a continuous kernel virtual area
2545  * @addr:	  base address
2546  *
2547  * Search for the kernel VM area starting at @addr, and return it.
2548  * It is up to the caller to do all required locking to keep the returned
2549  * pointer valid.
2550  *
2551  * Return: the area descriptor on success or %NULL on failure.
2552  */
2553 struct vm_struct *find_vm_area(const void *addr)
2554 {
2555 	struct vmap_area *va;
2556 
2557 	va = find_vmap_area((unsigned long)addr);
2558 	if (!va)
2559 		return NULL;
2560 
2561 	return va->vm;
2562 }
2563 
2564 /**
2565  * remove_vm_area - find and remove a continuous kernel virtual area
2566  * @addr:	    base address
2567  *
2568  * Search for the kernel VM area starting at @addr, and remove it.
2569  * This function returns the found VM area, but using it is NOT safe
2570  * on SMP machines, except for its size or flags.
2571  *
2572  * Return: the area descriptor on success or %NULL on failure.
2573  */
2574 struct vm_struct *remove_vm_area(const void *addr)
2575 {
2576 	struct vmap_area *va;
2577 
2578 	might_sleep();
2579 
2580 	spin_lock(&vmap_area_lock);
2581 	va = __find_vmap_area((unsigned long)addr, &vmap_area_root);
2582 	if (va && va->vm) {
2583 		struct vm_struct *vm = va->vm;
2584 
2585 		va->vm = NULL;
2586 		spin_unlock(&vmap_area_lock);
2587 
2588 		kasan_free_module_shadow(vm);
2589 		free_unmap_vmap_area(va);
2590 
2591 		return vm;
2592 	}
2593 
2594 	spin_unlock(&vmap_area_lock);
2595 	return NULL;
2596 }
2597 
2598 static inline void set_area_direct_map(const struct vm_struct *area,
2599 				       int (*set_direct_map)(struct page *page))
2600 {
2601 	int i;
2602 
2603 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2604 	for (i = 0; i < area->nr_pages; i++)
2605 		if (page_address(area->pages[i]))
2606 			set_direct_map(area->pages[i]);
2607 }
2608 
2609 /* Handle removing and resetting vm mappings related to the vm_struct. */
2610 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2611 {
2612 	unsigned long start = ULONG_MAX, end = 0;
2613 	unsigned int page_order = vm_area_page_order(area);
2614 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2615 	int flush_dmap = 0;
2616 	int i;
2617 
2618 	remove_vm_area(area->addr);
2619 
2620 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2621 	if (!flush_reset)
2622 		return;
2623 
2624 	/*
2625 	 * If not deallocating pages, just do the flush of the VM area and
2626 	 * return.
2627 	 */
2628 	if (!deallocate_pages) {
2629 		vm_unmap_aliases();
2630 		return;
2631 	}
2632 
2633 	/*
2634 	 * If execution gets here, flush the vm mapping and reset the direct
2635 	 * map. Find the start and end range of the direct mappings to make sure
2636 	 * the vm_unmap_aliases() flush includes the direct map.
2637 	 */
2638 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2639 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2640 		if (addr) {
2641 			unsigned long page_size;
2642 
2643 			page_size = PAGE_SIZE << page_order;
2644 			start = min(addr, start);
2645 			end = max(addr + page_size, end);
2646 			flush_dmap = 1;
2647 		}
2648 	}
2649 
2650 	/*
2651 	 * Set direct map to something invalid so that it won't be cached if
2652 	 * there are any accesses after the TLB flush, then flush the TLB and
2653 	 * reset the direct map permissions to the default.
2654 	 */
2655 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2656 	_vm_unmap_aliases(start, end, flush_dmap);
2657 	set_area_direct_map(area, set_direct_map_default_noflush);
2658 }
2659 
2660 static void __vunmap(const void *addr, int deallocate_pages)
2661 {
2662 	struct vm_struct *area;
2663 
2664 	if (!addr)
2665 		return;
2666 
2667 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2668 			addr))
2669 		return;
2670 
2671 	area = find_vm_area(addr);
2672 	if (unlikely(!area)) {
2673 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2674 				addr);
2675 		return;
2676 	}
2677 
2678 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2679 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2680 
2681 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2682 
2683 	vm_remove_mappings(area, deallocate_pages);
2684 
2685 	if (deallocate_pages) {
2686 		int i;
2687 
2688 		for (i = 0; i < area->nr_pages; i++) {
2689 			struct page *page = area->pages[i];
2690 
2691 			BUG_ON(!page);
2692 			mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2693 			/*
2694 			 * High-order allocs for huge vmallocs are split, so
2695 			 * can be freed as an array of order-0 allocations
2696 			 */
2697 			__free_pages(page, 0);
2698 			cond_resched();
2699 		}
2700 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2701 
2702 		kvfree(area->pages);
2703 	}
2704 
2705 	kfree(area);
2706 }
2707 
2708 static inline void __vfree_deferred(const void *addr)
2709 {
2710 	/*
2711 	 * Use raw_cpu_ptr() because this can be called from preemptible
2712 	 * context. Preemption is absolutely fine here, because the llist_add()
2713 	 * implementation is lockless, so it works even if we are adding to
2714 	 * another cpu's list. schedule_work() should be fine with this too.
2715 	 */
2716 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2717 
2718 	if (llist_add((struct llist_node *)addr, &p->list))
2719 		schedule_work(&p->wq);
2720 }
2721 
2722 /**
2723  * vfree_atomic - release memory allocated by vmalloc()
2724  * @addr:	  memory base address
2725  *
2726  * This one is just like vfree() but can be called in any atomic context
2727  * except NMIs.
2728  */
2729 void vfree_atomic(const void *addr)
2730 {
2731 	BUG_ON(in_nmi());
2732 
2733 	kmemleak_free(addr);
2734 
2735 	if (!addr)
2736 		return;
2737 	__vfree_deferred(addr);
2738 }
2739 
2740 static void __vfree(const void *addr)
2741 {
2742 	if (unlikely(in_interrupt()))
2743 		__vfree_deferred(addr);
2744 	else
2745 		__vunmap(addr, 1);
2746 }
2747 
2748 /**
2749  * vfree - Release memory allocated by vmalloc()
2750  * @addr:  Memory base address
2751  *
2752  * Free the virtually continuous memory area starting at @addr, as obtained
2753  * from one of the vmalloc() family of APIs.  This will usually also free the
2754  * physical memory underlying the virtual allocation, but that memory is
2755  * reference counted, so it will not be freed until the last user goes away.
2756  *
2757  * If @addr is NULL, no operation is performed.
2758  *
2759  * Context:
2760  * May sleep if called *not* from interrupt context.
2761  * Must not be called in NMI context (strictly speaking, it could be
2762  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2763  * conventions for vfree() arch-dependent would be a really bad idea).
2764  */
2765 void vfree(const void *addr)
2766 {
2767 	BUG_ON(in_nmi());
2768 
2769 	kmemleak_free(addr);
2770 
2771 	might_sleep_if(!in_interrupt());
2772 
2773 	if (!addr)
2774 		return;
2775 
2776 	__vfree(addr);
2777 }
2778 EXPORT_SYMBOL(vfree);
2779 
2780 /**
2781  * vunmap - release virtual mapping obtained by vmap()
2782  * @addr:   memory base address
2783  *
2784  * Free the virtually contiguous memory area starting at @addr,
2785  * which was created from the page array passed to vmap().
2786  *
2787  * Must not be called in interrupt context.
2788  */
2789 void vunmap(const void *addr)
2790 {
2791 	BUG_ON(in_interrupt());
2792 	might_sleep();
2793 	if (addr)
2794 		__vunmap(addr, 0);
2795 }
2796 EXPORT_SYMBOL(vunmap);
2797 
2798 /**
2799  * vmap - map an array of pages into virtually contiguous space
2800  * @pages: array of page pointers
2801  * @count: number of pages to map
2802  * @flags: vm_area->flags
2803  * @prot: page protection for the mapping
2804  *
2805  * Maps @count pages from @pages into contiguous kernel virtual space.
2806  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2807  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2808  * are transferred from the caller to vmap(), and will be freed / dropped when
2809  * vfree() is called on the return value.
2810  *
2811  * Return: the address of the area or %NULL on failure
2812  */
2813 void *vmap(struct page **pages, unsigned int count,
2814 	   unsigned long flags, pgprot_t prot)
2815 {
2816 	struct vm_struct *area;
2817 	unsigned long addr;
2818 	unsigned long size;		/* In bytes */
2819 
2820 	might_sleep();
2821 
2822 	/*
2823 	 * Your top guard is someone else's bottom guard. Not having a top
2824 	 * guard compromises someone else's mappings too.
2825 	 */
2826 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2827 		flags &= ~VM_NO_GUARD;
2828 
2829 	if (count > totalram_pages())
2830 		return NULL;
2831 
2832 	size = (unsigned long)count << PAGE_SHIFT;
2833 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2834 	if (!area)
2835 		return NULL;
2836 
2837 	addr = (unsigned long)area->addr;
2838 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2839 				pages, PAGE_SHIFT) < 0) {
2840 		vunmap(area->addr);
2841 		return NULL;
2842 	}
2843 
2844 	if (flags & VM_MAP_PUT_PAGES) {
2845 		area->pages = pages;
2846 		area->nr_pages = count;
2847 	}
2848 	return area->addr;
2849 }
2850 EXPORT_SYMBOL(vmap);
2851 
2852 #ifdef CONFIG_VMAP_PFN
2853 struct vmap_pfn_data {
2854 	unsigned long	*pfns;
2855 	pgprot_t	prot;
2856 	unsigned int	idx;
2857 };
2858 
2859 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2860 {
2861 	struct vmap_pfn_data *data = private;
2862 
2863 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2864 		return -EINVAL;
2865 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2866 	return 0;
2867 }
2868 
2869 /**
2870  * vmap_pfn - map an array of PFNs into virtually contiguous space
2871  * @pfns: array of PFNs
2872  * @count: number of pages to map
2873  * @prot: page protection for the mapping
2874  *
2875  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2876  * the start address of the mapping.
2877  */
2878 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2879 {
2880 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2881 	struct vm_struct *area;
2882 
2883 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2884 			__builtin_return_address(0));
2885 	if (!area)
2886 		return NULL;
2887 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2888 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2889 		free_vm_area(area);
2890 		return NULL;
2891 	}
2892 	return area->addr;
2893 }
2894 EXPORT_SYMBOL_GPL(vmap_pfn);
2895 #endif /* CONFIG_VMAP_PFN */
2896 
2897 static inline unsigned int
2898 vm_area_alloc_pages(gfp_t gfp, int nid,
2899 		unsigned int order, unsigned int nr_pages, struct page **pages)
2900 {
2901 	unsigned int nr_allocated = 0;
2902 	struct page *page;
2903 	int i;
2904 
2905 	/*
2906 	 * For order-0 pages we make use of bulk allocator, if
2907 	 * the page array is partly or not at all populated due
2908 	 * to fails, fallback to a single page allocator that is
2909 	 * more permissive.
2910 	 */
2911 	if (!order) {
2912 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2913 
2914 		while (nr_allocated < nr_pages) {
2915 			unsigned int nr, nr_pages_request;
2916 
2917 			/*
2918 			 * A maximum allowed request is hard-coded and is 100
2919 			 * pages per call. That is done in order to prevent a
2920 			 * long preemption off scenario in the bulk-allocator
2921 			 * so the range is [1:100].
2922 			 */
2923 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2924 
2925 			/* memory allocation should consider mempolicy, we can't
2926 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
2927 			 * otherwise memory may be allocated in only one node,
2928 			 * but mempolicy wants to alloc memory by interleaving.
2929 			 */
2930 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2931 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2932 							nr_pages_request,
2933 							pages + nr_allocated);
2934 
2935 			else
2936 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2937 							nr_pages_request,
2938 							pages + nr_allocated);
2939 
2940 			nr_allocated += nr;
2941 			cond_resched();
2942 
2943 			/*
2944 			 * If zero or pages were obtained partly,
2945 			 * fallback to a single page allocator.
2946 			 */
2947 			if (nr != nr_pages_request)
2948 				break;
2949 		}
2950 	}
2951 
2952 	/* High-order pages or fallback path if "bulk" fails. */
2953 
2954 	while (nr_allocated < nr_pages) {
2955 		if (fatal_signal_pending(current))
2956 			break;
2957 
2958 		if (nid == NUMA_NO_NODE)
2959 			page = alloc_pages(gfp, order);
2960 		else
2961 			page = alloc_pages_node(nid, gfp, order);
2962 		if (unlikely(!page))
2963 			break;
2964 		/*
2965 		 * Higher order allocations must be able to be treated as
2966 		 * indepdenent small pages by callers (as they can with
2967 		 * small-page vmallocs). Some drivers do their own refcounting
2968 		 * on vmalloc_to_page() pages, some use page->mapping,
2969 		 * page->lru, etc.
2970 		 */
2971 		if (order)
2972 			split_page(page, order);
2973 
2974 		/*
2975 		 * Careful, we allocate and map page-order pages, but
2976 		 * tracking is done per PAGE_SIZE page so as to keep the
2977 		 * vm_struct APIs independent of the physical/mapped size.
2978 		 */
2979 		for (i = 0; i < (1U << order); i++)
2980 			pages[nr_allocated + i] = page + i;
2981 
2982 		cond_resched();
2983 		nr_allocated += 1U << order;
2984 	}
2985 
2986 	return nr_allocated;
2987 }
2988 
2989 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2990 				 pgprot_t prot, unsigned int page_shift,
2991 				 int node)
2992 {
2993 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2994 	bool nofail = gfp_mask & __GFP_NOFAIL;
2995 	unsigned long addr = (unsigned long)area->addr;
2996 	unsigned long size = get_vm_area_size(area);
2997 	unsigned long array_size;
2998 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
2999 	unsigned int page_order;
3000 	unsigned int flags;
3001 	int ret;
3002 
3003 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3004 	gfp_mask |= __GFP_NOWARN;
3005 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3006 		gfp_mask |= __GFP_HIGHMEM;
3007 
3008 	/* Please note that the recursion is strictly bounded. */
3009 	if (array_size > PAGE_SIZE) {
3010 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3011 					area->caller);
3012 	} else {
3013 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3014 	}
3015 
3016 	if (!area->pages) {
3017 		warn_alloc(gfp_mask, NULL,
3018 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3019 			nr_small_pages * PAGE_SIZE, array_size);
3020 		free_vm_area(area);
3021 		return NULL;
3022 	}
3023 
3024 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3025 	page_order = vm_area_page_order(area);
3026 
3027 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3028 		node, page_order, nr_small_pages, area->pages);
3029 
3030 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3031 	if (gfp_mask & __GFP_ACCOUNT) {
3032 		int i;
3033 
3034 		for (i = 0; i < area->nr_pages; i++)
3035 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3036 	}
3037 
3038 	/*
3039 	 * If not enough pages were obtained to accomplish an
3040 	 * allocation request, free them via __vfree() if any.
3041 	 */
3042 	if (area->nr_pages != nr_small_pages) {
3043 		warn_alloc(gfp_mask, NULL,
3044 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
3045 			area->nr_pages * PAGE_SIZE, page_order);
3046 		goto fail;
3047 	}
3048 
3049 	/*
3050 	 * page tables allocations ignore external gfp mask, enforce it
3051 	 * by the scope API
3052 	 */
3053 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3054 		flags = memalloc_nofs_save();
3055 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3056 		flags = memalloc_noio_save();
3057 
3058 	do {
3059 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3060 			page_shift);
3061 		if (nofail && (ret < 0))
3062 			schedule_timeout_uninterruptible(1);
3063 	} while (nofail && (ret < 0));
3064 
3065 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3066 		memalloc_nofs_restore(flags);
3067 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3068 		memalloc_noio_restore(flags);
3069 
3070 	if (ret < 0) {
3071 		warn_alloc(gfp_mask, NULL,
3072 			"vmalloc error: size %lu, failed to map pages",
3073 			area->nr_pages * PAGE_SIZE);
3074 		goto fail;
3075 	}
3076 
3077 	return area->addr;
3078 
3079 fail:
3080 	__vfree(area->addr);
3081 	return NULL;
3082 }
3083 
3084 /**
3085  * __vmalloc_node_range - allocate virtually contiguous memory
3086  * @size:		  allocation size
3087  * @align:		  desired alignment
3088  * @start:		  vm area range start
3089  * @end:		  vm area range end
3090  * @gfp_mask:		  flags for the page level allocator
3091  * @prot:		  protection mask for the allocated pages
3092  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3093  * @node:		  node to use for allocation or NUMA_NO_NODE
3094  * @caller:		  caller's return address
3095  *
3096  * Allocate enough pages to cover @size from the page level
3097  * allocator with @gfp_mask flags. Please note that the full set of gfp
3098  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3099  * supported.
3100  * Zone modifiers are not supported. From the reclaim modifiers
3101  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3102  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3103  * __GFP_RETRY_MAYFAIL are not supported).
3104  *
3105  * __GFP_NOWARN can be used to suppress failures messages.
3106  *
3107  * Map them into contiguous kernel virtual space, using a pagetable
3108  * protection of @prot.
3109  *
3110  * Return: the address of the area or %NULL on failure
3111  */
3112 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3113 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3114 			pgprot_t prot, unsigned long vm_flags, int node,
3115 			const void *caller)
3116 {
3117 	struct vm_struct *area;
3118 	void *ret;
3119 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3120 	unsigned long real_size = size;
3121 	unsigned long real_align = align;
3122 	unsigned int shift = PAGE_SHIFT;
3123 
3124 	if (WARN_ON_ONCE(!size))
3125 		return NULL;
3126 
3127 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3128 		warn_alloc(gfp_mask, NULL,
3129 			"vmalloc error: size %lu, exceeds total pages",
3130 			real_size);
3131 		return NULL;
3132 	}
3133 
3134 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3135 		unsigned long size_per_node;
3136 
3137 		/*
3138 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3139 		 * others like modules don't yet expect huge pages in
3140 		 * their allocations due to apply_to_page_range not
3141 		 * supporting them.
3142 		 */
3143 
3144 		size_per_node = size;
3145 		if (node == NUMA_NO_NODE)
3146 			size_per_node /= num_online_nodes();
3147 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3148 			shift = PMD_SHIFT;
3149 		else
3150 			shift = arch_vmap_pte_supported_shift(size_per_node);
3151 
3152 		align = max(real_align, 1UL << shift);
3153 		size = ALIGN(real_size, 1UL << shift);
3154 	}
3155 
3156 again:
3157 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3158 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3159 				  gfp_mask, caller);
3160 	if (!area) {
3161 		bool nofail = gfp_mask & __GFP_NOFAIL;
3162 		warn_alloc(gfp_mask, NULL,
3163 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3164 			real_size, (nofail) ? ". Retrying." : "");
3165 		if (nofail) {
3166 			schedule_timeout_uninterruptible(1);
3167 			goto again;
3168 		}
3169 		goto fail;
3170 	}
3171 
3172 	/*
3173 	 * Prepare arguments for __vmalloc_area_node() and
3174 	 * kasan_unpoison_vmalloc().
3175 	 */
3176 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3177 		if (kasan_hw_tags_enabled()) {
3178 			/*
3179 			 * Modify protection bits to allow tagging.
3180 			 * This must be done before mapping.
3181 			 */
3182 			prot = arch_vmap_pgprot_tagged(prot);
3183 
3184 			/*
3185 			 * Skip page_alloc poisoning and zeroing for physical
3186 			 * pages backing VM_ALLOC mapping. Memory is instead
3187 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3188 			 */
3189 			gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3190 		}
3191 
3192 		/* Take note that the mapping is PAGE_KERNEL. */
3193 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3194 	}
3195 
3196 	/* Allocate physical pages and map them into vmalloc space. */
3197 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3198 	if (!ret)
3199 		goto fail;
3200 
3201 	/*
3202 	 * Mark the pages as accessible, now that they are mapped.
3203 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3204 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3205 	 * to make sure that memory is initialized under the same conditions.
3206 	 * Tag-based KASAN modes only assign tags to normal non-executable
3207 	 * allocations, see __kasan_unpoison_vmalloc().
3208 	 */
3209 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3210 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3211 	    (gfp_mask & __GFP_SKIP_ZERO))
3212 		kasan_flags |= KASAN_VMALLOC_INIT;
3213 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3214 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3215 
3216 	/*
3217 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3218 	 * flag. It means that vm_struct is not fully initialized.
3219 	 * Now, it is fully initialized, so remove this flag here.
3220 	 */
3221 	clear_vm_uninitialized_flag(area);
3222 
3223 	size = PAGE_ALIGN(size);
3224 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3225 		kmemleak_vmalloc(area, size, gfp_mask);
3226 
3227 	return area->addr;
3228 
3229 fail:
3230 	if (shift > PAGE_SHIFT) {
3231 		shift = PAGE_SHIFT;
3232 		align = real_align;
3233 		size = real_size;
3234 		goto again;
3235 	}
3236 
3237 	return NULL;
3238 }
3239 
3240 /**
3241  * __vmalloc_node - allocate virtually contiguous memory
3242  * @size:	    allocation size
3243  * @align:	    desired alignment
3244  * @gfp_mask:	    flags for the page level allocator
3245  * @node:	    node to use for allocation or NUMA_NO_NODE
3246  * @caller:	    caller's return address
3247  *
3248  * Allocate enough pages to cover @size from the page level allocator with
3249  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3250  *
3251  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3252  * and __GFP_NOFAIL are not supported
3253  *
3254  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3255  * with mm people.
3256  *
3257  * Return: pointer to the allocated memory or %NULL on error
3258  */
3259 void *__vmalloc_node(unsigned long size, unsigned long align,
3260 			    gfp_t gfp_mask, int node, const void *caller)
3261 {
3262 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3263 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3264 }
3265 /*
3266  * This is only for performance analysis of vmalloc and stress purpose.
3267  * It is required by vmalloc test module, therefore do not use it other
3268  * than that.
3269  */
3270 #ifdef CONFIG_TEST_VMALLOC_MODULE
3271 EXPORT_SYMBOL_GPL(__vmalloc_node);
3272 #endif
3273 
3274 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3275 {
3276 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3277 				__builtin_return_address(0));
3278 }
3279 EXPORT_SYMBOL(__vmalloc);
3280 
3281 /**
3282  * vmalloc - allocate virtually contiguous memory
3283  * @size:    allocation size
3284  *
3285  * Allocate enough pages to cover @size from the page level
3286  * allocator and map them into contiguous kernel virtual space.
3287  *
3288  * For tight control over page level allocator and protection flags
3289  * use __vmalloc() instead.
3290  *
3291  * Return: pointer to the allocated memory or %NULL on error
3292  */
3293 void *vmalloc(unsigned long size)
3294 {
3295 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3296 				__builtin_return_address(0));
3297 }
3298 EXPORT_SYMBOL(vmalloc);
3299 
3300 /**
3301  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3302  * @size:      allocation size
3303  * @gfp_mask:  flags for the page level allocator
3304  *
3305  * Allocate enough pages to cover @size from the page level
3306  * allocator and map them into contiguous kernel virtual space.
3307  * If @size is greater than or equal to PMD_SIZE, allow using
3308  * huge pages for the memory
3309  *
3310  * Return: pointer to the allocated memory or %NULL on error
3311  */
3312 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3313 {
3314 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3315 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3316 				    NUMA_NO_NODE, __builtin_return_address(0));
3317 }
3318 EXPORT_SYMBOL_GPL(vmalloc_huge);
3319 
3320 /**
3321  * vzalloc - allocate virtually contiguous memory with zero fill
3322  * @size:    allocation size
3323  *
3324  * Allocate enough pages to cover @size from the page level
3325  * allocator and map them into contiguous kernel virtual space.
3326  * The memory allocated is set to zero.
3327  *
3328  * For tight control over page level allocator and protection flags
3329  * use __vmalloc() instead.
3330  *
3331  * Return: pointer to the allocated memory or %NULL on error
3332  */
3333 void *vzalloc(unsigned long size)
3334 {
3335 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3336 				__builtin_return_address(0));
3337 }
3338 EXPORT_SYMBOL(vzalloc);
3339 
3340 /**
3341  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3342  * @size: allocation size
3343  *
3344  * The resulting memory area is zeroed so it can be mapped to userspace
3345  * without leaking data.
3346  *
3347  * Return: pointer to the allocated memory or %NULL on error
3348  */
3349 void *vmalloc_user(unsigned long size)
3350 {
3351 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3352 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3353 				    VM_USERMAP, NUMA_NO_NODE,
3354 				    __builtin_return_address(0));
3355 }
3356 EXPORT_SYMBOL(vmalloc_user);
3357 
3358 /**
3359  * vmalloc_node - allocate memory on a specific node
3360  * @size:	  allocation size
3361  * @node:	  numa node
3362  *
3363  * Allocate enough pages to cover @size from the page level
3364  * allocator and map them into contiguous kernel virtual space.
3365  *
3366  * For tight control over page level allocator and protection flags
3367  * use __vmalloc() instead.
3368  *
3369  * Return: pointer to the allocated memory or %NULL on error
3370  */
3371 void *vmalloc_node(unsigned long size, int node)
3372 {
3373 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3374 			__builtin_return_address(0));
3375 }
3376 EXPORT_SYMBOL(vmalloc_node);
3377 
3378 /**
3379  * vzalloc_node - allocate memory on a specific node with zero fill
3380  * @size:	allocation size
3381  * @node:	numa node
3382  *
3383  * Allocate enough pages to cover @size from the page level
3384  * allocator and map them into contiguous kernel virtual space.
3385  * The memory allocated is set to zero.
3386  *
3387  * Return: pointer to the allocated memory or %NULL on error
3388  */
3389 void *vzalloc_node(unsigned long size, int node)
3390 {
3391 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3392 				__builtin_return_address(0));
3393 }
3394 EXPORT_SYMBOL(vzalloc_node);
3395 
3396 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3397 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3398 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3399 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3400 #else
3401 /*
3402  * 64b systems should always have either DMA or DMA32 zones. For others
3403  * GFP_DMA32 should do the right thing and use the normal zone.
3404  */
3405 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3406 #endif
3407 
3408 /**
3409  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3410  * @size:	allocation size
3411  *
3412  * Allocate enough 32bit PA addressable pages to cover @size from the
3413  * page level allocator and map them into contiguous kernel virtual space.
3414  *
3415  * Return: pointer to the allocated memory or %NULL on error
3416  */
3417 void *vmalloc_32(unsigned long size)
3418 {
3419 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3420 			__builtin_return_address(0));
3421 }
3422 EXPORT_SYMBOL(vmalloc_32);
3423 
3424 /**
3425  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3426  * @size:	     allocation size
3427  *
3428  * The resulting memory area is 32bit addressable and zeroed so it can be
3429  * mapped to userspace without leaking data.
3430  *
3431  * Return: pointer to the allocated memory or %NULL on error
3432  */
3433 void *vmalloc_32_user(unsigned long size)
3434 {
3435 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3436 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3437 				    VM_USERMAP, NUMA_NO_NODE,
3438 				    __builtin_return_address(0));
3439 }
3440 EXPORT_SYMBOL(vmalloc_32_user);
3441 
3442 /*
3443  * small helper routine , copy contents to buf from addr.
3444  * If the page is not present, fill zero.
3445  */
3446 
3447 static int aligned_vread(char *buf, char *addr, unsigned long count)
3448 {
3449 	struct page *p;
3450 	int copied = 0;
3451 
3452 	while (count) {
3453 		unsigned long offset, length;
3454 
3455 		offset = offset_in_page(addr);
3456 		length = PAGE_SIZE - offset;
3457 		if (length > count)
3458 			length = count;
3459 		p = vmalloc_to_page(addr);
3460 		/*
3461 		 * To do safe access to this _mapped_ area, we need
3462 		 * lock. But adding lock here means that we need to add
3463 		 * overhead of vmalloc()/vfree() calls for this _debug_
3464 		 * interface, rarely used. Instead of that, we'll use
3465 		 * kmap() and get small overhead in this access function.
3466 		 */
3467 		if (p) {
3468 			/* We can expect USER0 is not used -- see vread() */
3469 			void *map = kmap_atomic(p);
3470 			memcpy(buf, map + offset, length);
3471 			kunmap_atomic(map);
3472 		} else
3473 			memset(buf, 0, length);
3474 
3475 		addr += length;
3476 		buf += length;
3477 		copied += length;
3478 		count -= length;
3479 	}
3480 	return copied;
3481 }
3482 
3483 /**
3484  * vread() - read vmalloc area in a safe way.
3485  * @buf:     buffer for reading data
3486  * @addr:    vm address.
3487  * @count:   number of bytes to be read.
3488  *
3489  * This function checks that addr is a valid vmalloc'ed area, and
3490  * copy data from that area to a given buffer. If the given memory range
3491  * of [addr...addr+count) includes some valid address, data is copied to
3492  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3493  * IOREMAP area is treated as memory hole and no copy is done.
3494  *
3495  * If [addr...addr+count) doesn't includes any intersects with alive
3496  * vm_struct area, returns 0. @buf should be kernel's buffer.
3497  *
3498  * Note: In usual ops, vread() is never necessary because the caller
3499  * should know vmalloc() area is valid and can use memcpy().
3500  * This is for routines which have to access vmalloc area without
3501  * any information, as /proc/kcore.
3502  *
3503  * Return: number of bytes for which addr and buf should be increased
3504  * (same number as @count) or %0 if [addr...addr+count) doesn't
3505  * include any intersection with valid vmalloc area
3506  */
3507 long vread(char *buf, char *addr, unsigned long count)
3508 {
3509 	struct vmap_area *va;
3510 	struct vm_struct *vm;
3511 	char *vaddr, *buf_start = buf;
3512 	unsigned long buflen = count;
3513 	unsigned long n;
3514 
3515 	addr = kasan_reset_tag(addr);
3516 
3517 	/* Don't allow overflow */
3518 	if ((unsigned long) addr + count < count)
3519 		count = -(unsigned long) addr;
3520 
3521 	spin_lock(&vmap_area_lock);
3522 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3523 	if (!va)
3524 		goto finished;
3525 
3526 	/* no intersects with alive vmap_area */
3527 	if ((unsigned long)addr + count <= va->va_start)
3528 		goto finished;
3529 
3530 	list_for_each_entry_from(va, &vmap_area_list, list) {
3531 		if (!count)
3532 			break;
3533 
3534 		if (!va->vm)
3535 			continue;
3536 
3537 		vm = va->vm;
3538 		vaddr = (char *) vm->addr;
3539 		if (addr >= vaddr + get_vm_area_size(vm))
3540 			continue;
3541 		while (addr < vaddr) {
3542 			if (count == 0)
3543 				goto finished;
3544 			*buf = '\0';
3545 			buf++;
3546 			addr++;
3547 			count--;
3548 		}
3549 		n = vaddr + get_vm_area_size(vm) - addr;
3550 		if (n > count)
3551 			n = count;
3552 		if (!(vm->flags & VM_IOREMAP))
3553 			aligned_vread(buf, addr, n);
3554 		else /* IOREMAP area is treated as memory hole */
3555 			memset(buf, 0, n);
3556 		buf += n;
3557 		addr += n;
3558 		count -= n;
3559 	}
3560 finished:
3561 	spin_unlock(&vmap_area_lock);
3562 
3563 	if (buf == buf_start)
3564 		return 0;
3565 	/* zero-fill memory holes */
3566 	if (buf != buf_start + buflen)
3567 		memset(buf, 0, buflen - (buf - buf_start));
3568 
3569 	return buflen;
3570 }
3571 
3572 /**
3573  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3574  * @vma:		vma to cover
3575  * @uaddr:		target user address to start at
3576  * @kaddr:		virtual address of vmalloc kernel memory
3577  * @pgoff:		offset from @kaddr to start at
3578  * @size:		size of map area
3579  *
3580  * Returns:	0 for success, -Exxx on failure
3581  *
3582  * This function checks that @kaddr is a valid vmalloc'ed area,
3583  * and that it is big enough to cover the range starting at
3584  * @uaddr in @vma. Will return failure if that criteria isn't
3585  * met.
3586  *
3587  * Similar to remap_pfn_range() (see mm/memory.c)
3588  */
3589 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3590 				void *kaddr, unsigned long pgoff,
3591 				unsigned long size)
3592 {
3593 	struct vm_struct *area;
3594 	unsigned long off;
3595 	unsigned long end_index;
3596 
3597 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3598 		return -EINVAL;
3599 
3600 	size = PAGE_ALIGN(size);
3601 
3602 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3603 		return -EINVAL;
3604 
3605 	area = find_vm_area(kaddr);
3606 	if (!area)
3607 		return -EINVAL;
3608 
3609 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3610 		return -EINVAL;
3611 
3612 	if (check_add_overflow(size, off, &end_index) ||
3613 	    end_index > get_vm_area_size(area))
3614 		return -EINVAL;
3615 	kaddr += off;
3616 
3617 	do {
3618 		struct page *page = vmalloc_to_page(kaddr);
3619 		int ret;
3620 
3621 		ret = vm_insert_page(vma, uaddr, page);
3622 		if (ret)
3623 			return ret;
3624 
3625 		uaddr += PAGE_SIZE;
3626 		kaddr += PAGE_SIZE;
3627 		size -= PAGE_SIZE;
3628 	} while (size > 0);
3629 
3630 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3631 
3632 	return 0;
3633 }
3634 
3635 /**
3636  * remap_vmalloc_range - map vmalloc pages to userspace
3637  * @vma:		vma to cover (map full range of vma)
3638  * @addr:		vmalloc memory
3639  * @pgoff:		number of pages into addr before first page to map
3640  *
3641  * Returns:	0 for success, -Exxx on failure
3642  *
3643  * This function checks that addr is a valid vmalloc'ed area, and
3644  * that it is big enough to cover the vma. Will return failure if
3645  * that criteria isn't met.
3646  *
3647  * Similar to remap_pfn_range() (see mm/memory.c)
3648  */
3649 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3650 						unsigned long pgoff)
3651 {
3652 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3653 					   addr, pgoff,
3654 					   vma->vm_end - vma->vm_start);
3655 }
3656 EXPORT_SYMBOL(remap_vmalloc_range);
3657 
3658 void free_vm_area(struct vm_struct *area)
3659 {
3660 	struct vm_struct *ret;
3661 	ret = remove_vm_area(area->addr);
3662 	BUG_ON(ret != area);
3663 	kfree(area);
3664 }
3665 EXPORT_SYMBOL_GPL(free_vm_area);
3666 
3667 #ifdef CONFIG_SMP
3668 static struct vmap_area *node_to_va(struct rb_node *n)
3669 {
3670 	return rb_entry_safe(n, struct vmap_area, rb_node);
3671 }
3672 
3673 /**
3674  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3675  * @addr: target address
3676  *
3677  * Returns: vmap_area if it is found. If there is no such area
3678  *   the first highest(reverse order) vmap_area is returned
3679  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3680  *   if there are no any areas before @addr.
3681  */
3682 static struct vmap_area *
3683 pvm_find_va_enclose_addr(unsigned long addr)
3684 {
3685 	struct vmap_area *va, *tmp;
3686 	struct rb_node *n;
3687 
3688 	n = free_vmap_area_root.rb_node;
3689 	va = NULL;
3690 
3691 	while (n) {
3692 		tmp = rb_entry(n, struct vmap_area, rb_node);
3693 		if (tmp->va_start <= addr) {
3694 			va = tmp;
3695 			if (tmp->va_end >= addr)
3696 				break;
3697 
3698 			n = n->rb_right;
3699 		} else {
3700 			n = n->rb_left;
3701 		}
3702 	}
3703 
3704 	return va;
3705 }
3706 
3707 /**
3708  * pvm_determine_end_from_reverse - find the highest aligned address
3709  * of free block below VMALLOC_END
3710  * @va:
3711  *   in - the VA we start the search(reverse order);
3712  *   out - the VA with the highest aligned end address.
3713  * @align: alignment for required highest address
3714  *
3715  * Returns: determined end address within vmap_area
3716  */
3717 static unsigned long
3718 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3719 {
3720 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3721 	unsigned long addr;
3722 
3723 	if (likely(*va)) {
3724 		list_for_each_entry_from_reverse((*va),
3725 				&free_vmap_area_list, list) {
3726 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3727 			if ((*va)->va_start < addr)
3728 				return addr;
3729 		}
3730 	}
3731 
3732 	return 0;
3733 }
3734 
3735 /**
3736  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3737  * @offsets: array containing offset of each area
3738  * @sizes: array containing size of each area
3739  * @nr_vms: the number of areas to allocate
3740  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3741  *
3742  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3743  *	    vm_structs on success, %NULL on failure
3744  *
3745  * Percpu allocator wants to use congruent vm areas so that it can
3746  * maintain the offsets among percpu areas.  This function allocates
3747  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3748  * be scattered pretty far, distance between two areas easily going up
3749  * to gigabytes.  To avoid interacting with regular vmallocs, these
3750  * areas are allocated from top.
3751  *
3752  * Despite its complicated look, this allocator is rather simple. It
3753  * does everything top-down and scans free blocks from the end looking
3754  * for matching base. While scanning, if any of the areas do not fit the
3755  * base address is pulled down to fit the area. Scanning is repeated till
3756  * all the areas fit and then all necessary data structures are inserted
3757  * and the result is returned.
3758  */
3759 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3760 				     const size_t *sizes, int nr_vms,
3761 				     size_t align)
3762 {
3763 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3764 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3765 	struct vmap_area **vas, *va;
3766 	struct vm_struct **vms;
3767 	int area, area2, last_area, term_area;
3768 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3769 	bool purged = false;
3770 
3771 	/* verify parameters and allocate data structures */
3772 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3773 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3774 		start = offsets[area];
3775 		end = start + sizes[area];
3776 
3777 		/* is everything aligned properly? */
3778 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3779 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3780 
3781 		/* detect the area with the highest address */
3782 		if (start > offsets[last_area])
3783 			last_area = area;
3784 
3785 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3786 			unsigned long start2 = offsets[area2];
3787 			unsigned long end2 = start2 + sizes[area2];
3788 
3789 			BUG_ON(start2 < end && start < end2);
3790 		}
3791 	}
3792 	last_end = offsets[last_area] + sizes[last_area];
3793 
3794 	if (vmalloc_end - vmalloc_start < last_end) {
3795 		WARN_ON(true);
3796 		return NULL;
3797 	}
3798 
3799 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3800 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3801 	if (!vas || !vms)
3802 		goto err_free2;
3803 
3804 	for (area = 0; area < nr_vms; area++) {
3805 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3806 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3807 		if (!vas[area] || !vms[area])
3808 			goto err_free;
3809 	}
3810 retry:
3811 	spin_lock(&free_vmap_area_lock);
3812 
3813 	/* start scanning - we scan from the top, begin with the last area */
3814 	area = term_area = last_area;
3815 	start = offsets[area];
3816 	end = start + sizes[area];
3817 
3818 	va = pvm_find_va_enclose_addr(vmalloc_end);
3819 	base = pvm_determine_end_from_reverse(&va, align) - end;
3820 
3821 	while (true) {
3822 		/*
3823 		 * base might have underflowed, add last_end before
3824 		 * comparing.
3825 		 */
3826 		if (base + last_end < vmalloc_start + last_end)
3827 			goto overflow;
3828 
3829 		/*
3830 		 * Fitting base has not been found.
3831 		 */
3832 		if (va == NULL)
3833 			goto overflow;
3834 
3835 		/*
3836 		 * If required width exceeds current VA block, move
3837 		 * base downwards and then recheck.
3838 		 */
3839 		if (base + end > va->va_end) {
3840 			base = pvm_determine_end_from_reverse(&va, align) - end;
3841 			term_area = area;
3842 			continue;
3843 		}
3844 
3845 		/*
3846 		 * If this VA does not fit, move base downwards and recheck.
3847 		 */
3848 		if (base + start < va->va_start) {
3849 			va = node_to_va(rb_prev(&va->rb_node));
3850 			base = pvm_determine_end_from_reverse(&va, align) - end;
3851 			term_area = area;
3852 			continue;
3853 		}
3854 
3855 		/*
3856 		 * This area fits, move on to the previous one.  If
3857 		 * the previous one is the terminal one, we're done.
3858 		 */
3859 		area = (area + nr_vms - 1) % nr_vms;
3860 		if (area == term_area)
3861 			break;
3862 
3863 		start = offsets[area];
3864 		end = start + sizes[area];
3865 		va = pvm_find_va_enclose_addr(base + end);
3866 	}
3867 
3868 	/* we've found a fitting base, insert all va's */
3869 	for (area = 0; area < nr_vms; area++) {
3870 		int ret;
3871 
3872 		start = base + offsets[area];
3873 		size = sizes[area];
3874 
3875 		va = pvm_find_va_enclose_addr(start);
3876 		if (WARN_ON_ONCE(va == NULL))
3877 			/* It is a BUG(), but trigger recovery instead. */
3878 			goto recovery;
3879 
3880 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
3881 					    &free_vmap_area_list,
3882 					    va, start, size);
3883 		if (WARN_ON_ONCE(unlikely(ret)))
3884 			/* It is a BUG(), but trigger recovery instead. */
3885 			goto recovery;
3886 
3887 		/* Allocated area. */
3888 		va = vas[area];
3889 		va->va_start = start;
3890 		va->va_end = start + size;
3891 	}
3892 
3893 	spin_unlock(&free_vmap_area_lock);
3894 
3895 	/* populate the kasan shadow space */
3896 	for (area = 0; area < nr_vms; area++) {
3897 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3898 			goto err_free_shadow;
3899 	}
3900 
3901 	/* insert all vm's */
3902 	spin_lock(&vmap_area_lock);
3903 	for (area = 0; area < nr_vms; area++) {
3904 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3905 
3906 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3907 				 pcpu_get_vm_areas);
3908 	}
3909 	spin_unlock(&vmap_area_lock);
3910 
3911 	/*
3912 	 * Mark allocated areas as accessible. Do it now as a best-effort
3913 	 * approach, as they can be mapped outside of vmalloc code.
3914 	 * With hardware tag-based KASAN, marking is skipped for
3915 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3916 	 */
3917 	for (area = 0; area < nr_vms; area++)
3918 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3919 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3920 
3921 	kfree(vas);
3922 	return vms;
3923 
3924 recovery:
3925 	/*
3926 	 * Remove previously allocated areas. There is no
3927 	 * need in removing these areas from the busy tree,
3928 	 * because they are inserted only on the final step
3929 	 * and when pcpu_get_vm_areas() is success.
3930 	 */
3931 	while (area--) {
3932 		orig_start = vas[area]->va_start;
3933 		orig_end = vas[area]->va_end;
3934 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3935 				&free_vmap_area_list);
3936 		if (va)
3937 			kasan_release_vmalloc(orig_start, orig_end,
3938 				va->va_start, va->va_end);
3939 		vas[area] = NULL;
3940 	}
3941 
3942 overflow:
3943 	spin_unlock(&free_vmap_area_lock);
3944 	if (!purged) {
3945 		purge_vmap_area_lazy();
3946 		purged = true;
3947 
3948 		/* Before "retry", check if we recover. */
3949 		for (area = 0; area < nr_vms; area++) {
3950 			if (vas[area])
3951 				continue;
3952 
3953 			vas[area] = kmem_cache_zalloc(
3954 				vmap_area_cachep, GFP_KERNEL);
3955 			if (!vas[area])
3956 				goto err_free;
3957 		}
3958 
3959 		goto retry;
3960 	}
3961 
3962 err_free:
3963 	for (area = 0; area < nr_vms; area++) {
3964 		if (vas[area])
3965 			kmem_cache_free(vmap_area_cachep, vas[area]);
3966 
3967 		kfree(vms[area]);
3968 	}
3969 err_free2:
3970 	kfree(vas);
3971 	kfree(vms);
3972 	return NULL;
3973 
3974 err_free_shadow:
3975 	spin_lock(&free_vmap_area_lock);
3976 	/*
3977 	 * We release all the vmalloc shadows, even the ones for regions that
3978 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3979 	 * being able to tolerate this case.
3980 	 */
3981 	for (area = 0; area < nr_vms; area++) {
3982 		orig_start = vas[area]->va_start;
3983 		orig_end = vas[area]->va_end;
3984 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3985 				&free_vmap_area_list);
3986 		if (va)
3987 			kasan_release_vmalloc(orig_start, orig_end,
3988 				va->va_start, va->va_end);
3989 		vas[area] = NULL;
3990 		kfree(vms[area]);
3991 	}
3992 	spin_unlock(&free_vmap_area_lock);
3993 	kfree(vas);
3994 	kfree(vms);
3995 	return NULL;
3996 }
3997 
3998 /**
3999  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4000  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4001  * @nr_vms: the number of allocated areas
4002  *
4003  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4004  */
4005 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4006 {
4007 	int i;
4008 
4009 	for (i = 0; i < nr_vms; i++)
4010 		free_vm_area(vms[i]);
4011 	kfree(vms);
4012 }
4013 #endif	/* CONFIG_SMP */
4014 
4015 #ifdef CONFIG_PRINTK
4016 bool vmalloc_dump_obj(void *object)
4017 {
4018 	struct vm_struct *vm;
4019 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4020 
4021 	vm = find_vm_area(objp);
4022 	if (!vm)
4023 		return false;
4024 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4025 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4026 	return true;
4027 }
4028 #endif
4029 
4030 #ifdef CONFIG_PROC_FS
4031 static void *s_start(struct seq_file *m, loff_t *pos)
4032 	__acquires(&vmap_purge_lock)
4033 	__acquires(&vmap_area_lock)
4034 {
4035 	mutex_lock(&vmap_purge_lock);
4036 	spin_lock(&vmap_area_lock);
4037 
4038 	return seq_list_start(&vmap_area_list, *pos);
4039 }
4040 
4041 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4042 {
4043 	return seq_list_next(p, &vmap_area_list, pos);
4044 }
4045 
4046 static void s_stop(struct seq_file *m, void *p)
4047 	__releases(&vmap_area_lock)
4048 	__releases(&vmap_purge_lock)
4049 {
4050 	spin_unlock(&vmap_area_lock);
4051 	mutex_unlock(&vmap_purge_lock);
4052 }
4053 
4054 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4055 {
4056 	if (IS_ENABLED(CONFIG_NUMA)) {
4057 		unsigned int nr, *counters = m->private;
4058 		unsigned int step = 1U << vm_area_page_order(v);
4059 
4060 		if (!counters)
4061 			return;
4062 
4063 		if (v->flags & VM_UNINITIALIZED)
4064 			return;
4065 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4066 		smp_rmb();
4067 
4068 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4069 
4070 		for (nr = 0; nr < v->nr_pages; nr += step)
4071 			counters[page_to_nid(v->pages[nr])] += step;
4072 		for_each_node_state(nr, N_HIGH_MEMORY)
4073 			if (counters[nr])
4074 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4075 	}
4076 }
4077 
4078 static void show_purge_info(struct seq_file *m)
4079 {
4080 	struct vmap_area *va;
4081 
4082 	spin_lock(&purge_vmap_area_lock);
4083 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4084 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4085 			(void *)va->va_start, (void *)va->va_end,
4086 			va->va_end - va->va_start);
4087 	}
4088 	spin_unlock(&purge_vmap_area_lock);
4089 }
4090 
4091 static int s_show(struct seq_file *m, void *p)
4092 {
4093 	struct vmap_area *va;
4094 	struct vm_struct *v;
4095 
4096 	va = list_entry(p, struct vmap_area, list);
4097 
4098 	/*
4099 	 * s_show can encounter race with remove_vm_area, !vm on behalf
4100 	 * of vmap area is being tear down or vm_map_ram allocation.
4101 	 */
4102 	if (!va->vm) {
4103 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4104 			(void *)va->va_start, (void *)va->va_end,
4105 			va->va_end - va->va_start);
4106 
4107 		goto final;
4108 	}
4109 
4110 	v = va->vm;
4111 
4112 	seq_printf(m, "0x%pK-0x%pK %7ld",
4113 		v->addr, v->addr + v->size, v->size);
4114 
4115 	if (v->caller)
4116 		seq_printf(m, " %pS", v->caller);
4117 
4118 	if (v->nr_pages)
4119 		seq_printf(m, " pages=%d", v->nr_pages);
4120 
4121 	if (v->phys_addr)
4122 		seq_printf(m, " phys=%pa", &v->phys_addr);
4123 
4124 	if (v->flags & VM_IOREMAP)
4125 		seq_puts(m, " ioremap");
4126 
4127 	if (v->flags & VM_ALLOC)
4128 		seq_puts(m, " vmalloc");
4129 
4130 	if (v->flags & VM_MAP)
4131 		seq_puts(m, " vmap");
4132 
4133 	if (v->flags & VM_USERMAP)
4134 		seq_puts(m, " user");
4135 
4136 	if (v->flags & VM_DMA_COHERENT)
4137 		seq_puts(m, " dma-coherent");
4138 
4139 	if (is_vmalloc_addr(v->pages))
4140 		seq_puts(m, " vpages");
4141 
4142 	show_numa_info(m, v);
4143 	seq_putc(m, '\n');
4144 
4145 	/*
4146 	 * As a final step, dump "unpurged" areas.
4147 	 */
4148 final:
4149 	if (list_is_last(&va->list, &vmap_area_list))
4150 		show_purge_info(m);
4151 
4152 	return 0;
4153 }
4154 
4155 static const struct seq_operations vmalloc_op = {
4156 	.start = s_start,
4157 	.next = s_next,
4158 	.stop = s_stop,
4159 	.show = s_show,
4160 };
4161 
4162 static int __init proc_vmalloc_init(void)
4163 {
4164 	if (IS_ENABLED(CONFIG_NUMA))
4165 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4166 				&vmalloc_op,
4167 				nr_node_ids * sizeof(unsigned int), NULL);
4168 	else
4169 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4170 	return 0;
4171 }
4172 module_init(proc_vmalloc_init);
4173 
4174 #endif
4175