1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <asm/atomic.h> 30 #include <asm/uaccess.h> 31 #include <asm/tlbflush.h> 32 #include <asm/shmparam.h> 33 34 /*** Page table manipulation functions ***/ 35 36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 37 { 38 pte_t *pte; 39 40 pte = pte_offset_kernel(pmd, addr); 41 do { 42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 43 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 44 } while (pte++, addr += PAGE_SIZE, addr != end); 45 } 46 47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 48 { 49 pmd_t *pmd; 50 unsigned long next; 51 52 pmd = pmd_offset(pud, addr); 53 do { 54 next = pmd_addr_end(addr, end); 55 if (pmd_none_or_clear_bad(pmd)) 56 continue; 57 vunmap_pte_range(pmd, addr, next); 58 } while (pmd++, addr = next, addr != end); 59 } 60 61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 62 { 63 pud_t *pud; 64 unsigned long next; 65 66 pud = pud_offset(pgd, addr); 67 do { 68 next = pud_addr_end(addr, end); 69 if (pud_none_or_clear_bad(pud)) 70 continue; 71 vunmap_pmd_range(pud, addr, next); 72 } while (pud++, addr = next, addr != end); 73 } 74 75 static void vunmap_page_range(unsigned long addr, unsigned long end) 76 { 77 pgd_t *pgd; 78 unsigned long next; 79 80 BUG_ON(addr >= end); 81 pgd = pgd_offset_k(addr); 82 do { 83 next = pgd_addr_end(addr, end); 84 if (pgd_none_or_clear_bad(pgd)) 85 continue; 86 vunmap_pud_range(pgd, addr, next); 87 } while (pgd++, addr = next, addr != end); 88 } 89 90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 92 { 93 pte_t *pte; 94 95 /* 96 * nr is a running index into the array which helps higher level 97 * callers keep track of where we're up to. 98 */ 99 100 pte = pte_alloc_kernel(pmd, addr); 101 if (!pte) 102 return -ENOMEM; 103 do { 104 struct page *page = pages[*nr]; 105 106 if (WARN_ON(!pte_none(*pte))) 107 return -EBUSY; 108 if (WARN_ON(!page)) 109 return -ENOMEM; 110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 111 (*nr)++; 112 } while (pte++, addr += PAGE_SIZE, addr != end); 113 return 0; 114 } 115 116 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 117 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 118 { 119 pmd_t *pmd; 120 unsigned long next; 121 122 pmd = pmd_alloc(&init_mm, pud, addr); 123 if (!pmd) 124 return -ENOMEM; 125 do { 126 next = pmd_addr_end(addr, end); 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 128 return -ENOMEM; 129 } while (pmd++, addr = next, addr != end); 130 return 0; 131 } 132 133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 134 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 135 { 136 pud_t *pud; 137 unsigned long next; 138 139 pud = pud_alloc(&init_mm, pgd, addr); 140 if (!pud) 141 return -ENOMEM; 142 do { 143 next = pud_addr_end(addr, end); 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 145 return -ENOMEM; 146 } while (pud++, addr = next, addr != end); 147 return 0; 148 } 149 150 /* 151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 152 * will have pfns corresponding to the "pages" array. 153 * 154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 155 */ 156 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 157 pgprot_t prot, struct page **pages) 158 { 159 pgd_t *pgd; 160 unsigned long next; 161 unsigned long addr = start; 162 int err = 0; 163 int nr = 0; 164 165 BUG_ON(addr >= end); 166 pgd = pgd_offset_k(addr); 167 do { 168 next = pgd_addr_end(addr, end); 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 170 if (err) 171 return err; 172 } while (pgd++, addr = next, addr != end); 173 174 return nr; 175 } 176 177 static int vmap_page_range(unsigned long start, unsigned long end, 178 pgprot_t prot, struct page **pages) 179 { 180 int ret; 181 182 ret = vmap_page_range_noflush(start, end, prot, pages); 183 flush_cache_vmap(start, end); 184 return ret; 185 } 186 187 int is_vmalloc_or_module_addr(const void *x) 188 { 189 /* 190 * ARM, x86-64 and sparc64 put modules in a special place, 191 * and fall back on vmalloc() if that fails. Others 192 * just put it in the vmalloc space. 193 */ 194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 195 unsigned long addr = (unsigned long)x; 196 if (addr >= MODULES_VADDR && addr < MODULES_END) 197 return 1; 198 #endif 199 return is_vmalloc_addr(x); 200 } 201 202 /* 203 * Walk a vmap address to the struct page it maps. 204 */ 205 struct page *vmalloc_to_page(const void *vmalloc_addr) 206 { 207 unsigned long addr = (unsigned long) vmalloc_addr; 208 struct page *page = NULL; 209 pgd_t *pgd = pgd_offset_k(addr); 210 211 /* 212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 213 * architectures that do not vmalloc module space 214 */ 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 216 217 if (!pgd_none(*pgd)) { 218 pud_t *pud = pud_offset(pgd, addr); 219 if (!pud_none(*pud)) { 220 pmd_t *pmd = pmd_offset(pud, addr); 221 if (!pmd_none(*pmd)) { 222 pte_t *ptep, pte; 223 224 ptep = pte_offset_map(pmd, addr); 225 pte = *ptep; 226 if (pte_present(pte)) 227 page = pte_page(pte); 228 pte_unmap(ptep); 229 } 230 } 231 } 232 return page; 233 } 234 EXPORT_SYMBOL(vmalloc_to_page); 235 236 /* 237 * Map a vmalloc()-space virtual address to the physical page frame number. 238 */ 239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 240 { 241 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 242 } 243 EXPORT_SYMBOL(vmalloc_to_pfn); 244 245 246 /*** Global kva allocator ***/ 247 248 #define VM_LAZY_FREE 0x01 249 #define VM_LAZY_FREEING 0x02 250 #define VM_VM_AREA 0x04 251 252 struct vmap_area { 253 unsigned long va_start; 254 unsigned long va_end; 255 unsigned long flags; 256 struct rb_node rb_node; /* address sorted rbtree */ 257 struct list_head list; /* address sorted list */ 258 struct list_head purge_list; /* "lazy purge" list */ 259 void *private; 260 struct rcu_head rcu_head; 261 }; 262 263 static DEFINE_SPINLOCK(vmap_area_lock); 264 static LIST_HEAD(vmap_area_list); 265 static struct rb_root vmap_area_root = RB_ROOT; 266 267 /* The vmap cache globals are protected by vmap_area_lock */ 268 static struct rb_node *free_vmap_cache; 269 static unsigned long cached_hole_size; 270 static unsigned long cached_vstart; 271 static unsigned long cached_align; 272 273 static unsigned long vmap_area_pcpu_hole; 274 275 static struct vmap_area *__find_vmap_area(unsigned long addr) 276 { 277 struct rb_node *n = vmap_area_root.rb_node; 278 279 while (n) { 280 struct vmap_area *va; 281 282 va = rb_entry(n, struct vmap_area, rb_node); 283 if (addr < va->va_start) 284 n = n->rb_left; 285 else if (addr > va->va_start) 286 n = n->rb_right; 287 else 288 return va; 289 } 290 291 return NULL; 292 } 293 294 static void __insert_vmap_area(struct vmap_area *va) 295 { 296 struct rb_node **p = &vmap_area_root.rb_node; 297 struct rb_node *parent = NULL; 298 struct rb_node *tmp; 299 300 while (*p) { 301 struct vmap_area *tmp_va; 302 303 parent = *p; 304 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 305 if (va->va_start < tmp_va->va_end) 306 p = &(*p)->rb_left; 307 else if (va->va_end > tmp_va->va_start) 308 p = &(*p)->rb_right; 309 else 310 BUG(); 311 } 312 313 rb_link_node(&va->rb_node, parent, p); 314 rb_insert_color(&va->rb_node, &vmap_area_root); 315 316 /* address-sort this list so it is usable like the vmlist */ 317 tmp = rb_prev(&va->rb_node); 318 if (tmp) { 319 struct vmap_area *prev; 320 prev = rb_entry(tmp, struct vmap_area, rb_node); 321 list_add_rcu(&va->list, &prev->list); 322 } else 323 list_add_rcu(&va->list, &vmap_area_list); 324 } 325 326 static void purge_vmap_area_lazy(void); 327 328 /* 329 * Allocate a region of KVA of the specified size and alignment, within the 330 * vstart and vend. 331 */ 332 static struct vmap_area *alloc_vmap_area(unsigned long size, 333 unsigned long align, 334 unsigned long vstart, unsigned long vend, 335 int node, gfp_t gfp_mask) 336 { 337 struct vmap_area *va; 338 struct rb_node *n; 339 unsigned long addr; 340 int purged = 0; 341 struct vmap_area *first; 342 343 BUG_ON(!size); 344 BUG_ON(size & ~PAGE_MASK); 345 BUG_ON(!is_power_of_2(align)); 346 347 va = kmalloc_node(sizeof(struct vmap_area), 348 gfp_mask & GFP_RECLAIM_MASK, node); 349 if (unlikely(!va)) 350 return ERR_PTR(-ENOMEM); 351 352 retry: 353 spin_lock(&vmap_area_lock); 354 /* 355 * Invalidate cache if we have more permissive parameters. 356 * cached_hole_size notes the largest hole noticed _below_ 357 * the vmap_area cached in free_vmap_cache: if size fits 358 * into that hole, we want to scan from vstart to reuse 359 * the hole instead of allocating above free_vmap_cache. 360 * Note that __free_vmap_area may update free_vmap_cache 361 * without updating cached_hole_size or cached_align. 362 */ 363 if (!free_vmap_cache || 364 size < cached_hole_size || 365 vstart < cached_vstart || 366 align < cached_align) { 367 nocache: 368 cached_hole_size = 0; 369 free_vmap_cache = NULL; 370 } 371 /* record if we encounter less permissive parameters */ 372 cached_vstart = vstart; 373 cached_align = align; 374 375 /* find starting point for our search */ 376 if (free_vmap_cache) { 377 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 378 addr = ALIGN(first->va_end + PAGE_SIZE, align); 379 if (addr < vstart) 380 goto nocache; 381 if (addr + size - 1 < addr) 382 goto overflow; 383 384 } else { 385 addr = ALIGN(vstart, align); 386 if (addr + size - 1 < addr) 387 goto overflow; 388 389 n = vmap_area_root.rb_node; 390 first = NULL; 391 392 while (n) { 393 struct vmap_area *tmp; 394 tmp = rb_entry(n, struct vmap_area, rb_node); 395 if (tmp->va_end >= addr) { 396 first = tmp; 397 if (tmp->va_start <= addr) 398 break; 399 n = n->rb_left; 400 } else 401 n = n->rb_right; 402 } 403 404 if (!first) 405 goto found; 406 } 407 408 /* from the starting point, walk areas until a suitable hole is found */ 409 while (addr + size >= first->va_start && addr + size <= vend) { 410 if (addr + cached_hole_size < first->va_start) 411 cached_hole_size = first->va_start - addr; 412 addr = ALIGN(first->va_end + PAGE_SIZE, align); 413 if (addr + size - 1 < addr) 414 goto overflow; 415 416 n = rb_next(&first->rb_node); 417 if (n) 418 first = rb_entry(n, struct vmap_area, rb_node); 419 else 420 goto found; 421 } 422 423 found: 424 if (addr + size > vend) 425 goto overflow; 426 427 va->va_start = addr; 428 va->va_end = addr + size; 429 va->flags = 0; 430 __insert_vmap_area(va); 431 free_vmap_cache = &va->rb_node; 432 spin_unlock(&vmap_area_lock); 433 434 BUG_ON(va->va_start & (align-1)); 435 BUG_ON(va->va_start < vstart); 436 BUG_ON(va->va_end > vend); 437 438 return va; 439 440 overflow: 441 spin_unlock(&vmap_area_lock); 442 if (!purged) { 443 purge_vmap_area_lazy(); 444 purged = 1; 445 goto retry; 446 } 447 if (printk_ratelimit()) 448 printk(KERN_WARNING 449 "vmap allocation for size %lu failed: " 450 "use vmalloc=<size> to increase size.\n", size); 451 kfree(va); 452 return ERR_PTR(-EBUSY); 453 } 454 455 static void rcu_free_va(struct rcu_head *head) 456 { 457 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 458 459 kfree(va); 460 } 461 462 static void __free_vmap_area(struct vmap_area *va) 463 { 464 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 465 466 if (free_vmap_cache) { 467 if (va->va_end < cached_vstart) { 468 free_vmap_cache = NULL; 469 } else { 470 struct vmap_area *cache; 471 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 472 if (va->va_start <= cache->va_start) { 473 free_vmap_cache = rb_prev(&va->rb_node); 474 /* 475 * We don't try to update cached_hole_size or 476 * cached_align, but it won't go very wrong. 477 */ 478 } 479 } 480 } 481 rb_erase(&va->rb_node, &vmap_area_root); 482 RB_CLEAR_NODE(&va->rb_node); 483 list_del_rcu(&va->list); 484 485 /* 486 * Track the highest possible candidate for pcpu area 487 * allocation. Areas outside of vmalloc area can be returned 488 * here too, consider only end addresses which fall inside 489 * vmalloc area proper. 490 */ 491 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 492 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 493 494 call_rcu(&va->rcu_head, rcu_free_va); 495 } 496 497 /* 498 * Free a region of KVA allocated by alloc_vmap_area 499 */ 500 static void free_vmap_area(struct vmap_area *va) 501 { 502 spin_lock(&vmap_area_lock); 503 __free_vmap_area(va); 504 spin_unlock(&vmap_area_lock); 505 } 506 507 /* 508 * Clear the pagetable entries of a given vmap_area 509 */ 510 static void unmap_vmap_area(struct vmap_area *va) 511 { 512 vunmap_page_range(va->va_start, va->va_end); 513 } 514 515 static void vmap_debug_free_range(unsigned long start, unsigned long end) 516 { 517 /* 518 * Unmap page tables and force a TLB flush immediately if 519 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 520 * bugs similarly to those in linear kernel virtual address 521 * space after a page has been freed. 522 * 523 * All the lazy freeing logic is still retained, in order to 524 * minimise intrusiveness of this debugging feature. 525 * 526 * This is going to be *slow* (linear kernel virtual address 527 * debugging doesn't do a broadcast TLB flush so it is a lot 528 * faster). 529 */ 530 #ifdef CONFIG_DEBUG_PAGEALLOC 531 vunmap_page_range(start, end); 532 flush_tlb_kernel_range(start, end); 533 #endif 534 } 535 536 /* 537 * lazy_max_pages is the maximum amount of virtual address space we gather up 538 * before attempting to purge with a TLB flush. 539 * 540 * There is a tradeoff here: a larger number will cover more kernel page tables 541 * and take slightly longer to purge, but it will linearly reduce the number of 542 * global TLB flushes that must be performed. It would seem natural to scale 543 * this number up linearly with the number of CPUs (because vmapping activity 544 * could also scale linearly with the number of CPUs), however it is likely 545 * that in practice, workloads might be constrained in other ways that mean 546 * vmap activity will not scale linearly with CPUs. Also, I want to be 547 * conservative and not introduce a big latency on huge systems, so go with 548 * a less aggressive log scale. It will still be an improvement over the old 549 * code, and it will be simple to change the scale factor if we find that it 550 * becomes a problem on bigger systems. 551 */ 552 static unsigned long lazy_max_pages(void) 553 { 554 unsigned int log; 555 556 log = fls(num_online_cpus()); 557 558 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 559 } 560 561 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 562 563 /* for per-CPU blocks */ 564 static void purge_fragmented_blocks_allcpus(void); 565 566 /* 567 * called before a call to iounmap() if the caller wants vm_area_struct's 568 * immediately freed. 569 */ 570 void set_iounmap_nonlazy(void) 571 { 572 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 573 } 574 575 /* 576 * Purges all lazily-freed vmap areas. 577 * 578 * If sync is 0 then don't purge if there is already a purge in progress. 579 * If force_flush is 1, then flush kernel TLBs between *start and *end even 580 * if we found no lazy vmap areas to unmap (callers can use this to optimise 581 * their own TLB flushing). 582 * Returns with *start = min(*start, lowest purged address) 583 * *end = max(*end, highest purged address) 584 */ 585 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 586 int sync, int force_flush) 587 { 588 static DEFINE_SPINLOCK(purge_lock); 589 LIST_HEAD(valist); 590 struct vmap_area *va; 591 struct vmap_area *n_va; 592 int nr = 0; 593 594 /* 595 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 596 * should not expect such behaviour. This just simplifies locking for 597 * the case that isn't actually used at the moment anyway. 598 */ 599 if (!sync && !force_flush) { 600 if (!spin_trylock(&purge_lock)) 601 return; 602 } else 603 spin_lock(&purge_lock); 604 605 if (sync) 606 purge_fragmented_blocks_allcpus(); 607 608 rcu_read_lock(); 609 list_for_each_entry_rcu(va, &vmap_area_list, list) { 610 if (va->flags & VM_LAZY_FREE) { 611 if (va->va_start < *start) 612 *start = va->va_start; 613 if (va->va_end > *end) 614 *end = va->va_end; 615 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 616 list_add_tail(&va->purge_list, &valist); 617 va->flags |= VM_LAZY_FREEING; 618 va->flags &= ~VM_LAZY_FREE; 619 } 620 } 621 rcu_read_unlock(); 622 623 if (nr) 624 atomic_sub(nr, &vmap_lazy_nr); 625 626 if (nr || force_flush) 627 flush_tlb_kernel_range(*start, *end); 628 629 if (nr) { 630 spin_lock(&vmap_area_lock); 631 list_for_each_entry_safe(va, n_va, &valist, purge_list) 632 __free_vmap_area(va); 633 spin_unlock(&vmap_area_lock); 634 } 635 spin_unlock(&purge_lock); 636 } 637 638 /* 639 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 640 * is already purging. 641 */ 642 static void try_purge_vmap_area_lazy(void) 643 { 644 unsigned long start = ULONG_MAX, end = 0; 645 646 __purge_vmap_area_lazy(&start, &end, 0, 0); 647 } 648 649 /* 650 * Kick off a purge of the outstanding lazy areas. 651 */ 652 static void purge_vmap_area_lazy(void) 653 { 654 unsigned long start = ULONG_MAX, end = 0; 655 656 __purge_vmap_area_lazy(&start, &end, 1, 0); 657 } 658 659 /* 660 * Free a vmap area, caller ensuring that the area has been unmapped 661 * and flush_cache_vunmap had been called for the correct range 662 * previously. 663 */ 664 static void free_vmap_area_noflush(struct vmap_area *va) 665 { 666 va->flags |= VM_LAZY_FREE; 667 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 668 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 669 try_purge_vmap_area_lazy(); 670 } 671 672 /* 673 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 674 * called for the correct range previously. 675 */ 676 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 677 { 678 unmap_vmap_area(va); 679 free_vmap_area_noflush(va); 680 } 681 682 /* 683 * Free and unmap a vmap area 684 */ 685 static void free_unmap_vmap_area(struct vmap_area *va) 686 { 687 flush_cache_vunmap(va->va_start, va->va_end); 688 free_unmap_vmap_area_noflush(va); 689 } 690 691 static struct vmap_area *find_vmap_area(unsigned long addr) 692 { 693 struct vmap_area *va; 694 695 spin_lock(&vmap_area_lock); 696 va = __find_vmap_area(addr); 697 spin_unlock(&vmap_area_lock); 698 699 return va; 700 } 701 702 static void free_unmap_vmap_area_addr(unsigned long addr) 703 { 704 struct vmap_area *va; 705 706 va = find_vmap_area(addr); 707 BUG_ON(!va); 708 free_unmap_vmap_area(va); 709 } 710 711 712 /*** Per cpu kva allocator ***/ 713 714 /* 715 * vmap space is limited especially on 32 bit architectures. Ensure there is 716 * room for at least 16 percpu vmap blocks per CPU. 717 */ 718 /* 719 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 720 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 721 * instead (we just need a rough idea) 722 */ 723 #if BITS_PER_LONG == 32 724 #define VMALLOC_SPACE (128UL*1024*1024) 725 #else 726 #define VMALLOC_SPACE (128UL*1024*1024*1024) 727 #endif 728 729 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 730 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 731 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 732 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 733 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 734 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 735 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 736 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 737 VMALLOC_PAGES / NR_CPUS / 16)) 738 739 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 740 741 static bool vmap_initialized __read_mostly = false; 742 743 struct vmap_block_queue { 744 spinlock_t lock; 745 struct list_head free; 746 }; 747 748 struct vmap_block { 749 spinlock_t lock; 750 struct vmap_area *va; 751 struct vmap_block_queue *vbq; 752 unsigned long free, dirty; 753 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 754 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 755 struct list_head free_list; 756 struct rcu_head rcu_head; 757 struct list_head purge; 758 }; 759 760 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 761 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 762 763 /* 764 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 765 * in the free path. Could get rid of this if we change the API to return a 766 * "cookie" from alloc, to be passed to free. But no big deal yet. 767 */ 768 static DEFINE_SPINLOCK(vmap_block_tree_lock); 769 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 770 771 /* 772 * We should probably have a fallback mechanism to allocate virtual memory 773 * out of partially filled vmap blocks. However vmap block sizing should be 774 * fairly reasonable according to the vmalloc size, so it shouldn't be a 775 * big problem. 776 */ 777 778 static unsigned long addr_to_vb_idx(unsigned long addr) 779 { 780 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 781 addr /= VMAP_BLOCK_SIZE; 782 return addr; 783 } 784 785 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 786 { 787 struct vmap_block_queue *vbq; 788 struct vmap_block *vb; 789 struct vmap_area *va; 790 unsigned long vb_idx; 791 int node, err; 792 793 node = numa_node_id(); 794 795 vb = kmalloc_node(sizeof(struct vmap_block), 796 gfp_mask & GFP_RECLAIM_MASK, node); 797 if (unlikely(!vb)) 798 return ERR_PTR(-ENOMEM); 799 800 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 801 VMALLOC_START, VMALLOC_END, 802 node, gfp_mask); 803 if (IS_ERR(va)) { 804 kfree(vb); 805 return ERR_CAST(va); 806 } 807 808 err = radix_tree_preload(gfp_mask); 809 if (unlikely(err)) { 810 kfree(vb); 811 free_vmap_area(va); 812 return ERR_PTR(err); 813 } 814 815 spin_lock_init(&vb->lock); 816 vb->va = va; 817 vb->free = VMAP_BBMAP_BITS; 818 vb->dirty = 0; 819 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 820 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 821 INIT_LIST_HEAD(&vb->free_list); 822 823 vb_idx = addr_to_vb_idx(va->va_start); 824 spin_lock(&vmap_block_tree_lock); 825 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 826 spin_unlock(&vmap_block_tree_lock); 827 BUG_ON(err); 828 radix_tree_preload_end(); 829 830 vbq = &get_cpu_var(vmap_block_queue); 831 vb->vbq = vbq; 832 spin_lock(&vbq->lock); 833 list_add_rcu(&vb->free_list, &vbq->free); 834 spin_unlock(&vbq->lock); 835 put_cpu_var(vmap_block_queue); 836 837 return vb; 838 } 839 840 static void rcu_free_vb(struct rcu_head *head) 841 { 842 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 843 844 kfree(vb); 845 } 846 847 static void free_vmap_block(struct vmap_block *vb) 848 { 849 struct vmap_block *tmp; 850 unsigned long vb_idx; 851 852 vb_idx = addr_to_vb_idx(vb->va->va_start); 853 spin_lock(&vmap_block_tree_lock); 854 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 855 spin_unlock(&vmap_block_tree_lock); 856 BUG_ON(tmp != vb); 857 858 free_vmap_area_noflush(vb->va); 859 call_rcu(&vb->rcu_head, rcu_free_vb); 860 } 861 862 static void purge_fragmented_blocks(int cpu) 863 { 864 LIST_HEAD(purge); 865 struct vmap_block *vb; 866 struct vmap_block *n_vb; 867 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 868 869 rcu_read_lock(); 870 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 871 872 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 873 continue; 874 875 spin_lock(&vb->lock); 876 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 877 vb->free = 0; /* prevent further allocs after releasing lock */ 878 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 879 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS); 880 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 881 spin_lock(&vbq->lock); 882 list_del_rcu(&vb->free_list); 883 spin_unlock(&vbq->lock); 884 spin_unlock(&vb->lock); 885 list_add_tail(&vb->purge, &purge); 886 } else 887 spin_unlock(&vb->lock); 888 } 889 rcu_read_unlock(); 890 891 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 892 list_del(&vb->purge); 893 free_vmap_block(vb); 894 } 895 } 896 897 static void purge_fragmented_blocks_thiscpu(void) 898 { 899 purge_fragmented_blocks(smp_processor_id()); 900 } 901 902 static void purge_fragmented_blocks_allcpus(void) 903 { 904 int cpu; 905 906 for_each_possible_cpu(cpu) 907 purge_fragmented_blocks(cpu); 908 } 909 910 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 911 { 912 struct vmap_block_queue *vbq; 913 struct vmap_block *vb; 914 unsigned long addr = 0; 915 unsigned int order; 916 int purge = 0; 917 918 BUG_ON(size & ~PAGE_MASK); 919 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 920 order = get_order(size); 921 922 again: 923 rcu_read_lock(); 924 vbq = &get_cpu_var(vmap_block_queue); 925 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 926 int i; 927 928 spin_lock(&vb->lock); 929 if (vb->free < 1UL << order) 930 goto next; 931 932 i = bitmap_find_free_region(vb->alloc_map, 933 VMAP_BBMAP_BITS, order); 934 935 if (i < 0) { 936 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) { 937 /* fragmented and no outstanding allocations */ 938 BUG_ON(vb->dirty != VMAP_BBMAP_BITS); 939 purge = 1; 940 } 941 goto next; 942 } 943 addr = vb->va->va_start + (i << PAGE_SHIFT); 944 BUG_ON(addr_to_vb_idx(addr) != 945 addr_to_vb_idx(vb->va->va_start)); 946 vb->free -= 1UL << order; 947 if (vb->free == 0) { 948 spin_lock(&vbq->lock); 949 list_del_rcu(&vb->free_list); 950 spin_unlock(&vbq->lock); 951 } 952 spin_unlock(&vb->lock); 953 break; 954 next: 955 spin_unlock(&vb->lock); 956 } 957 958 if (purge) 959 purge_fragmented_blocks_thiscpu(); 960 961 put_cpu_var(vmap_block_queue); 962 rcu_read_unlock(); 963 964 if (!addr) { 965 vb = new_vmap_block(gfp_mask); 966 if (IS_ERR(vb)) 967 return vb; 968 goto again; 969 } 970 971 return (void *)addr; 972 } 973 974 static void vb_free(const void *addr, unsigned long size) 975 { 976 unsigned long offset; 977 unsigned long vb_idx; 978 unsigned int order; 979 struct vmap_block *vb; 980 981 BUG_ON(size & ~PAGE_MASK); 982 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 983 984 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 985 986 order = get_order(size); 987 988 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 989 990 vb_idx = addr_to_vb_idx((unsigned long)addr); 991 rcu_read_lock(); 992 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 993 rcu_read_unlock(); 994 BUG_ON(!vb); 995 996 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 997 998 spin_lock(&vb->lock); 999 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 1000 1001 vb->dirty += 1UL << order; 1002 if (vb->dirty == VMAP_BBMAP_BITS) { 1003 BUG_ON(vb->free); 1004 spin_unlock(&vb->lock); 1005 free_vmap_block(vb); 1006 } else 1007 spin_unlock(&vb->lock); 1008 } 1009 1010 /** 1011 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1012 * 1013 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1014 * to amortize TLB flushing overheads. What this means is that any page you 1015 * have now, may, in a former life, have been mapped into kernel virtual 1016 * address by the vmap layer and so there might be some CPUs with TLB entries 1017 * still referencing that page (additional to the regular 1:1 kernel mapping). 1018 * 1019 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1020 * be sure that none of the pages we have control over will have any aliases 1021 * from the vmap layer. 1022 */ 1023 void vm_unmap_aliases(void) 1024 { 1025 unsigned long start = ULONG_MAX, end = 0; 1026 int cpu; 1027 int flush = 0; 1028 1029 if (unlikely(!vmap_initialized)) 1030 return; 1031 1032 for_each_possible_cpu(cpu) { 1033 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1034 struct vmap_block *vb; 1035 1036 rcu_read_lock(); 1037 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1038 int i; 1039 1040 spin_lock(&vb->lock); 1041 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1042 while (i < VMAP_BBMAP_BITS) { 1043 unsigned long s, e; 1044 int j; 1045 j = find_next_zero_bit(vb->dirty_map, 1046 VMAP_BBMAP_BITS, i); 1047 1048 s = vb->va->va_start + (i << PAGE_SHIFT); 1049 e = vb->va->va_start + (j << PAGE_SHIFT); 1050 flush = 1; 1051 1052 if (s < start) 1053 start = s; 1054 if (e > end) 1055 end = e; 1056 1057 i = j; 1058 i = find_next_bit(vb->dirty_map, 1059 VMAP_BBMAP_BITS, i); 1060 } 1061 spin_unlock(&vb->lock); 1062 } 1063 rcu_read_unlock(); 1064 } 1065 1066 __purge_vmap_area_lazy(&start, &end, 1, flush); 1067 } 1068 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1069 1070 /** 1071 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1072 * @mem: the pointer returned by vm_map_ram 1073 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1074 */ 1075 void vm_unmap_ram(const void *mem, unsigned int count) 1076 { 1077 unsigned long size = count << PAGE_SHIFT; 1078 unsigned long addr = (unsigned long)mem; 1079 1080 BUG_ON(!addr); 1081 BUG_ON(addr < VMALLOC_START); 1082 BUG_ON(addr > VMALLOC_END); 1083 BUG_ON(addr & (PAGE_SIZE-1)); 1084 1085 debug_check_no_locks_freed(mem, size); 1086 vmap_debug_free_range(addr, addr+size); 1087 1088 if (likely(count <= VMAP_MAX_ALLOC)) 1089 vb_free(mem, size); 1090 else 1091 free_unmap_vmap_area_addr(addr); 1092 } 1093 EXPORT_SYMBOL(vm_unmap_ram); 1094 1095 /** 1096 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1097 * @pages: an array of pointers to the pages to be mapped 1098 * @count: number of pages 1099 * @node: prefer to allocate data structures on this node 1100 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1101 * 1102 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1103 */ 1104 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1105 { 1106 unsigned long size = count << PAGE_SHIFT; 1107 unsigned long addr; 1108 void *mem; 1109 1110 if (likely(count <= VMAP_MAX_ALLOC)) { 1111 mem = vb_alloc(size, GFP_KERNEL); 1112 if (IS_ERR(mem)) 1113 return NULL; 1114 addr = (unsigned long)mem; 1115 } else { 1116 struct vmap_area *va; 1117 va = alloc_vmap_area(size, PAGE_SIZE, 1118 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1119 if (IS_ERR(va)) 1120 return NULL; 1121 1122 addr = va->va_start; 1123 mem = (void *)addr; 1124 } 1125 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1126 vm_unmap_ram(mem, count); 1127 return NULL; 1128 } 1129 return mem; 1130 } 1131 EXPORT_SYMBOL(vm_map_ram); 1132 1133 /** 1134 * vm_area_register_early - register vmap area early during boot 1135 * @vm: vm_struct to register 1136 * @align: requested alignment 1137 * 1138 * This function is used to register kernel vm area before 1139 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1140 * proper values on entry and other fields should be zero. On return, 1141 * vm->addr contains the allocated address. 1142 * 1143 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1144 */ 1145 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1146 { 1147 static size_t vm_init_off __initdata; 1148 unsigned long addr; 1149 1150 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1151 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1152 1153 vm->addr = (void *)addr; 1154 1155 vm->next = vmlist; 1156 vmlist = vm; 1157 } 1158 1159 void __init vmalloc_init(void) 1160 { 1161 struct vmap_area *va; 1162 struct vm_struct *tmp; 1163 int i; 1164 1165 for_each_possible_cpu(i) { 1166 struct vmap_block_queue *vbq; 1167 1168 vbq = &per_cpu(vmap_block_queue, i); 1169 spin_lock_init(&vbq->lock); 1170 INIT_LIST_HEAD(&vbq->free); 1171 } 1172 1173 /* Import existing vmlist entries. */ 1174 for (tmp = vmlist; tmp; tmp = tmp->next) { 1175 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1176 va->flags = tmp->flags | VM_VM_AREA; 1177 va->va_start = (unsigned long)tmp->addr; 1178 va->va_end = va->va_start + tmp->size; 1179 __insert_vmap_area(va); 1180 } 1181 1182 vmap_area_pcpu_hole = VMALLOC_END; 1183 1184 vmap_initialized = true; 1185 } 1186 1187 /** 1188 * map_kernel_range_noflush - map kernel VM area with the specified pages 1189 * @addr: start of the VM area to map 1190 * @size: size of the VM area to map 1191 * @prot: page protection flags to use 1192 * @pages: pages to map 1193 * 1194 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1195 * specify should have been allocated using get_vm_area() and its 1196 * friends. 1197 * 1198 * NOTE: 1199 * This function does NOT do any cache flushing. The caller is 1200 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1201 * before calling this function. 1202 * 1203 * RETURNS: 1204 * The number of pages mapped on success, -errno on failure. 1205 */ 1206 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1207 pgprot_t prot, struct page **pages) 1208 { 1209 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1210 } 1211 1212 /** 1213 * unmap_kernel_range_noflush - unmap kernel VM area 1214 * @addr: start of the VM area to unmap 1215 * @size: size of the VM area to unmap 1216 * 1217 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1218 * specify should have been allocated using get_vm_area() and its 1219 * friends. 1220 * 1221 * NOTE: 1222 * This function does NOT do any cache flushing. The caller is 1223 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1224 * before calling this function and flush_tlb_kernel_range() after. 1225 */ 1226 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1227 { 1228 vunmap_page_range(addr, addr + size); 1229 } 1230 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1231 1232 /** 1233 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1234 * @addr: start of the VM area to unmap 1235 * @size: size of the VM area to unmap 1236 * 1237 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1238 * the unmapping and tlb after. 1239 */ 1240 void unmap_kernel_range(unsigned long addr, unsigned long size) 1241 { 1242 unsigned long end = addr + size; 1243 1244 flush_cache_vunmap(addr, end); 1245 vunmap_page_range(addr, end); 1246 flush_tlb_kernel_range(addr, end); 1247 } 1248 1249 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 1250 { 1251 unsigned long addr = (unsigned long)area->addr; 1252 unsigned long end = addr + area->size - PAGE_SIZE; 1253 int err; 1254 1255 err = vmap_page_range(addr, end, prot, *pages); 1256 if (err > 0) { 1257 *pages += err; 1258 err = 0; 1259 } 1260 1261 return err; 1262 } 1263 EXPORT_SYMBOL_GPL(map_vm_area); 1264 1265 /*** Old vmalloc interfaces ***/ 1266 DEFINE_RWLOCK(vmlist_lock); 1267 struct vm_struct *vmlist; 1268 1269 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1270 unsigned long flags, void *caller) 1271 { 1272 struct vm_struct *tmp, **p; 1273 1274 vm->flags = flags; 1275 vm->addr = (void *)va->va_start; 1276 vm->size = va->va_end - va->va_start; 1277 vm->caller = caller; 1278 va->private = vm; 1279 va->flags |= VM_VM_AREA; 1280 1281 write_lock(&vmlist_lock); 1282 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1283 if (tmp->addr >= vm->addr) 1284 break; 1285 } 1286 vm->next = *p; 1287 *p = vm; 1288 write_unlock(&vmlist_lock); 1289 } 1290 1291 static struct vm_struct *__get_vm_area_node(unsigned long size, 1292 unsigned long align, unsigned long flags, unsigned long start, 1293 unsigned long end, int node, gfp_t gfp_mask, void *caller) 1294 { 1295 static struct vmap_area *va; 1296 struct vm_struct *area; 1297 1298 BUG_ON(in_interrupt()); 1299 if (flags & VM_IOREMAP) { 1300 int bit = fls(size); 1301 1302 if (bit > IOREMAP_MAX_ORDER) 1303 bit = IOREMAP_MAX_ORDER; 1304 else if (bit < PAGE_SHIFT) 1305 bit = PAGE_SHIFT; 1306 1307 align = 1ul << bit; 1308 } 1309 1310 size = PAGE_ALIGN(size); 1311 if (unlikely(!size)) 1312 return NULL; 1313 1314 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1315 if (unlikely(!area)) 1316 return NULL; 1317 1318 /* 1319 * We always allocate a guard page. 1320 */ 1321 size += PAGE_SIZE; 1322 1323 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1324 if (IS_ERR(va)) { 1325 kfree(area); 1326 return NULL; 1327 } 1328 1329 insert_vmalloc_vm(area, va, flags, caller); 1330 return area; 1331 } 1332 1333 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1334 unsigned long start, unsigned long end) 1335 { 1336 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1337 __builtin_return_address(0)); 1338 } 1339 EXPORT_SYMBOL_GPL(__get_vm_area); 1340 1341 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1342 unsigned long start, unsigned long end, 1343 void *caller) 1344 { 1345 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL, 1346 caller); 1347 } 1348 1349 /** 1350 * get_vm_area - reserve a contiguous kernel virtual area 1351 * @size: size of the area 1352 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1353 * 1354 * Search an area of @size in the kernel virtual mapping area, 1355 * and reserved it for out purposes. Returns the area descriptor 1356 * on success or %NULL on failure. 1357 */ 1358 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1359 { 1360 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1361 -1, GFP_KERNEL, __builtin_return_address(0)); 1362 } 1363 1364 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1365 void *caller) 1366 { 1367 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1368 -1, GFP_KERNEL, caller); 1369 } 1370 1371 static struct vm_struct *find_vm_area(const void *addr) 1372 { 1373 struct vmap_area *va; 1374 1375 va = find_vmap_area((unsigned long)addr); 1376 if (va && va->flags & VM_VM_AREA) 1377 return va->private; 1378 1379 return NULL; 1380 } 1381 1382 /** 1383 * remove_vm_area - find and remove a continuous kernel virtual area 1384 * @addr: base address 1385 * 1386 * Search for the kernel VM area starting at @addr, and remove it. 1387 * This function returns the found VM area, but using it is NOT safe 1388 * on SMP machines, except for its size or flags. 1389 */ 1390 struct vm_struct *remove_vm_area(const void *addr) 1391 { 1392 struct vmap_area *va; 1393 1394 va = find_vmap_area((unsigned long)addr); 1395 if (va && va->flags & VM_VM_AREA) { 1396 struct vm_struct *vm = va->private; 1397 struct vm_struct *tmp, **p; 1398 /* 1399 * remove from list and disallow access to this vm_struct 1400 * before unmap. (address range confliction is maintained by 1401 * vmap.) 1402 */ 1403 write_lock(&vmlist_lock); 1404 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1405 ; 1406 *p = tmp->next; 1407 write_unlock(&vmlist_lock); 1408 1409 vmap_debug_free_range(va->va_start, va->va_end); 1410 free_unmap_vmap_area(va); 1411 vm->size -= PAGE_SIZE; 1412 1413 return vm; 1414 } 1415 return NULL; 1416 } 1417 1418 static void __vunmap(const void *addr, int deallocate_pages) 1419 { 1420 struct vm_struct *area; 1421 1422 if (!addr) 1423 return; 1424 1425 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1426 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1427 return; 1428 } 1429 1430 area = remove_vm_area(addr); 1431 if (unlikely(!area)) { 1432 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1433 addr); 1434 return; 1435 } 1436 1437 debug_check_no_locks_freed(addr, area->size); 1438 debug_check_no_obj_freed(addr, area->size); 1439 1440 if (deallocate_pages) { 1441 int i; 1442 1443 for (i = 0; i < area->nr_pages; i++) { 1444 struct page *page = area->pages[i]; 1445 1446 BUG_ON(!page); 1447 __free_page(page); 1448 } 1449 1450 if (area->flags & VM_VPAGES) 1451 vfree(area->pages); 1452 else 1453 kfree(area->pages); 1454 } 1455 1456 kfree(area); 1457 return; 1458 } 1459 1460 /** 1461 * vfree - release memory allocated by vmalloc() 1462 * @addr: memory base address 1463 * 1464 * Free the virtually continuous memory area starting at @addr, as 1465 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1466 * NULL, no operation is performed. 1467 * 1468 * Must not be called in interrupt context. 1469 */ 1470 void vfree(const void *addr) 1471 { 1472 BUG_ON(in_interrupt()); 1473 1474 kmemleak_free(addr); 1475 1476 __vunmap(addr, 1); 1477 } 1478 EXPORT_SYMBOL(vfree); 1479 1480 /** 1481 * vunmap - release virtual mapping obtained by vmap() 1482 * @addr: memory base address 1483 * 1484 * Free the virtually contiguous memory area starting at @addr, 1485 * which was created from the page array passed to vmap(). 1486 * 1487 * Must not be called in interrupt context. 1488 */ 1489 void vunmap(const void *addr) 1490 { 1491 BUG_ON(in_interrupt()); 1492 might_sleep(); 1493 __vunmap(addr, 0); 1494 } 1495 EXPORT_SYMBOL(vunmap); 1496 1497 /** 1498 * vmap - map an array of pages into virtually contiguous space 1499 * @pages: array of page pointers 1500 * @count: number of pages to map 1501 * @flags: vm_area->flags 1502 * @prot: page protection for the mapping 1503 * 1504 * Maps @count pages from @pages into contiguous kernel virtual 1505 * space. 1506 */ 1507 void *vmap(struct page **pages, unsigned int count, 1508 unsigned long flags, pgprot_t prot) 1509 { 1510 struct vm_struct *area; 1511 1512 might_sleep(); 1513 1514 if (count > totalram_pages) 1515 return NULL; 1516 1517 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1518 __builtin_return_address(0)); 1519 if (!area) 1520 return NULL; 1521 1522 if (map_vm_area(area, prot, &pages)) { 1523 vunmap(area->addr); 1524 return NULL; 1525 } 1526 1527 return area->addr; 1528 } 1529 EXPORT_SYMBOL(vmap); 1530 1531 static void *__vmalloc_node(unsigned long size, unsigned long align, 1532 gfp_t gfp_mask, pgprot_t prot, 1533 int node, void *caller); 1534 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1535 pgprot_t prot, int node, void *caller) 1536 { 1537 struct page **pages; 1538 unsigned int nr_pages, array_size, i; 1539 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1540 1541 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1542 array_size = (nr_pages * sizeof(struct page *)); 1543 1544 area->nr_pages = nr_pages; 1545 /* Please note that the recursion is strictly bounded. */ 1546 if (array_size > PAGE_SIZE) { 1547 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1548 PAGE_KERNEL, node, caller); 1549 area->flags |= VM_VPAGES; 1550 } else { 1551 pages = kmalloc_node(array_size, nested_gfp, node); 1552 } 1553 area->pages = pages; 1554 area->caller = caller; 1555 if (!area->pages) { 1556 remove_vm_area(area->addr); 1557 kfree(area); 1558 return NULL; 1559 } 1560 1561 for (i = 0; i < area->nr_pages; i++) { 1562 struct page *page; 1563 1564 if (node < 0) 1565 page = alloc_page(gfp_mask); 1566 else 1567 page = alloc_pages_node(node, gfp_mask, 0); 1568 1569 if (unlikely(!page)) { 1570 /* Successfully allocated i pages, free them in __vunmap() */ 1571 area->nr_pages = i; 1572 goto fail; 1573 } 1574 area->pages[i] = page; 1575 } 1576 1577 if (map_vm_area(area, prot, &pages)) 1578 goto fail; 1579 return area->addr; 1580 1581 fail: 1582 vfree(area->addr); 1583 return NULL; 1584 } 1585 1586 /** 1587 * __vmalloc_node_range - allocate virtually contiguous memory 1588 * @size: allocation size 1589 * @align: desired alignment 1590 * @start: vm area range start 1591 * @end: vm area range end 1592 * @gfp_mask: flags for the page level allocator 1593 * @prot: protection mask for the allocated pages 1594 * @node: node to use for allocation or -1 1595 * @caller: caller's return address 1596 * 1597 * Allocate enough pages to cover @size from the page level 1598 * allocator with @gfp_mask flags. Map them into contiguous 1599 * kernel virtual space, using a pagetable protection of @prot. 1600 */ 1601 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1602 unsigned long start, unsigned long end, gfp_t gfp_mask, 1603 pgprot_t prot, int node, void *caller) 1604 { 1605 struct vm_struct *area; 1606 void *addr; 1607 unsigned long real_size = size; 1608 1609 size = PAGE_ALIGN(size); 1610 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1611 return NULL; 1612 1613 area = __get_vm_area_node(size, align, VM_ALLOC, start, end, node, 1614 gfp_mask, caller); 1615 1616 if (!area) 1617 return NULL; 1618 1619 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1620 1621 /* 1622 * A ref_count = 3 is needed because the vm_struct and vmap_area 1623 * structures allocated in the __get_vm_area_node() function contain 1624 * references to the virtual address of the vmalloc'ed block. 1625 */ 1626 kmemleak_alloc(addr, real_size, 3, gfp_mask); 1627 1628 return addr; 1629 } 1630 1631 /** 1632 * __vmalloc_node - allocate virtually contiguous memory 1633 * @size: allocation size 1634 * @align: desired alignment 1635 * @gfp_mask: flags for the page level allocator 1636 * @prot: protection mask for the allocated pages 1637 * @node: node to use for allocation or -1 1638 * @caller: caller's return address 1639 * 1640 * Allocate enough pages to cover @size from the page level 1641 * allocator with @gfp_mask flags. Map them into contiguous 1642 * kernel virtual space, using a pagetable protection of @prot. 1643 */ 1644 static void *__vmalloc_node(unsigned long size, unsigned long align, 1645 gfp_t gfp_mask, pgprot_t prot, 1646 int node, void *caller) 1647 { 1648 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1649 gfp_mask, prot, node, caller); 1650 } 1651 1652 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1653 { 1654 return __vmalloc_node(size, 1, gfp_mask, prot, -1, 1655 __builtin_return_address(0)); 1656 } 1657 EXPORT_SYMBOL(__vmalloc); 1658 1659 static inline void *__vmalloc_node_flags(unsigned long size, 1660 int node, gfp_t flags) 1661 { 1662 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1663 node, __builtin_return_address(0)); 1664 } 1665 1666 /** 1667 * vmalloc - allocate virtually contiguous memory 1668 * @size: allocation size 1669 * Allocate enough pages to cover @size from the page level 1670 * allocator and map them into contiguous kernel virtual space. 1671 * 1672 * For tight control over page level allocator and protection flags 1673 * use __vmalloc() instead. 1674 */ 1675 void *vmalloc(unsigned long size) 1676 { 1677 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM); 1678 } 1679 EXPORT_SYMBOL(vmalloc); 1680 1681 /** 1682 * vzalloc - allocate virtually contiguous memory with zero fill 1683 * @size: allocation size 1684 * Allocate enough pages to cover @size from the page level 1685 * allocator and map them into contiguous kernel virtual space. 1686 * The memory allocated is set to zero. 1687 * 1688 * For tight control over page level allocator and protection flags 1689 * use __vmalloc() instead. 1690 */ 1691 void *vzalloc(unsigned long size) 1692 { 1693 return __vmalloc_node_flags(size, -1, 1694 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1695 } 1696 EXPORT_SYMBOL(vzalloc); 1697 1698 /** 1699 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1700 * @size: allocation size 1701 * 1702 * The resulting memory area is zeroed so it can be mapped to userspace 1703 * without leaking data. 1704 */ 1705 void *vmalloc_user(unsigned long size) 1706 { 1707 struct vm_struct *area; 1708 void *ret; 1709 1710 ret = __vmalloc_node(size, SHMLBA, 1711 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1712 PAGE_KERNEL, -1, __builtin_return_address(0)); 1713 if (ret) { 1714 area = find_vm_area(ret); 1715 area->flags |= VM_USERMAP; 1716 } 1717 return ret; 1718 } 1719 EXPORT_SYMBOL(vmalloc_user); 1720 1721 /** 1722 * vmalloc_node - allocate memory on a specific node 1723 * @size: allocation size 1724 * @node: numa node 1725 * 1726 * Allocate enough pages to cover @size from the page level 1727 * allocator and map them into contiguous kernel virtual space. 1728 * 1729 * For tight control over page level allocator and protection flags 1730 * use __vmalloc() instead. 1731 */ 1732 void *vmalloc_node(unsigned long size, int node) 1733 { 1734 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1735 node, __builtin_return_address(0)); 1736 } 1737 EXPORT_SYMBOL(vmalloc_node); 1738 1739 /** 1740 * vzalloc_node - allocate memory on a specific node with zero fill 1741 * @size: allocation size 1742 * @node: numa node 1743 * 1744 * Allocate enough pages to cover @size from the page level 1745 * allocator and map them into contiguous kernel virtual space. 1746 * The memory allocated is set to zero. 1747 * 1748 * For tight control over page level allocator and protection flags 1749 * use __vmalloc_node() instead. 1750 */ 1751 void *vzalloc_node(unsigned long size, int node) 1752 { 1753 return __vmalloc_node_flags(size, node, 1754 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1755 } 1756 EXPORT_SYMBOL(vzalloc_node); 1757 1758 #ifndef PAGE_KERNEL_EXEC 1759 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1760 #endif 1761 1762 /** 1763 * vmalloc_exec - allocate virtually contiguous, executable memory 1764 * @size: allocation size 1765 * 1766 * Kernel-internal function to allocate enough pages to cover @size 1767 * the page level allocator and map them into contiguous and 1768 * executable kernel virtual space. 1769 * 1770 * For tight control over page level allocator and protection flags 1771 * use __vmalloc() instead. 1772 */ 1773 1774 void *vmalloc_exec(unsigned long size) 1775 { 1776 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1777 -1, __builtin_return_address(0)); 1778 } 1779 1780 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1781 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1782 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1783 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1784 #else 1785 #define GFP_VMALLOC32 GFP_KERNEL 1786 #endif 1787 1788 /** 1789 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1790 * @size: allocation size 1791 * 1792 * Allocate enough 32bit PA addressable pages to cover @size from the 1793 * page level allocator and map them into contiguous kernel virtual space. 1794 */ 1795 void *vmalloc_32(unsigned long size) 1796 { 1797 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1798 -1, __builtin_return_address(0)); 1799 } 1800 EXPORT_SYMBOL(vmalloc_32); 1801 1802 /** 1803 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1804 * @size: allocation size 1805 * 1806 * The resulting memory area is 32bit addressable and zeroed so it can be 1807 * mapped to userspace without leaking data. 1808 */ 1809 void *vmalloc_32_user(unsigned long size) 1810 { 1811 struct vm_struct *area; 1812 void *ret; 1813 1814 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1815 -1, __builtin_return_address(0)); 1816 if (ret) { 1817 area = find_vm_area(ret); 1818 area->flags |= VM_USERMAP; 1819 } 1820 return ret; 1821 } 1822 EXPORT_SYMBOL(vmalloc_32_user); 1823 1824 /* 1825 * small helper routine , copy contents to buf from addr. 1826 * If the page is not present, fill zero. 1827 */ 1828 1829 static int aligned_vread(char *buf, char *addr, unsigned long count) 1830 { 1831 struct page *p; 1832 int copied = 0; 1833 1834 while (count) { 1835 unsigned long offset, length; 1836 1837 offset = (unsigned long)addr & ~PAGE_MASK; 1838 length = PAGE_SIZE - offset; 1839 if (length > count) 1840 length = count; 1841 p = vmalloc_to_page(addr); 1842 /* 1843 * To do safe access to this _mapped_ area, we need 1844 * lock. But adding lock here means that we need to add 1845 * overhead of vmalloc()/vfree() calles for this _debug_ 1846 * interface, rarely used. Instead of that, we'll use 1847 * kmap() and get small overhead in this access function. 1848 */ 1849 if (p) { 1850 /* 1851 * we can expect USER0 is not used (see vread/vwrite's 1852 * function description) 1853 */ 1854 void *map = kmap_atomic(p, KM_USER0); 1855 memcpy(buf, map + offset, length); 1856 kunmap_atomic(map, KM_USER0); 1857 } else 1858 memset(buf, 0, length); 1859 1860 addr += length; 1861 buf += length; 1862 copied += length; 1863 count -= length; 1864 } 1865 return copied; 1866 } 1867 1868 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1869 { 1870 struct page *p; 1871 int copied = 0; 1872 1873 while (count) { 1874 unsigned long offset, length; 1875 1876 offset = (unsigned long)addr & ~PAGE_MASK; 1877 length = PAGE_SIZE - offset; 1878 if (length > count) 1879 length = count; 1880 p = vmalloc_to_page(addr); 1881 /* 1882 * To do safe access to this _mapped_ area, we need 1883 * lock. But adding lock here means that we need to add 1884 * overhead of vmalloc()/vfree() calles for this _debug_ 1885 * interface, rarely used. Instead of that, we'll use 1886 * kmap() and get small overhead in this access function. 1887 */ 1888 if (p) { 1889 /* 1890 * we can expect USER0 is not used (see vread/vwrite's 1891 * function description) 1892 */ 1893 void *map = kmap_atomic(p, KM_USER0); 1894 memcpy(map + offset, buf, length); 1895 kunmap_atomic(map, KM_USER0); 1896 } 1897 addr += length; 1898 buf += length; 1899 copied += length; 1900 count -= length; 1901 } 1902 return copied; 1903 } 1904 1905 /** 1906 * vread() - read vmalloc area in a safe way. 1907 * @buf: buffer for reading data 1908 * @addr: vm address. 1909 * @count: number of bytes to be read. 1910 * 1911 * Returns # of bytes which addr and buf should be increased. 1912 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1913 * includes any intersect with alive vmalloc area. 1914 * 1915 * This function checks that addr is a valid vmalloc'ed area, and 1916 * copy data from that area to a given buffer. If the given memory range 1917 * of [addr...addr+count) includes some valid address, data is copied to 1918 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1919 * IOREMAP area is treated as memory hole and no copy is done. 1920 * 1921 * If [addr...addr+count) doesn't includes any intersects with alive 1922 * vm_struct area, returns 0. 1923 * @buf should be kernel's buffer. Because this function uses KM_USER0, 1924 * the caller should guarantee KM_USER0 is not used. 1925 * 1926 * Note: In usual ops, vread() is never necessary because the caller 1927 * should know vmalloc() area is valid and can use memcpy(). 1928 * This is for routines which have to access vmalloc area without 1929 * any informaion, as /dev/kmem. 1930 * 1931 */ 1932 1933 long vread(char *buf, char *addr, unsigned long count) 1934 { 1935 struct vm_struct *tmp; 1936 char *vaddr, *buf_start = buf; 1937 unsigned long buflen = count; 1938 unsigned long n; 1939 1940 /* Don't allow overflow */ 1941 if ((unsigned long) addr + count < count) 1942 count = -(unsigned long) addr; 1943 1944 read_lock(&vmlist_lock); 1945 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 1946 vaddr = (char *) tmp->addr; 1947 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1948 continue; 1949 while (addr < vaddr) { 1950 if (count == 0) 1951 goto finished; 1952 *buf = '\0'; 1953 buf++; 1954 addr++; 1955 count--; 1956 } 1957 n = vaddr + tmp->size - PAGE_SIZE - addr; 1958 if (n > count) 1959 n = count; 1960 if (!(tmp->flags & VM_IOREMAP)) 1961 aligned_vread(buf, addr, n); 1962 else /* IOREMAP area is treated as memory hole */ 1963 memset(buf, 0, n); 1964 buf += n; 1965 addr += n; 1966 count -= n; 1967 } 1968 finished: 1969 read_unlock(&vmlist_lock); 1970 1971 if (buf == buf_start) 1972 return 0; 1973 /* zero-fill memory holes */ 1974 if (buf != buf_start + buflen) 1975 memset(buf, 0, buflen - (buf - buf_start)); 1976 1977 return buflen; 1978 } 1979 1980 /** 1981 * vwrite() - write vmalloc area in a safe way. 1982 * @buf: buffer for source data 1983 * @addr: vm address. 1984 * @count: number of bytes to be read. 1985 * 1986 * Returns # of bytes which addr and buf should be incresed. 1987 * (same number to @count). 1988 * If [addr...addr+count) doesn't includes any intersect with valid 1989 * vmalloc area, returns 0. 1990 * 1991 * This function checks that addr is a valid vmalloc'ed area, and 1992 * copy data from a buffer to the given addr. If specified range of 1993 * [addr...addr+count) includes some valid address, data is copied from 1994 * proper area of @buf. If there are memory holes, no copy to hole. 1995 * IOREMAP area is treated as memory hole and no copy is done. 1996 * 1997 * If [addr...addr+count) doesn't includes any intersects with alive 1998 * vm_struct area, returns 0. 1999 * @buf should be kernel's buffer. Because this function uses KM_USER0, 2000 * the caller should guarantee KM_USER0 is not used. 2001 * 2002 * Note: In usual ops, vwrite() is never necessary because the caller 2003 * should know vmalloc() area is valid and can use memcpy(). 2004 * This is for routines which have to access vmalloc area without 2005 * any informaion, as /dev/kmem. 2006 */ 2007 2008 long vwrite(char *buf, char *addr, unsigned long count) 2009 { 2010 struct vm_struct *tmp; 2011 char *vaddr; 2012 unsigned long n, buflen; 2013 int copied = 0; 2014 2015 /* Don't allow overflow */ 2016 if ((unsigned long) addr + count < count) 2017 count = -(unsigned long) addr; 2018 buflen = count; 2019 2020 read_lock(&vmlist_lock); 2021 for (tmp = vmlist; count && tmp; tmp = tmp->next) { 2022 vaddr = (char *) tmp->addr; 2023 if (addr >= vaddr + tmp->size - PAGE_SIZE) 2024 continue; 2025 while (addr < vaddr) { 2026 if (count == 0) 2027 goto finished; 2028 buf++; 2029 addr++; 2030 count--; 2031 } 2032 n = vaddr + tmp->size - PAGE_SIZE - addr; 2033 if (n > count) 2034 n = count; 2035 if (!(tmp->flags & VM_IOREMAP)) { 2036 aligned_vwrite(buf, addr, n); 2037 copied++; 2038 } 2039 buf += n; 2040 addr += n; 2041 count -= n; 2042 } 2043 finished: 2044 read_unlock(&vmlist_lock); 2045 if (!copied) 2046 return 0; 2047 return buflen; 2048 } 2049 2050 /** 2051 * remap_vmalloc_range - map vmalloc pages to userspace 2052 * @vma: vma to cover (map full range of vma) 2053 * @addr: vmalloc memory 2054 * @pgoff: number of pages into addr before first page to map 2055 * 2056 * Returns: 0 for success, -Exxx on failure 2057 * 2058 * This function checks that addr is a valid vmalloc'ed area, and 2059 * that it is big enough to cover the vma. Will return failure if 2060 * that criteria isn't met. 2061 * 2062 * Similar to remap_pfn_range() (see mm/memory.c) 2063 */ 2064 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2065 unsigned long pgoff) 2066 { 2067 struct vm_struct *area; 2068 unsigned long uaddr = vma->vm_start; 2069 unsigned long usize = vma->vm_end - vma->vm_start; 2070 2071 if ((PAGE_SIZE-1) & (unsigned long)addr) 2072 return -EINVAL; 2073 2074 area = find_vm_area(addr); 2075 if (!area) 2076 return -EINVAL; 2077 2078 if (!(area->flags & VM_USERMAP)) 2079 return -EINVAL; 2080 2081 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 2082 return -EINVAL; 2083 2084 addr += pgoff << PAGE_SHIFT; 2085 do { 2086 struct page *page = vmalloc_to_page(addr); 2087 int ret; 2088 2089 ret = vm_insert_page(vma, uaddr, page); 2090 if (ret) 2091 return ret; 2092 2093 uaddr += PAGE_SIZE; 2094 addr += PAGE_SIZE; 2095 usize -= PAGE_SIZE; 2096 } while (usize > 0); 2097 2098 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 2099 vma->vm_flags |= VM_RESERVED; 2100 2101 return 0; 2102 } 2103 EXPORT_SYMBOL(remap_vmalloc_range); 2104 2105 /* 2106 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2107 * have one. 2108 */ 2109 void __attribute__((weak)) vmalloc_sync_all(void) 2110 { 2111 } 2112 2113 2114 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2115 { 2116 /* apply_to_page_range() does all the hard work. */ 2117 return 0; 2118 } 2119 2120 /** 2121 * alloc_vm_area - allocate a range of kernel address space 2122 * @size: size of the area 2123 * 2124 * Returns: NULL on failure, vm_struct on success 2125 * 2126 * This function reserves a range of kernel address space, and 2127 * allocates pagetables to map that range. No actual mappings 2128 * are created. If the kernel address space is not shared 2129 * between processes, it syncs the pagetable across all 2130 * processes. 2131 */ 2132 struct vm_struct *alloc_vm_area(size_t size) 2133 { 2134 struct vm_struct *area; 2135 2136 area = get_vm_area_caller(size, VM_IOREMAP, 2137 __builtin_return_address(0)); 2138 if (area == NULL) 2139 return NULL; 2140 2141 /* 2142 * This ensures that page tables are constructed for this region 2143 * of kernel virtual address space and mapped into init_mm. 2144 */ 2145 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2146 area->size, f, NULL)) { 2147 free_vm_area(area); 2148 return NULL; 2149 } 2150 2151 /* Make sure the pagetables are constructed in process kernel 2152 mappings */ 2153 vmalloc_sync_all(); 2154 2155 return area; 2156 } 2157 EXPORT_SYMBOL_GPL(alloc_vm_area); 2158 2159 void free_vm_area(struct vm_struct *area) 2160 { 2161 struct vm_struct *ret; 2162 ret = remove_vm_area(area->addr); 2163 BUG_ON(ret != area); 2164 kfree(area); 2165 } 2166 EXPORT_SYMBOL_GPL(free_vm_area); 2167 2168 #ifdef CONFIG_SMP 2169 static struct vmap_area *node_to_va(struct rb_node *n) 2170 { 2171 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2172 } 2173 2174 /** 2175 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2176 * @end: target address 2177 * @pnext: out arg for the next vmap_area 2178 * @pprev: out arg for the previous vmap_area 2179 * 2180 * Returns: %true if either or both of next and prev are found, 2181 * %false if no vmap_area exists 2182 * 2183 * Find vmap_areas end addresses of which enclose @end. ie. if not 2184 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2185 */ 2186 static bool pvm_find_next_prev(unsigned long end, 2187 struct vmap_area **pnext, 2188 struct vmap_area **pprev) 2189 { 2190 struct rb_node *n = vmap_area_root.rb_node; 2191 struct vmap_area *va = NULL; 2192 2193 while (n) { 2194 va = rb_entry(n, struct vmap_area, rb_node); 2195 if (end < va->va_end) 2196 n = n->rb_left; 2197 else if (end > va->va_end) 2198 n = n->rb_right; 2199 else 2200 break; 2201 } 2202 2203 if (!va) 2204 return false; 2205 2206 if (va->va_end > end) { 2207 *pnext = va; 2208 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2209 } else { 2210 *pprev = va; 2211 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2212 } 2213 return true; 2214 } 2215 2216 /** 2217 * pvm_determine_end - find the highest aligned address between two vmap_areas 2218 * @pnext: in/out arg for the next vmap_area 2219 * @pprev: in/out arg for the previous vmap_area 2220 * @align: alignment 2221 * 2222 * Returns: determined end address 2223 * 2224 * Find the highest aligned address between *@pnext and *@pprev below 2225 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2226 * down address is between the end addresses of the two vmap_areas. 2227 * 2228 * Please note that the address returned by this function may fall 2229 * inside *@pnext vmap_area. The caller is responsible for checking 2230 * that. 2231 */ 2232 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2233 struct vmap_area **pprev, 2234 unsigned long align) 2235 { 2236 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2237 unsigned long addr; 2238 2239 if (*pnext) 2240 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2241 else 2242 addr = vmalloc_end; 2243 2244 while (*pprev && (*pprev)->va_end > addr) { 2245 *pnext = *pprev; 2246 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2247 } 2248 2249 return addr; 2250 } 2251 2252 /** 2253 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2254 * @offsets: array containing offset of each area 2255 * @sizes: array containing size of each area 2256 * @nr_vms: the number of areas to allocate 2257 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2258 * 2259 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2260 * vm_structs on success, %NULL on failure 2261 * 2262 * Percpu allocator wants to use congruent vm areas so that it can 2263 * maintain the offsets among percpu areas. This function allocates 2264 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2265 * be scattered pretty far, distance between two areas easily going up 2266 * to gigabytes. To avoid interacting with regular vmallocs, these 2267 * areas are allocated from top. 2268 * 2269 * Despite its complicated look, this allocator is rather simple. It 2270 * does everything top-down and scans areas from the end looking for 2271 * matching slot. While scanning, if any of the areas overlaps with 2272 * existing vmap_area, the base address is pulled down to fit the 2273 * area. Scanning is repeated till all the areas fit and then all 2274 * necessary data structres are inserted and the result is returned. 2275 */ 2276 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2277 const size_t *sizes, int nr_vms, 2278 size_t align) 2279 { 2280 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2281 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2282 struct vmap_area **vas, *prev, *next; 2283 struct vm_struct **vms; 2284 int area, area2, last_area, term_area; 2285 unsigned long base, start, end, last_end; 2286 bool purged = false; 2287 2288 /* verify parameters and allocate data structures */ 2289 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2290 for (last_area = 0, area = 0; area < nr_vms; area++) { 2291 start = offsets[area]; 2292 end = start + sizes[area]; 2293 2294 /* is everything aligned properly? */ 2295 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2296 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2297 2298 /* detect the area with the highest address */ 2299 if (start > offsets[last_area]) 2300 last_area = area; 2301 2302 for (area2 = 0; area2 < nr_vms; area2++) { 2303 unsigned long start2 = offsets[area2]; 2304 unsigned long end2 = start2 + sizes[area2]; 2305 2306 if (area2 == area) 2307 continue; 2308 2309 BUG_ON(start2 >= start && start2 < end); 2310 BUG_ON(end2 <= end && end2 > start); 2311 } 2312 } 2313 last_end = offsets[last_area] + sizes[last_area]; 2314 2315 if (vmalloc_end - vmalloc_start < last_end) { 2316 WARN_ON(true); 2317 return NULL; 2318 } 2319 2320 vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL); 2321 vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL); 2322 if (!vas || !vms) 2323 goto err_free; 2324 2325 for (area = 0; area < nr_vms; area++) { 2326 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2327 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2328 if (!vas[area] || !vms[area]) 2329 goto err_free; 2330 } 2331 retry: 2332 spin_lock(&vmap_area_lock); 2333 2334 /* start scanning - we scan from the top, begin with the last area */ 2335 area = term_area = last_area; 2336 start = offsets[area]; 2337 end = start + sizes[area]; 2338 2339 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2340 base = vmalloc_end - last_end; 2341 goto found; 2342 } 2343 base = pvm_determine_end(&next, &prev, align) - end; 2344 2345 while (true) { 2346 BUG_ON(next && next->va_end <= base + end); 2347 BUG_ON(prev && prev->va_end > base + end); 2348 2349 /* 2350 * base might have underflowed, add last_end before 2351 * comparing. 2352 */ 2353 if (base + last_end < vmalloc_start + last_end) { 2354 spin_unlock(&vmap_area_lock); 2355 if (!purged) { 2356 purge_vmap_area_lazy(); 2357 purged = true; 2358 goto retry; 2359 } 2360 goto err_free; 2361 } 2362 2363 /* 2364 * If next overlaps, move base downwards so that it's 2365 * right below next and then recheck. 2366 */ 2367 if (next && next->va_start < base + end) { 2368 base = pvm_determine_end(&next, &prev, align) - end; 2369 term_area = area; 2370 continue; 2371 } 2372 2373 /* 2374 * If prev overlaps, shift down next and prev and move 2375 * base so that it's right below new next and then 2376 * recheck. 2377 */ 2378 if (prev && prev->va_end > base + start) { 2379 next = prev; 2380 prev = node_to_va(rb_prev(&next->rb_node)); 2381 base = pvm_determine_end(&next, &prev, align) - end; 2382 term_area = area; 2383 continue; 2384 } 2385 2386 /* 2387 * This area fits, move on to the previous one. If 2388 * the previous one is the terminal one, we're done. 2389 */ 2390 area = (area + nr_vms - 1) % nr_vms; 2391 if (area == term_area) 2392 break; 2393 start = offsets[area]; 2394 end = start + sizes[area]; 2395 pvm_find_next_prev(base + end, &next, &prev); 2396 } 2397 found: 2398 /* we've found a fitting base, insert all va's */ 2399 for (area = 0; area < nr_vms; area++) { 2400 struct vmap_area *va = vas[area]; 2401 2402 va->va_start = base + offsets[area]; 2403 va->va_end = va->va_start + sizes[area]; 2404 __insert_vmap_area(va); 2405 } 2406 2407 vmap_area_pcpu_hole = base + offsets[last_area]; 2408 2409 spin_unlock(&vmap_area_lock); 2410 2411 /* insert all vm's */ 2412 for (area = 0; area < nr_vms; area++) 2413 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2414 pcpu_get_vm_areas); 2415 2416 kfree(vas); 2417 return vms; 2418 2419 err_free: 2420 for (area = 0; area < nr_vms; area++) { 2421 if (vas) 2422 kfree(vas[area]); 2423 if (vms) 2424 kfree(vms[area]); 2425 } 2426 kfree(vas); 2427 kfree(vms); 2428 return NULL; 2429 } 2430 2431 /** 2432 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2433 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2434 * @nr_vms: the number of allocated areas 2435 * 2436 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2437 */ 2438 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2439 { 2440 int i; 2441 2442 for (i = 0; i < nr_vms; i++) 2443 free_vm_area(vms[i]); 2444 kfree(vms); 2445 } 2446 #endif /* CONFIG_SMP */ 2447 2448 #ifdef CONFIG_PROC_FS 2449 static void *s_start(struct seq_file *m, loff_t *pos) 2450 __acquires(&vmlist_lock) 2451 { 2452 loff_t n = *pos; 2453 struct vm_struct *v; 2454 2455 read_lock(&vmlist_lock); 2456 v = vmlist; 2457 while (n > 0 && v) { 2458 n--; 2459 v = v->next; 2460 } 2461 if (!n) 2462 return v; 2463 2464 return NULL; 2465 2466 } 2467 2468 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2469 { 2470 struct vm_struct *v = p; 2471 2472 ++*pos; 2473 return v->next; 2474 } 2475 2476 static void s_stop(struct seq_file *m, void *p) 2477 __releases(&vmlist_lock) 2478 { 2479 read_unlock(&vmlist_lock); 2480 } 2481 2482 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2483 { 2484 if (NUMA_BUILD) { 2485 unsigned int nr, *counters = m->private; 2486 2487 if (!counters) 2488 return; 2489 2490 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2491 2492 for (nr = 0; nr < v->nr_pages; nr++) 2493 counters[page_to_nid(v->pages[nr])]++; 2494 2495 for_each_node_state(nr, N_HIGH_MEMORY) 2496 if (counters[nr]) 2497 seq_printf(m, " N%u=%u", nr, counters[nr]); 2498 } 2499 } 2500 2501 static int s_show(struct seq_file *m, void *p) 2502 { 2503 struct vm_struct *v = p; 2504 2505 seq_printf(m, "0x%p-0x%p %7ld", 2506 v->addr, v->addr + v->size, v->size); 2507 2508 if (v->caller) 2509 seq_printf(m, " %pS", v->caller); 2510 2511 if (v->nr_pages) 2512 seq_printf(m, " pages=%d", v->nr_pages); 2513 2514 if (v->phys_addr) 2515 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2516 2517 if (v->flags & VM_IOREMAP) 2518 seq_printf(m, " ioremap"); 2519 2520 if (v->flags & VM_ALLOC) 2521 seq_printf(m, " vmalloc"); 2522 2523 if (v->flags & VM_MAP) 2524 seq_printf(m, " vmap"); 2525 2526 if (v->flags & VM_USERMAP) 2527 seq_printf(m, " user"); 2528 2529 if (v->flags & VM_VPAGES) 2530 seq_printf(m, " vpages"); 2531 2532 show_numa_info(m, v); 2533 seq_putc(m, '\n'); 2534 return 0; 2535 } 2536 2537 static const struct seq_operations vmalloc_op = { 2538 .start = s_start, 2539 .next = s_next, 2540 .stop = s_stop, 2541 .show = s_show, 2542 }; 2543 2544 static int vmalloc_open(struct inode *inode, struct file *file) 2545 { 2546 unsigned int *ptr = NULL; 2547 int ret; 2548 2549 if (NUMA_BUILD) { 2550 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 2551 if (ptr == NULL) 2552 return -ENOMEM; 2553 } 2554 ret = seq_open(file, &vmalloc_op); 2555 if (!ret) { 2556 struct seq_file *m = file->private_data; 2557 m->private = ptr; 2558 } else 2559 kfree(ptr); 2560 return ret; 2561 } 2562 2563 static const struct file_operations proc_vmalloc_operations = { 2564 .open = vmalloc_open, 2565 .read = seq_read, 2566 .llseek = seq_lseek, 2567 .release = seq_release_private, 2568 }; 2569 2570 static int __init proc_vmalloc_init(void) 2571 { 2572 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2573 return 0; 2574 } 2575 module_init(proc_vmalloc_init); 2576 #endif 2577 2578