xref: /openbmc/linux/mm/vmalloc.c (revision 4ee812f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/vmalloc.c
4  *
5  *  Copyright (C) 1993  Linus Torvalds
6  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
7  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
8  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
9  *  Numa awareness, Christoph Lameter, SGI, June 2005
10  */
11 
12 #include <linux/vmalloc.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/sched/signal.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/set_memory.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/list.h>
26 #include <linux/notifier.h>
27 #include <linux/rbtree.h>
28 #include <linux/radix-tree.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41 
42 #include "internal.h"
43 
44 struct vfree_deferred {
45 	struct llist_head list;
46 	struct work_struct wq;
47 };
48 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
49 
50 static void __vunmap(const void *, int);
51 
52 static void free_work(struct work_struct *w)
53 {
54 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
55 	struct llist_node *t, *llnode;
56 
57 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
58 		__vunmap((void *)llnode, 1);
59 }
60 
61 /*** Page table manipulation functions ***/
62 
63 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
64 {
65 	pte_t *pte;
66 
67 	pte = pte_offset_kernel(pmd, addr);
68 	do {
69 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
70 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
71 	} while (pte++, addr += PAGE_SIZE, addr != end);
72 }
73 
74 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
75 {
76 	pmd_t *pmd;
77 	unsigned long next;
78 
79 	pmd = pmd_offset(pud, addr);
80 	do {
81 		next = pmd_addr_end(addr, end);
82 		if (pmd_clear_huge(pmd))
83 			continue;
84 		if (pmd_none_or_clear_bad(pmd))
85 			continue;
86 		vunmap_pte_range(pmd, addr, next);
87 	} while (pmd++, addr = next, addr != end);
88 }
89 
90 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
91 {
92 	pud_t *pud;
93 	unsigned long next;
94 
95 	pud = pud_offset(p4d, addr);
96 	do {
97 		next = pud_addr_end(addr, end);
98 		if (pud_clear_huge(pud))
99 			continue;
100 		if (pud_none_or_clear_bad(pud))
101 			continue;
102 		vunmap_pmd_range(pud, addr, next);
103 	} while (pud++, addr = next, addr != end);
104 }
105 
106 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
107 {
108 	p4d_t *p4d;
109 	unsigned long next;
110 
111 	p4d = p4d_offset(pgd, addr);
112 	do {
113 		next = p4d_addr_end(addr, end);
114 		if (p4d_clear_huge(p4d))
115 			continue;
116 		if (p4d_none_or_clear_bad(p4d))
117 			continue;
118 		vunmap_pud_range(p4d, addr, next);
119 	} while (p4d++, addr = next, addr != end);
120 }
121 
122 static void vunmap_page_range(unsigned long addr, unsigned long end)
123 {
124 	pgd_t *pgd;
125 	unsigned long next;
126 
127 	BUG_ON(addr >= end);
128 	pgd = pgd_offset_k(addr);
129 	do {
130 		next = pgd_addr_end(addr, end);
131 		if (pgd_none_or_clear_bad(pgd))
132 			continue;
133 		vunmap_p4d_range(pgd, addr, next);
134 	} while (pgd++, addr = next, addr != end);
135 }
136 
137 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
138 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
139 {
140 	pte_t *pte;
141 
142 	/*
143 	 * nr is a running index into the array which helps higher level
144 	 * callers keep track of where we're up to.
145 	 */
146 
147 	pte = pte_alloc_kernel(pmd, addr);
148 	if (!pte)
149 		return -ENOMEM;
150 	do {
151 		struct page *page = pages[*nr];
152 
153 		if (WARN_ON(!pte_none(*pte)))
154 			return -EBUSY;
155 		if (WARN_ON(!page))
156 			return -ENOMEM;
157 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
158 		(*nr)++;
159 	} while (pte++, addr += PAGE_SIZE, addr != end);
160 	return 0;
161 }
162 
163 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
164 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 	pmd_t *pmd;
167 	unsigned long next;
168 
169 	pmd = pmd_alloc(&init_mm, pud, addr);
170 	if (!pmd)
171 		return -ENOMEM;
172 	do {
173 		next = pmd_addr_end(addr, end);
174 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
175 			return -ENOMEM;
176 	} while (pmd++, addr = next, addr != end);
177 	return 0;
178 }
179 
180 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
181 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 
186 	pud = pud_alloc(&init_mm, p4d, addr);
187 	if (!pud)
188 		return -ENOMEM;
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
192 			return -ENOMEM;
193 	} while (pud++, addr = next, addr != end);
194 	return 0;
195 }
196 
197 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
198 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
199 {
200 	p4d_t *p4d;
201 	unsigned long next;
202 
203 	p4d = p4d_alloc(&init_mm, pgd, addr);
204 	if (!p4d)
205 		return -ENOMEM;
206 	do {
207 		next = p4d_addr_end(addr, end);
208 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
209 			return -ENOMEM;
210 	} while (p4d++, addr = next, addr != end);
211 	return 0;
212 }
213 
214 /*
215  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
216  * will have pfns corresponding to the "pages" array.
217  *
218  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
219  */
220 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
221 				   pgprot_t prot, struct page **pages)
222 {
223 	pgd_t *pgd;
224 	unsigned long next;
225 	unsigned long addr = start;
226 	int err = 0;
227 	int nr = 0;
228 
229 	BUG_ON(addr >= end);
230 	pgd = pgd_offset_k(addr);
231 	do {
232 		next = pgd_addr_end(addr, end);
233 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
234 		if (err)
235 			return err;
236 	} while (pgd++, addr = next, addr != end);
237 
238 	return nr;
239 }
240 
241 static int vmap_page_range(unsigned long start, unsigned long end,
242 			   pgprot_t prot, struct page **pages)
243 {
244 	int ret;
245 
246 	ret = vmap_page_range_noflush(start, end, prot, pages);
247 	flush_cache_vmap(start, end);
248 	return ret;
249 }
250 
251 int is_vmalloc_or_module_addr(const void *x)
252 {
253 	/*
254 	 * ARM, x86-64 and sparc64 put modules in a special place,
255 	 * and fall back on vmalloc() if that fails. Others
256 	 * just put it in the vmalloc space.
257 	 */
258 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
259 	unsigned long addr = (unsigned long)x;
260 	if (addr >= MODULES_VADDR && addr < MODULES_END)
261 		return 1;
262 #endif
263 	return is_vmalloc_addr(x);
264 }
265 
266 /*
267  * Walk a vmap address to the struct page it maps.
268  */
269 struct page *vmalloc_to_page(const void *vmalloc_addr)
270 {
271 	unsigned long addr = (unsigned long) vmalloc_addr;
272 	struct page *page = NULL;
273 	pgd_t *pgd = pgd_offset_k(addr);
274 	p4d_t *p4d;
275 	pud_t *pud;
276 	pmd_t *pmd;
277 	pte_t *ptep, pte;
278 
279 	/*
280 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
281 	 * architectures that do not vmalloc module space
282 	 */
283 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
284 
285 	if (pgd_none(*pgd))
286 		return NULL;
287 	p4d = p4d_offset(pgd, addr);
288 	if (p4d_none(*p4d))
289 		return NULL;
290 	pud = pud_offset(p4d, addr);
291 
292 	/*
293 	 * Don't dereference bad PUD or PMD (below) entries. This will also
294 	 * identify huge mappings, which we may encounter on architectures
295 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
296 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
297 	 * not [unambiguously] associated with a struct page, so there is
298 	 * no correct value to return for them.
299 	 */
300 	WARN_ON_ONCE(pud_bad(*pud));
301 	if (pud_none(*pud) || pud_bad(*pud))
302 		return NULL;
303 	pmd = pmd_offset(pud, addr);
304 	WARN_ON_ONCE(pmd_bad(*pmd));
305 	if (pmd_none(*pmd) || pmd_bad(*pmd))
306 		return NULL;
307 
308 	ptep = pte_offset_map(pmd, addr);
309 	pte = *ptep;
310 	if (pte_present(pte))
311 		page = pte_page(pte);
312 	pte_unmap(ptep);
313 	return page;
314 }
315 EXPORT_SYMBOL(vmalloc_to_page);
316 
317 /*
318  * Map a vmalloc()-space virtual address to the physical page frame number.
319  */
320 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
321 {
322 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
323 }
324 EXPORT_SYMBOL(vmalloc_to_pfn);
325 
326 
327 /*** Global kva allocator ***/
328 
329 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
330 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
331 
332 
333 static DEFINE_SPINLOCK(vmap_area_lock);
334 /* Export for kexec only */
335 LIST_HEAD(vmap_area_list);
336 static LLIST_HEAD(vmap_purge_list);
337 static struct rb_root vmap_area_root = RB_ROOT;
338 static bool vmap_initialized __read_mostly;
339 
340 /*
341  * This kmem_cache is used for vmap_area objects. Instead of
342  * allocating from slab we reuse an object from this cache to
343  * make things faster. Especially in "no edge" splitting of
344  * free block.
345  */
346 static struct kmem_cache *vmap_area_cachep;
347 
348 /*
349  * This linked list is used in pair with free_vmap_area_root.
350  * It gives O(1) access to prev/next to perform fast coalescing.
351  */
352 static LIST_HEAD(free_vmap_area_list);
353 
354 /*
355  * This augment red-black tree represents the free vmap space.
356  * All vmap_area objects in this tree are sorted by va->va_start
357  * address. It is used for allocation and merging when a vmap
358  * object is released.
359  *
360  * Each vmap_area node contains a maximum available free block
361  * of its sub-tree, right or left. Therefore it is possible to
362  * find a lowest match of free area.
363  */
364 static struct rb_root free_vmap_area_root = RB_ROOT;
365 
366 /*
367  * Preload a CPU with one object for "no edge" split case. The
368  * aim is to get rid of allocations from the atomic context, thus
369  * to use more permissive allocation masks.
370  */
371 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
372 
373 static __always_inline unsigned long
374 va_size(struct vmap_area *va)
375 {
376 	return (va->va_end - va->va_start);
377 }
378 
379 static __always_inline unsigned long
380 get_subtree_max_size(struct rb_node *node)
381 {
382 	struct vmap_area *va;
383 
384 	va = rb_entry_safe(node, struct vmap_area, rb_node);
385 	return va ? va->subtree_max_size : 0;
386 }
387 
388 /*
389  * Gets called when remove the node and rotate.
390  */
391 static __always_inline unsigned long
392 compute_subtree_max_size(struct vmap_area *va)
393 {
394 	return max3(va_size(va),
395 		get_subtree_max_size(va->rb_node.rb_left),
396 		get_subtree_max_size(va->rb_node.rb_right));
397 }
398 
399 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
400 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
401 
402 static void purge_vmap_area_lazy(void);
403 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
404 static unsigned long lazy_max_pages(void);
405 
406 static atomic_long_t nr_vmalloc_pages;
407 
408 unsigned long vmalloc_nr_pages(void)
409 {
410 	return atomic_long_read(&nr_vmalloc_pages);
411 }
412 
413 static struct vmap_area *__find_vmap_area(unsigned long addr)
414 {
415 	struct rb_node *n = vmap_area_root.rb_node;
416 
417 	while (n) {
418 		struct vmap_area *va;
419 
420 		va = rb_entry(n, struct vmap_area, rb_node);
421 		if (addr < va->va_start)
422 			n = n->rb_left;
423 		else if (addr >= va->va_end)
424 			n = n->rb_right;
425 		else
426 			return va;
427 	}
428 
429 	return NULL;
430 }
431 
432 /*
433  * This function returns back addresses of parent node
434  * and its left or right link for further processing.
435  */
436 static __always_inline struct rb_node **
437 find_va_links(struct vmap_area *va,
438 	struct rb_root *root, struct rb_node *from,
439 	struct rb_node **parent)
440 {
441 	struct vmap_area *tmp_va;
442 	struct rb_node **link;
443 
444 	if (root) {
445 		link = &root->rb_node;
446 		if (unlikely(!*link)) {
447 			*parent = NULL;
448 			return link;
449 		}
450 	} else {
451 		link = &from;
452 	}
453 
454 	/*
455 	 * Go to the bottom of the tree. When we hit the last point
456 	 * we end up with parent rb_node and correct direction, i name
457 	 * it link, where the new va->rb_node will be attached to.
458 	 */
459 	do {
460 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
461 
462 		/*
463 		 * During the traversal we also do some sanity check.
464 		 * Trigger the BUG() if there are sides(left/right)
465 		 * or full overlaps.
466 		 */
467 		if (va->va_start < tmp_va->va_end &&
468 				va->va_end <= tmp_va->va_start)
469 			link = &(*link)->rb_left;
470 		else if (va->va_end > tmp_va->va_start &&
471 				va->va_start >= tmp_va->va_end)
472 			link = &(*link)->rb_right;
473 		else
474 			BUG();
475 	} while (*link);
476 
477 	*parent = &tmp_va->rb_node;
478 	return link;
479 }
480 
481 static __always_inline struct list_head *
482 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
483 {
484 	struct list_head *list;
485 
486 	if (unlikely(!parent))
487 		/*
488 		 * The red-black tree where we try to find VA neighbors
489 		 * before merging or inserting is empty, i.e. it means
490 		 * there is no free vmap space. Normally it does not
491 		 * happen but we handle this case anyway.
492 		 */
493 		return NULL;
494 
495 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
496 	return (&parent->rb_right == link ? list->next : list);
497 }
498 
499 static __always_inline void
500 link_va(struct vmap_area *va, struct rb_root *root,
501 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
502 {
503 	/*
504 	 * VA is still not in the list, but we can
505 	 * identify its future previous list_head node.
506 	 */
507 	if (likely(parent)) {
508 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
509 		if (&parent->rb_right != link)
510 			head = head->prev;
511 	}
512 
513 	/* Insert to the rb-tree */
514 	rb_link_node(&va->rb_node, parent, link);
515 	if (root == &free_vmap_area_root) {
516 		/*
517 		 * Some explanation here. Just perform simple insertion
518 		 * to the tree. We do not set va->subtree_max_size to
519 		 * its current size before calling rb_insert_augmented().
520 		 * It is because of we populate the tree from the bottom
521 		 * to parent levels when the node _is_ in the tree.
522 		 *
523 		 * Therefore we set subtree_max_size to zero after insertion,
524 		 * to let __augment_tree_propagate_from() puts everything to
525 		 * the correct order later on.
526 		 */
527 		rb_insert_augmented(&va->rb_node,
528 			root, &free_vmap_area_rb_augment_cb);
529 		va->subtree_max_size = 0;
530 	} else {
531 		rb_insert_color(&va->rb_node, root);
532 	}
533 
534 	/* Address-sort this list */
535 	list_add(&va->list, head);
536 }
537 
538 static __always_inline void
539 unlink_va(struct vmap_area *va, struct rb_root *root)
540 {
541 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
542 		return;
543 
544 	if (root == &free_vmap_area_root)
545 		rb_erase_augmented(&va->rb_node,
546 			root, &free_vmap_area_rb_augment_cb);
547 	else
548 		rb_erase(&va->rb_node, root);
549 
550 	list_del(&va->list);
551 	RB_CLEAR_NODE(&va->rb_node);
552 }
553 
554 #if DEBUG_AUGMENT_PROPAGATE_CHECK
555 static void
556 augment_tree_propagate_check(struct rb_node *n)
557 {
558 	struct vmap_area *va;
559 	struct rb_node *node;
560 	unsigned long size;
561 	bool found = false;
562 
563 	if (n == NULL)
564 		return;
565 
566 	va = rb_entry(n, struct vmap_area, rb_node);
567 	size = va->subtree_max_size;
568 	node = n;
569 
570 	while (node) {
571 		va = rb_entry(node, struct vmap_area, rb_node);
572 
573 		if (get_subtree_max_size(node->rb_left) == size) {
574 			node = node->rb_left;
575 		} else {
576 			if (va_size(va) == size) {
577 				found = true;
578 				break;
579 			}
580 
581 			node = node->rb_right;
582 		}
583 	}
584 
585 	if (!found) {
586 		va = rb_entry(n, struct vmap_area, rb_node);
587 		pr_emerg("tree is corrupted: %lu, %lu\n",
588 			va_size(va), va->subtree_max_size);
589 	}
590 
591 	augment_tree_propagate_check(n->rb_left);
592 	augment_tree_propagate_check(n->rb_right);
593 }
594 #endif
595 
596 /*
597  * This function populates subtree_max_size from bottom to upper
598  * levels starting from VA point. The propagation must be done
599  * when VA size is modified by changing its va_start/va_end. Or
600  * in case of newly inserting of VA to the tree.
601  *
602  * It means that __augment_tree_propagate_from() must be called:
603  * - After VA has been inserted to the tree(free path);
604  * - After VA has been shrunk(allocation path);
605  * - After VA has been increased(merging path).
606  *
607  * Please note that, it does not mean that upper parent nodes
608  * and their subtree_max_size are recalculated all the time up
609  * to the root node.
610  *
611  *       4--8
612  *        /\
613  *       /  \
614  *      /    \
615  *    2--2  8--8
616  *
617  * For example if we modify the node 4, shrinking it to 2, then
618  * no any modification is required. If we shrink the node 2 to 1
619  * its subtree_max_size is updated only, and set to 1. If we shrink
620  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
621  * node becomes 4--6.
622  */
623 static __always_inline void
624 augment_tree_propagate_from(struct vmap_area *va)
625 {
626 	struct rb_node *node = &va->rb_node;
627 	unsigned long new_va_sub_max_size;
628 
629 	while (node) {
630 		va = rb_entry(node, struct vmap_area, rb_node);
631 		new_va_sub_max_size = compute_subtree_max_size(va);
632 
633 		/*
634 		 * If the newly calculated maximum available size of the
635 		 * subtree is equal to the current one, then it means that
636 		 * the tree is propagated correctly. So we have to stop at
637 		 * this point to save cycles.
638 		 */
639 		if (va->subtree_max_size == new_va_sub_max_size)
640 			break;
641 
642 		va->subtree_max_size = new_va_sub_max_size;
643 		node = rb_parent(&va->rb_node);
644 	}
645 
646 #if DEBUG_AUGMENT_PROPAGATE_CHECK
647 	augment_tree_propagate_check(free_vmap_area_root.rb_node);
648 #endif
649 }
650 
651 static void
652 insert_vmap_area(struct vmap_area *va,
653 	struct rb_root *root, struct list_head *head)
654 {
655 	struct rb_node **link;
656 	struct rb_node *parent;
657 
658 	link = find_va_links(va, root, NULL, &parent);
659 	link_va(va, root, parent, link, head);
660 }
661 
662 static void
663 insert_vmap_area_augment(struct vmap_area *va,
664 	struct rb_node *from, struct rb_root *root,
665 	struct list_head *head)
666 {
667 	struct rb_node **link;
668 	struct rb_node *parent;
669 
670 	if (from)
671 		link = find_va_links(va, NULL, from, &parent);
672 	else
673 		link = find_va_links(va, root, NULL, &parent);
674 
675 	link_va(va, root, parent, link, head);
676 	augment_tree_propagate_from(va);
677 }
678 
679 /*
680  * Merge de-allocated chunk of VA memory with previous
681  * and next free blocks. If coalesce is not done a new
682  * free area is inserted. If VA has been merged, it is
683  * freed.
684  */
685 static __always_inline void
686 merge_or_add_vmap_area(struct vmap_area *va,
687 	struct rb_root *root, struct list_head *head)
688 {
689 	struct vmap_area *sibling;
690 	struct list_head *next;
691 	struct rb_node **link;
692 	struct rb_node *parent;
693 	bool merged = false;
694 
695 	/*
696 	 * Find a place in the tree where VA potentially will be
697 	 * inserted, unless it is merged with its sibling/siblings.
698 	 */
699 	link = find_va_links(va, root, NULL, &parent);
700 
701 	/*
702 	 * Get next node of VA to check if merging can be done.
703 	 */
704 	next = get_va_next_sibling(parent, link);
705 	if (unlikely(next == NULL))
706 		goto insert;
707 
708 	/*
709 	 * start            end
710 	 * |                |
711 	 * |<------VA------>|<-----Next----->|
712 	 *                  |                |
713 	 *                  start            end
714 	 */
715 	if (next != head) {
716 		sibling = list_entry(next, struct vmap_area, list);
717 		if (sibling->va_start == va->va_end) {
718 			sibling->va_start = va->va_start;
719 
720 			/* Check and update the tree if needed. */
721 			augment_tree_propagate_from(sibling);
722 
723 			/* Free vmap_area object. */
724 			kmem_cache_free(vmap_area_cachep, va);
725 
726 			/* Point to the new merged area. */
727 			va = sibling;
728 			merged = true;
729 		}
730 	}
731 
732 	/*
733 	 * start            end
734 	 * |                |
735 	 * |<-----Prev----->|<------VA------>|
736 	 *                  |                |
737 	 *                  start            end
738 	 */
739 	if (next->prev != head) {
740 		sibling = list_entry(next->prev, struct vmap_area, list);
741 		if (sibling->va_end == va->va_start) {
742 			sibling->va_end = va->va_end;
743 
744 			/* Check and update the tree if needed. */
745 			augment_tree_propagate_from(sibling);
746 
747 			if (merged)
748 				unlink_va(va, root);
749 
750 			/* Free vmap_area object. */
751 			kmem_cache_free(vmap_area_cachep, va);
752 			return;
753 		}
754 	}
755 
756 insert:
757 	if (!merged) {
758 		link_va(va, root, parent, link, head);
759 		augment_tree_propagate_from(va);
760 	}
761 }
762 
763 static __always_inline bool
764 is_within_this_va(struct vmap_area *va, unsigned long size,
765 	unsigned long align, unsigned long vstart)
766 {
767 	unsigned long nva_start_addr;
768 
769 	if (va->va_start > vstart)
770 		nva_start_addr = ALIGN(va->va_start, align);
771 	else
772 		nva_start_addr = ALIGN(vstart, align);
773 
774 	/* Can be overflowed due to big size or alignment. */
775 	if (nva_start_addr + size < nva_start_addr ||
776 			nva_start_addr < vstart)
777 		return false;
778 
779 	return (nva_start_addr + size <= va->va_end);
780 }
781 
782 /*
783  * Find the first free block(lowest start address) in the tree,
784  * that will accomplish the request corresponding to passing
785  * parameters.
786  */
787 static __always_inline struct vmap_area *
788 find_vmap_lowest_match(unsigned long size,
789 	unsigned long align, unsigned long vstart)
790 {
791 	struct vmap_area *va;
792 	struct rb_node *node;
793 	unsigned long length;
794 
795 	/* Start from the root. */
796 	node = free_vmap_area_root.rb_node;
797 
798 	/* Adjust the search size for alignment overhead. */
799 	length = size + align - 1;
800 
801 	while (node) {
802 		va = rb_entry(node, struct vmap_area, rb_node);
803 
804 		if (get_subtree_max_size(node->rb_left) >= length &&
805 				vstart < va->va_start) {
806 			node = node->rb_left;
807 		} else {
808 			if (is_within_this_va(va, size, align, vstart))
809 				return va;
810 
811 			/*
812 			 * Does not make sense to go deeper towards the right
813 			 * sub-tree if it does not have a free block that is
814 			 * equal or bigger to the requested search length.
815 			 */
816 			if (get_subtree_max_size(node->rb_right) >= length) {
817 				node = node->rb_right;
818 				continue;
819 			}
820 
821 			/*
822 			 * OK. We roll back and find the first right sub-tree,
823 			 * that will satisfy the search criteria. It can happen
824 			 * only once due to "vstart" restriction.
825 			 */
826 			while ((node = rb_parent(node))) {
827 				va = rb_entry(node, struct vmap_area, rb_node);
828 				if (is_within_this_va(va, size, align, vstart))
829 					return va;
830 
831 				if (get_subtree_max_size(node->rb_right) >= length &&
832 						vstart <= va->va_start) {
833 					node = node->rb_right;
834 					break;
835 				}
836 			}
837 		}
838 	}
839 
840 	return NULL;
841 }
842 
843 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
844 #include <linux/random.h>
845 
846 static struct vmap_area *
847 find_vmap_lowest_linear_match(unsigned long size,
848 	unsigned long align, unsigned long vstart)
849 {
850 	struct vmap_area *va;
851 
852 	list_for_each_entry(va, &free_vmap_area_list, list) {
853 		if (!is_within_this_va(va, size, align, vstart))
854 			continue;
855 
856 		return va;
857 	}
858 
859 	return NULL;
860 }
861 
862 static void
863 find_vmap_lowest_match_check(unsigned long size)
864 {
865 	struct vmap_area *va_1, *va_2;
866 	unsigned long vstart;
867 	unsigned int rnd;
868 
869 	get_random_bytes(&rnd, sizeof(rnd));
870 	vstart = VMALLOC_START + rnd;
871 
872 	va_1 = find_vmap_lowest_match(size, 1, vstart);
873 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
874 
875 	if (va_1 != va_2)
876 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
877 			va_1, va_2, vstart);
878 }
879 #endif
880 
881 enum fit_type {
882 	NOTHING_FIT = 0,
883 	FL_FIT_TYPE = 1,	/* full fit */
884 	LE_FIT_TYPE = 2,	/* left edge fit */
885 	RE_FIT_TYPE = 3,	/* right edge fit */
886 	NE_FIT_TYPE = 4		/* no edge fit */
887 };
888 
889 static __always_inline enum fit_type
890 classify_va_fit_type(struct vmap_area *va,
891 	unsigned long nva_start_addr, unsigned long size)
892 {
893 	enum fit_type type;
894 
895 	/* Check if it is within VA. */
896 	if (nva_start_addr < va->va_start ||
897 			nva_start_addr + size > va->va_end)
898 		return NOTHING_FIT;
899 
900 	/* Now classify. */
901 	if (va->va_start == nva_start_addr) {
902 		if (va->va_end == nva_start_addr + size)
903 			type = FL_FIT_TYPE;
904 		else
905 			type = LE_FIT_TYPE;
906 	} else if (va->va_end == nva_start_addr + size) {
907 		type = RE_FIT_TYPE;
908 	} else {
909 		type = NE_FIT_TYPE;
910 	}
911 
912 	return type;
913 }
914 
915 static __always_inline int
916 adjust_va_to_fit_type(struct vmap_area *va,
917 	unsigned long nva_start_addr, unsigned long size,
918 	enum fit_type type)
919 {
920 	struct vmap_area *lva = NULL;
921 
922 	if (type == FL_FIT_TYPE) {
923 		/*
924 		 * No need to split VA, it fully fits.
925 		 *
926 		 * |               |
927 		 * V      NVA      V
928 		 * |---------------|
929 		 */
930 		unlink_va(va, &free_vmap_area_root);
931 		kmem_cache_free(vmap_area_cachep, va);
932 	} else if (type == LE_FIT_TYPE) {
933 		/*
934 		 * Split left edge of fit VA.
935 		 *
936 		 * |       |
937 		 * V  NVA  V   R
938 		 * |-------|-------|
939 		 */
940 		va->va_start += size;
941 	} else if (type == RE_FIT_TYPE) {
942 		/*
943 		 * Split right edge of fit VA.
944 		 *
945 		 *         |       |
946 		 *     L   V  NVA  V
947 		 * |-------|-------|
948 		 */
949 		va->va_end = nva_start_addr;
950 	} else if (type == NE_FIT_TYPE) {
951 		/*
952 		 * Split no edge of fit VA.
953 		 *
954 		 *     |       |
955 		 *   L V  NVA  V R
956 		 * |---|-------|---|
957 		 */
958 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
959 		if (unlikely(!lva)) {
960 			/*
961 			 * For percpu allocator we do not do any pre-allocation
962 			 * and leave it as it is. The reason is it most likely
963 			 * never ends up with NE_FIT_TYPE splitting. In case of
964 			 * percpu allocations offsets and sizes are aligned to
965 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
966 			 * are its main fitting cases.
967 			 *
968 			 * There are a few exceptions though, as an example it is
969 			 * a first allocation (early boot up) when we have "one"
970 			 * big free space that has to be split.
971 			 */
972 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
973 			if (!lva)
974 				return -1;
975 		}
976 
977 		/*
978 		 * Build the remainder.
979 		 */
980 		lva->va_start = va->va_start;
981 		lva->va_end = nva_start_addr;
982 
983 		/*
984 		 * Shrink this VA to remaining size.
985 		 */
986 		va->va_start = nva_start_addr + size;
987 	} else {
988 		return -1;
989 	}
990 
991 	if (type != FL_FIT_TYPE) {
992 		augment_tree_propagate_from(va);
993 
994 		if (lva)	/* type == NE_FIT_TYPE */
995 			insert_vmap_area_augment(lva, &va->rb_node,
996 				&free_vmap_area_root, &free_vmap_area_list);
997 	}
998 
999 	return 0;
1000 }
1001 
1002 /*
1003  * Returns a start address of the newly allocated area, if success.
1004  * Otherwise a vend is returned that indicates failure.
1005  */
1006 static __always_inline unsigned long
1007 __alloc_vmap_area(unsigned long size, unsigned long align,
1008 	unsigned long vstart, unsigned long vend)
1009 {
1010 	unsigned long nva_start_addr;
1011 	struct vmap_area *va;
1012 	enum fit_type type;
1013 	int ret;
1014 
1015 	va = find_vmap_lowest_match(size, align, vstart);
1016 	if (unlikely(!va))
1017 		return vend;
1018 
1019 	if (va->va_start > vstart)
1020 		nva_start_addr = ALIGN(va->va_start, align);
1021 	else
1022 		nva_start_addr = ALIGN(vstart, align);
1023 
1024 	/* Check the "vend" restriction. */
1025 	if (nva_start_addr + size > vend)
1026 		return vend;
1027 
1028 	/* Classify what we have found. */
1029 	type = classify_va_fit_type(va, nva_start_addr, size);
1030 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1031 		return vend;
1032 
1033 	/* Update the free vmap_area. */
1034 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1035 	if (ret)
1036 		return vend;
1037 
1038 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1039 	find_vmap_lowest_match_check(size);
1040 #endif
1041 
1042 	return nva_start_addr;
1043 }
1044 
1045 /*
1046  * Allocate a region of KVA of the specified size and alignment, within the
1047  * vstart and vend.
1048  */
1049 static struct vmap_area *alloc_vmap_area(unsigned long size,
1050 				unsigned long align,
1051 				unsigned long vstart, unsigned long vend,
1052 				int node, gfp_t gfp_mask)
1053 {
1054 	struct vmap_area *va, *pva;
1055 	unsigned long addr;
1056 	int purged = 0;
1057 
1058 	BUG_ON(!size);
1059 	BUG_ON(offset_in_page(size));
1060 	BUG_ON(!is_power_of_2(align));
1061 
1062 	if (unlikely(!vmap_initialized))
1063 		return ERR_PTR(-EBUSY);
1064 
1065 	might_sleep();
1066 
1067 	va = kmem_cache_alloc_node(vmap_area_cachep,
1068 			gfp_mask & GFP_RECLAIM_MASK, node);
1069 	if (unlikely(!va))
1070 		return ERR_PTR(-ENOMEM);
1071 
1072 	/*
1073 	 * Only scan the relevant parts containing pointers to other objects
1074 	 * to avoid false negatives.
1075 	 */
1076 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
1077 
1078 retry:
1079 	/*
1080 	 * Preload this CPU with one extra vmap_area object to ensure
1081 	 * that we have it available when fit type of free area is
1082 	 * NE_FIT_TYPE.
1083 	 *
1084 	 * The preload is done in non-atomic context, thus it allows us
1085 	 * to use more permissive allocation masks to be more stable under
1086 	 * low memory condition and high memory pressure.
1087 	 *
1088 	 * Even if it fails we do not really care about that. Just proceed
1089 	 * as it is. "overflow" path will refill the cache we allocate from.
1090 	 */
1091 	preempt_disable();
1092 	if (!__this_cpu_read(ne_fit_preload_node)) {
1093 		preempt_enable();
1094 		pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node);
1095 		preempt_disable();
1096 
1097 		if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) {
1098 			if (pva)
1099 				kmem_cache_free(vmap_area_cachep, pva);
1100 		}
1101 	}
1102 
1103 	spin_lock(&vmap_area_lock);
1104 	preempt_enable();
1105 
1106 	/*
1107 	 * If an allocation fails, the "vend" address is
1108 	 * returned. Therefore trigger the overflow path.
1109 	 */
1110 	addr = __alloc_vmap_area(size, align, vstart, vend);
1111 	if (unlikely(addr == vend))
1112 		goto overflow;
1113 
1114 	va->va_start = addr;
1115 	va->va_end = addr + size;
1116 	va->vm = NULL;
1117 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1118 
1119 	spin_unlock(&vmap_area_lock);
1120 
1121 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1122 	BUG_ON(va->va_start < vstart);
1123 	BUG_ON(va->va_end > vend);
1124 
1125 	return va;
1126 
1127 overflow:
1128 	spin_unlock(&vmap_area_lock);
1129 	if (!purged) {
1130 		purge_vmap_area_lazy();
1131 		purged = 1;
1132 		goto retry;
1133 	}
1134 
1135 	if (gfpflags_allow_blocking(gfp_mask)) {
1136 		unsigned long freed = 0;
1137 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1138 		if (freed > 0) {
1139 			purged = 0;
1140 			goto retry;
1141 		}
1142 	}
1143 
1144 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1145 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1146 			size);
1147 
1148 	kmem_cache_free(vmap_area_cachep, va);
1149 	return ERR_PTR(-EBUSY);
1150 }
1151 
1152 int register_vmap_purge_notifier(struct notifier_block *nb)
1153 {
1154 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1155 }
1156 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1157 
1158 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1159 {
1160 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1161 }
1162 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1163 
1164 static void __free_vmap_area(struct vmap_area *va)
1165 {
1166 	/*
1167 	 * Remove from the busy tree/list.
1168 	 */
1169 	unlink_va(va, &vmap_area_root);
1170 
1171 	/*
1172 	 * Merge VA with its neighbors, otherwise just add it.
1173 	 */
1174 	merge_or_add_vmap_area(va,
1175 		&free_vmap_area_root, &free_vmap_area_list);
1176 }
1177 
1178 /*
1179  * Free a region of KVA allocated by alloc_vmap_area
1180  */
1181 static void free_vmap_area(struct vmap_area *va)
1182 {
1183 	spin_lock(&vmap_area_lock);
1184 	__free_vmap_area(va);
1185 	spin_unlock(&vmap_area_lock);
1186 }
1187 
1188 /*
1189  * Clear the pagetable entries of a given vmap_area
1190  */
1191 static void unmap_vmap_area(struct vmap_area *va)
1192 {
1193 	vunmap_page_range(va->va_start, va->va_end);
1194 }
1195 
1196 /*
1197  * lazy_max_pages is the maximum amount of virtual address space we gather up
1198  * before attempting to purge with a TLB flush.
1199  *
1200  * There is a tradeoff here: a larger number will cover more kernel page tables
1201  * and take slightly longer to purge, but it will linearly reduce the number of
1202  * global TLB flushes that must be performed. It would seem natural to scale
1203  * this number up linearly with the number of CPUs (because vmapping activity
1204  * could also scale linearly with the number of CPUs), however it is likely
1205  * that in practice, workloads might be constrained in other ways that mean
1206  * vmap activity will not scale linearly with CPUs. Also, I want to be
1207  * conservative and not introduce a big latency on huge systems, so go with
1208  * a less aggressive log scale. It will still be an improvement over the old
1209  * code, and it will be simple to change the scale factor if we find that it
1210  * becomes a problem on bigger systems.
1211  */
1212 static unsigned long lazy_max_pages(void)
1213 {
1214 	unsigned int log;
1215 
1216 	log = fls(num_online_cpus());
1217 
1218 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1219 }
1220 
1221 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1222 
1223 /*
1224  * Serialize vmap purging.  There is no actual criticial section protected
1225  * by this look, but we want to avoid concurrent calls for performance
1226  * reasons and to make the pcpu_get_vm_areas more deterministic.
1227  */
1228 static DEFINE_MUTEX(vmap_purge_lock);
1229 
1230 /* for per-CPU blocks */
1231 static void purge_fragmented_blocks_allcpus(void);
1232 
1233 /*
1234  * called before a call to iounmap() if the caller wants vm_area_struct's
1235  * immediately freed.
1236  */
1237 void set_iounmap_nonlazy(void)
1238 {
1239 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1240 }
1241 
1242 /*
1243  * Purges all lazily-freed vmap areas.
1244  */
1245 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1246 {
1247 	unsigned long resched_threshold;
1248 	struct llist_node *valist;
1249 	struct vmap_area *va;
1250 	struct vmap_area *n_va;
1251 
1252 	lockdep_assert_held(&vmap_purge_lock);
1253 
1254 	valist = llist_del_all(&vmap_purge_list);
1255 	if (unlikely(valist == NULL))
1256 		return false;
1257 
1258 	/*
1259 	 * First make sure the mappings are removed from all page-tables
1260 	 * before they are freed.
1261 	 */
1262 	vmalloc_sync_all();
1263 
1264 	/*
1265 	 * TODO: to calculate a flush range without looping.
1266 	 * The list can be up to lazy_max_pages() elements.
1267 	 */
1268 	llist_for_each_entry(va, valist, purge_list) {
1269 		if (va->va_start < start)
1270 			start = va->va_start;
1271 		if (va->va_end > end)
1272 			end = va->va_end;
1273 	}
1274 
1275 	flush_tlb_kernel_range(start, end);
1276 	resched_threshold = lazy_max_pages() << 1;
1277 
1278 	spin_lock(&vmap_area_lock);
1279 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1280 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1281 
1282 		/*
1283 		 * Finally insert or merge lazily-freed area. It is
1284 		 * detached and there is no need to "unlink" it from
1285 		 * anything.
1286 		 */
1287 		merge_or_add_vmap_area(va,
1288 			&free_vmap_area_root, &free_vmap_area_list);
1289 
1290 		atomic_long_sub(nr, &vmap_lazy_nr);
1291 
1292 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1293 			cond_resched_lock(&vmap_area_lock);
1294 	}
1295 	spin_unlock(&vmap_area_lock);
1296 	return true;
1297 }
1298 
1299 /*
1300  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1301  * is already purging.
1302  */
1303 static void try_purge_vmap_area_lazy(void)
1304 {
1305 	if (mutex_trylock(&vmap_purge_lock)) {
1306 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1307 		mutex_unlock(&vmap_purge_lock);
1308 	}
1309 }
1310 
1311 /*
1312  * Kick off a purge of the outstanding lazy areas.
1313  */
1314 static void purge_vmap_area_lazy(void)
1315 {
1316 	mutex_lock(&vmap_purge_lock);
1317 	purge_fragmented_blocks_allcpus();
1318 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1319 	mutex_unlock(&vmap_purge_lock);
1320 }
1321 
1322 /*
1323  * Free a vmap area, caller ensuring that the area has been unmapped
1324  * and flush_cache_vunmap had been called for the correct range
1325  * previously.
1326  */
1327 static void free_vmap_area_noflush(struct vmap_area *va)
1328 {
1329 	unsigned long nr_lazy;
1330 
1331 	spin_lock(&vmap_area_lock);
1332 	unlink_va(va, &vmap_area_root);
1333 	spin_unlock(&vmap_area_lock);
1334 
1335 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1336 				PAGE_SHIFT, &vmap_lazy_nr);
1337 
1338 	/* After this point, we may free va at any time */
1339 	llist_add(&va->purge_list, &vmap_purge_list);
1340 
1341 	if (unlikely(nr_lazy > lazy_max_pages()))
1342 		try_purge_vmap_area_lazy();
1343 }
1344 
1345 /*
1346  * Free and unmap a vmap area
1347  */
1348 static void free_unmap_vmap_area(struct vmap_area *va)
1349 {
1350 	flush_cache_vunmap(va->va_start, va->va_end);
1351 	unmap_vmap_area(va);
1352 	if (debug_pagealloc_enabled())
1353 		flush_tlb_kernel_range(va->va_start, va->va_end);
1354 
1355 	free_vmap_area_noflush(va);
1356 }
1357 
1358 static struct vmap_area *find_vmap_area(unsigned long addr)
1359 {
1360 	struct vmap_area *va;
1361 
1362 	spin_lock(&vmap_area_lock);
1363 	va = __find_vmap_area(addr);
1364 	spin_unlock(&vmap_area_lock);
1365 
1366 	return va;
1367 }
1368 
1369 /*** Per cpu kva allocator ***/
1370 
1371 /*
1372  * vmap space is limited especially on 32 bit architectures. Ensure there is
1373  * room for at least 16 percpu vmap blocks per CPU.
1374  */
1375 /*
1376  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1377  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1378  * instead (we just need a rough idea)
1379  */
1380 #if BITS_PER_LONG == 32
1381 #define VMALLOC_SPACE		(128UL*1024*1024)
1382 #else
1383 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1384 #endif
1385 
1386 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1387 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1388 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1389 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1390 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1391 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1392 #define VMAP_BBMAP_BITS		\
1393 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1394 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1395 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1396 
1397 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1398 
1399 struct vmap_block_queue {
1400 	spinlock_t lock;
1401 	struct list_head free;
1402 };
1403 
1404 struct vmap_block {
1405 	spinlock_t lock;
1406 	struct vmap_area *va;
1407 	unsigned long free, dirty;
1408 	unsigned long dirty_min, dirty_max; /*< dirty range */
1409 	struct list_head free_list;
1410 	struct rcu_head rcu_head;
1411 	struct list_head purge;
1412 };
1413 
1414 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1415 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1416 
1417 /*
1418  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
1419  * in the free path. Could get rid of this if we change the API to return a
1420  * "cookie" from alloc, to be passed to free. But no big deal yet.
1421  */
1422 static DEFINE_SPINLOCK(vmap_block_tree_lock);
1423 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
1424 
1425 /*
1426  * We should probably have a fallback mechanism to allocate virtual memory
1427  * out of partially filled vmap blocks. However vmap block sizing should be
1428  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1429  * big problem.
1430  */
1431 
1432 static unsigned long addr_to_vb_idx(unsigned long addr)
1433 {
1434 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1435 	addr /= VMAP_BLOCK_SIZE;
1436 	return addr;
1437 }
1438 
1439 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1440 {
1441 	unsigned long addr;
1442 
1443 	addr = va_start + (pages_off << PAGE_SHIFT);
1444 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1445 	return (void *)addr;
1446 }
1447 
1448 /**
1449  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1450  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1451  * @order:    how many 2^order pages should be occupied in newly allocated block
1452  * @gfp_mask: flags for the page level allocator
1453  *
1454  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1455  */
1456 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1457 {
1458 	struct vmap_block_queue *vbq;
1459 	struct vmap_block *vb;
1460 	struct vmap_area *va;
1461 	unsigned long vb_idx;
1462 	int node, err;
1463 	void *vaddr;
1464 
1465 	node = numa_node_id();
1466 
1467 	vb = kmalloc_node(sizeof(struct vmap_block),
1468 			gfp_mask & GFP_RECLAIM_MASK, node);
1469 	if (unlikely(!vb))
1470 		return ERR_PTR(-ENOMEM);
1471 
1472 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1473 					VMALLOC_START, VMALLOC_END,
1474 					node, gfp_mask);
1475 	if (IS_ERR(va)) {
1476 		kfree(vb);
1477 		return ERR_CAST(va);
1478 	}
1479 
1480 	err = radix_tree_preload(gfp_mask);
1481 	if (unlikely(err)) {
1482 		kfree(vb);
1483 		free_vmap_area(va);
1484 		return ERR_PTR(err);
1485 	}
1486 
1487 	vaddr = vmap_block_vaddr(va->va_start, 0);
1488 	spin_lock_init(&vb->lock);
1489 	vb->va = va;
1490 	/* At least something should be left free */
1491 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1492 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1493 	vb->dirty = 0;
1494 	vb->dirty_min = VMAP_BBMAP_BITS;
1495 	vb->dirty_max = 0;
1496 	INIT_LIST_HEAD(&vb->free_list);
1497 
1498 	vb_idx = addr_to_vb_idx(va->va_start);
1499 	spin_lock(&vmap_block_tree_lock);
1500 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
1501 	spin_unlock(&vmap_block_tree_lock);
1502 	BUG_ON(err);
1503 	radix_tree_preload_end();
1504 
1505 	vbq = &get_cpu_var(vmap_block_queue);
1506 	spin_lock(&vbq->lock);
1507 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1508 	spin_unlock(&vbq->lock);
1509 	put_cpu_var(vmap_block_queue);
1510 
1511 	return vaddr;
1512 }
1513 
1514 static void free_vmap_block(struct vmap_block *vb)
1515 {
1516 	struct vmap_block *tmp;
1517 	unsigned long vb_idx;
1518 
1519 	vb_idx = addr_to_vb_idx(vb->va->va_start);
1520 	spin_lock(&vmap_block_tree_lock);
1521 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
1522 	spin_unlock(&vmap_block_tree_lock);
1523 	BUG_ON(tmp != vb);
1524 
1525 	free_vmap_area_noflush(vb->va);
1526 	kfree_rcu(vb, rcu_head);
1527 }
1528 
1529 static void purge_fragmented_blocks(int cpu)
1530 {
1531 	LIST_HEAD(purge);
1532 	struct vmap_block *vb;
1533 	struct vmap_block *n_vb;
1534 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1535 
1536 	rcu_read_lock();
1537 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1538 
1539 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1540 			continue;
1541 
1542 		spin_lock(&vb->lock);
1543 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1544 			vb->free = 0; /* prevent further allocs after releasing lock */
1545 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1546 			vb->dirty_min = 0;
1547 			vb->dirty_max = VMAP_BBMAP_BITS;
1548 			spin_lock(&vbq->lock);
1549 			list_del_rcu(&vb->free_list);
1550 			spin_unlock(&vbq->lock);
1551 			spin_unlock(&vb->lock);
1552 			list_add_tail(&vb->purge, &purge);
1553 		} else
1554 			spin_unlock(&vb->lock);
1555 	}
1556 	rcu_read_unlock();
1557 
1558 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1559 		list_del(&vb->purge);
1560 		free_vmap_block(vb);
1561 	}
1562 }
1563 
1564 static void purge_fragmented_blocks_allcpus(void)
1565 {
1566 	int cpu;
1567 
1568 	for_each_possible_cpu(cpu)
1569 		purge_fragmented_blocks(cpu);
1570 }
1571 
1572 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1573 {
1574 	struct vmap_block_queue *vbq;
1575 	struct vmap_block *vb;
1576 	void *vaddr = NULL;
1577 	unsigned int order;
1578 
1579 	BUG_ON(offset_in_page(size));
1580 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1581 	if (WARN_ON(size == 0)) {
1582 		/*
1583 		 * Allocating 0 bytes isn't what caller wants since
1584 		 * get_order(0) returns funny result. Just warn and terminate
1585 		 * early.
1586 		 */
1587 		return NULL;
1588 	}
1589 	order = get_order(size);
1590 
1591 	rcu_read_lock();
1592 	vbq = &get_cpu_var(vmap_block_queue);
1593 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1594 		unsigned long pages_off;
1595 
1596 		spin_lock(&vb->lock);
1597 		if (vb->free < (1UL << order)) {
1598 			spin_unlock(&vb->lock);
1599 			continue;
1600 		}
1601 
1602 		pages_off = VMAP_BBMAP_BITS - vb->free;
1603 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1604 		vb->free -= 1UL << order;
1605 		if (vb->free == 0) {
1606 			spin_lock(&vbq->lock);
1607 			list_del_rcu(&vb->free_list);
1608 			spin_unlock(&vbq->lock);
1609 		}
1610 
1611 		spin_unlock(&vb->lock);
1612 		break;
1613 	}
1614 
1615 	put_cpu_var(vmap_block_queue);
1616 	rcu_read_unlock();
1617 
1618 	/* Allocate new block if nothing was found */
1619 	if (!vaddr)
1620 		vaddr = new_vmap_block(order, gfp_mask);
1621 
1622 	return vaddr;
1623 }
1624 
1625 static void vb_free(const void *addr, unsigned long size)
1626 {
1627 	unsigned long offset;
1628 	unsigned long vb_idx;
1629 	unsigned int order;
1630 	struct vmap_block *vb;
1631 
1632 	BUG_ON(offset_in_page(size));
1633 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1634 
1635 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1636 
1637 	order = get_order(size);
1638 
1639 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1640 	offset >>= PAGE_SHIFT;
1641 
1642 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1643 	rcu_read_lock();
1644 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1645 	rcu_read_unlock();
1646 	BUG_ON(!vb);
1647 
1648 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1649 
1650 	if (debug_pagealloc_enabled())
1651 		flush_tlb_kernel_range((unsigned long)addr,
1652 					(unsigned long)addr + size);
1653 
1654 	spin_lock(&vb->lock);
1655 
1656 	/* Expand dirty range */
1657 	vb->dirty_min = min(vb->dirty_min, offset);
1658 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1659 
1660 	vb->dirty += 1UL << order;
1661 	if (vb->dirty == VMAP_BBMAP_BITS) {
1662 		BUG_ON(vb->free);
1663 		spin_unlock(&vb->lock);
1664 		free_vmap_block(vb);
1665 	} else
1666 		spin_unlock(&vb->lock);
1667 }
1668 
1669 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1670 {
1671 	int cpu;
1672 
1673 	if (unlikely(!vmap_initialized))
1674 		return;
1675 
1676 	might_sleep();
1677 
1678 	for_each_possible_cpu(cpu) {
1679 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1680 		struct vmap_block *vb;
1681 
1682 		rcu_read_lock();
1683 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1684 			spin_lock(&vb->lock);
1685 			if (vb->dirty) {
1686 				unsigned long va_start = vb->va->va_start;
1687 				unsigned long s, e;
1688 
1689 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1690 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1691 
1692 				start = min(s, start);
1693 				end   = max(e, end);
1694 
1695 				flush = 1;
1696 			}
1697 			spin_unlock(&vb->lock);
1698 		}
1699 		rcu_read_unlock();
1700 	}
1701 
1702 	mutex_lock(&vmap_purge_lock);
1703 	purge_fragmented_blocks_allcpus();
1704 	if (!__purge_vmap_area_lazy(start, end) && flush)
1705 		flush_tlb_kernel_range(start, end);
1706 	mutex_unlock(&vmap_purge_lock);
1707 }
1708 
1709 /**
1710  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1711  *
1712  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1713  * to amortize TLB flushing overheads. What this means is that any page you
1714  * have now, may, in a former life, have been mapped into kernel virtual
1715  * address by the vmap layer and so there might be some CPUs with TLB entries
1716  * still referencing that page (additional to the regular 1:1 kernel mapping).
1717  *
1718  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1719  * be sure that none of the pages we have control over will have any aliases
1720  * from the vmap layer.
1721  */
1722 void vm_unmap_aliases(void)
1723 {
1724 	unsigned long start = ULONG_MAX, end = 0;
1725 	int flush = 0;
1726 
1727 	_vm_unmap_aliases(start, end, flush);
1728 }
1729 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1730 
1731 /**
1732  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1733  * @mem: the pointer returned by vm_map_ram
1734  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1735  */
1736 void vm_unmap_ram(const void *mem, unsigned int count)
1737 {
1738 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1739 	unsigned long addr = (unsigned long)mem;
1740 	struct vmap_area *va;
1741 
1742 	might_sleep();
1743 	BUG_ON(!addr);
1744 	BUG_ON(addr < VMALLOC_START);
1745 	BUG_ON(addr > VMALLOC_END);
1746 	BUG_ON(!PAGE_ALIGNED(addr));
1747 
1748 	if (likely(count <= VMAP_MAX_ALLOC)) {
1749 		debug_check_no_locks_freed(mem, size);
1750 		vb_free(mem, size);
1751 		return;
1752 	}
1753 
1754 	va = find_vmap_area(addr);
1755 	BUG_ON(!va);
1756 	debug_check_no_locks_freed((void *)va->va_start,
1757 				    (va->va_end - va->va_start));
1758 	free_unmap_vmap_area(va);
1759 }
1760 EXPORT_SYMBOL(vm_unmap_ram);
1761 
1762 /**
1763  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1764  * @pages: an array of pointers to the pages to be mapped
1765  * @count: number of pages
1766  * @node: prefer to allocate data structures on this node
1767  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1768  *
1769  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1770  * faster than vmap so it's good.  But if you mix long-life and short-life
1771  * objects with vm_map_ram(), it could consume lots of address space through
1772  * fragmentation (especially on a 32bit machine).  You could see failures in
1773  * the end.  Please use this function for short-lived objects.
1774  *
1775  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1776  */
1777 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1778 {
1779 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1780 	unsigned long addr;
1781 	void *mem;
1782 
1783 	if (likely(count <= VMAP_MAX_ALLOC)) {
1784 		mem = vb_alloc(size, GFP_KERNEL);
1785 		if (IS_ERR(mem))
1786 			return NULL;
1787 		addr = (unsigned long)mem;
1788 	} else {
1789 		struct vmap_area *va;
1790 		va = alloc_vmap_area(size, PAGE_SIZE,
1791 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1792 		if (IS_ERR(va))
1793 			return NULL;
1794 
1795 		addr = va->va_start;
1796 		mem = (void *)addr;
1797 	}
1798 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1799 		vm_unmap_ram(mem, count);
1800 		return NULL;
1801 	}
1802 	return mem;
1803 }
1804 EXPORT_SYMBOL(vm_map_ram);
1805 
1806 static struct vm_struct *vmlist __initdata;
1807 
1808 /**
1809  * vm_area_add_early - add vmap area early during boot
1810  * @vm: vm_struct to add
1811  *
1812  * This function is used to add fixed kernel vm area to vmlist before
1813  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1814  * should contain proper values and the other fields should be zero.
1815  *
1816  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1817  */
1818 void __init vm_area_add_early(struct vm_struct *vm)
1819 {
1820 	struct vm_struct *tmp, **p;
1821 
1822 	BUG_ON(vmap_initialized);
1823 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1824 		if (tmp->addr >= vm->addr) {
1825 			BUG_ON(tmp->addr < vm->addr + vm->size);
1826 			break;
1827 		} else
1828 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1829 	}
1830 	vm->next = *p;
1831 	*p = vm;
1832 }
1833 
1834 /**
1835  * vm_area_register_early - register vmap area early during boot
1836  * @vm: vm_struct to register
1837  * @align: requested alignment
1838  *
1839  * This function is used to register kernel vm area before
1840  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1841  * proper values on entry and other fields should be zero.  On return,
1842  * vm->addr contains the allocated address.
1843  *
1844  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1845  */
1846 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1847 {
1848 	static size_t vm_init_off __initdata;
1849 	unsigned long addr;
1850 
1851 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1852 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1853 
1854 	vm->addr = (void *)addr;
1855 
1856 	vm_area_add_early(vm);
1857 }
1858 
1859 static void vmap_init_free_space(void)
1860 {
1861 	unsigned long vmap_start = 1;
1862 	const unsigned long vmap_end = ULONG_MAX;
1863 	struct vmap_area *busy, *free;
1864 
1865 	/*
1866 	 *     B     F     B     B     B     F
1867 	 * -|-----|.....|-----|-----|-----|.....|-
1868 	 *  |           The KVA space           |
1869 	 *  |<--------------------------------->|
1870 	 */
1871 	list_for_each_entry(busy, &vmap_area_list, list) {
1872 		if (busy->va_start - vmap_start > 0) {
1873 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1874 			if (!WARN_ON_ONCE(!free)) {
1875 				free->va_start = vmap_start;
1876 				free->va_end = busy->va_start;
1877 
1878 				insert_vmap_area_augment(free, NULL,
1879 					&free_vmap_area_root,
1880 						&free_vmap_area_list);
1881 			}
1882 		}
1883 
1884 		vmap_start = busy->va_end;
1885 	}
1886 
1887 	if (vmap_end - vmap_start > 0) {
1888 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1889 		if (!WARN_ON_ONCE(!free)) {
1890 			free->va_start = vmap_start;
1891 			free->va_end = vmap_end;
1892 
1893 			insert_vmap_area_augment(free, NULL,
1894 				&free_vmap_area_root,
1895 					&free_vmap_area_list);
1896 		}
1897 	}
1898 }
1899 
1900 void __init vmalloc_init(void)
1901 {
1902 	struct vmap_area *va;
1903 	struct vm_struct *tmp;
1904 	int i;
1905 
1906 	/*
1907 	 * Create the cache for vmap_area objects.
1908 	 */
1909 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1910 
1911 	for_each_possible_cpu(i) {
1912 		struct vmap_block_queue *vbq;
1913 		struct vfree_deferred *p;
1914 
1915 		vbq = &per_cpu(vmap_block_queue, i);
1916 		spin_lock_init(&vbq->lock);
1917 		INIT_LIST_HEAD(&vbq->free);
1918 		p = &per_cpu(vfree_deferred, i);
1919 		init_llist_head(&p->list);
1920 		INIT_WORK(&p->wq, free_work);
1921 	}
1922 
1923 	/* Import existing vmlist entries. */
1924 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1925 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1926 		if (WARN_ON_ONCE(!va))
1927 			continue;
1928 
1929 		va->va_start = (unsigned long)tmp->addr;
1930 		va->va_end = va->va_start + tmp->size;
1931 		va->vm = tmp;
1932 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1933 	}
1934 
1935 	/*
1936 	 * Now we can initialize a free vmap space.
1937 	 */
1938 	vmap_init_free_space();
1939 	vmap_initialized = true;
1940 }
1941 
1942 /**
1943  * map_kernel_range_noflush - map kernel VM area with the specified pages
1944  * @addr: start of the VM area to map
1945  * @size: size of the VM area to map
1946  * @prot: page protection flags to use
1947  * @pages: pages to map
1948  *
1949  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1950  * specify should have been allocated using get_vm_area() and its
1951  * friends.
1952  *
1953  * NOTE:
1954  * This function does NOT do any cache flushing.  The caller is
1955  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1956  * before calling this function.
1957  *
1958  * RETURNS:
1959  * The number of pages mapped on success, -errno on failure.
1960  */
1961 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1962 			     pgprot_t prot, struct page **pages)
1963 {
1964 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1965 }
1966 
1967 /**
1968  * unmap_kernel_range_noflush - unmap kernel VM area
1969  * @addr: start of the VM area to unmap
1970  * @size: size of the VM area to unmap
1971  *
1972  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1973  * specify should have been allocated using get_vm_area() and its
1974  * friends.
1975  *
1976  * NOTE:
1977  * This function does NOT do any cache flushing.  The caller is
1978  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1979  * before calling this function and flush_tlb_kernel_range() after.
1980  */
1981 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1982 {
1983 	vunmap_page_range(addr, addr + size);
1984 }
1985 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1986 
1987 /**
1988  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1989  * @addr: start of the VM area to unmap
1990  * @size: size of the VM area to unmap
1991  *
1992  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1993  * the unmapping and tlb after.
1994  */
1995 void unmap_kernel_range(unsigned long addr, unsigned long size)
1996 {
1997 	unsigned long end = addr + size;
1998 
1999 	flush_cache_vunmap(addr, end);
2000 	vunmap_page_range(addr, end);
2001 	flush_tlb_kernel_range(addr, end);
2002 }
2003 EXPORT_SYMBOL_GPL(unmap_kernel_range);
2004 
2005 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
2006 {
2007 	unsigned long addr = (unsigned long)area->addr;
2008 	unsigned long end = addr + get_vm_area_size(area);
2009 	int err;
2010 
2011 	err = vmap_page_range(addr, end, prot, pages);
2012 
2013 	return err > 0 ? 0 : err;
2014 }
2015 EXPORT_SYMBOL_GPL(map_vm_area);
2016 
2017 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2018 			      unsigned long flags, const void *caller)
2019 {
2020 	spin_lock(&vmap_area_lock);
2021 	vm->flags = flags;
2022 	vm->addr = (void *)va->va_start;
2023 	vm->size = va->va_end - va->va_start;
2024 	vm->caller = caller;
2025 	va->vm = vm;
2026 	spin_unlock(&vmap_area_lock);
2027 }
2028 
2029 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2030 {
2031 	/*
2032 	 * Before removing VM_UNINITIALIZED,
2033 	 * we should make sure that vm has proper values.
2034 	 * Pair with smp_rmb() in show_numa_info().
2035 	 */
2036 	smp_wmb();
2037 	vm->flags &= ~VM_UNINITIALIZED;
2038 }
2039 
2040 static struct vm_struct *__get_vm_area_node(unsigned long size,
2041 		unsigned long align, unsigned long flags, unsigned long start,
2042 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2043 {
2044 	struct vmap_area *va;
2045 	struct vm_struct *area;
2046 
2047 	BUG_ON(in_interrupt());
2048 	size = PAGE_ALIGN(size);
2049 	if (unlikely(!size))
2050 		return NULL;
2051 
2052 	if (flags & VM_IOREMAP)
2053 		align = 1ul << clamp_t(int, get_count_order_long(size),
2054 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2055 
2056 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2057 	if (unlikely(!area))
2058 		return NULL;
2059 
2060 	if (!(flags & VM_NO_GUARD))
2061 		size += PAGE_SIZE;
2062 
2063 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2064 	if (IS_ERR(va)) {
2065 		kfree(area);
2066 		return NULL;
2067 	}
2068 
2069 	setup_vmalloc_vm(area, va, flags, caller);
2070 
2071 	return area;
2072 }
2073 
2074 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
2075 				unsigned long start, unsigned long end)
2076 {
2077 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2078 				  GFP_KERNEL, __builtin_return_address(0));
2079 }
2080 EXPORT_SYMBOL_GPL(__get_vm_area);
2081 
2082 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2083 				       unsigned long start, unsigned long end,
2084 				       const void *caller)
2085 {
2086 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2087 				  GFP_KERNEL, caller);
2088 }
2089 
2090 /**
2091  * get_vm_area - reserve a contiguous kernel virtual area
2092  * @size:	 size of the area
2093  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2094  *
2095  * Search an area of @size in the kernel virtual mapping area,
2096  * and reserved it for out purposes.  Returns the area descriptor
2097  * on success or %NULL on failure.
2098  *
2099  * Return: the area descriptor on success or %NULL on failure.
2100  */
2101 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2102 {
2103 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2104 				  NUMA_NO_NODE, GFP_KERNEL,
2105 				  __builtin_return_address(0));
2106 }
2107 
2108 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2109 				const void *caller)
2110 {
2111 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2112 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2113 }
2114 
2115 /**
2116  * find_vm_area - find a continuous kernel virtual area
2117  * @addr:	  base address
2118  *
2119  * Search for the kernel VM area starting at @addr, and return it.
2120  * It is up to the caller to do all required locking to keep the returned
2121  * pointer valid.
2122  *
2123  * Return: pointer to the found area or %NULL on faulure
2124  */
2125 struct vm_struct *find_vm_area(const void *addr)
2126 {
2127 	struct vmap_area *va;
2128 
2129 	va = find_vmap_area((unsigned long)addr);
2130 	if (!va)
2131 		return NULL;
2132 
2133 	return va->vm;
2134 }
2135 
2136 /**
2137  * remove_vm_area - find and remove a continuous kernel virtual area
2138  * @addr:	    base address
2139  *
2140  * Search for the kernel VM area starting at @addr, and remove it.
2141  * This function returns the found VM area, but using it is NOT safe
2142  * on SMP machines, except for its size or flags.
2143  *
2144  * Return: pointer to the found area or %NULL on faulure
2145  */
2146 struct vm_struct *remove_vm_area(const void *addr)
2147 {
2148 	struct vmap_area *va;
2149 
2150 	might_sleep();
2151 
2152 	spin_lock(&vmap_area_lock);
2153 	va = __find_vmap_area((unsigned long)addr);
2154 	if (va && va->vm) {
2155 		struct vm_struct *vm = va->vm;
2156 
2157 		va->vm = NULL;
2158 		spin_unlock(&vmap_area_lock);
2159 
2160 		kasan_free_shadow(vm);
2161 		free_unmap_vmap_area(va);
2162 
2163 		return vm;
2164 	}
2165 
2166 	spin_unlock(&vmap_area_lock);
2167 	return NULL;
2168 }
2169 
2170 static inline void set_area_direct_map(const struct vm_struct *area,
2171 				       int (*set_direct_map)(struct page *page))
2172 {
2173 	int i;
2174 
2175 	for (i = 0; i < area->nr_pages; i++)
2176 		if (page_address(area->pages[i]))
2177 			set_direct_map(area->pages[i]);
2178 }
2179 
2180 /* Handle removing and resetting vm mappings related to the vm_struct. */
2181 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2182 {
2183 	unsigned long start = ULONG_MAX, end = 0;
2184 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2185 	int flush_dmap = 0;
2186 	int i;
2187 
2188 	remove_vm_area(area->addr);
2189 
2190 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2191 	if (!flush_reset)
2192 		return;
2193 
2194 	/*
2195 	 * If not deallocating pages, just do the flush of the VM area and
2196 	 * return.
2197 	 */
2198 	if (!deallocate_pages) {
2199 		vm_unmap_aliases();
2200 		return;
2201 	}
2202 
2203 	/*
2204 	 * If execution gets here, flush the vm mapping and reset the direct
2205 	 * map. Find the start and end range of the direct mappings to make sure
2206 	 * the vm_unmap_aliases() flush includes the direct map.
2207 	 */
2208 	for (i = 0; i < area->nr_pages; i++) {
2209 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2210 		if (addr) {
2211 			start = min(addr, start);
2212 			end = max(addr + PAGE_SIZE, end);
2213 			flush_dmap = 1;
2214 		}
2215 	}
2216 
2217 	/*
2218 	 * Set direct map to something invalid so that it won't be cached if
2219 	 * there are any accesses after the TLB flush, then flush the TLB and
2220 	 * reset the direct map permissions to the default.
2221 	 */
2222 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2223 	_vm_unmap_aliases(start, end, flush_dmap);
2224 	set_area_direct_map(area, set_direct_map_default_noflush);
2225 }
2226 
2227 static void __vunmap(const void *addr, int deallocate_pages)
2228 {
2229 	struct vm_struct *area;
2230 
2231 	if (!addr)
2232 		return;
2233 
2234 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2235 			addr))
2236 		return;
2237 
2238 	area = find_vm_area(addr);
2239 	if (unlikely(!area)) {
2240 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2241 				addr);
2242 		return;
2243 	}
2244 
2245 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2246 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2247 
2248 	vm_remove_mappings(area, deallocate_pages);
2249 
2250 	if (deallocate_pages) {
2251 		int i;
2252 
2253 		for (i = 0; i < area->nr_pages; i++) {
2254 			struct page *page = area->pages[i];
2255 
2256 			BUG_ON(!page);
2257 			__free_pages(page, 0);
2258 		}
2259 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2260 
2261 		kvfree(area->pages);
2262 	}
2263 
2264 	kfree(area);
2265 	return;
2266 }
2267 
2268 static inline void __vfree_deferred(const void *addr)
2269 {
2270 	/*
2271 	 * Use raw_cpu_ptr() because this can be called from preemptible
2272 	 * context. Preemption is absolutely fine here, because the llist_add()
2273 	 * implementation is lockless, so it works even if we are adding to
2274 	 * nother cpu's list.  schedule_work() should be fine with this too.
2275 	 */
2276 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2277 
2278 	if (llist_add((struct llist_node *)addr, &p->list))
2279 		schedule_work(&p->wq);
2280 }
2281 
2282 /**
2283  * vfree_atomic - release memory allocated by vmalloc()
2284  * @addr:	  memory base address
2285  *
2286  * This one is just like vfree() but can be called in any atomic context
2287  * except NMIs.
2288  */
2289 void vfree_atomic(const void *addr)
2290 {
2291 	BUG_ON(in_nmi());
2292 
2293 	kmemleak_free(addr);
2294 
2295 	if (!addr)
2296 		return;
2297 	__vfree_deferred(addr);
2298 }
2299 
2300 static void __vfree(const void *addr)
2301 {
2302 	if (unlikely(in_interrupt()))
2303 		__vfree_deferred(addr);
2304 	else
2305 		__vunmap(addr, 1);
2306 }
2307 
2308 /**
2309  * vfree - release memory allocated by vmalloc()
2310  * @addr:  memory base address
2311  *
2312  * Free the virtually continuous memory area starting at @addr, as
2313  * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
2314  * NULL, no operation is performed.
2315  *
2316  * Must not be called in NMI context (strictly speaking, only if we don't
2317  * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2318  * conventions for vfree() arch-depenedent would be a really bad idea)
2319  *
2320  * May sleep if called *not* from interrupt context.
2321  *
2322  * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
2323  */
2324 void vfree(const void *addr)
2325 {
2326 	BUG_ON(in_nmi());
2327 
2328 	kmemleak_free(addr);
2329 
2330 	might_sleep_if(!in_interrupt());
2331 
2332 	if (!addr)
2333 		return;
2334 
2335 	__vfree(addr);
2336 }
2337 EXPORT_SYMBOL(vfree);
2338 
2339 /**
2340  * vunmap - release virtual mapping obtained by vmap()
2341  * @addr:   memory base address
2342  *
2343  * Free the virtually contiguous memory area starting at @addr,
2344  * which was created from the page array passed to vmap().
2345  *
2346  * Must not be called in interrupt context.
2347  */
2348 void vunmap(const void *addr)
2349 {
2350 	BUG_ON(in_interrupt());
2351 	might_sleep();
2352 	if (addr)
2353 		__vunmap(addr, 0);
2354 }
2355 EXPORT_SYMBOL(vunmap);
2356 
2357 /**
2358  * vmap - map an array of pages into virtually contiguous space
2359  * @pages: array of page pointers
2360  * @count: number of pages to map
2361  * @flags: vm_area->flags
2362  * @prot: page protection for the mapping
2363  *
2364  * Maps @count pages from @pages into contiguous kernel virtual
2365  * space.
2366  *
2367  * Return: the address of the area or %NULL on failure
2368  */
2369 void *vmap(struct page **pages, unsigned int count,
2370 	   unsigned long flags, pgprot_t prot)
2371 {
2372 	struct vm_struct *area;
2373 	unsigned long size;		/* In bytes */
2374 
2375 	might_sleep();
2376 
2377 	if (count > totalram_pages())
2378 		return NULL;
2379 
2380 	size = (unsigned long)count << PAGE_SHIFT;
2381 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2382 	if (!area)
2383 		return NULL;
2384 
2385 	if (map_vm_area(area, prot, pages)) {
2386 		vunmap(area->addr);
2387 		return NULL;
2388 	}
2389 
2390 	return area->addr;
2391 }
2392 EXPORT_SYMBOL(vmap);
2393 
2394 static void *__vmalloc_node(unsigned long size, unsigned long align,
2395 			    gfp_t gfp_mask, pgprot_t prot,
2396 			    int node, const void *caller);
2397 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2398 				 pgprot_t prot, int node)
2399 {
2400 	struct page **pages;
2401 	unsigned int nr_pages, array_size, i;
2402 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2403 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
2404 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
2405 					0 :
2406 					__GFP_HIGHMEM;
2407 
2408 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2409 	array_size = (nr_pages * sizeof(struct page *));
2410 
2411 	/* Please note that the recursion is strictly bounded. */
2412 	if (array_size > PAGE_SIZE) {
2413 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
2414 				PAGE_KERNEL, node, area->caller);
2415 	} else {
2416 		pages = kmalloc_node(array_size, nested_gfp, node);
2417 	}
2418 
2419 	if (!pages) {
2420 		remove_vm_area(area->addr);
2421 		kfree(area);
2422 		return NULL;
2423 	}
2424 
2425 	area->pages = pages;
2426 	area->nr_pages = nr_pages;
2427 
2428 	for (i = 0; i < area->nr_pages; i++) {
2429 		struct page *page;
2430 
2431 		if (node == NUMA_NO_NODE)
2432 			page = alloc_page(alloc_mask|highmem_mask);
2433 		else
2434 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
2435 
2436 		if (unlikely(!page)) {
2437 			/* Successfully allocated i pages, free them in __vunmap() */
2438 			area->nr_pages = i;
2439 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2440 			goto fail;
2441 		}
2442 		area->pages[i] = page;
2443 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
2444 			cond_resched();
2445 	}
2446 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2447 
2448 	if (map_vm_area(area, prot, pages))
2449 		goto fail;
2450 	return area->addr;
2451 
2452 fail:
2453 	warn_alloc(gfp_mask, NULL,
2454 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2455 			  (area->nr_pages*PAGE_SIZE), area->size);
2456 	__vfree(area->addr);
2457 	return NULL;
2458 }
2459 
2460 /**
2461  * __vmalloc_node_range - allocate virtually contiguous memory
2462  * @size:		  allocation size
2463  * @align:		  desired alignment
2464  * @start:		  vm area range start
2465  * @end:		  vm area range end
2466  * @gfp_mask:		  flags for the page level allocator
2467  * @prot:		  protection mask for the allocated pages
2468  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2469  * @node:		  node to use for allocation or NUMA_NO_NODE
2470  * @caller:		  caller's return address
2471  *
2472  * Allocate enough pages to cover @size from the page level
2473  * allocator with @gfp_mask flags.  Map them into contiguous
2474  * kernel virtual space, using a pagetable protection of @prot.
2475  *
2476  * Return: the address of the area or %NULL on failure
2477  */
2478 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2479 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2480 			pgprot_t prot, unsigned long vm_flags, int node,
2481 			const void *caller)
2482 {
2483 	struct vm_struct *area;
2484 	void *addr;
2485 	unsigned long real_size = size;
2486 
2487 	size = PAGE_ALIGN(size);
2488 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2489 		goto fail;
2490 
2491 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
2492 				vm_flags, start, end, node, gfp_mask, caller);
2493 	if (!area)
2494 		goto fail;
2495 
2496 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2497 	if (!addr)
2498 		return NULL;
2499 
2500 	/*
2501 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2502 	 * flag. It means that vm_struct is not fully initialized.
2503 	 * Now, it is fully initialized, so remove this flag here.
2504 	 */
2505 	clear_vm_uninitialized_flag(area);
2506 
2507 	kmemleak_vmalloc(area, size, gfp_mask);
2508 
2509 	return addr;
2510 
2511 fail:
2512 	warn_alloc(gfp_mask, NULL,
2513 			  "vmalloc: allocation failure: %lu bytes", real_size);
2514 	return NULL;
2515 }
2516 
2517 /*
2518  * This is only for performance analysis of vmalloc and stress purpose.
2519  * It is required by vmalloc test module, therefore do not use it other
2520  * than that.
2521  */
2522 #ifdef CONFIG_TEST_VMALLOC_MODULE
2523 EXPORT_SYMBOL_GPL(__vmalloc_node_range);
2524 #endif
2525 
2526 /**
2527  * __vmalloc_node - allocate virtually contiguous memory
2528  * @size:	    allocation size
2529  * @align:	    desired alignment
2530  * @gfp_mask:	    flags for the page level allocator
2531  * @prot:	    protection mask for the allocated pages
2532  * @node:	    node to use for allocation or NUMA_NO_NODE
2533  * @caller:	    caller's return address
2534  *
2535  * Allocate enough pages to cover @size from the page level
2536  * allocator with @gfp_mask flags.  Map them into contiguous
2537  * kernel virtual space, using a pagetable protection of @prot.
2538  *
2539  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2540  * and __GFP_NOFAIL are not supported
2541  *
2542  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2543  * with mm people.
2544  *
2545  * Return: pointer to the allocated memory or %NULL on error
2546  */
2547 static void *__vmalloc_node(unsigned long size, unsigned long align,
2548 			    gfp_t gfp_mask, pgprot_t prot,
2549 			    int node, const void *caller)
2550 {
2551 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2552 				gfp_mask, prot, 0, node, caller);
2553 }
2554 
2555 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
2556 {
2557 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
2558 				__builtin_return_address(0));
2559 }
2560 EXPORT_SYMBOL(__vmalloc);
2561 
2562 static inline void *__vmalloc_node_flags(unsigned long size,
2563 					int node, gfp_t flags)
2564 {
2565 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
2566 					node, __builtin_return_address(0));
2567 }
2568 
2569 
2570 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
2571 				  void *caller)
2572 {
2573 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
2574 }
2575 
2576 /**
2577  * vmalloc - allocate virtually contiguous memory
2578  * @size:    allocation size
2579  *
2580  * Allocate enough pages to cover @size from the page level
2581  * allocator and map them into contiguous kernel virtual space.
2582  *
2583  * For tight control over page level allocator and protection flags
2584  * use __vmalloc() instead.
2585  *
2586  * Return: pointer to the allocated memory or %NULL on error
2587  */
2588 void *vmalloc(unsigned long size)
2589 {
2590 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2591 				    GFP_KERNEL);
2592 }
2593 EXPORT_SYMBOL(vmalloc);
2594 
2595 /**
2596  * vzalloc - allocate virtually contiguous memory with zero fill
2597  * @size:    allocation size
2598  *
2599  * Allocate enough pages to cover @size from the page level
2600  * allocator and map them into contiguous kernel virtual space.
2601  * The memory allocated is set to zero.
2602  *
2603  * For tight control over page level allocator and protection flags
2604  * use __vmalloc() instead.
2605  *
2606  * Return: pointer to the allocated memory or %NULL on error
2607  */
2608 void *vzalloc(unsigned long size)
2609 {
2610 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
2611 				GFP_KERNEL | __GFP_ZERO);
2612 }
2613 EXPORT_SYMBOL(vzalloc);
2614 
2615 /**
2616  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2617  * @size: allocation size
2618  *
2619  * The resulting memory area is zeroed so it can be mapped to userspace
2620  * without leaking data.
2621  *
2622  * Return: pointer to the allocated memory or %NULL on error
2623  */
2624 void *vmalloc_user(unsigned long size)
2625 {
2626 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2627 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2628 				    VM_USERMAP, NUMA_NO_NODE,
2629 				    __builtin_return_address(0));
2630 }
2631 EXPORT_SYMBOL(vmalloc_user);
2632 
2633 /**
2634  * vmalloc_node - allocate memory on a specific node
2635  * @size:	  allocation size
2636  * @node:	  numa node
2637  *
2638  * Allocate enough pages to cover @size from the page level
2639  * allocator and map them into contiguous kernel virtual space.
2640  *
2641  * For tight control over page level allocator and protection flags
2642  * use __vmalloc() instead.
2643  *
2644  * Return: pointer to the allocated memory or %NULL on error
2645  */
2646 void *vmalloc_node(unsigned long size, int node)
2647 {
2648 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
2649 					node, __builtin_return_address(0));
2650 }
2651 EXPORT_SYMBOL(vmalloc_node);
2652 
2653 /**
2654  * vzalloc_node - allocate memory on a specific node with zero fill
2655  * @size:	allocation size
2656  * @node:	numa node
2657  *
2658  * Allocate enough pages to cover @size from the page level
2659  * allocator and map them into contiguous kernel virtual space.
2660  * The memory allocated is set to zero.
2661  *
2662  * For tight control over page level allocator and protection flags
2663  * use __vmalloc_node() instead.
2664  *
2665  * Return: pointer to the allocated memory or %NULL on error
2666  */
2667 void *vzalloc_node(unsigned long size, int node)
2668 {
2669 	return __vmalloc_node_flags(size, node,
2670 			 GFP_KERNEL | __GFP_ZERO);
2671 }
2672 EXPORT_SYMBOL(vzalloc_node);
2673 
2674 /**
2675  * vmalloc_exec - allocate virtually contiguous, executable memory
2676  * @size:	  allocation size
2677  *
2678  * Kernel-internal function to allocate enough pages to cover @size
2679  * the page level allocator and map them into contiguous and
2680  * executable kernel virtual space.
2681  *
2682  * For tight control over page level allocator and protection flags
2683  * use __vmalloc() instead.
2684  *
2685  * Return: pointer to the allocated memory or %NULL on error
2686  */
2687 void *vmalloc_exec(unsigned long size)
2688 {
2689 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2690 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2691 			NUMA_NO_NODE, __builtin_return_address(0));
2692 }
2693 
2694 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2695 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2696 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2697 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2698 #else
2699 /*
2700  * 64b systems should always have either DMA or DMA32 zones. For others
2701  * GFP_DMA32 should do the right thing and use the normal zone.
2702  */
2703 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2704 #endif
2705 
2706 /**
2707  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2708  * @size:	allocation size
2709  *
2710  * Allocate enough 32bit PA addressable pages to cover @size from the
2711  * page level allocator and map them into contiguous kernel virtual space.
2712  *
2713  * Return: pointer to the allocated memory or %NULL on error
2714  */
2715 void *vmalloc_32(unsigned long size)
2716 {
2717 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
2718 			      NUMA_NO_NODE, __builtin_return_address(0));
2719 }
2720 EXPORT_SYMBOL(vmalloc_32);
2721 
2722 /**
2723  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2724  * @size:	     allocation size
2725  *
2726  * The resulting memory area is 32bit addressable and zeroed so it can be
2727  * mapped to userspace without leaking data.
2728  *
2729  * Return: pointer to the allocated memory or %NULL on error
2730  */
2731 void *vmalloc_32_user(unsigned long size)
2732 {
2733 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2734 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2735 				    VM_USERMAP, NUMA_NO_NODE,
2736 				    __builtin_return_address(0));
2737 }
2738 EXPORT_SYMBOL(vmalloc_32_user);
2739 
2740 /*
2741  * small helper routine , copy contents to buf from addr.
2742  * If the page is not present, fill zero.
2743  */
2744 
2745 static int aligned_vread(char *buf, char *addr, unsigned long count)
2746 {
2747 	struct page *p;
2748 	int copied = 0;
2749 
2750 	while (count) {
2751 		unsigned long offset, length;
2752 
2753 		offset = offset_in_page(addr);
2754 		length = PAGE_SIZE - offset;
2755 		if (length > count)
2756 			length = count;
2757 		p = vmalloc_to_page(addr);
2758 		/*
2759 		 * To do safe access to this _mapped_ area, we need
2760 		 * lock. But adding lock here means that we need to add
2761 		 * overhead of vmalloc()/vfree() calles for this _debug_
2762 		 * interface, rarely used. Instead of that, we'll use
2763 		 * kmap() and get small overhead in this access function.
2764 		 */
2765 		if (p) {
2766 			/*
2767 			 * we can expect USER0 is not used (see vread/vwrite's
2768 			 * function description)
2769 			 */
2770 			void *map = kmap_atomic(p);
2771 			memcpy(buf, map + offset, length);
2772 			kunmap_atomic(map);
2773 		} else
2774 			memset(buf, 0, length);
2775 
2776 		addr += length;
2777 		buf += length;
2778 		copied += length;
2779 		count -= length;
2780 	}
2781 	return copied;
2782 }
2783 
2784 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2785 {
2786 	struct page *p;
2787 	int copied = 0;
2788 
2789 	while (count) {
2790 		unsigned long offset, length;
2791 
2792 		offset = offset_in_page(addr);
2793 		length = PAGE_SIZE - offset;
2794 		if (length > count)
2795 			length = count;
2796 		p = vmalloc_to_page(addr);
2797 		/*
2798 		 * To do safe access to this _mapped_ area, we need
2799 		 * lock. But adding lock here means that we need to add
2800 		 * overhead of vmalloc()/vfree() calles for this _debug_
2801 		 * interface, rarely used. Instead of that, we'll use
2802 		 * kmap() and get small overhead in this access function.
2803 		 */
2804 		if (p) {
2805 			/*
2806 			 * we can expect USER0 is not used (see vread/vwrite's
2807 			 * function description)
2808 			 */
2809 			void *map = kmap_atomic(p);
2810 			memcpy(map + offset, buf, length);
2811 			kunmap_atomic(map);
2812 		}
2813 		addr += length;
2814 		buf += length;
2815 		copied += length;
2816 		count -= length;
2817 	}
2818 	return copied;
2819 }
2820 
2821 /**
2822  * vread() - read vmalloc area in a safe way.
2823  * @buf:     buffer for reading data
2824  * @addr:    vm address.
2825  * @count:   number of bytes to be read.
2826  *
2827  * This function checks that addr is a valid vmalloc'ed area, and
2828  * copy data from that area to a given buffer. If the given memory range
2829  * of [addr...addr+count) includes some valid address, data is copied to
2830  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2831  * IOREMAP area is treated as memory hole and no copy is done.
2832  *
2833  * If [addr...addr+count) doesn't includes any intersects with alive
2834  * vm_struct area, returns 0. @buf should be kernel's buffer.
2835  *
2836  * Note: In usual ops, vread() is never necessary because the caller
2837  * should know vmalloc() area is valid and can use memcpy().
2838  * This is for routines which have to access vmalloc area without
2839  * any information, as /dev/kmem.
2840  *
2841  * Return: number of bytes for which addr and buf should be increased
2842  * (same number as @count) or %0 if [addr...addr+count) doesn't
2843  * include any intersection with valid vmalloc area
2844  */
2845 long vread(char *buf, char *addr, unsigned long count)
2846 {
2847 	struct vmap_area *va;
2848 	struct vm_struct *vm;
2849 	char *vaddr, *buf_start = buf;
2850 	unsigned long buflen = count;
2851 	unsigned long n;
2852 
2853 	/* Don't allow overflow */
2854 	if ((unsigned long) addr + count < count)
2855 		count = -(unsigned long) addr;
2856 
2857 	spin_lock(&vmap_area_lock);
2858 	list_for_each_entry(va, &vmap_area_list, list) {
2859 		if (!count)
2860 			break;
2861 
2862 		if (!va->vm)
2863 			continue;
2864 
2865 		vm = va->vm;
2866 		vaddr = (char *) vm->addr;
2867 		if (addr >= vaddr + get_vm_area_size(vm))
2868 			continue;
2869 		while (addr < vaddr) {
2870 			if (count == 0)
2871 				goto finished;
2872 			*buf = '\0';
2873 			buf++;
2874 			addr++;
2875 			count--;
2876 		}
2877 		n = vaddr + get_vm_area_size(vm) - addr;
2878 		if (n > count)
2879 			n = count;
2880 		if (!(vm->flags & VM_IOREMAP))
2881 			aligned_vread(buf, addr, n);
2882 		else /* IOREMAP area is treated as memory hole */
2883 			memset(buf, 0, n);
2884 		buf += n;
2885 		addr += n;
2886 		count -= n;
2887 	}
2888 finished:
2889 	spin_unlock(&vmap_area_lock);
2890 
2891 	if (buf == buf_start)
2892 		return 0;
2893 	/* zero-fill memory holes */
2894 	if (buf != buf_start + buflen)
2895 		memset(buf, 0, buflen - (buf - buf_start));
2896 
2897 	return buflen;
2898 }
2899 
2900 /**
2901  * vwrite() - write vmalloc area in a safe way.
2902  * @buf:      buffer for source data
2903  * @addr:     vm address.
2904  * @count:    number of bytes to be read.
2905  *
2906  * This function checks that addr is a valid vmalloc'ed area, and
2907  * copy data from a buffer to the given addr. If specified range of
2908  * [addr...addr+count) includes some valid address, data is copied from
2909  * proper area of @buf. If there are memory holes, no copy to hole.
2910  * IOREMAP area is treated as memory hole and no copy is done.
2911  *
2912  * If [addr...addr+count) doesn't includes any intersects with alive
2913  * vm_struct area, returns 0. @buf should be kernel's buffer.
2914  *
2915  * Note: In usual ops, vwrite() is never necessary because the caller
2916  * should know vmalloc() area is valid and can use memcpy().
2917  * This is for routines which have to access vmalloc area without
2918  * any information, as /dev/kmem.
2919  *
2920  * Return: number of bytes for which addr and buf should be
2921  * increased (same number as @count) or %0 if [addr...addr+count)
2922  * doesn't include any intersection with valid vmalloc area
2923  */
2924 long vwrite(char *buf, char *addr, unsigned long count)
2925 {
2926 	struct vmap_area *va;
2927 	struct vm_struct *vm;
2928 	char *vaddr;
2929 	unsigned long n, buflen;
2930 	int copied = 0;
2931 
2932 	/* Don't allow overflow */
2933 	if ((unsigned long) addr + count < count)
2934 		count = -(unsigned long) addr;
2935 	buflen = count;
2936 
2937 	spin_lock(&vmap_area_lock);
2938 	list_for_each_entry(va, &vmap_area_list, list) {
2939 		if (!count)
2940 			break;
2941 
2942 		if (!va->vm)
2943 			continue;
2944 
2945 		vm = va->vm;
2946 		vaddr = (char *) vm->addr;
2947 		if (addr >= vaddr + get_vm_area_size(vm))
2948 			continue;
2949 		while (addr < vaddr) {
2950 			if (count == 0)
2951 				goto finished;
2952 			buf++;
2953 			addr++;
2954 			count--;
2955 		}
2956 		n = vaddr + get_vm_area_size(vm) - addr;
2957 		if (n > count)
2958 			n = count;
2959 		if (!(vm->flags & VM_IOREMAP)) {
2960 			aligned_vwrite(buf, addr, n);
2961 			copied++;
2962 		}
2963 		buf += n;
2964 		addr += n;
2965 		count -= n;
2966 	}
2967 finished:
2968 	spin_unlock(&vmap_area_lock);
2969 	if (!copied)
2970 		return 0;
2971 	return buflen;
2972 }
2973 
2974 /**
2975  * remap_vmalloc_range_partial - map vmalloc pages to userspace
2976  * @vma:		vma to cover
2977  * @uaddr:		target user address to start at
2978  * @kaddr:		virtual address of vmalloc kernel memory
2979  * @size:		size of map area
2980  *
2981  * Returns:	0 for success, -Exxx on failure
2982  *
2983  * This function checks that @kaddr is a valid vmalloc'ed area,
2984  * and that it is big enough to cover the range starting at
2985  * @uaddr in @vma. Will return failure if that criteria isn't
2986  * met.
2987  *
2988  * Similar to remap_pfn_range() (see mm/memory.c)
2989  */
2990 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2991 				void *kaddr, unsigned long size)
2992 {
2993 	struct vm_struct *area;
2994 
2995 	size = PAGE_ALIGN(size);
2996 
2997 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2998 		return -EINVAL;
2999 
3000 	area = find_vm_area(kaddr);
3001 	if (!area)
3002 		return -EINVAL;
3003 
3004 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3005 		return -EINVAL;
3006 
3007 	if (kaddr + size > area->addr + get_vm_area_size(area))
3008 		return -EINVAL;
3009 
3010 	do {
3011 		struct page *page = vmalloc_to_page(kaddr);
3012 		int ret;
3013 
3014 		ret = vm_insert_page(vma, uaddr, page);
3015 		if (ret)
3016 			return ret;
3017 
3018 		uaddr += PAGE_SIZE;
3019 		kaddr += PAGE_SIZE;
3020 		size -= PAGE_SIZE;
3021 	} while (size > 0);
3022 
3023 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3024 
3025 	return 0;
3026 }
3027 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3028 
3029 /**
3030  * remap_vmalloc_range - map vmalloc pages to userspace
3031  * @vma:		vma to cover (map full range of vma)
3032  * @addr:		vmalloc memory
3033  * @pgoff:		number of pages into addr before first page to map
3034  *
3035  * Returns:	0 for success, -Exxx on failure
3036  *
3037  * This function checks that addr is a valid vmalloc'ed area, and
3038  * that it is big enough to cover the vma. Will return failure if
3039  * that criteria isn't met.
3040  *
3041  * Similar to remap_pfn_range() (see mm/memory.c)
3042  */
3043 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3044 						unsigned long pgoff)
3045 {
3046 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3047 					   addr + (pgoff << PAGE_SHIFT),
3048 					   vma->vm_end - vma->vm_start);
3049 }
3050 EXPORT_SYMBOL(remap_vmalloc_range);
3051 
3052 /*
3053  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
3054  * have one.
3055  *
3056  * The purpose of this function is to make sure the vmalloc area
3057  * mappings are identical in all page-tables in the system.
3058  */
3059 void __weak vmalloc_sync_all(void)
3060 {
3061 }
3062 
3063 
3064 static int f(pte_t *pte, unsigned long addr, void *data)
3065 {
3066 	pte_t ***p = data;
3067 
3068 	if (p) {
3069 		*(*p) = pte;
3070 		(*p)++;
3071 	}
3072 	return 0;
3073 }
3074 
3075 /**
3076  * alloc_vm_area - allocate a range of kernel address space
3077  * @size:	   size of the area
3078  * @ptes:	   returns the PTEs for the address space
3079  *
3080  * Returns:	NULL on failure, vm_struct on success
3081  *
3082  * This function reserves a range of kernel address space, and
3083  * allocates pagetables to map that range.  No actual mappings
3084  * are created.
3085  *
3086  * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
3087  * allocated for the VM area are returned.
3088  */
3089 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
3090 {
3091 	struct vm_struct *area;
3092 
3093 	area = get_vm_area_caller(size, VM_IOREMAP,
3094 				__builtin_return_address(0));
3095 	if (area == NULL)
3096 		return NULL;
3097 
3098 	/*
3099 	 * This ensures that page tables are constructed for this region
3100 	 * of kernel virtual address space and mapped into init_mm.
3101 	 */
3102 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
3103 				size, f, ptes ? &ptes : NULL)) {
3104 		free_vm_area(area);
3105 		return NULL;
3106 	}
3107 
3108 	return area;
3109 }
3110 EXPORT_SYMBOL_GPL(alloc_vm_area);
3111 
3112 void free_vm_area(struct vm_struct *area)
3113 {
3114 	struct vm_struct *ret;
3115 	ret = remove_vm_area(area->addr);
3116 	BUG_ON(ret != area);
3117 	kfree(area);
3118 }
3119 EXPORT_SYMBOL_GPL(free_vm_area);
3120 
3121 #ifdef CONFIG_SMP
3122 static struct vmap_area *node_to_va(struct rb_node *n)
3123 {
3124 	return rb_entry_safe(n, struct vmap_area, rb_node);
3125 }
3126 
3127 /**
3128  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3129  * @addr: target address
3130  *
3131  * Returns: vmap_area if it is found. If there is no such area
3132  *   the first highest(reverse order) vmap_area is returned
3133  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3134  *   if there are no any areas before @addr.
3135  */
3136 static struct vmap_area *
3137 pvm_find_va_enclose_addr(unsigned long addr)
3138 {
3139 	struct vmap_area *va, *tmp;
3140 	struct rb_node *n;
3141 
3142 	n = free_vmap_area_root.rb_node;
3143 	va = NULL;
3144 
3145 	while (n) {
3146 		tmp = rb_entry(n, struct vmap_area, rb_node);
3147 		if (tmp->va_start <= addr) {
3148 			va = tmp;
3149 			if (tmp->va_end >= addr)
3150 				break;
3151 
3152 			n = n->rb_right;
3153 		} else {
3154 			n = n->rb_left;
3155 		}
3156 	}
3157 
3158 	return va;
3159 }
3160 
3161 /**
3162  * pvm_determine_end_from_reverse - find the highest aligned address
3163  * of free block below VMALLOC_END
3164  * @va:
3165  *   in - the VA we start the search(reverse order);
3166  *   out - the VA with the highest aligned end address.
3167  *
3168  * Returns: determined end address within vmap_area
3169  */
3170 static unsigned long
3171 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3172 {
3173 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3174 	unsigned long addr;
3175 
3176 	if (likely(*va)) {
3177 		list_for_each_entry_from_reverse((*va),
3178 				&free_vmap_area_list, list) {
3179 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3180 			if ((*va)->va_start < addr)
3181 				return addr;
3182 		}
3183 	}
3184 
3185 	return 0;
3186 }
3187 
3188 /**
3189  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3190  * @offsets: array containing offset of each area
3191  * @sizes: array containing size of each area
3192  * @nr_vms: the number of areas to allocate
3193  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3194  *
3195  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3196  *	    vm_structs on success, %NULL on failure
3197  *
3198  * Percpu allocator wants to use congruent vm areas so that it can
3199  * maintain the offsets among percpu areas.  This function allocates
3200  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3201  * be scattered pretty far, distance between two areas easily going up
3202  * to gigabytes.  To avoid interacting with regular vmallocs, these
3203  * areas are allocated from top.
3204  *
3205  * Despite its complicated look, this allocator is rather simple. It
3206  * does everything top-down and scans free blocks from the end looking
3207  * for matching base. While scanning, if any of the areas do not fit the
3208  * base address is pulled down to fit the area. Scanning is repeated till
3209  * all the areas fit and then all necessary data structures are inserted
3210  * and the result is returned.
3211  */
3212 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3213 				     const size_t *sizes, int nr_vms,
3214 				     size_t align)
3215 {
3216 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3217 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3218 	struct vmap_area **vas, *va;
3219 	struct vm_struct **vms;
3220 	int area, area2, last_area, term_area;
3221 	unsigned long base, start, size, end, last_end;
3222 	bool purged = false;
3223 	enum fit_type type;
3224 
3225 	/* verify parameters and allocate data structures */
3226 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3227 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3228 		start = offsets[area];
3229 		end = start + sizes[area];
3230 
3231 		/* is everything aligned properly? */
3232 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3233 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3234 
3235 		/* detect the area with the highest address */
3236 		if (start > offsets[last_area])
3237 			last_area = area;
3238 
3239 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3240 			unsigned long start2 = offsets[area2];
3241 			unsigned long end2 = start2 + sizes[area2];
3242 
3243 			BUG_ON(start2 < end && start < end2);
3244 		}
3245 	}
3246 	last_end = offsets[last_area] + sizes[last_area];
3247 
3248 	if (vmalloc_end - vmalloc_start < last_end) {
3249 		WARN_ON(true);
3250 		return NULL;
3251 	}
3252 
3253 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3254 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3255 	if (!vas || !vms)
3256 		goto err_free2;
3257 
3258 	for (area = 0; area < nr_vms; area++) {
3259 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3260 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3261 		if (!vas[area] || !vms[area])
3262 			goto err_free;
3263 	}
3264 retry:
3265 	spin_lock(&vmap_area_lock);
3266 
3267 	/* start scanning - we scan from the top, begin with the last area */
3268 	area = term_area = last_area;
3269 	start = offsets[area];
3270 	end = start + sizes[area];
3271 
3272 	va = pvm_find_va_enclose_addr(vmalloc_end);
3273 	base = pvm_determine_end_from_reverse(&va, align) - end;
3274 
3275 	while (true) {
3276 		/*
3277 		 * base might have underflowed, add last_end before
3278 		 * comparing.
3279 		 */
3280 		if (base + last_end < vmalloc_start + last_end)
3281 			goto overflow;
3282 
3283 		/*
3284 		 * Fitting base has not been found.
3285 		 */
3286 		if (va == NULL)
3287 			goto overflow;
3288 
3289 		/*
3290 		 * If required width exeeds current VA block, move
3291 		 * base downwards and then recheck.
3292 		 */
3293 		if (base + end > va->va_end) {
3294 			base = pvm_determine_end_from_reverse(&va, align) - end;
3295 			term_area = area;
3296 			continue;
3297 		}
3298 
3299 		/*
3300 		 * If this VA does not fit, move base downwards and recheck.
3301 		 */
3302 		if (base + start < va->va_start) {
3303 			va = node_to_va(rb_prev(&va->rb_node));
3304 			base = pvm_determine_end_from_reverse(&va, align) - end;
3305 			term_area = area;
3306 			continue;
3307 		}
3308 
3309 		/*
3310 		 * This area fits, move on to the previous one.  If
3311 		 * the previous one is the terminal one, we're done.
3312 		 */
3313 		area = (area + nr_vms - 1) % nr_vms;
3314 		if (area == term_area)
3315 			break;
3316 
3317 		start = offsets[area];
3318 		end = start + sizes[area];
3319 		va = pvm_find_va_enclose_addr(base + end);
3320 	}
3321 
3322 	/* we've found a fitting base, insert all va's */
3323 	for (area = 0; area < nr_vms; area++) {
3324 		int ret;
3325 
3326 		start = base + offsets[area];
3327 		size = sizes[area];
3328 
3329 		va = pvm_find_va_enclose_addr(start);
3330 		if (WARN_ON_ONCE(va == NULL))
3331 			/* It is a BUG(), but trigger recovery instead. */
3332 			goto recovery;
3333 
3334 		type = classify_va_fit_type(va, start, size);
3335 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3336 			/* It is a BUG(), but trigger recovery instead. */
3337 			goto recovery;
3338 
3339 		ret = adjust_va_to_fit_type(va, start, size, type);
3340 		if (unlikely(ret))
3341 			goto recovery;
3342 
3343 		/* Allocated area. */
3344 		va = vas[area];
3345 		va->va_start = start;
3346 		va->va_end = start + size;
3347 
3348 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
3349 	}
3350 
3351 	spin_unlock(&vmap_area_lock);
3352 
3353 	/* insert all vm's */
3354 	for (area = 0; area < nr_vms; area++)
3355 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
3356 				 pcpu_get_vm_areas);
3357 
3358 	kfree(vas);
3359 	return vms;
3360 
3361 recovery:
3362 	/* Remove previously inserted areas. */
3363 	while (area--) {
3364 		__free_vmap_area(vas[area]);
3365 		vas[area] = NULL;
3366 	}
3367 
3368 overflow:
3369 	spin_unlock(&vmap_area_lock);
3370 	if (!purged) {
3371 		purge_vmap_area_lazy();
3372 		purged = true;
3373 
3374 		/* Before "retry", check if we recover. */
3375 		for (area = 0; area < nr_vms; area++) {
3376 			if (vas[area])
3377 				continue;
3378 
3379 			vas[area] = kmem_cache_zalloc(
3380 				vmap_area_cachep, GFP_KERNEL);
3381 			if (!vas[area])
3382 				goto err_free;
3383 		}
3384 
3385 		goto retry;
3386 	}
3387 
3388 err_free:
3389 	for (area = 0; area < nr_vms; area++) {
3390 		if (vas[area])
3391 			kmem_cache_free(vmap_area_cachep, vas[area]);
3392 
3393 		kfree(vms[area]);
3394 	}
3395 err_free2:
3396 	kfree(vas);
3397 	kfree(vms);
3398 	return NULL;
3399 }
3400 
3401 /**
3402  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3403  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3404  * @nr_vms: the number of allocated areas
3405  *
3406  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3407  */
3408 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3409 {
3410 	int i;
3411 
3412 	for (i = 0; i < nr_vms; i++)
3413 		free_vm_area(vms[i]);
3414 	kfree(vms);
3415 }
3416 #endif	/* CONFIG_SMP */
3417 
3418 #ifdef CONFIG_PROC_FS
3419 static void *s_start(struct seq_file *m, loff_t *pos)
3420 	__acquires(&vmap_area_lock)
3421 {
3422 	spin_lock(&vmap_area_lock);
3423 	return seq_list_start(&vmap_area_list, *pos);
3424 }
3425 
3426 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3427 {
3428 	return seq_list_next(p, &vmap_area_list, pos);
3429 }
3430 
3431 static void s_stop(struct seq_file *m, void *p)
3432 	__releases(&vmap_area_lock)
3433 {
3434 	spin_unlock(&vmap_area_lock);
3435 }
3436 
3437 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3438 {
3439 	if (IS_ENABLED(CONFIG_NUMA)) {
3440 		unsigned int nr, *counters = m->private;
3441 
3442 		if (!counters)
3443 			return;
3444 
3445 		if (v->flags & VM_UNINITIALIZED)
3446 			return;
3447 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3448 		smp_rmb();
3449 
3450 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3451 
3452 		for (nr = 0; nr < v->nr_pages; nr++)
3453 			counters[page_to_nid(v->pages[nr])]++;
3454 
3455 		for_each_node_state(nr, N_HIGH_MEMORY)
3456 			if (counters[nr])
3457 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3458 	}
3459 }
3460 
3461 static void show_purge_info(struct seq_file *m)
3462 {
3463 	struct llist_node *head;
3464 	struct vmap_area *va;
3465 
3466 	head = READ_ONCE(vmap_purge_list.first);
3467 	if (head == NULL)
3468 		return;
3469 
3470 	llist_for_each_entry(va, head, purge_list) {
3471 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3472 			(void *)va->va_start, (void *)va->va_end,
3473 			va->va_end - va->va_start);
3474 	}
3475 }
3476 
3477 static int s_show(struct seq_file *m, void *p)
3478 {
3479 	struct vmap_area *va;
3480 	struct vm_struct *v;
3481 
3482 	va = list_entry(p, struct vmap_area, list);
3483 
3484 	/*
3485 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3486 	 * of vmap area is being tear down or vm_map_ram allocation.
3487 	 */
3488 	if (!va->vm) {
3489 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3490 			(void *)va->va_start, (void *)va->va_end,
3491 			va->va_end - va->va_start);
3492 
3493 		return 0;
3494 	}
3495 
3496 	v = va->vm;
3497 
3498 	seq_printf(m, "0x%pK-0x%pK %7ld",
3499 		v->addr, v->addr + v->size, v->size);
3500 
3501 	if (v->caller)
3502 		seq_printf(m, " %pS", v->caller);
3503 
3504 	if (v->nr_pages)
3505 		seq_printf(m, " pages=%d", v->nr_pages);
3506 
3507 	if (v->phys_addr)
3508 		seq_printf(m, " phys=%pa", &v->phys_addr);
3509 
3510 	if (v->flags & VM_IOREMAP)
3511 		seq_puts(m, " ioremap");
3512 
3513 	if (v->flags & VM_ALLOC)
3514 		seq_puts(m, " vmalloc");
3515 
3516 	if (v->flags & VM_MAP)
3517 		seq_puts(m, " vmap");
3518 
3519 	if (v->flags & VM_USERMAP)
3520 		seq_puts(m, " user");
3521 
3522 	if (v->flags & VM_DMA_COHERENT)
3523 		seq_puts(m, " dma-coherent");
3524 
3525 	if (is_vmalloc_addr(v->pages))
3526 		seq_puts(m, " vpages");
3527 
3528 	show_numa_info(m, v);
3529 	seq_putc(m, '\n');
3530 
3531 	/*
3532 	 * As a final step, dump "unpurged" areas. Note,
3533 	 * that entire "/proc/vmallocinfo" output will not
3534 	 * be address sorted, because the purge list is not
3535 	 * sorted.
3536 	 */
3537 	if (list_is_last(&va->list, &vmap_area_list))
3538 		show_purge_info(m);
3539 
3540 	return 0;
3541 }
3542 
3543 static const struct seq_operations vmalloc_op = {
3544 	.start = s_start,
3545 	.next = s_next,
3546 	.stop = s_stop,
3547 	.show = s_show,
3548 };
3549 
3550 static int __init proc_vmalloc_init(void)
3551 {
3552 	if (IS_ENABLED(CONFIG_NUMA))
3553 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3554 				&vmalloc_op,
3555 				nr_node_ids * sizeof(unsigned int), NULL);
3556 	else
3557 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3558 	return 0;
3559 }
3560 module_init(proc_vmalloc_init);
3561 
3562 #endif
3563