xref: /openbmc/linux/mm/vmalloc.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *llnode = llist_del_all(&p->list);
53 	while (llnode) {
54 		void *p = llnode;
55 		llnode = llist_next(llnode);
56 		__vunmap(p, 1);
57 	}
58 }
59 
60 /*** Page table manipulation functions ***/
61 
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 	pte_t *pte;
65 
66 	pte = pte_offset_kernel(pmd, addr);
67 	do {
68 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 	} while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72 
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 	pmd_t *pmd;
76 	unsigned long next;
77 
78 	pmd = pmd_offset(pud, addr);
79 	do {
80 		next = pmd_addr_end(addr, end);
81 		if (pmd_clear_huge(pmd))
82 			continue;
83 		if (pmd_none_or_clear_bad(pmd))
84 			continue;
85 		vunmap_pte_range(pmd, addr, next);
86 	} while (pmd++, addr = next, addr != end);
87 }
88 
89 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
90 {
91 	pud_t *pud;
92 	unsigned long next;
93 
94 	pud = pud_offset(p4d, addr);
95 	do {
96 		next = pud_addr_end(addr, end);
97 		if (pud_clear_huge(pud))
98 			continue;
99 		if (pud_none_or_clear_bad(pud))
100 			continue;
101 		vunmap_pmd_range(pud, addr, next);
102 	} while (pud++, addr = next, addr != end);
103 }
104 
105 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
106 {
107 	p4d_t *p4d;
108 	unsigned long next;
109 
110 	p4d = p4d_offset(pgd, addr);
111 	do {
112 		next = p4d_addr_end(addr, end);
113 		if (p4d_clear_huge(p4d))
114 			continue;
115 		if (p4d_none_or_clear_bad(p4d))
116 			continue;
117 		vunmap_pud_range(p4d, addr, next);
118 	} while (p4d++, addr = next, addr != end);
119 }
120 
121 static void vunmap_page_range(unsigned long addr, unsigned long end)
122 {
123 	pgd_t *pgd;
124 	unsigned long next;
125 
126 	BUG_ON(addr >= end);
127 	pgd = pgd_offset_k(addr);
128 	do {
129 		next = pgd_addr_end(addr, end);
130 		if (pgd_none_or_clear_bad(pgd))
131 			continue;
132 		vunmap_p4d_range(pgd, addr, next);
133 	} while (pgd++, addr = next, addr != end);
134 }
135 
136 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
137 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 	pte_t *pte;
140 
141 	/*
142 	 * nr is a running index into the array which helps higher level
143 	 * callers keep track of where we're up to.
144 	 */
145 
146 	pte = pte_alloc_kernel(pmd, addr);
147 	if (!pte)
148 		return -ENOMEM;
149 	do {
150 		struct page *page = pages[*nr];
151 
152 		if (WARN_ON(!pte_none(*pte)))
153 			return -EBUSY;
154 		if (WARN_ON(!page))
155 			return -ENOMEM;
156 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
157 		(*nr)++;
158 	} while (pte++, addr += PAGE_SIZE, addr != end);
159 	return 0;
160 }
161 
162 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
163 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
164 {
165 	pmd_t *pmd;
166 	unsigned long next;
167 
168 	pmd = pmd_alloc(&init_mm, pud, addr);
169 	if (!pmd)
170 		return -ENOMEM;
171 	do {
172 		next = pmd_addr_end(addr, end);
173 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
174 			return -ENOMEM;
175 	} while (pmd++, addr = next, addr != end);
176 	return 0;
177 }
178 
179 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
180 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
181 {
182 	pud_t *pud;
183 	unsigned long next;
184 
185 	pud = pud_alloc(&init_mm, p4d, addr);
186 	if (!pud)
187 		return -ENOMEM;
188 	do {
189 		next = pud_addr_end(addr, end);
190 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
191 			return -ENOMEM;
192 	} while (pud++, addr = next, addr != end);
193 	return 0;
194 }
195 
196 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
197 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
198 {
199 	p4d_t *p4d;
200 	unsigned long next;
201 
202 	p4d = p4d_alloc(&init_mm, pgd, addr);
203 	if (!p4d)
204 		return -ENOMEM;
205 	do {
206 		next = p4d_addr_end(addr, end);
207 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
208 			return -ENOMEM;
209 	} while (p4d++, addr = next, addr != end);
210 	return 0;
211 }
212 
213 /*
214  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
215  * will have pfns corresponding to the "pages" array.
216  *
217  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
218  */
219 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
220 				   pgprot_t prot, struct page **pages)
221 {
222 	pgd_t *pgd;
223 	unsigned long next;
224 	unsigned long addr = start;
225 	int err = 0;
226 	int nr = 0;
227 
228 	BUG_ON(addr >= end);
229 	pgd = pgd_offset_k(addr);
230 	do {
231 		next = pgd_addr_end(addr, end);
232 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
233 		if (err)
234 			return err;
235 	} while (pgd++, addr = next, addr != end);
236 
237 	return nr;
238 }
239 
240 static int vmap_page_range(unsigned long start, unsigned long end,
241 			   pgprot_t prot, struct page **pages)
242 {
243 	int ret;
244 
245 	ret = vmap_page_range_noflush(start, end, prot, pages);
246 	flush_cache_vmap(start, end);
247 	return ret;
248 }
249 
250 int is_vmalloc_or_module_addr(const void *x)
251 {
252 	/*
253 	 * ARM, x86-64 and sparc64 put modules in a special place,
254 	 * and fall back on vmalloc() if that fails. Others
255 	 * just put it in the vmalloc space.
256 	 */
257 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
258 	unsigned long addr = (unsigned long)x;
259 	if (addr >= MODULES_VADDR && addr < MODULES_END)
260 		return 1;
261 #endif
262 	return is_vmalloc_addr(x);
263 }
264 
265 /*
266  * Walk a vmap address to the struct page it maps.
267  */
268 struct page *vmalloc_to_page(const void *vmalloc_addr)
269 {
270 	unsigned long addr = (unsigned long) vmalloc_addr;
271 	struct page *page = NULL;
272 	pgd_t *pgd = pgd_offset_k(addr);
273 	p4d_t *p4d;
274 	pud_t *pud;
275 	pmd_t *pmd;
276 	pte_t *ptep, pte;
277 
278 	/*
279 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
280 	 * architectures that do not vmalloc module space
281 	 */
282 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
283 
284 	if (pgd_none(*pgd))
285 		return NULL;
286 	p4d = p4d_offset(pgd, addr);
287 	if (p4d_none(*p4d))
288 		return NULL;
289 	pud = pud_offset(p4d, addr);
290 	if (pud_none(*pud))
291 		return NULL;
292 	pmd = pmd_offset(pud, addr);
293 	if (pmd_none(*pmd))
294 		return NULL;
295 
296 	ptep = pte_offset_map(pmd, addr);
297 	pte = *ptep;
298 	if (pte_present(pte))
299 		page = pte_page(pte);
300 	pte_unmap(ptep);
301 	return page;
302 }
303 EXPORT_SYMBOL(vmalloc_to_page);
304 
305 /*
306  * Map a vmalloc()-space virtual address to the physical page frame number.
307  */
308 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
309 {
310 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
311 }
312 EXPORT_SYMBOL(vmalloc_to_pfn);
313 
314 
315 /*** Global kva allocator ***/
316 
317 #define VM_VM_AREA	0x04
318 
319 static DEFINE_SPINLOCK(vmap_area_lock);
320 /* Export for kexec only */
321 LIST_HEAD(vmap_area_list);
322 static LLIST_HEAD(vmap_purge_list);
323 static struct rb_root vmap_area_root = RB_ROOT;
324 
325 /* The vmap cache globals are protected by vmap_area_lock */
326 static struct rb_node *free_vmap_cache;
327 static unsigned long cached_hole_size;
328 static unsigned long cached_vstart;
329 static unsigned long cached_align;
330 
331 static unsigned long vmap_area_pcpu_hole;
332 
333 static struct vmap_area *__find_vmap_area(unsigned long addr)
334 {
335 	struct rb_node *n = vmap_area_root.rb_node;
336 
337 	while (n) {
338 		struct vmap_area *va;
339 
340 		va = rb_entry(n, struct vmap_area, rb_node);
341 		if (addr < va->va_start)
342 			n = n->rb_left;
343 		else if (addr >= va->va_end)
344 			n = n->rb_right;
345 		else
346 			return va;
347 	}
348 
349 	return NULL;
350 }
351 
352 static void __insert_vmap_area(struct vmap_area *va)
353 {
354 	struct rb_node **p = &vmap_area_root.rb_node;
355 	struct rb_node *parent = NULL;
356 	struct rb_node *tmp;
357 
358 	while (*p) {
359 		struct vmap_area *tmp_va;
360 
361 		parent = *p;
362 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
363 		if (va->va_start < tmp_va->va_end)
364 			p = &(*p)->rb_left;
365 		else if (va->va_end > tmp_va->va_start)
366 			p = &(*p)->rb_right;
367 		else
368 			BUG();
369 	}
370 
371 	rb_link_node(&va->rb_node, parent, p);
372 	rb_insert_color(&va->rb_node, &vmap_area_root);
373 
374 	/* address-sort this list */
375 	tmp = rb_prev(&va->rb_node);
376 	if (tmp) {
377 		struct vmap_area *prev;
378 		prev = rb_entry(tmp, struct vmap_area, rb_node);
379 		list_add_rcu(&va->list, &prev->list);
380 	} else
381 		list_add_rcu(&va->list, &vmap_area_list);
382 }
383 
384 static void purge_vmap_area_lazy(void);
385 
386 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
387 
388 /*
389  * Allocate a region of KVA of the specified size and alignment, within the
390  * vstart and vend.
391  */
392 static struct vmap_area *alloc_vmap_area(unsigned long size,
393 				unsigned long align,
394 				unsigned long vstart, unsigned long vend,
395 				int node, gfp_t gfp_mask)
396 {
397 	struct vmap_area *va;
398 	struct rb_node *n;
399 	unsigned long addr;
400 	int purged = 0;
401 	struct vmap_area *first;
402 
403 	BUG_ON(!size);
404 	BUG_ON(offset_in_page(size));
405 	BUG_ON(!is_power_of_2(align));
406 
407 	might_sleep();
408 
409 	va = kmalloc_node(sizeof(struct vmap_area),
410 			gfp_mask & GFP_RECLAIM_MASK, node);
411 	if (unlikely(!va))
412 		return ERR_PTR(-ENOMEM);
413 
414 	/*
415 	 * Only scan the relevant parts containing pointers to other objects
416 	 * to avoid false negatives.
417 	 */
418 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
419 
420 retry:
421 	spin_lock(&vmap_area_lock);
422 	/*
423 	 * Invalidate cache if we have more permissive parameters.
424 	 * cached_hole_size notes the largest hole noticed _below_
425 	 * the vmap_area cached in free_vmap_cache: if size fits
426 	 * into that hole, we want to scan from vstart to reuse
427 	 * the hole instead of allocating above free_vmap_cache.
428 	 * Note that __free_vmap_area may update free_vmap_cache
429 	 * without updating cached_hole_size or cached_align.
430 	 */
431 	if (!free_vmap_cache ||
432 			size < cached_hole_size ||
433 			vstart < cached_vstart ||
434 			align < cached_align) {
435 nocache:
436 		cached_hole_size = 0;
437 		free_vmap_cache = NULL;
438 	}
439 	/* record if we encounter less permissive parameters */
440 	cached_vstart = vstart;
441 	cached_align = align;
442 
443 	/* find starting point for our search */
444 	if (free_vmap_cache) {
445 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
446 		addr = ALIGN(first->va_end, align);
447 		if (addr < vstart)
448 			goto nocache;
449 		if (addr + size < addr)
450 			goto overflow;
451 
452 	} else {
453 		addr = ALIGN(vstart, align);
454 		if (addr + size < addr)
455 			goto overflow;
456 
457 		n = vmap_area_root.rb_node;
458 		first = NULL;
459 
460 		while (n) {
461 			struct vmap_area *tmp;
462 			tmp = rb_entry(n, struct vmap_area, rb_node);
463 			if (tmp->va_end >= addr) {
464 				first = tmp;
465 				if (tmp->va_start <= addr)
466 					break;
467 				n = n->rb_left;
468 			} else
469 				n = n->rb_right;
470 		}
471 
472 		if (!first)
473 			goto found;
474 	}
475 
476 	/* from the starting point, walk areas until a suitable hole is found */
477 	while (addr + size > first->va_start && addr + size <= vend) {
478 		if (addr + cached_hole_size < first->va_start)
479 			cached_hole_size = first->va_start - addr;
480 		addr = ALIGN(first->va_end, align);
481 		if (addr + size < addr)
482 			goto overflow;
483 
484 		if (list_is_last(&first->list, &vmap_area_list))
485 			goto found;
486 
487 		first = list_next_entry(first, list);
488 	}
489 
490 found:
491 	if (addr + size > vend)
492 		goto overflow;
493 
494 	va->va_start = addr;
495 	va->va_end = addr + size;
496 	va->flags = 0;
497 	__insert_vmap_area(va);
498 	free_vmap_cache = &va->rb_node;
499 	spin_unlock(&vmap_area_lock);
500 
501 	BUG_ON(!IS_ALIGNED(va->va_start, align));
502 	BUG_ON(va->va_start < vstart);
503 	BUG_ON(va->va_end > vend);
504 
505 	return va;
506 
507 overflow:
508 	spin_unlock(&vmap_area_lock);
509 	if (!purged) {
510 		purge_vmap_area_lazy();
511 		purged = 1;
512 		goto retry;
513 	}
514 
515 	if (gfpflags_allow_blocking(gfp_mask)) {
516 		unsigned long freed = 0;
517 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
518 		if (freed > 0) {
519 			purged = 0;
520 			goto retry;
521 		}
522 	}
523 
524 	if (printk_ratelimit())
525 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
526 			size);
527 	kfree(va);
528 	return ERR_PTR(-EBUSY);
529 }
530 
531 int register_vmap_purge_notifier(struct notifier_block *nb)
532 {
533 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
534 }
535 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
536 
537 int unregister_vmap_purge_notifier(struct notifier_block *nb)
538 {
539 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
540 }
541 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
542 
543 static void __free_vmap_area(struct vmap_area *va)
544 {
545 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
546 
547 	if (free_vmap_cache) {
548 		if (va->va_end < cached_vstart) {
549 			free_vmap_cache = NULL;
550 		} else {
551 			struct vmap_area *cache;
552 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
553 			if (va->va_start <= cache->va_start) {
554 				free_vmap_cache = rb_prev(&va->rb_node);
555 				/*
556 				 * We don't try to update cached_hole_size or
557 				 * cached_align, but it won't go very wrong.
558 				 */
559 			}
560 		}
561 	}
562 	rb_erase(&va->rb_node, &vmap_area_root);
563 	RB_CLEAR_NODE(&va->rb_node);
564 	list_del_rcu(&va->list);
565 
566 	/*
567 	 * Track the highest possible candidate for pcpu area
568 	 * allocation.  Areas outside of vmalloc area can be returned
569 	 * here too, consider only end addresses which fall inside
570 	 * vmalloc area proper.
571 	 */
572 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
573 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
574 
575 	kfree_rcu(va, rcu_head);
576 }
577 
578 /*
579  * Free a region of KVA allocated by alloc_vmap_area
580  */
581 static void free_vmap_area(struct vmap_area *va)
582 {
583 	spin_lock(&vmap_area_lock);
584 	__free_vmap_area(va);
585 	spin_unlock(&vmap_area_lock);
586 }
587 
588 /*
589  * Clear the pagetable entries of a given vmap_area
590  */
591 static void unmap_vmap_area(struct vmap_area *va)
592 {
593 	vunmap_page_range(va->va_start, va->va_end);
594 }
595 
596 static void vmap_debug_free_range(unsigned long start, unsigned long end)
597 {
598 	/*
599 	 * Unmap page tables and force a TLB flush immediately if pagealloc
600 	 * debugging is enabled.  This catches use after free bugs similarly to
601 	 * those in linear kernel virtual address space after a page has been
602 	 * freed.
603 	 *
604 	 * All the lazy freeing logic is still retained, in order to minimise
605 	 * intrusiveness of this debugging feature.
606 	 *
607 	 * This is going to be *slow* (linear kernel virtual address debugging
608 	 * doesn't do a broadcast TLB flush so it is a lot faster).
609 	 */
610 	if (debug_pagealloc_enabled()) {
611 		vunmap_page_range(start, end);
612 		flush_tlb_kernel_range(start, end);
613 	}
614 }
615 
616 /*
617  * lazy_max_pages is the maximum amount of virtual address space we gather up
618  * before attempting to purge with a TLB flush.
619  *
620  * There is a tradeoff here: a larger number will cover more kernel page tables
621  * and take slightly longer to purge, but it will linearly reduce the number of
622  * global TLB flushes that must be performed. It would seem natural to scale
623  * this number up linearly with the number of CPUs (because vmapping activity
624  * could also scale linearly with the number of CPUs), however it is likely
625  * that in practice, workloads might be constrained in other ways that mean
626  * vmap activity will not scale linearly with CPUs. Also, I want to be
627  * conservative and not introduce a big latency on huge systems, so go with
628  * a less aggressive log scale. It will still be an improvement over the old
629  * code, and it will be simple to change the scale factor if we find that it
630  * becomes a problem on bigger systems.
631  */
632 static unsigned long lazy_max_pages(void)
633 {
634 	unsigned int log;
635 
636 	log = fls(num_online_cpus());
637 
638 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
639 }
640 
641 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
642 
643 /*
644  * Serialize vmap purging.  There is no actual criticial section protected
645  * by this look, but we want to avoid concurrent calls for performance
646  * reasons and to make the pcpu_get_vm_areas more deterministic.
647  */
648 static DEFINE_MUTEX(vmap_purge_lock);
649 
650 /* for per-CPU blocks */
651 static void purge_fragmented_blocks_allcpus(void);
652 
653 /*
654  * called before a call to iounmap() if the caller wants vm_area_struct's
655  * immediately freed.
656  */
657 void set_iounmap_nonlazy(void)
658 {
659 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
660 }
661 
662 /*
663  * Purges all lazily-freed vmap areas.
664  */
665 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
666 {
667 	struct llist_node *valist;
668 	struct vmap_area *va;
669 	struct vmap_area *n_va;
670 	bool do_free = false;
671 
672 	lockdep_assert_held(&vmap_purge_lock);
673 
674 	valist = llist_del_all(&vmap_purge_list);
675 	llist_for_each_entry(va, valist, purge_list) {
676 		if (va->va_start < start)
677 			start = va->va_start;
678 		if (va->va_end > end)
679 			end = va->va_end;
680 		do_free = true;
681 	}
682 
683 	if (!do_free)
684 		return false;
685 
686 	flush_tlb_kernel_range(start, end);
687 
688 	spin_lock(&vmap_area_lock);
689 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
690 		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
691 
692 		__free_vmap_area(va);
693 		atomic_sub(nr, &vmap_lazy_nr);
694 		cond_resched_lock(&vmap_area_lock);
695 	}
696 	spin_unlock(&vmap_area_lock);
697 	return true;
698 }
699 
700 /*
701  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
702  * is already purging.
703  */
704 static void try_purge_vmap_area_lazy(void)
705 {
706 	if (mutex_trylock(&vmap_purge_lock)) {
707 		__purge_vmap_area_lazy(ULONG_MAX, 0);
708 		mutex_unlock(&vmap_purge_lock);
709 	}
710 }
711 
712 /*
713  * Kick off a purge of the outstanding lazy areas.
714  */
715 static void purge_vmap_area_lazy(void)
716 {
717 	mutex_lock(&vmap_purge_lock);
718 	purge_fragmented_blocks_allcpus();
719 	__purge_vmap_area_lazy(ULONG_MAX, 0);
720 	mutex_unlock(&vmap_purge_lock);
721 }
722 
723 /*
724  * Free a vmap area, caller ensuring that the area has been unmapped
725  * and flush_cache_vunmap had been called for the correct range
726  * previously.
727  */
728 static void free_vmap_area_noflush(struct vmap_area *va)
729 {
730 	int nr_lazy;
731 
732 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
733 				    &vmap_lazy_nr);
734 
735 	/* After this point, we may free va at any time */
736 	llist_add(&va->purge_list, &vmap_purge_list);
737 
738 	if (unlikely(nr_lazy > lazy_max_pages()))
739 		try_purge_vmap_area_lazy();
740 }
741 
742 /*
743  * Free and unmap a vmap area
744  */
745 static void free_unmap_vmap_area(struct vmap_area *va)
746 {
747 	flush_cache_vunmap(va->va_start, va->va_end);
748 	unmap_vmap_area(va);
749 	free_vmap_area_noflush(va);
750 }
751 
752 static struct vmap_area *find_vmap_area(unsigned long addr)
753 {
754 	struct vmap_area *va;
755 
756 	spin_lock(&vmap_area_lock);
757 	va = __find_vmap_area(addr);
758 	spin_unlock(&vmap_area_lock);
759 
760 	return va;
761 }
762 
763 /*** Per cpu kva allocator ***/
764 
765 /*
766  * vmap space is limited especially on 32 bit architectures. Ensure there is
767  * room for at least 16 percpu vmap blocks per CPU.
768  */
769 /*
770  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
771  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
772  * instead (we just need a rough idea)
773  */
774 #if BITS_PER_LONG == 32
775 #define VMALLOC_SPACE		(128UL*1024*1024)
776 #else
777 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
778 #endif
779 
780 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
781 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
782 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
783 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
784 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
785 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
786 #define VMAP_BBMAP_BITS		\
787 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
788 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
789 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
790 
791 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
792 
793 static bool vmap_initialized __read_mostly = false;
794 
795 struct vmap_block_queue {
796 	spinlock_t lock;
797 	struct list_head free;
798 };
799 
800 struct vmap_block {
801 	spinlock_t lock;
802 	struct vmap_area *va;
803 	unsigned long free, dirty;
804 	unsigned long dirty_min, dirty_max; /*< dirty range */
805 	struct list_head free_list;
806 	struct rcu_head rcu_head;
807 	struct list_head purge;
808 };
809 
810 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
811 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
812 
813 /*
814  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
815  * in the free path. Could get rid of this if we change the API to return a
816  * "cookie" from alloc, to be passed to free. But no big deal yet.
817  */
818 static DEFINE_SPINLOCK(vmap_block_tree_lock);
819 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
820 
821 /*
822  * We should probably have a fallback mechanism to allocate virtual memory
823  * out of partially filled vmap blocks. However vmap block sizing should be
824  * fairly reasonable according to the vmalloc size, so it shouldn't be a
825  * big problem.
826  */
827 
828 static unsigned long addr_to_vb_idx(unsigned long addr)
829 {
830 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
831 	addr /= VMAP_BLOCK_SIZE;
832 	return addr;
833 }
834 
835 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
836 {
837 	unsigned long addr;
838 
839 	addr = va_start + (pages_off << PAGE_SHIFT);
840 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
841 	return (void *)addr;
842 }
843 
844 /**
845  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
846  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
847  * @order:    how many 2^order pages should be occupied in newly allocated block
848  * @gfp_mask: flags for the page level allocator
849  *
850  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
851  */
852 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
853 {
854 	struct vmap_block_queue *vbq;
855 	struct vmap_block *vb;
856 	struct vmap_area *va;
857 	unsigned long vb_idx;
858 	int node, err;
859 	void *vaddr;
860 
861 	node = numa_node_id();
862 
863 	vb = kmalloc_node(sizeof(struct vmap_block),
864 			gfp_mask & GFP_RECLAIM_MASK, node);
865 	if (unlikely(!vb))
866 		return ERR_PTR(-ENOMEM);
867 
868 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
869 					VMALLOC_START, VMALLOC_END,
870 					node, gfp_mask);
871 	if (IS_ERR(va)) {
872 		kfree(vb);
873 		return ERR_CAST(va);
874 	}
875 
876 	err = radix_tree_preload(gfp_mask);
877 	if (unlikely(err)) {
878 		kfree(vb);
879 		free_vmap_area(va);
880 		return ERR_PTR(err);
881 	}
882 
883 	vaddr = vmap_block_vaddr(va->va_start, 0);
884 	spin_lock_init(&vb->lock);
885 	vb->va = va;
886 	/* At least something should be left free */
887 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
888 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
889 	vb->dirty = 0;
890 	vb->dirty_min = VMAP_BBMAP_BITS;
891 	vb->dirty_max = 0;
892 	INIT_LIST_HEAD(&vb->free_list);
893 
894 	vb_idx = addr_to_vb_idx(va->va_start);
895 	spin_lock(&vmap_block_tree_lock);
896 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
897 	spin_unlock(&vmap_block_tree_lock);
898 	BUG_ON(err);
899 	radix_tree_preload_end();
900 
901 	vbq = &get_cpu_var(vmap_block_queue);
902 	spin_lock(&vbq->lock);
903 	list_add_tail_rcu(&vb->free_list, &vbq->free);
904 	spin_unlock(&vbq->lock);
905 	put_cpu_var(vmap_block_queue);
906 
907 	return vaddr;
908 }
909 
910 static void free_vmap_block(struct vmap_block *vb)
911 {
912 	struct vmap_block *tmp;
913 	unsigned long vb_idx;
914 
915 	vb_idx = addr_to_vb_idx(vb->va->va_start);
916 	spin_lock(&vmap_block_tree_lock);
917 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
918 	spin_unlock(&vmap_block_tree_lock);
919 	BUG_ON(tmp != vb);
920 
921 	free_vmap_area_noflush(vb->va);
922 	kfree_rcu(vb, rcu_head);
923 }
924 
925 static void purge_fragmented_blocks(int cpu)
926 {
927 	LIST_HEAD(purge);
928 	struct vmap_block *vb;
929 	struct vmap_block *n_vb;
930 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
931 
932 	rcu_read_lock();
933 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
934 
935 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
936 			continue;
937 
938 		spin_lock(&vb->lock);
939 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
940 			vb->free = 0; /* prevent further allocs after releasing lock */
941 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
942 			vb->dirty_min = 0;
943 			vb->dirty_max = VMAP_BBMAP_BITS;
944 			spin_lock(&vbq->lock);
945 			list_del_rcu(&vb->free_list);
946 			spin_unlock(&vbq->lock);
947 			spin_unlock(&vb->lock);
948 			list_add_tail(&vb->purge, &purge);
949 		} else
950 			spin_unlock(&vb->lock);
951 	}
952 	rcu_read_unlock();
953 
954 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
955 		list_del(&vb->purge);
956 		free_vmap_block(vb);
957 	}
958 }
959 
960 static void purge_fragmented_blocks_allcpus(void)
961 {
962 	int cpu;
963 
964 	for_each_possible_cpu(cpu)
965 		purge_fragmented_blocks(cpu);
966 }
967 
968 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
969 {
970 	struct vmap_block_queue *vbq;
971 	struct vmap_block *vb;
972 	void *vaddr = NULL;
973 	unsigned int order;
974 
975 	BUG_ON(offset_in_page(size));
976 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
977 	if (WARN_ON(size == 0)) {
978 		/*
979 		 * Allocating 0 bytes isn't what caller wants since
980 		 * get_order(0) returns funny result. Just warn and terminate
981 		 * early.
982 		 */
983 		return NULL;
984 	}
985 	order = get_order(size);
986 
987 	rcu_read_lock();
988 	vbq = &get_cpu_var(vmap_block_queue);
989 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
990 		unsigned long pages_off;
991 
992 		spin_lock(&vb->lock);
993 		if (vb->free < (1UL << order)) {
994 			spin_unlock(&vb->lock);
995 			continue;
996 		}
997 
998 		pages_off = VMAP_BBMAP_BITS - vb->free;
999 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1000 		vb->free -= 1UL << order;
1001 		if (vb->free == 0) {
1002 			spin_lock(&vbq->lock);
1003 			list_del_rcu(&vb->free_list);
1004 			spin_unlock(&vbq->lock);
1005 		}
1006 
1007 		spin_unlock(&vb->lock);
1008 		break;
1009 	}
1010 
1011 	put_cpu_var(vmap_block_queue);
1012 	rcu_read_unlock();
1013 
1014 	/* Allocate new block if nothing was found */
1015 	if (!vaddr)
1016 		vaddr = new_vmap_block(order, gfp_mask);
1017 
1018 	return vaddr;
1019 }
1020 
1021 static void vb_free(const void *addr, unsigned long size)
1022 {
1023 	unsigned long offset;
1024 	unsigned long vb_idx;
1025 	unsigned int order;
1026 	struct vmap_block *vb;
1027 
1028 	BUG_ON(offset_in_page(size));
1029 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1030 
1031 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1032 
1033 	order = get_order(size);
1034 
1035 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1036 	offset >>= PAGE_SHIFT;
1037 
1038 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1039 	rcu_read_lock();
1040 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1041 	rcu_read_unlock();
1042 	BUG_ON(!vb);
1043 
1044 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1045 
1046 	spin_lock(&vb->lock);
1047 
1048 	/* Expand dirty range */
1049 	vb->dirty_min = min(vb->dirty_min, offset);
1050 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1051 
1052 	vb->dirty += 1UL << order;
1053 	if (vb->dirty == VMAP_BBMAP_BITS) {
1054 		BUG_ON(vb->free);
1055 		spin_unlock(&vb->lock);
1056 		free_vmap_block(vb);
1057 	} else
1058 		spin_unlock(&vb->lock);
1059 }
1060 
1061 /**
1062  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1063  *
1064  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1065  * to amortize TLB flushing overheads. What this means is that any page you
1066  * have now, may, in a former life, have been mapped into kernel virtual
1067  * address by the vmap layer and so there might be some CPUs with TLB entries
1068  * still referencing that page (additional to the regular 1:1 kernel mapping).
1069  *
1070  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1071  * be sure that none of the pages we have control over will have any aliases
1072  * from the vmap layer.
1073  */
1074 void vm_unmap_aliases(void)
1075 {
1076 	unsigned long start = ULONG_MAX, end = 0;
1077 	int cpu;
1078 	int flush = 0;
1079 
1080 	if (unlikely(!vmap_initialized))
1081 		return;
1082 
1083 	might_sleep();
1084 
1085 	for_each_possible_cpu(cpu) {
1086 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1087 		struct vmap_block *vb;
1088 
1089 		rcu_read_lock();
1090 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1091 			spin_lock(&vb->lock);
1092 			if (vb->dirty) {
1093 				unsigned long va_start = vb->va->va_start;
1094 				unsigned long s, e;
1095 
1096 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1097 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1098 
1099 				start = min(s, start);
1100 				end   = max(e, end);
1101 
1102 				flush = 1;
1103 			}
1104 			spin_unlock(&vb->lock);
1105 		}
1106 		rcu_read_unlock();
1107 	}
1108 
1109 	mutex_lock(&vmap_purge_lock);
1110 	purge_fragmented_blocks_allcpus();
1111 	if (!__purge_vmap_area_lazy(start, end) && flush)
1112 		flush_tlb_kernel_range(start, end);
1113 	mutex_unlock(&vmap_purge_lock);
1114 }
1115 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1116 
1117 /**
1118  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1119  * @mem: the pointer returned by vm_map_ram
1120  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1121  */
1122 void vm_unmap_ram(const void *mem, unsigned int count)
1123 {
1124 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1125 	unsigned long addr = (unsigned long)mem;
1126 	struct vmap_area *va;
1127 
1128 	might_sleep();
1129 	BUG_ON(!addr);
1130 	BUG_ON(addr < VMALLOC_START);
1131 	BUG_ON(addr > VMALLOC_END);
1132 	BUG_ON(!PAGE_ALIGNED(addr));
1133 
1134 	debug_check_no_locks_freed(mem, size);
1135 	vmap_debug_free_range(addr, addr+size);
1136 
1137 	if (likely(count <= VMAP_MAX_ALLOC)) {
1138 		vb_free(mem, size);
1139 		return;
1140 	}
1141 
1142 	va = find_vmap_area(addr);
1143 	BUG_ON(!va);
1144 	free_unmap_vmap_area(va);
1145 }
1146 EXPORT_SYMBOL(vm_unmap_ram);
1147 
1148 /**
1149  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1150  * @pages: an array of pointers to the pages to be mapped
1151  * @count: number of pages
1152  * @node: prefer to allocate data structures on this node
1153  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1154  *
1155  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1156  * faster than vmap so it's good.  But if you mix long-life and short-life
1157  * objects with vm_map_ram(), it could consume lots of address space through
1158  * fragmentation (especially on a 32bit machine).  You could see failures in
1159  * the end.  Please use this function for short-lived objects.
1160  *
1161  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1162  */
1163 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1164 {
1165 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1166 	unsigned long addr;
1167 	void *mem;
1168 
1169 	if (likely(count <= VMAP_MAX_ALLOC)) {
1170 		mem = vb_alloc(size, GFP_KERNEL);
1171 		if (IS_ERR(mem))
1172 			return NULL;
1173 		addr = (unsigned long)mem;
1174 	} else {
1175 		struct vmap_area *va;
1176 		va = alloc_vmap_area(size, PAGE_SIZE,
1177 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1178 		if (IS_ERR(va))
1179 			return NULL;
1180 
1181 		addr = va->va_start;
1182 		mem = (void *)addr;
1183 	}
1184 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1185 		vm_unmap_ram(mem, count);
1186 		return NULL;
1187 	}
1188 	return mem;
1189 }
1190 EXPORT_SYMBOL(vm_map_ram);
1191 
1192 static struct vm_struct *vmlist __initdata;
1193 /**
1194  * vm_area_add_early - add vmap area early during boot
1195  * @vm: vm_struct to add
1196  *
1197  * This function is used to add fixed kernel vm area to vmlist before
1198  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1199  * should contain proper values and the other fields should be zero.
1200  *
1201  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1202  */
1203 void __init vm_area_add_early(struct vm_struct *vm)
1204 {
1205 	struct vm_struct *tmp, **p;
1206 
1207 	BUG_ON(vmap_initialized);
1208 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1209 		if (tmp->addr >= vm->addr) {
1210 			BUG_ON(tmp->addr < vm->addr + vm->size);
1211 			break;
1212 		} else
1213 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1214 	}
1215 	vm->next = *p;
1216 	*p = vm;
1217 }
1218 
1219 /**
1220  * vm_area_register_early - register vmap area early during boot
1221  * @vm: vm_struct to register
1222  * @align: requested alignment
1223  *
1224  * This function is used to register kernel vm area before
1225  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1226  * proper values on entry and other fields should be zero.  On return,
1227  * vm->addr contains the allocated address.
1228  *
1229  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1230  */
1231 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1232 {
1233 	static size_t vm_init_off __initdata;
1234 	unsigned long addr;
1235 
1236 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1237 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1238 
1239 	vm->addr = (void *)addr;
1240 
1241 	vm_area_add_early(vm);
1242 }
1243 
1244 void __init vmalloc_init(void)
1245 {
1246 	struct vmap_area *va;
1247 	struct vm_struct *tmp;
1248 	int i;
1249 
1250 	for_each_possible_cpu(i) {
1251 		struct vmap_block_queue *vbq;
1252 		struct vfree_deferred *p;
1253 
1254 		vbq = &per_cpu(vmap_block_queue, i);
1255 		spin_lock_init(&vbq->lock);
1256 		INIT_LIST_HEAD(&vbq->free);
1257 		p = &per_cpu(vfree_deferred, i);
1258 		init_llist_head(&p->list);
1259 		INIT_WORK(&p->wq, free_work);
1260 	}
1261 
1262 	/* Import existing vmlist entries. */
1263 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1264 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1265 		va->flags = VM_VM_AREA;
1266 		va->va_start = (unsigned long)tmp->addr;
1267 		va->va_end = va->va_start + tmp->size;
1268 		va->vm = tmp;
1269 		__insert_vmap_area(va);
1270 	}
1271 
1272 	vmap_area_pcpu_hole = VMALLOC_END;
1273 
1274 	vmap_initialized = true;
1275 }
1276 
1277 /**
1278  * map_kernel_range_noflush - map kernel VM area with the specified pages
1279  * @addr: start of the VM area to map
1280  * @size: size of the VM area to map
1281  * @prot: page protection flags to use
1282  * @pages: pages to map
1283  *
1284  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1285  * specify should have been allocated using get_vm_area() and its
1286  * friends.
1287  *
1288  * NOTE:
1289  * This function does NOT do any cache flushing.  The caller is
1290  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1291  * before calling this function.
1292  *
1293  * RETURNS:
1294  * The number of pages mapped on success, -errno on failure.
1295  */
1296 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1297 			     pgprot_t prot, struct page **pages)
1298 {
1299 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1300 }
1301 
1302 /**
1303  * unmap_kernel_range_noflush - unmap kernel VM area
1304  * @addr: start of the VM area to unmap
1305  * @size: size of the VM area to unmap
1306  *
1307  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1308  * specify should have been allocated using get_vm_area() and its
1309  * friends.
1310  *
1311  * NOTE:
1312  * This function does NOT do any cache flushing.  The caller is
1313  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1314  * before calling this function and flush_tlb_kernel_range() after.
1315  */
1316 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1317 {
1318 	vunmap_page_range(addr, addr + size);
1319 }
1320 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1321 
1322 /**
1323  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1324  * @addr: start of the VM area to unmap
1325  * @size: size of the VM area to unmap
1326  *
1327  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1328  * the unmapping and tlb after.
1329  */
1330 void unmap_kernel_range(unsigned long addr, unsigned long size)
1331 {
1332 	unsigned long end = addr + size;
1333 
1334 	flush_cache_vunmap(addr, end);
1335 	vunmap_page_range(addr, end);
1336 	flush_tlb_kernel_range(addr, end);
1337 }
1338 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1339 
1340 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1341 {
1342 	unsigned long addr = (unsigned long)area->addr;
1343 	unsigned long end = addr + get_vm_area_size(area);
1344 	int err;
1345 
1346 	err = vmap_page_range(addr, end, prot, pages);
1347 
1348 	return err > 0 ? 0 : err;
1349 }
1350 EXPORT_SYMBOL_GPL(map_vm_area);
1351 
1352 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1353 			      unsigned long flags, const void *caller)
1354 {
1355 	spin_lock(&vmap_area_lock);
1356 	vm->flags = flags;
1357 	vm->addr = (void *)va->va_start;
1358 	vm->size = va->va_end - va->va_start;
1359 	vm->caller = caller;
1360 	va->vm = vm;
1361 	va->flags |= VM_VM_AREA;
1362 	spin_unlock(&vmap_area_lock);
1363 }
1364 
1365 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1366 {
1367 	/*
1368 	 * Before removing VM_UNINITIALIZED,
1369 	 * we should make sure that vm has proper values.
1370 	 * Pair with smp_rmb() in show_numa_info().
1371 	 */
1372 	smp_wmb();
1373 	vm->flags &= ~VM_UNINITIALIZED;
1374 }
1375 
1376 static struct vm_struct *__get_vm_area_node(unsigned long size,
1377 		unsigned long align, unsigned long flags, unsigned long start,
1378 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1379 {
1380 	struct vmap_area *va;
1381 	struct vm_struct *area;
1382 
1383 	BUG_ON(in_interrupt());
1384 	size = PAGE_ALIGN(size);
1385 	if (unlikely(!size))
1386 		return NULL;
1387 
1388 	if (flags & VM_IOREMAP)
1389 		align = 1ul << clamp_t(int, get_count_order_long(size),
1390 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1391 
1392 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1393 	if (unlikely(!area))
1394 		return NULL;
1395 
1396 	if (!(flags & VM_NO_GUARD))
1397 		size += PAGE_SIZE;
1398 
1399 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1400 	if (IS_ERR(va)) {
1401 		kfree(area);
1402 		return NULL;
1403 	}
1404 
1405 	setup_vmalloc_vm(area, va, flags, caller);
1406 
1407 	return area;
1408 }
1409 
1410 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1411 				unsigned long start, unsigned long end)
1412 {
1413 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1414 				  GFP_KERNEL, __builtin_return_address(0));
1415 }
1416 EXPORT_SYMBOL_GPL(__get_vm_area);
1417 
1418 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1419 				       unsigned long start, unsigned long end,
1420 				       const void *caller)
1421 {
1422 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1423 				  GFP_KERNEL, caller);
1424 }
1425 
1426 /**
1427  *	get_vm_area  -  reserve a contiguous kernel virtual area
1428  *	@size:		size of the area
1429  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1430  *
1431  *	Search an area of @size in the kernel virtual mapping area,
1432  *	and reserved it for out purposes.  Returns the area descriptor
1433  *	on success or %NULL on failure.
1434  */
1435 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1436 {
1437 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1438 				  NUMA_NO_NODE, GFP_KERNEL,
1439 				  __builtin_return_address(0));
1440 }
1441 
1442 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1443 				const void *caller)
1444 {
1445 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1446 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1447 }
1448 
1449 /**
1450  *	find_vm_area  -  find a continuous kernel virtual area
1451  *	@addr:		base address
1452  *
1453  *	Search for the kernel VM area starting at @addr, and return it.
1454  *	It is up to the caller to do all required locking to keep the returned
1455  *	pointer valid.
1456  */
1457 struct vm_struct *find_vm_area(const void *addr)
1458 {
1459 	struct vmap_area *va;
1460 
1461 	va = find_vmap_area((unsigned long)addr);
1462 	if (va && va->flags & VM_VM_AREA)
1463 		return va->vm;
1464 
1465 	return NULL;
1466 }
1467 
1468 /**
1469  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1470  *	@addr:		base address
1471  *
1472  *	Search for the kernel VM area starting at @addr, and remove it.
1473  *	This function returns the found VM area, but using it is NOT safe
1474  *	on SMP machines, except for its size or flags.
1475  */
1476 struct vm_struct *remove_vm_area(const void *addr)
1477 {
1478 	struct vmap_area *va;
1479 
1480 	might_sleep();
1481 
1482 	va = find_vmap_area((unsigned long)addr);
1483 	if (va && va->flags & VM_VM_AREA) {
1484 		struct vm_struct *vm = va->vm;
1485 
1486 		spin_lock(&vmap_area_lock);
1487 		va->vm = NULL;
1488 		va->flags &= ~VM_VM_AREA;
1489 		spin_unlock(&vmap_area_lock);
1490 
1491 		vmap_debug_free_range(va->va_start, va->va_end);
1492 		kasan_free_shadow(vm);
1493 		free_unmap_vmap_area(va);
1494 
1495 		return vm;
1496 	}
1497 	return NULL;
1498 }
1499 
1500 static void __vunmap(const void *addr, int deallocate_pages)
1501 {
1502 	struct vm_struct *area;
1503 
1504 	if (!addr)
1505 		return;
1506 
1507 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1508 			addr))
1509 		return;
1510 
1511 	area = remove_vm_area(addr);
1512 	if (unlikely(!area)) {
1513 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1514 				addr);
1515 		return;
1516 	}
1517 
1518 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1519 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1520 
1521 	if (deallocate_pages) {
1522 		int i;
1523 
1524 		for (i = 0; i < area->nr_pages; i++) {
1525 			struct page *page = area->pages[i];
1526 
1527 			BUG_ON(!page);
1528 			__free_pages(page, 0);
1529 		}
1530 
1531 		kvfree(area->pages);
1532 	}
1533 
1534 	kfree(area);
1535 	return;
1536 }
1537 
1538 static inline void __vfree_deferred(const void *addr)
1539 {
1540 	/*
1541 	 * Use raw_cpu_ptr() because this can be called from preemptible
1542 	 * context. Preemption is absolutely fine here, because the llist_add()
1543 	 * implementation is lockless, so it works even if we are adding to
1544 	 * nother cpu's list.  schedule_work() should be fine with this too.
1545 	 */
1546 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1547 
1548 	if (llist_add((struct llist_node *)addr, &p->list))
1549 		schedule_work(&p->wq);
1550 }
1551 
1552 /**
1553  *	vfree_atomic  -  release memory allocated by vmalloc()
1554  *	@addr:		memory base address
1555  *
1556  *	This one is just like vfree() but can be called in any atomic context
1557  *	except NMIs.
1558  */
1559 void vfree_atomic(const void *addr)
1560 {
1561 	BUG_ON(in_nmi());
1562 
1563 	kmemleak_free(addr);
1564 
1565 	if (!addr)
1566 		return;
1567 	__vfree_deferred(addr);
1568 }
1569 
1570 /**
1571  *	vfree  -  release memory allocated by vmalloc()
1572  *	@addr:		memory base address
1573  *
1574  *	Free the virtually continuous memory area starting at @addr, as
1575  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1576  *	NULL, no operation is performed.
1577  *
1578  *	Must not be called in NMI context (strictly speaking, only if we don't
1579  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1580  *	conventions for vfree() arch-depenedent would be a really bad idea)
1581  *
1582  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1583  */
1584 void vfree(const void *addr)
1585 {
1586 	BUG_ON(in_nmi());
1587 
1588 	kmemleak_free(addr);
1589 
1590 	if (!addr)
1591 		return;
1592 	if (unlikely(in_interrupt()))
1593 		__vfree_deferred(addr);
1594 	else
1595 		__vunmap(addr, 1);
1596 }
1597 EXPORT_SYMBOL(vfree);
1598 
1599 /**
1600  *	vunmap  -  release virtual mapping obtained by vmap()
1601  *	@addr:		memory base address
1602  *
1603  *	Free the virtually contiguous memory area starting at @addr,
1604  *	which was created from the page array passed to vmap().
1605  *
1606  *	Must not be called in interrupt context.
1607  */
1608 void vunmap(const void *addr)
1609 {
1610 	BUG_ON(in_interrupt());
1611 	might_sleep();
1612 	if (addr)
1613 		__vunmap(addr, 0);
1614 }
1615 EXPORT_SYMBOL(vunmap);
1616 
1617 /**
1618  *	vmap  -  map an array of pages into virtually contiguous space
1619  *	@pages:		array of page pointers
1620  *	@count:		number of pages to map
1621  *	@flags:		vm_area->flags
1622  *	@prot:		page protection for the mapping
1623  *
1624  *	Maps @count pages from @pages into contiguous kernel virtual
1625  *	space.
1626  */
1627 void *vmap(struct page **pages, unsigned int count,
1628 		unsigned long flags, pgprot_t prot)
1629 {
1630 	struct vm_struct *area;
1631 	unsigned long size;		/* In bytes */
1632 
1633 	might_sleep();
1634 
1635 	if (count > totalram_pages)
1636 		return NULL;
1637 
1638 	size = (unsigned long)count << PAGE_SHIFT;
1639 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1640 	if (!area)
1641 		return NULL;
1642 
1643 	if (map_vm_area(area, prot, pages)) {
1644 		vunmap(area->addr);
1645 		return NULL;
1646 	}
1647 
1648 	return area->addr;
1649 }
1650 EXPORT_SYMBOL(vmap);
1651 
1652 static void *__vmalloc_node(unsigned long size, unsigned long align,
1653 			    gfp_t gfp_mask, pgprot_t prot,
1654 			    int node, const void *caller);
1655 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1656 				 pgprot_t prot, int node)
1657 {
1658 	struct page **pages;
1659 	unsigned int nr_pages, array_size, i;
1660 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1661 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1662 
1663 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1664 	array_size = (nr_pages * sizeof(struct page *));
1665 
1666 	area->nr_pages = nr_pages;
1667 	/* Please note that the recursion is strictly bounded. */
1668 	if (array_size > PAGE_SIZE) {
1669 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1670 				PAGE_KERNEL, node, area->caller);
1671 	} else {
1672 		pages = kmalloc_node(array_size, nested_gfp, node);
1673 	}
1674 	area->pages = pages;
1675 	if (!area->pages) {
1676 		remove_vm_area(area->addr);
1677 		kfree(area);
1678 		return NULL;
1679 	}
1680 
1681 	for (i = 0; i < area->nr_pages; i++) {
1682 		struct page *page;
1683 
1684 		if (fatal_signal_pending(current)) {
1685 			area->nr_pages = i;
1686 			goto fail;
1687 		}
1688 
1689 		if (node == NUMA_NO_NODE)
1690 			page = alloc_page(alloc_mask);
1691 		else
1692 			page = alloc_pages_node(node, alloc_mask, 0);
1693 
1694 		if (unlikely(!page)) {
1695 			/* Successfully allocated i pages, free them in __vunmap() */
1696 			area->nr_pages = i;
1697 			goto fail;
1698 		}
1699 		area->pages[i] = page;
1700 		if (gfpflags_allow_blocking(gfp_mask))
1701 			cond_resched();
1702 	}
1703 
1704 	if (map_vm_area(area, prot, pages))
1705 		goto fail;
1706 	return area->addr;
1707 
1708 fail:
1709 	warn_alloc(gfp_mask, NULL,
1710 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1711 			  (area->nr_pages*PAGE_SIZE), area->size);
1712 	vfree(area->addr);
1713 	return NULL;
1714 }
1715 
1716 /**
1717  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1718  *	@size:		allocation size
1719  *	@align:		desired alignment
1720  *	@start:		vm area range start
1721  *	@end:		vm area range end
1722  *	@gfp_mask:	flags for the page level allocator
1723  *	@prot:		protection mask for the allocated pages
1724  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1725  *	@node:		node to use for allocation or NUMA_NO_NODE
1726  *	@caller:	caller's return address
1727  *
1728  *	Allocate enough pages to cover @size from the page level
1729  *	allocator with @gfp_mask flags.  Map them into contiguous
1730  *	kernel virtual space, using a pagetable protection of @prot.
1731  */
1732 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1733 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1734 			pgprot_t prot, unsigned long vm_flags, int node,
1735 			const void *caller)
1736 {
1737 	struct vm_struct *area;
1738 	void *addr;
1739 	unsigned long real_size = size;
1740 
1741 	size = PAGE_ALIGN(size);
1742 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1743 		goto fail;
1744 
1745 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1746 				vm_flags, start, end, node, gfp_mask, caller);
1747 	if (!area)
1748 		goto fail;
1749 
1750 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1751 	if (!addr)
1752 		return NULL;
1753 
1754 	/*
1755 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1756 	 * flag. It means that vm_struct is not fully initialized.
1757 	 * Now, it is fully initialized, so remove this flag here.
1758 	 */
1759 	clear_vm_uninitialized_flag(area);
1760 
1761 	/*
1762 	 * A ref_count = 2 is needed because vm_struct allocated in
1763 	 * __get_vm_area_node() contains a reference to the virtual address of
1764 	 * the vmalloc'ed block.
1765 	 */
1766 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1767 
1768 	return addr;
1769 
1770 fail:
1771 	warn_alloc(gfp_mask, NULL,
1772 			  "vmalloc: allocation failure: %lu bytes", real_size);
1773 	return NULL;
1774 }
1775 
1776 /**
1777  *	__vmalloc_node  -  allocate virtually contiguous memory
1778  *	@size:		allocation size
1779  *	@align:		desired alignment
1780  *	@gfp_mask:	flags for the page level allocator
1781  *	@prot:		protection mask for the allocated pages
1782  *	@node:		node to use for allocation or NUMA_NO_NODE
1783  *	@caller:	caller's return address
1784  *
1785  *	Allocate enough pages to cover @size from the page level
1786  *	allocator with @gfp_mask flags.  Map them into contiguous
1787  *	kernel virtual space, using a pagetable protection of @prot.
1788  */
1789 static void *__vmalloc_node(unsigned long size, unsigned long align,
1790 			    gfp_t gfp_mask, pgprot_t prot,
1791 			    int node, const void *caller)
1792 {
1793 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1794 				gfp_mask, prot, 0, node, caller);
1795 }
1796 
1797 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1798 {
1799 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1800 				__builtin_return_address(0));
1801 }
1802 EXPORT_SYMBOL(__vmalloc);
1803 
1804 static inline void *__vmalloc_node_flags(unsigned long size,
1805 					int node, gfp_t flags)
1806 {
1807 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1808 					node, __builtin_return_address(0));
1809 }
1810 
1811 /**
1812  *	vmalloc  -  allocate virtually contiguous memory
1813  *	@size:		allocation size
1814  *	Allocate enough pages to cover @size from the page level
1815  *	allocator and map them into contiguous kernel virtual space.
1816  *
1817  *	For tight control over page level allocator and protection flags
1818  *	use __vmalloc() instead.
1819  */
1820 void *vmalloc(unsigned long size)
1821 {
1822 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1823 				    GFP_KERNEL | __GFP_HIGHMEM);
1824 }
1825 EXPORT_SYMBOL(vmalloc);
1826 
1827 /**
1828  *	vzalloc - allocate virtually contiguous memory with zero fill
1829  *	@size:	allocation size
1830  *	Allocate enough pages to cover @size from the page level
1831  *	allocator and map them into contiguous kernel virtual space.
1832  *	The memory allocated is set to zero.
1833  *
1834  *	For tight control over page level allocator and protection flags
1835  *	use __vmalloc() instead.
1836  */
1837 void *vzalloc(unsigned long size)
1838 {
1839 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1840 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1841 }
1842 EXPORT_SYMBOL(vzalloc);
1843 
1844 /**
1845  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1846  * @size: allocation size
1847  *
1848  * The resulting memory area is zeroed so it can be mapped to userspace
1849  * without leaking data.
1850  */
1851 void *vmalloc_user(unsigned long size)
1852 {
1853 	struct vm_struct *area;
1854 	void *ret;
1855 
1856 	ret = __vmalloc_node(size, SHMLBA,
1857 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1858 			     PAGE_KERNEL, NUMA_NO_NODE,
1859 			     __builtin_return_address(0));
1860 	if (ret) {
1861 		area = find_vm_area(ret);
1862 		area->flags |= VM_USERMAP;
1863 	}
1864 	return ret;
1865 }
1866 EXPORT_SYMBOL(vmalloc_user);
1867 
1868 /**
1869  *	vmalloc_node  -  allocate memory on a specific node
1870  *	@size:		allocation size
1871  *	@node:		numa node
1872  *
1873  *	Allocate enough pages to cover @size from the page level
1874  *	allocator and map them into contiguous kernel virtual space.
1875  *
1876  *	For tight control over page level allocator and protection flags
1877  *	use __vmalloc() instead.
1878  */
1879 void *vmalloc_node(unsigned long size, int node)
1880 {
1881 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1882 					node, __builtin_return_address(0));
1883 }
1884 EXPORT_SYMBOL(vmalloc_node);
1885 
1886 /**
1887  * vzalloc_node - allocate memory on a specific node with zero fill
1888  * @size:	allocation size
1889  * @node:	numa node
1890  *
1891  * Allocate enough pages to cover @size from the page level
1892  * allocator and map them into contiguous kernel virtual space.
1893  * The memory allocated is set to zero.
1894  *
1895  * For tight control over page level allocator and protection flags
1896  * use __vmalloc_node() instead.
1897  */
1898 void *vzalloc_node(unsigned long size, int node)
1899 {
1900 	return __vmalloc_node_flags(size, node,
1901 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1902 }
1903 EXPORT_SYMBOL(vzalloc_node);
1904 
1905 #ifndef PAGE_KERNEL_EXEC
1906 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1907 #endif
1908 
1909 /**
1910  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1911  *	@size:		allocation size
1912  *
1913  *	Kernel-internal function to allocate enough pages to cover @size
1914  *	the page level allocator and map them into contiguous and
1915  *	executable kernel virtual space.
1916  *
1917  *	For tight control over page level allocator and protection flags
1918  *	use __vmalloc() instead.
1919  */
1920 
1921 void *vmalloc_exec(unsigned long size)
1922 {
1923 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1924 			      NUMA_NO_NODE, __builtin_return_address(0));
1925 }
1926 
1927 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1928 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1929 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1930 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1931 #else
1932 #define GFP_VMALLOC32 GFP_KERNEL
1933 #endif
1934 
1935 /**
1936  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1937  *	@size:		allocation size
1938  *
1939  *	Allocate enough 32bit PA addressable pages to cover @size from the
1940  *	page level allocator and map them into contiguous kernel virtual space.
1941  */
1942 void *vmalloc_32(unsigned long size)
1943 {
1944 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1945 			      NUMA_NO_NODE, __builtin_return_address(0));
1946 }
1947 EXPORT_SYMBOL(vmalloc_32);
1948 
1949 /**
1950  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1951  *	@size:		allocation size
1952  *
1953  * The resulting memory area is 32bit addressable and zeroed so it can be
1954  * mapped to userspace without leaking data.
1955  */
1956 void *vmalloc_32_user(unsigned long size)
1957 {
1958 	struct vm_struct *area;
1959 	void *ret;
1960 
1961 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1962 			     NUMA_NO_NODE, __builtin_return_address(0));
1963 	if (ret) {
1964 		area = find_vm_area(ret);
1965 		area->flags |= VM_USERMAP;
1966 	}
1967 	return ret;
1968 }
1969 EXPORT_SYMBOL(vmalloc_32_user);
1970 
1971 /*
1972  * small helper routine , copy contents to buf from addr.
1973  * If the page is not present, fill zero.
1974  */
1975 
1976 static int aligned_vread(char *buf, char *addr, unsigned long count)
1977 {
1978 	struct page *p;
1979 	int copied = 0;
1980 
1981 	while (count) {
1982 		unsigned long offset, length;
1983 
1984 		offset = offset_in_page(addr);
1985 		length = PAGE_SIZE - offset;
1986 		if (length > count)
1987 			length = count;
1988 		p = vmalloc_to_page(addr);
1989 		/*
1990 		 * To do safe access to this _mapped_ area, we need
1991 		 * lock. But adding lock here means that we need to add
1992 		 * overhead of vmalloc()/vfree() calles for this _debug_
1993 		 * interface, rarely used. Instead of that, we'll use
1994 		 * kmap() and get small overhead in this access function.
1995 		 */
1996 		if (p) {
1997 			/*
1998 			 * we can expect USER0 is not used (see vread/vwrite's
1999 			 * function description)
2000 			 */
2001 			void *map = kmap_atomic(p);
2002 			memcpy(buf, map + offset, length);
2003 			kunmap_atomic(map);
2004 		} else
2005 			memset(buf, 0, length);
2006 
2007 		addr += length;
2008 		buf += length;
2009 		copied += length;
2010 		count -= length;
2011 	}
2012 	return copied;
2013 }
2014 
2015 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2016 {
2017 	struct page *p;
2018 	int copied = 0;
2019 
2020 	while (count) {
2021 		unsigned long offset, length;
2022 
2023 		offset = offset_in_page(addr);
2024 		length = PAGE_SIZE - offset;
2025 		if (length > count)
2026 			length = count;
2027 		p = vmalloc_to_page(addr);
2028 		/*
2029 		 * To do safe access to this _mapped_ area, we need
2030 		 * lock. But adding lock here means that we need to add
2031 		 * overhead of vmalloc()/vfree() calles for this _debug_
2032 		 * interface, rarely used. Instead of that, we'll use
2033 		 * kmap() and get small overhead in this access function.
2034 		 */
2035 		if (p) {
2036 			/*
2037 			 * we can expect USER0 is not used (see vread/vwrite's
2038 			 * function description)
2039 			 */
2040 			void *map = kmap_atomic(p);
2041 			memcpy(map + offset, buf, length);
2042 			kunmap_atomic(map);
2043 		}
2044 		addr += length;
2045 		buf += length;
2046 		copied += length;
2047 		count -= length;
2048 	}
2049 	return copied;
2050 }
2051 
2052 /**
2053  *	vread() -  read vmalloc area in a safe way.
2054  *	@buf:		buffer for reading data
2055  *	@addr:		vm address.
2056  *	@count:		number of bytes to be read.
2057  *
2058  *	Returns # of bytes which addr and buf should be increased.
2059  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2060  *	includes any intersect with alive vmalloc area.
2061  *
2062  *	This function checks that addr is a valid vmalloc'ed area, and
2063  *	copy data from that area to a given buffer. If the given memory range
2064  *	of [addr...addr+count) includes some valid address, data is copied to
2065  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2066  *	IOREMAP area is treated as memory hole and no copy is done.
2067  *
2068  *	If [addr...addr+count) doesn't includes any intersects with alive
2069  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2070  *
2071  *	Note: In usual ops, vread() is never necessary because the caller
2072  *	should know vmalloc() area is valid and can use memcpy().
2073  *	This is for routines which have to access vmalloc area without
2074  *	any informaion, as /dev/kmem.
2075  *
2076  */
2077 
2078 long vread(char *buf, char *addr, unsigned long count)
2079 {
2080 	struct vmap_area *va;
2081 	struct vm_struct *vm;
2082 	char *vaddr, *buf_start = buf;
2083 	unsigned long buflen = count;
2084 	unsigned long n;
2085 
2086 	/* Don't allow overflow */
2087 	if ((unsigned long) addr + count < count)
2088 		count = -(unsigned long) addr;
2089 
2090 	spin_lock(&vmap_area_lock);
2091 	list_for_each_entry(va, &vmap_area_list, list) {
2092 		if (!count)
2093 			break;
2094 
2095 		if (!(va->flags & VM_VM_AREA))
2096 			continue;
2097 
2098 		vm = va->vm;
2099 		vaddr = (char *) vm->addr;
2100 		if (addr >= vaddr + get_vm_area_size(vm))
2101 			continue;
2102 		while (addr < vaddr) {
2103 			if (count == 0)
2104 				goto finished;
2105 			*buf = '\0';
2106 			buf++;
2107 			addr++;
2108 			count--;
2109 		}
2110 		n = vaddr + get_vm_area_size(vm) - addr;
2111 		if (n > count)
2112 			n = count;
2113 		if (!(vm->flags & VM_IOREMAP))
2114 			aligned_vread(buf, addr, n);
2115 		else /* IOREMAP area is treated as memory hole */
2116 			memset(buf, 0, n);
2117 		buf += n;
2118 		addr += n;
2119 		count -= n;
2120 	}
2121 finished:
2122 	spin_unlock(&vmap_area_lock);
2123 
2124 	if (buf == buf_start)
2125 		return 0;
2126 	/* zero-fill memory holes */
2127 	if (buf != buf_start + buflen)
2128 		memset(buf, 0, buflen - (buf - buf_start));
2129 
2130 	return buflen;
2131 }
2132 
2133 /**
2134  *	vwrite() -  write vmalloc area in a safe way.
2135  *	@buf:		buffer for source data
2136  *	@addr:		vm address.
2137  *	@count:		number of bytes to be read.
2138  *
2139  *	Returns # of bytes which addr and buf should be incresed.
2140  *	(same number to @count).
2141  *	If [addr...addr+count) doesn't includes any intersect with valid
2142  *	vmalloc area, returns 0.
2143  *
2144  *	This function checks that addr is a valid vmalloc'ed area, and
2145  *	copy data from a buffer to the given addr. If specified range of
2146  *	[addr...addr+count) includes some valid address, data is copied from
2147  *	proper area of @buf. If there are memory holes, no copy to hole.
2148  *	IOREMAP area is treated as memory hole and no copy is done.
2149  *
2150  *	If [addr...addr+count) doesn't includes any intersects with alive
2151  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2152  *
2153  *	Note: In usual ops, vwrite() is never necessary because the caller
2154  *	should know vmalloc() area is valid and can use memcpy().
2155  *	This is for routines which have to access vmalloc area without
2156  *	any informaion, as /dev/kmem.
2157  */
2158 
2159 long vwrite(char *buf, char *addr, unsigned long count)
2160 {
2161 	struct vmap_area *va;
2162 	struct vm_struct *vm;
2163 	char *vaddr;
2164 	unsigned long n, buflen;
2165 	int copied = 0;
2166 
2167 	/* Don't allow overflow */
2168 	if ((unsigned long) addr + count < count)
2169 		count = -(unsigned long) addr;
2170 	buflen = count;
2171 
2172 	spin_lock(&vmap_area_lock);
2173 	list_for_each_entry(va, &vmap_area_list, list) {
2174 		if (!count)
2175 			break;
2176 
2177 		if (!(va->flags & VM_VM_AREA))
2178 			continue;
2179 
2180 		vm = va->vm;
2181 		vaddr = (char *) vm->addr;
2182 		if (addr >= vaddr + get_vm_area_size(vm))
2183 			continue;
2184 		while (addr < vaddr) {
2185 			if (count == 0)
2186 				goto finished;
2187 			buf++;
2188 			addr++;
2189 			count--;
2190 		}
2191 		n = vaddr + get_vm_area_size(vm) - addr;
2192 		if (n > count)
2193 			n = count;
2194 		if (!(vm->flags & VM_IOREMAP)) {
2195 			aligned_vwrite(buf, addr, n);
2196 			copied++;
2197 		}
2198 		buf += n;
2199 		addr += n;
2200 		count -= n;
2201 	}
2202 finished:
2203 	spin_unlock(&vmap_area_lock);
2204 	if (!copied)
2205 		return 0;
2206 	return buflen;
2207 }
2208 
2209 /**
2210  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2211  *	@vma:		vma to cover
2212  *	@uaddr:		target user address to start at
2213  *	@kaddr:		virtual address of vmalloc kernel memory
2214  *	@size:		size of map area
2215  *
2216  *	Returns:	0 for success, -Exxx on failure
2217  *
2218  *	This function checks that @kaddr is a valid vmalloc'ed area,
2219  *	and that it is big enough to cover the range starting at
2220  *	@uaddr in @vma. Will return failure if that criteria isn't
2221  *	met.
2222  *
2223  *	Similar to remap_pfn_range() (see mm/memory.c)
2224  */
2225 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2226 				void *kaddr, unsigned long size)
2227 {
2228 	struct vm_struct *area;
2229 
2230 	size = PAGE_ALIGN(size);
2231 
2232 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2233 		return -EINVAL;
2234 
2235 	area = find_vm_area(kaddr);
2236 	if (!area)
2237 		return -EINVAL;
2238 
2239 	if (!(area->flags & VM_USERMAP))
2240 		return -EINVAL;
2241 
2242 	if (kaddr + size > area->addr + area->size)
2243 		return -EINVAL;
2244 
2245 	do {
2246 		struct page *page = vmalloc_to_page(kaddr);
2247 		int ret;
2248 
2249 		ret = vm_insert_page(vma, uaddr, page);
2250 		if (ret)
2251 			return ret;
2252 
2253 		uaddr += PAGE_SIZE;
2254 		kaddr += PAGE_SIZE;
2255 		size -= PAGE_SIZE;
2256 	} while (size > 0);
2257 
2258 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2259 
2260 	return 0;
2261 }
2262 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2263 
2264 /**
2265  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2266  *	@vma:		vma to cover (map full range of vma)
2267  *	@addr:		vmalloc memory
2268  *	@pgoff:		number of pages into addr before first page to map
2269  *
2270  *	Returns:	0 for success, -Exxx on failure
2271  *
2272  *	This function checks that addr is a valid vmalloc'ed area, and
2273  *	that it is big enough to cover the vma. Will return failure if
2274  *	that criteria isn't met.
2275  *
2276  *	Similar to remap_pfn_range() (see mm/memory.c)
2277  */
2278 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2279 						unsigned long pgoff)
2280 {
2281 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2282 					   addr + (pgoff << PAGE_SHIFT),
2283 					   vma->vm_end - vma->vm_start);
2284 }
2285 EXPORT_SYMBOL(remap_vmalloc_range);
2286 
2287 /*
2288  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2289  * have one.
2290  */
2291 void __weak vmalloc_sync_all(void)
2292 {
2293 }
2294 
2295 
2296 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2297 {
2298 	pte_t ***p = data;
2299 
2300 	if (p) {
2301 		*(*p) = pte;
2302 		(*p)++;
2303 	}
2304 	return 0;
2305 }
2306 
2307 /**
2308  *	alloc_vm_area - allocate a range of kernel address space
2309  *	@size:		size of the area
2310  *	@ptes:		returns the PTEs for the address space
2311  *
2312  *	Returns:	NULL on failure, vm_struct on success
2313  *
2314  *	This function reserves a range of kernel address space, and
2315  *	allocates pagetables to map that range.  No actual mappings
2316  *	are created.
2317  *
2318  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2319  *	allocated for the VM area are returned.
2320  */
2321 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2322 {
2323 	struct vm_struct *area;
2324 
2325 	area = get_vm_area_caller(size, VM_IOREMAP,
2326 				__builtin_return_address(0));
2327 	if (area == NULL)
2328 		return NULL;
2329 
2330 	/*
2331 	 * This ensures that page tables are constructed for this region
2332 	 * of kernel virtual address space and mapped into init_mm.
2333 	 */
2334 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2335 				size, f, ptes ? &ptes : NULL)) {
2336 		free_vm_area(area);
2337 		return NULL;
2338 	}
2339 
2340 	return area;
2341 }
2342 EXPORT_SYMBOL_GPL(alloc_vm_area);
2343 
2344 void free_vm_area(struct vm_struct *area)
2345 {
2346 	struct vm_struct *ret;
2347 	ret = remove_vm_area(area->addr);
2348 	BUG_ON(ret != area);
2349 	kfree(area);
2350 }
2351 EXPORT_SYMBOL_GPL(free_vm_area);
2352 
2353 #ifdef CONFIG_SMP
2354 static struct vmap_area *node_to_va(struct rb_node *n)
2355 {
2356 	return rb_entry_safe(n, struct vmap_area, rb_node);
2357 }
2358 
2359 /**
2360  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2361  * @end: target address
2362  * @pnext: out arg for the next vmap_area
2363  * @pprev: out arg for the previous vmap_area
2364  *
2365  * Returns: %true if either or both of next and prev are found,
2366  *	    %false if no vmap_area exists
2367  *
2368  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2369  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2370  */
2371 static bool pvm_find_next_prev(unsigned long end,
2372 			       struct vmap_area **pnext,
2373 			       struct vmap_area **pprev)
2374 {
2375 	struct rb_node *n = vmap_area_root.rb_node;
2376 	struct vmap_area *va = NULL;
2377 
2378 	while (n) {
2379 		va = rb_entry(n, struct vmap_area, rb_node);
2380 		if (end < va->va_end)
2381 			n = n->rb_left;
2382 		else if (end > va->va_end)
2383 			n = n->rb_right;
2384 		else
2385 			break;
2386 	}
2387 
2388 	if (!va)
2389 		return false;
2390 
2391 	if (va->va_end > end) {
2392 		*pnext = va;
2393 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2394 	} else {
2395 		*pprev = va;
2396 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2397 	}
2398 	return true;
2399 }
2400 
2401 /**
2402  * pvm_determine_end - find the highest aligned address between two vmap_areas
2403  * @pnext: in/out arg for the next vmap_area
2404  * @pprev: in/out arg for the previous vmap_area
2405  * @align: alignment
2406  *
2407  * Returns: determined end address
2408  *
2409  * Find the highest aligned address between *@pnext and *@pprev below
2410  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2411  * down address is between the end addresses of the two vmap_areas.
2412  *
2413  * Please note that the address returned by this function may fall
2414  * inside *@pnext vmap_area.  The caller is responsible for checking
2415  * that.
2416  */
2417 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2418 				       struct vmap_area **pprev,
2419 				       unsigned long align)
2420 {
2421 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2422 	unsigned long addr;
2423 
2424 	if (*pnext)
2425 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2426 	else
2427 		addr = vmalloc_end;
2428 
2429 	while (*pprev && (*pprev)->va_end > addr) {
2430 		*pnext = *pprev;
2431 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2432 	}
2433 
2434 	return addr;
2435 }
2436 
2437 /**
2438  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2439  * @offsets: array containing offset of each area
2440  * @sizes: array containing size of each area
2441  * @nr_vms: the number of areas to allocate
2442  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2443  *
2444  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2445  *	    vm_structs on success, %NULL on failure
2446  *
2447  * Percpu allocator wants to use congruent vm areas so that it can
2448  * maintain the offsets among percpu areas.  This function allocates
2449  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2450  * be scattered pretty far, distance between two areas easily going up
2451  * to gigabytes.  To avoid interacting with regular vmallocs, these
2452  * areas are allocated from top.
2453  *
2454  * Despite its complicated look, this allocator is rather simple.  It
2455  * does everything top-down and scans areas from the end looking for
2456  * matching slot.  While scanning, if any of the areas overlaps with
2457  * existing vmap_area, the base address is pulled down to fit the
2458  * area.  Scanning is repeated till all the areas fit and then all
2459  * necessary data structres are inserted and the result is returned.
2460  */
2461 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2462 				     const size_t *sizes, int nr_vms,
2463 				     size_t align)
2464 {
2465 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2466 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2467 	struct vmap_area **vas, *prev, *next;
2468 	struct vm_struct **vms;
2469 	int area, area2, last_area, term_area;
2470 	unsigned long base, start, end, last_end;
2471 	bool purged = false;
2472 
2473 	/* verify parameters and allocate data structures */
2474 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2475 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2476 		start = offsets[area];
2477 		end = start + sizes[area];
2478 
2479 		/* is everything aligned properly? */
2480 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2481 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2482 
2483 		/* detect the area with the highest address */
2484 		if (start > offsets[last_area])
2485 			last_area = area;
2486 
2487 		for (area2 = 0; area2 < nr_vms; area2++) {
2488 			unsigned long start2 = offsets[area2];
2489 			unsigned long end2 = start2 + sizes[area2];
2490 
2491 			if (area2 == area)
2492 				continue;
2493 
2494 			BUG_ON(start2 >= start && start2 < end);
2495 			BUG_ON(end2 <= end && end2 > start);
2496 		}
2497 	}
2498 	last_end = offsets[last_area] + sizes[last_area];
2499 
2500 	if (vmalloc_end - vmalloc_start < last_end) {
2501 		WARN_ON(true);
2502 		return NULL;
2503 	}
2504 
2505 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2506 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2507 	if (!vas || !vms)
2508 		goto err_free2;
2509 
2510 	for (area = 0; area < nr_vms; area++) {
2511 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2512 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2513 		if (!vas[area] || !vms[area])
2514 			goto err_free;
2515 	}
2516 retry:
2517 	spin_lock(&vmap_area_lock);
2518 
2519 	/* start scanning - we scan from the top, begin with the last area */
2520 	area = term_area = last_area;
2521 	start = offsets[area];
2522 	end = start + sizes[area];
2523 
2524 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2525 		base = vmalloc_end - last_end;
2526 		goto found;
2527 	}
2528 	base = pvm_determine_end(&next, &prev, align) - end;
2529 
2530 	while (true) {
2531 		BUG_ON(next && next->va_end <= base + end);
2532 		BUG_ON(prev && prev->va_end > base + end);
2533 
2534 		/*
2535 		 * base might have underflowed, add last_end before
2536 		 * comparing.
2537 		 */
2538 		if (base + last_end < vmalloc_start + last_end) {
2539 			spin_unlock(&vmap_area_lock);
2540 			if (!purged) {
2541 				purge_vmap_area_lazy();
2542 				purged = true;
2543 				goto retry;
2544 			}
2545 			goto err_free;
2546 		}
2547 
2548 		/*
2549 		 * If next overlaps, move base downwards so that it's
2550 		 * right below next and then recheck.
2551 		 */
2552 		if (next && next->va_start < base + end) {
2553 			base = pvm_determine_end(&next, &prev, align) - end;
2554 			term_area = area;
2555 			continue;
2556 		}
2557 
2558 		/*
2559 		 * If prev overlaps, shift down next and prev and move
2560 		 * base so that it's right below new next and then
2561 		 * recheck.
2562 		 */
2563 		if (prev && prev->va_end > base + start)  {
2564 			next = prev;
2565 			prev = node_to_va(rb_prev(&next->rb_node));
2566 			base = pvm_determine_end(&next, &prev, align) - end;
2567 			term_area = area;
2568 			continue;
2569 		}
2570 
2571 		/*
2572 		 * This area fits, move on to the previous one.  If
2573 		 * the previous one is the terminal one, we're done.
2574 		 */
2575 		area = (area + nr_vms - 1) % nr_vms;
2576 		if (area == term_area)
2577 			break;
2578 		start = offsets[area];
2579 		end = start + sizes[area];
2580 		pvm_find_next_prev(base + end, &next, &prev);
2581 	}
2582 found:
2583 	/* we've found a fitting base, insert all va's */
2584 	for (area = 0; area < nr_vms; area++) {
2585 		struct vmap_area *va = vas[area];
2586 
2587 		va->va_start = base + offsets[area];
2588 		va->va_end = va->va_start + sizes[area];
2589 		__insert_vmap_area(va);
2590 	}
2591 
2592 	vmap_area_pcpu_hole = base + offsets[last_area];
2593 
2594 	spin_unlock(&vmap_area_lock);
2595 
2596 	/* insert all vm's */
2597 	for (area = 0; area < nr_vms; area++)
2598 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2599 				 pcpu_get_vm_areas);
2600 
2601 	kfree(vas);
2602 	return vms;
2603 
2604 err_free:
2605 	for (area = 0; area < nr_vms; area++) {
2606 		kfree(vas[area]);
2607 		kfree(vms[area]);
2608 	}
2609 err_free2:
2610 	kfree(vas);
2611 	kfree(vms);
2612 	return NULL;
2613 }
2614 
2615 /**
2616  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2617  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2618  * @nr_vms: the number of allocated areas
2619  *
2620  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2621  */
2622 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2623 {
2624 	int i;
2625 
2626 	for (i = 0; i < nr_vms; i++)
2627 		free_vm_area(vms[i]);
2628 	kfree(vms);
2629 }
2630 #endif	/* CONFIG_SMP */
2631 
2632 #ifdef CONFIG_PROC_FS
2633 static void *s_start(struct seq_file *m, loff_t *pos)
2634 	__acquires(&vmap_area_lock)
2635 {
2636 	spin_lock(&vmap_area_lock);
2637 	return seq_list_start(&vmap_area_list, *pos);
2638 }
2639 
2640 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2641 {
2642 	return seq_list_next(p, &vmap_area_list, pos);
2643 }
2644 
2645 static void s_stop(struct seq_file *m, void *p)
2646 	__releases(&vmap_area_lock)
2647 {
2648 	spin_unlock(&vmap_area_lock);
2649 }
2650 
2651 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2652 {
2653 	if (IS_ENABLED(CONFIG_NUMA)) {
2654 		unsigned int nr, *counters = m->private;
2655 
2656 		if (!counters)
2657 			return;
2658 
2659 		if (v->flags & VM_UNINITIALIZED)
2660 			return;
2661 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2662 		smp_rmb();
2663 
2664 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2665 
2666 		for (nr = 0; nr < v->nr_pages; nr++)
2667 			counters[page_to_nid(v->pages[nr])]++;
2668 
2669 		for_each_node_state(nr, N_HIGH_MEMORY)
2670 			if (counters[nr])
2671 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2672 	}
2673 }
2674 
2675 static int s_show(struct seq_file *m, void *p)
2676 {
2677 	struct vmap_area *va;
2678 	struct vm_struct *v;
2679 
2680 	va = list_entry(p, struct vmap_area, list);
2681 
2682 	/*
2683 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2684 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2685 	 */
2686 	if (!(va->flags & VM_VM_AREA))
2687 		return 0;
2688 
2689 	v = va->vm;
2690 
2691 	seq_printf(m, "0x%pK-0x%pK %7ld",
2692 		v->addr, v->addr + v->size, v->size);
2693 
2694 	if (v->caller)
2695 		seq_printf(m, " %pS", v->caller);
2696 
2697 	if (v->nr_pages)
2698 		seq_printf(m, " pages=%d", v->nr_pages);
2699 
2700 	if (v->phys_addr)
2701 		seq_printf(m, " phys=%pa", &v->phys_addr);
2702 
2703 	if (v->flags & VM_IOREMAP)
2704 		seq_puts(m, " ioremap");
2705 
2706 	if (v->flags & VM_ALLOC)
2707 		seq_puts(m, " vmalloc");
2708 
2709 	if (v->flags & VM_MAP)
2710 		seq_puts(m, " vmap");
2711 
2712 	if (v->flags & VM_USERMAP)
2713 		seq_puts(m, " user");
2714 
2715 	if (is_vmalloc_addr(v->pages))
2716 		seq_puts(m, " vpages");
2717 
2718 	show_numa_info(m, v);
2719 	seq_putc(m, '\n');
2720 	return 0;
2721 }
2722 
2723 static const struct seq_operations vmalloc_op = {
2724 	.start = s_start,
2725 	.next = s_next,
2726 	.stop = s_stop,
2727 	.show = s_show,
2728 };
2729 
2730 static int vmalloc_open(struct inode *inode, struct file *file)
2731 {
2732 	if (IS_ENABLED(CONFIG_NUMA))
2733 		return seq_open_private(file, &vmalloc_op,
2734 					nr_node_ids * sizeof(unsigned int));
2735 	else
2736 		return seq_open(file, &vmalloc_op);
2737 }
2738 
2739 static const struct file_operations proc_vmalloc_operations = {
2740 	.open		= vmalloc_open,
2741 	.read		= seq_read,
2742 	.llseek		= seq_lseek,
2743 	.release	= seq_release_private,
2744 };
2745 
2746 static int __init proc_vmalloc_init(void)
2747 {
2748 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2749 	return 0;
2750 }
2751 module_init(proc_vmalloc_init);
2752 
2753 #endif
2754 
2755