1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/memcontrol.h> 35 #include <linux/llist.h> 36 #include <linux/bitops.h> 37 #include <linux/rbtree_augmented.h> 38 #include <linux/overflow.h> 39 #include <linux/pgtable.h> 40 #include <linux/uaccess.h> 41 #include <linux/hugetlb.h> 42 #include <linux/sched/mm.h> 43 #include <asm/tlbflush.h> 44 #include <asm/shmparam.h> 45 46 #include "internal.h" 47 #include "pgalloc-track.h" 48 49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1; 51 52 static int __init set_nohugeiomap(char *str) 53 { 54 ioremap_max_page_shift = PAGE_SHIFT; 55 return 0; 56 } 57 early_param("nohugeiomap", set_nohugeiomap); 58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT; 60 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 61 62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 63 static bool __ro_after_init vmap_allow_huge = true; 64 65 static int __init set_nohugevmalloc(char *str) 66 { 67 vmap_allow_huge = false; 68 return 0; 69 } 70 early_param("nohugevmalloc", set_nohugevmalloc); 71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 72 static const bool vmap_allow_huge = false; 73 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 74 75 bool is_vmalloc_addr(const void *x) 76 { 77 unsigned long addr = (unsigned long)kasan_reset_tag(x); 78 79 return addr >= VMALLOC_START && addr < VMALLOC_END; 80 } 81 EXPORT_SYMBOL(is_vmalloc_addr); 82 83 struct vfree_deferred { 84 struct llist_head list; 85 struct work_struct wq; 86 }; 87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 88 89 static void __vunmap(const void *, int); 90 91 static void free_work(struct work_struct *w) 92 { 93 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 94 struct llist_node *t, *llnode; 95 96 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 97 __vunmap((void *)llnode, 1); 98 } 99 100 /*** Page table manipulation functions ***/ 101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 102 phys_addr_t phys_addr, pgprot_t prot, 103 unsigned int max_page_shift, pgtbl_mod_mask *mask) 104 { 105 pte_t *pte; 106 u64 pfn; 107 unsigned long size = PAGE_SIZE; 108 109 pfn = phys_addr >> PAGE_SHIFT; 110 pte = pte_alloc_kernel_track(pmd, addr, mask); 111 if (!pte) 112 return -ENOMEM; 113 do { 114 BUG_ON(!pte_none(*pte)); 115 116 #ifdef CONFIG_HUGETLB_PAGE 117 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 118 if (size != PAGE_SIZE) { 119 pte_t entry = pfn_pte(pfn, prot); 120 121 entry = arch_make_huge_pte(entry, ilog2(size), 0); 122 set_huge_pte_at(&init_mm, addr, pte, entry); 123 pfn += PFN_DOWN(size); 124 continue; 125 } 126 #endif 127 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 128 pfn++; 129 } while (pte += PFN_DOWN(size), addr += size, addr != end); 130 *mask |= PGTBL_PTE_MODIFIED; 131 return 0; 132 } 133 134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 135 phys_addr_t phys_addr, pgprot_t prot, 136 unsigned int max_page_shift) 137 { 138 if (max_page_shift < PMD_SHIFT) 139 return 0; 140 141 if (!arch_vmap_pmd_supported(prot)) 142 return 0; 143 144 if ((end - addr) != PMD_SIZE) 145 return 0; 146 147 if (!IS_ALIGNED(addr, PMD_SIZE)) 148 return 0; 149 150 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 151 return 0; 152 153 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 154 return 0; 155 156 return pmd_set_huge(pmd, phys_addr, prot); 157 } 158 159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 160 phys_addr_t phys_addr, pgprot_t prot, 161 unsigned int max_page_shift, pgtbl_mod_mask *mask) 162 { 163 pmd_t *pmd; 164 unsigned long next; 165 166 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 167 if (!pmd) 168 return -ENOMEM; 169 do { 170 next = pmd_addr_end(addr, end); 171 172 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 173 max_page_shift)) { 174 *mask |= PGTBL_PMD_MODIFIED; 175 continue; 176 } 177 178 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 179 return -ENOMEM; 180 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 181 return 0; 182 } 183 184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 185 phys_addr_t phys_addr, pgprot_t prot, 186 unsigned int max_page_shift) 187 { 188 if (max_page_shift < PUD_SHIFT) 189 return 0; 190 191 if (!arch_vmap_pud_supported(prot)) 192 return 0; 193 194 if ((end - addr) != PUD_SIZE) 195 return 0; 196 197 if (!IS_ALIGNED(addr, PUD_SIZE)) 198 return 0; 199 200 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 201 return 0; 202 203 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 204 return 0; 205 206 return pud_set_huge(pud, phys_addr, prot); 207 } 208 209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 210 phys_addr_t phys_addr, pgprot_t prot, 211 unsigned int max_page_shift, pgtbl_mod_mask *mask) 212 { 213 pud_t *pud; 214 unsigned long next; 215 216 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 217 if (!pud) 218 return -ENOMEM; 219 do { 220 next = pud_addr_end(addr, end); 221 222 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 223 max_page_shift)) { 224 *mask |= PGTBL_PUD_MODIFIED; 225 continue; 226 } 227 228 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 229 max_page_shift, mask)) 230 return -ENOMEM; 231 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 232 return 0; 233 } 234 235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 236 phys_addr_t phys_addr, pgprot_t prot, 237 unsigned int max_page_shift) 238 { 239 if (max_page_shift < P4D_SHIFT) 240 return 0; 241 242 if (!arch_vmap_p4d_supported(prot)) 243 return 0; 244 245 if ((end - addr) != P4D_SIZE) 246 return 0; 247 248 if (!IS_ALIGNED(addr, P4D_SIZE)) 249 return 0; 250 251 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 252 return 0; 253 254 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 255 return 0; 256 257 return p4d_set_huge(p4d, phys_addr, prot); 258 } 259 260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 261 phys_addr_t phys_addr, pgprot_t prot, 262 unsigned int max_page_shift, pgtbl_mod_mask *mask) 263 { 264 p4d_t *p4d; 265 unsigned long next; 266 267 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 268 if (!p4d) 269 return -ENOMEM; 270 do { 271 next = p4d_addr_end(addr, end); 272 273 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 274 max_page_shift)) { 275 *mask |= PGTBL_P4D_MODIFIED; 276 continue; 277 } 278 279 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 280 max_page_shift, mask)) 281 return -ENOMEM; 282 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 283 return 0; 284 } 285 286 static int vmap_range_noflush(unsigned long addr, unsigned long end, 287 phys_addr_t phys_addr, pgprot_t prot, 288 unsigned int max_page_shift) 289 { 290 pgd_t *pgd; 291 unsigned long start; 292 unsigned long next; 293 int err; 294 pgtbl_mod_mask mask = 0; 295 296 might_sleep(); 297 BUG_ON(addr >= end); 298 299 start = addr; 300 pgd = pgd_offset_k(addr); 301 do { 302 next = pgd_addr_end(addr, end); 303 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 304 max_page_shift, &mask); 305 if (err) 306 break; 307 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 308 309 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 310 arch_sync_kernel_mappings(start, end); 311 312 return err; 313 } 314 315 int ioremap_page_range(unsigned long addr, unsigned long end, 316 phys_addr_t phys_addr, pgprot_t prot) 317 { 318 int err; 319 320 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot), 321 ioremap_max_page_shift); 322 flush_cache_vmap(addr, end); 323 return err; 324 } 325 326 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 327 pgtbl_mod_mask *mask) 328 { 329 pte_t *pte; 330 331 pte = pte_offset_kernel(pmd, addr); 332 do { 333 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 334 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 335 } while (pte++, addr += PAGE_SIZE, addr != end); 336 *mask |= PGTBL_PTE_MODIFIED; 337 } 338 339 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 340 pgtbl_mod_mask *mask) 341 { 342 pmd_t *pmd; 343 unsigned long next; 344 int cleared; 345 346 pmd = pmd_offset(pud, addr); 347 do { 348 next = pmd_addr_end(addr, end); 349 350 cleared = pmd_clear_huge(pmd); 351 if (cleared || pmd_bad(*pmd)) 352 *mask |= PGTBL_PMD_MODIFIED; 353 354 if (cleared) 355 continue; 356 if (pmd_none_or_clear_bad(pmd)) 357 continue; 358 vunmap_pte_range(pmd, addr, next, mask); 359 360 cond_resched(); 361 } while (pmd++, addr = next, addr != end); 362 } 363 364 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 365 pgtbl_mod_mask *mask) 366 { 367 pud_t *pud; 368 unsigned long next; 369 int cleared; 370 371 pud = pud_offset(p4d, addr); 372 do { 373 next = pud_addr_end(addr, end); 374 375 cleared = pud_clear_huge(pud); 376 if (cleared || pud_bad(*pud)) 377 *mask |= PGTBL_PUD_MODIFIED; 378 379 if (cleared) 380 continue; 381 if (pud_none_or_clear_bad(pud)) 382 continue; 383 vunmap_pmd_range(pud, addr, next, mask); 384 } while (pud++, addr = next, addr != end); 385 } 386 387 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 388 pgtbl_mod_mask *mask) 389 { 390 p4d_t *p4d; 391 unsigned long next; 392 int cleared; 393 394 p4d = p4d_offset(pgd, addr); 395 do { 396 next = p4d_addr_end(addr, end); 397 398 cleared = p4d_clear_huge(p4d); 399 if (cleared || p4d_bad(*p4d)) 400 *mask |= PGTBL_P4D_MODIFIED; 401 402 if (cleared) 403 continue; 404 if (p4d_none_or_clear_bad(p4d)) 405 continue; 406 vunmap_pud_range(p4d, addr, next, mask); 407 } while (p4d++, addr = next, addr != end); 408 } 409 410 /* 411 * vunmap_range_noflush is similar to vunmap_range, but does not 412 * flush caches or TLBs. 413 * 414 * The caller is responsible for calling flush_cache_vmap() before calling 415 * this function, and flush_tlb_kernel_range after it has returned 416 * successfully (and before the addresses are expected to cause a page fault 417 * or be re-mapped for something else, if TLB flushes are being delayed or 418 * coalesced). 419 * 420 * This is an internal function only. Do not use outside mm/. 421 */ 422 void vunmap_range_noflush(unsigned long start, unsigned long end) 423 { 424 unsigned long next; 425 pgd_t *pgd; 426 unsigned long addr = start; 427 pgtbl_mod_mask mask = 0; 428 429 BUG_ON(addr >= end); 430 pgd = pgd_offset_k(addr); 431 do { 432 next = pgd_addr_end(addr, end); 433 if (pgd_bad(*pgd)) 434 mask |= PGTBL_PGD_MODIFIED; 435 if (pgd_none_or_clear_bad(pgd)) 436 continue; 437 vunmap_p4d_range(pgd, addr, next, &mask); 438 } while (pgd++, addr = next, addr != end); 439 440 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 441 arch_sync_kernel_mappings(start, end); 442 } 443 444 /** 445 * vunmap_range - unmap kernel virtual addresses 446 * @addr: start of the VM area to unmap 447 * @end: end of the VM area to unmap (non-inclusive) 448 * 449 * Clears any present PTEs in the virtual address range, flushes TLBs and 450 * caches. Any subsequent access to the address before it has been re-mapped 451 * is a kernel bug. 452 */ 453 void vunmap_range(unsigned long addr, unsigned long end) 454 { 455 flush_cache_vunmap(addr, end); 456 vunmap_range_noflush(addr, end); 457 flush_tlb_kernel_range(addr, end); 458 } 459 460 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 461 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 462 pgtbl_mod_mask *mask) 463 { 464 pte_t *pte; 465 466 /* 467 * nr is a running index into the array which helps higher level 468 * callers keep track of where we're up to. 469 */ 470 471 pte = pte_alloc_kernel_track(pmd, addr, mask); 472 if (!pte) 473 return -ENOMEM; 474 do { 475 struct page *page = pages[*nr]; 476 477 if (WARN_ON(!pte_none(*pte))) 478 return -EBUSY; 479 if (WARN_ON(!page)) 480 return -ENOMEM; 481 if (WARN_ON(!pfn_valid(page_to_pfn(page)))) 482 return -EINVAL; 483 484 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 485 (*nr)++; 486 } while (pte++, addr += PAGE_SIZE, addr != end); 487 *mask |= PGTBL_PTE_MODIFIED; 488 return 0; 489 } 490 491 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 492 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 493 pgtbl_mod_mask *mask) 494 { 495 pmd_t *pmd; 496 unsigned long next; 497 498 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 499 if (!pmd) 500 return -ENOMEM; 501 do { 502 next = pmd_addr_end(addr, end); 503 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 504 return -ENOMEM; 505 } while (pmd++, addr = next, addr != end); 506 return 0; 507 } 508 509 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 510 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 511 pgtbl_mod_mask *mask) 512 { 513 pud_t *pud; 514 unsigned long next; 515 516 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 517 if (!pud) 518 return -ENOMEM; 519 do { 520 next = pud_addr_end(addr, end); 521 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 522 return -ENOMEM; 523 } while (pud++, addr = next, addr != end); 524 return 0; 525 } 526 527 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 528 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 529 pgtbl_mod_mask *mask) 530 { 531 p4d_t *p4d; 532 unsigned long next; 533 534 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 535 if (!p4d) 536 return -ENOMEM; 537 do { 538 next = p4d_addr_end(addr, end); 539 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 540 return -ENOMEM; 541 } while (p4d++, addr = next, addr != end); 542 return 0; 543 } 544 545 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 546 pgprot_t prot, struct page **pages) 547 { 548 unsigned long start = addr; 549 pgd_t *pgd; 550 unsigned long next; 551 int err = 0; 552 int nr = 0; 553 pgtbl_mod_mask mask = 0; 554 555 BUG_ON(addr >= end); 556 pgd = pgd_offset_k(addr); 557 do { 558 next = pgd_addr_end(addr, end); 559 if (pgd_bad(*pgd)) 560 mask |= PGTBL_PGD_MODIFIED; 561 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 562 if (err) 563 return err; 564 } while (pgd++, addr = next, addr != end); 565 566 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 567 arch_sync_kernel_mappings(start, end); 568 569 return 0; 570 } 571 572 /* 573 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 574 * flush caches. 575 * 576 * The caller is responsible for calling flush_cache_vmap() after this 577 * function returns successfully and before the addresses are accessed. 578 * 579 * This is an internal function only. Do not use outside mm/. 580 */ 581 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 582 pgprot_t prot, struct page **pages, unsigned int page_shift) 583 { 584 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 585 586 WARN_ON(page_shift < PAGE_SHIFT); 587 588 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 589 page_shift == PAGE_SHIFT) 590 return vmap_small_pages_range_noflush(addr, end, prot, pages); 591 592 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 593 int err; 594 595 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 596 __pa(page_address(pages[i])), prot, 597 page_shift); 598 if (err) 599 return err; 600 601 addr += 1UL << page_shift; 602 } 603 604 return 0; 605 } 606 607 /** 608 * vmap_pages_range - map pages to a kernel virtual address 609 * @addr: start of the VM area to map 610 * @end: end of the VM area to map (non-inclusive) 611 * @prot: page protection flags to use 612 * @pages: pages to map (always PAGE_SIZE pages) 613 * @page_shift: maximum shift that the pages may be mapped with, @pages must 614 * be aligned and contiguous up to at least this shift. 615 * 616 * RETURNS: 617 * 0 on success, -errno on failure. 618 */ 619 static int vmap_pages_range(unsigned long addr, unsigned long end, 620 pgprot_t prot, struct page **pages, unsigned int page_shift) 621 { 622 int err; 623 624 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 625 flush_cache_vmap(addr, end); 626 return err; 627 } 628 629 int is_vmalloc_or_module_addr(const void *x) 630 { 631 /* 632 * ARM, x86-64 and sparc64 put modules in a special place, 633 * and fall back on vmalloc() if that fails. Others 634 * just put it in the vmalloc space. 635 */ 636 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 637 unsigned long addr = (unsigned long)kasan_reset_tag(x); 638 if (addr >= MODULES_VADDR && addr < MODULES_END) 639 return 1; 640 #endif 641 return is_vmalloc_addr(x); 642 } 643 644 /* 645 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 646 * return the tail page that corresponds to the base page address, which 647 * matches small vmap mappings. 648 */ 649 struct page *vmalloc_to_page(const void *vmalloc_addr) 650 { 651 unsigned long addr = (unsigned long) vmalloc_addr; 652 struct page *page = NULL; 653 pgd_t *pgd = pgd_offset_k(addr); 654 p4d_t *p4d; 655 pud_t *pud; 656 pmd_t *pmd; 657 pte_t *ptep, pte; 658 659 /* 660 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 661 * architectures that do not vmalloc module space 662 */ 663 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 664 665 if (pgd_none(*pgd)) 666 return NULL; 667 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 668 return NULL; /* XXX: no allowance for huge pgd */ 669 if (WARN_ON_ONCE(pgd_bad(*pgd))) 670 return NULL; 671 672 p4d = p4d_offset(pgd, addr); 673 if (p4d_none(*p4d)) 674 return NULL; 675 if (p4d_leaf(*p4d)) 676 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 677 if (WARN_ON_ONCE(p4d_bad(*p4d))) 678 return NULL; 679 680 pud = pud_offset(p4d, addr); 681 if (pud_none(*pud)) 682 return NULL; 683 if (pud_leaf(*pud)) 684 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 685 if (WARN_ON_ONCE(pud_bad(*pud))) 686 return NULL; 687 688 pmd = pmd_offset(pud, addr); 689 if (pmd_none(*pmd)) 690 return NULL; 691 if (pmd_leaf(*pmd)) 692 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 693 if (WARN_ON_ONCE(pmd_bad(*pmd))) 694 return NULL; 695 696 ptep = pte_offset_map(pmd, addr); 697 pte = *ptep; 698 if (pte_present(pte)) 699 page = pte_page(pte); 700 pte_unmap(ptep); 701 702 return page; 703 } 704 EXPORT_SYMBOL(vmalloc_to_page); 705 706 /* 707 * Map a vmalloc()-space virtual address to the physical page frame number. 708 */ 709 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 710 { 711 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 712 } 713 EXPORT_SYMBOL(vmalloc_to_pfn); 714 715 716 /*** Global kva allocator ***/ 717 718 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 719 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 720 721 722 static DEFINE_SPINLOCK(vmap_area_lock); 723 static DEFINE_SPINLOCK(free_vmap_area_lock); 724 /* Export for kexec only */ 725 LIST_HEAD(vmap_area_list); 726 static struct rb_root vmap_area_root = RB_ROOT; 727 static bool vmap_initialized __read_mostly; 728 729 static struct rb_root purge_vmap_area_root = RB_ROOT; 730 static LIST_HEAD(purge_vmap_area_list); 731 static DEFINE_SPINLOCK(purge_vmap_area_lock); 732 733 /* 734 * This kmem_cache is used for vmap_area objects. Instead of 735 * allocating from slab we reuse an object from this cache to 736 * make things faster. Especially in "no edge" splitting of 737 * free block. 738 */ 739 static struct kmem_cache *vmap_area_cachep; 740 741 /* 742 * This linked list is used in pair with free_vmap_area_root. 743 * It gives O(1) access to prev/next to perform fast coalescing. 744 */ 745 static LIST_HEAD(free_vmap_area_list); 746 747 /* 748 * This augment red-black tree represents the free vmap space. 749 * All vmap_area objects in this tree are sorted by va->va_start 750 * address. It is used for allocation and merging when a vmap 751 * object is released. 752 * 753 * Each vmap_area node contains a maximum available free block 754 * of its sub-tree, right or left. Therefore it is possible to 755 * find a lowest match of free area. 756 */ 757 static struct rb_root free_vmap_area_root = RB_ROOT; 758 759 /* 760 * Preload a CPU with one object for "no edge" split case. The 761 * aim is to get rid of allocations from the atomic context, thus 762 * to use more permissive allocation masks. 763 */ 764 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 765 766 static __always_inline unsigned long 767 va_size(struct vmap_area *va) 768 { 769 return (va->va_end - va->va_start); 770 } 771 772 static __always_inline unsigned long 773 get_subtree_max_size(struct rb_node *node) 774 { 775 struct vmap_area *va; 776 777 va = rb_entry_safe(node, struct vmap_area, rb_node); 778 return va ? va->subtree_max_size : 0; 779 } 780 781 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 782 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 783 784 static void purge_vmap_area_lazy(void); 785 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 786 static void drain_vmap_area_work(struct work_struct *work); 787 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work); 788 789 static atomic_long_t nr_vmalloc_pages; 790 791 unsigned long vmalloc_nr_pages(void) 792 { 793 return atomic_long_read(&nr_vmalloc_pages); 794 } 795 796 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr) 797 { 798 struct vmap_area *va = NULL; 799 struct rb_node *n = vmap_area_root.rb_node; 800 801 addr = (unsigned long)kasan_reset_tag((void *)addr); 802 803 while (n) { 804 struct vmap_area *tmp; 805 806 tmp = rb_entry(n, struct vmap_area, rb_node); 807 if (tmp->va_end > addr) { 808 va = tmp; 809 if (tmp->va_start <= addr) 810 break; 811 812 n = n->rb_left; 813 } else 814 n = n->rb_right; 815 } 816 817 return va; 818 } 819 820 static struct vmap_area *__find_vmap_area(unsigned long addr) 821 { 822 struct rb_node *n = vmap_area_root.rb_node; 823 824 addr = (unsigned long)kasan_reset_tag((void *)addr); 825 826 while (n) { 827 struct vmap_area *va; 828 829 va = rb_entry(n, struct vmap_area, rb_node); 830 if (addr < va->va_start) 831 n = n->rb_left; 832 else if (addr >= va->va_end) 833 n = n->rb_right; 834 else 835 return va; 836 } 837 838 return NULL; 839 } 840 841 /* 842 * This function returns back addresses of parent node 843 * and its left or right link for further processing. 844 * 845 * Otherwise NULL is returned. In that case all further 846 * steps regarding inserting of conflicting overlap range 847 * have to be declined and actually considered as a bug. 848 */ 849 static __always_inline struct rb_node ** 850 find_va_links(struct vmap_area *va, 851 struct rb_root *root, struct rb_node *from, 852 struct rb_node **parent) 853 { 854 struct vmap_area *tmp_va; 855 struct rb_node **link; 856 857 if (root) { 858 link = &root->rb_node; 859 if (unlikely(!*link)) { 860 *parent = NULL; 861 return link; 862 } 863 } else { 864 link = &from; 865 } 866 867 /* 868 * Go to the bottom of the tree. When we hit the last point 869 * we end up with parent rb_node and correct direction, i name 870 * it link, where the new va->rb_node will be attached to. 871 */ 872 do { 873 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 874 875 /* 876 * During the traversal we also do some sanity check. 877 * Trigger the BUG() if there are sides(left/right) 878 * or full overlaps. 879 */ 880 if (va->va_start < tmp_va->va_end && 881 va->va_end <= tmp_va->va_start) 882 link = &(*link)->rb_left; 883 else if (va->va_end > tmp_va->va_start && 884 va->va_start >= tmp_va->va_end) 885 link = &(*link)->rb_right; 886 else { 887 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 888 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 889 890 return NULL; 891 } 892 } while (*link); 893 894 *parent = &tmp_va->rb_node; 895 return link; 896 } 897 898 static __always_inline struct list_head * 899 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 900 { 901 struct list_head *list; 902 903 if (unlikely(!parent)) 904 /* 905 * The red-black tree where we try to find VA neighbors 906 * before merging or inserting is empty, i.e. it means 907 * there is no free vmap space. Normally it does not 908 * happen but we handle this case anyway. 909 */ 910 return NULL; 911 912 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 913 return (&parent->rb_right == link ? list->next : list); 914 } 915 916 static __always_inline void 917 link_va(struct vmap_area *va, struct rb_root *root, 918 struct rb_node *parent, struct rb_node **link, struct list_head *head) 919 { 920 /* 921 * VA is still not in the list, but we can 922 * identify its future previous list_head node. 923 */ 924 if (likely(parent)) { 925 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 926 if (&parent->rb_right != link) 927 head = head->prev; 928 } 929 930 /* Insert to the rb-tree */ 931 rb_link_node(&va->rb_node, parent, link); 932 if (root == &free_vmap_area_root) { 933 /* 934 * Some explanation here. Just perform simple insertion 935 * to the tree. We do not set va->subtree_max_size to 936 * its current size before calling rb_insert_augmented(). 937 * It is because of we populate the tree from the bottom 938 * to parent levels when the node _is_ in the tree. 939 * 940 * Therefore we set subtree_max_size to zero after insertion, 941 * to let __augment_tree_propagate_from() puts everything to 942 * the correct order later on. 943 */ 944 rb_insert_augmented(&va->rb_node, 945 root, &free_vmap_area_rb_augment_cb); 946 va->subtree_max_size = 0; 947 } else { 948 rb_insert_color(&va->rb_node, root); 949 } 950 951 /* Address-sort this list */ 952 list_add(&va->list, head); 953 } 954 955 static __always_inline void 956 unlink_va(struct vmap_area *va, struct rb_root *root) 957 { 958 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 959 return; 960 961 if (root == &free_vmap_area_root) 962 rb_erase_augmented(&va->rb_node, 963 root, &free_vmap_area_rb_augment_cb); 964 else 965 rb_erase(&va->rb_node, root); 966 967 list_del(&va->list); 968 RB_CLEAR_NODE(&va->rb_node); 969 } 970 971 #if DEBUG_AUGMENT_PROPAGATE_CHECK 972 /* 973 * Gets called when remove the node and rotate. 974 */ 975 static __always_inline unsigned long 976 compute_subtree_max_size(struct vmap_area *va) 977 { 978 return max3(va_size(va), 979 get_subtree_max_size(va->rb_node.rb_left), 980 get_subtree_max_size(va->rb_node.rb_right)); 981 } 982 983 static void 984 augment_tree_propagate_check(void) 985 { 986 struct vmap_area *va; 987 unsigned long computed_size; 988 989 list_for_each_entry(va, &free_vmap_area_list, list) { 990 computed_size = compute_subtree_max_size(va); 991 if (computed_size != va->subtree_max_size) 992 pr_emerg("tree is corrupted: %lu, %lu\n", 993 va_size(va), va->subtree_max_size); 994 } 995 } 996 #endif 997 998 /* 999 * This function populates subtree_max_size from bottom to upper 1000 * levels starting from VA point. The propagation must be done 1001 * when VA size is modified by changing its va_start/va_end. Or 1002 * in case of newly inserting of VA to the tree. 1003 * 1004 * It means that __augment_tree_propagate_from() must be called: 1005 * - After VA has been inserted to the tree(free path); 1006 * - After VA has been shrunk(allocation path); 1007 * - After VA has been increased(merging path). 1008 * 1009 * Please note that, it does not mean that upper parent nodes 1010 * and their subtree_max_size are recalculated all the time up 1011 * to the root node. 1012 * 1013 * 4--8 1014 * /\ 1015 * / \ 1016 * / \ 1017 * 2--2 8--8 1018 * 1019 * For example if we modify the node 4, shrinking it to 2, then 1020 * no any modification is required. If we shrink the node 2 to 1 1021 * its subtree_max_size is updated only, and set to 1. If we shrink 1022 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 1023 * node becomes 4--6. 1024 */ 1025 static __always_inline void 1026 augment_tree_propagate_from(struct vmap_area *va) 1027 { 1028 /* 1029 * Populate the tree from bottom towards the root until 1030 * the calculated maximum available size of checked node 1031 * is equal to its current one. 1032 */ 1033 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 1034 1035 #if DEBUG_AUGMENT_PROPAGATE_CHECK 1036 augment_tree_propagate_check(); 1037 #endif 1038 } 1039 1040 static void 1041 insert_vmap_area(struct vmap_area *va, 1042 struct rb_root *root, struct list_head *head) 1043 { 1044 struct rb_node **link; 1045 struct rb_node *parent; 1046 1047 link = find_va_links(va, root, NULL, &parent); 1048 if (link) 1049 link_va(va, root, parent, link, head); 1050 } 1051 1052 static void 1053 insert_vmap_area_augment(struct vmap_area *va, 1054 struct rb_node *from, struct rb_root *root, 1055 struct list_head *head) 1056 { 1057 struct rb_node **link; 1058 struct rb_node *parent; 1059 1060 if (from) 1061 link = find_va_links(va, NULL, from, &parent); 1062 else 1063 link = find_va_links(va, root, NULL, &parent); 1064 1065 if (link) { 1066 link_va(va, root, parent, link, head); 1067 augment_tree_propagate_from(va); 1068 } 1069 } 1070 1071 /* 1072 * Merge de-allocated chunk of VA memory with previous 1073 * and next free blocks. If coalesce is not done a new 1074 * free area is inserted. If VA has been merged, it is 1075 * freed. 1076 * 1077 * Please note, it can return NULL in case of overlap 1078 * ranges, followed by WARN() report. Despite it is a 1079 * buggy behaviour, a system can be alive and keep 1080 * ongoing. 1081 */ 1082 static __always_inline struct vmap_area * 1083 merge_or_add_vmap_area(struct vmap_area *va, 1084 struct rb_root *root, struct list_head *head) 1085 { 1086 struct vmap_area *sibling; 1087 struct list_head *next; 1088 struct rb_node **link; 1089 struct rb_node *parent; 1090 bool merged = false; 1091 1092 /* 1093 * Find a place in the tree where VA potentially will be 1094 * inserted, unless it is merged with its sibling/siblings. 1095 */ 1096 link = find_va_links(va, root, NULL, &parent); 1097 if (!link) 1098 return NULL; 1099 1100 /* 1101 * Get next node of VA to check if merging can be done. 1102 */ 1103 next = get_va_next_sibling(parent, link); 1104 if (unlikely(next == NULL)) 1105 goto insert; 1106 1107 /* 1108 * start end 1109 * | | 1110 * |<------VA------>|<-----Next----->| 1111 * | | 1112 * start end 1113 */ 1114 if (next != head) { 1115 sibling = list_entry(next, struct vmap_area, list); 1116 if (sibling->va_start == va->va_end) { 1117 sibling->va_start = va->va_start; 1118 1119 /* Free vmap_area object. */ 1120 kmem_cache_free(vmap_area_cachep, va); 1121 1122 /* Point to the new merged area. */ 1123 va = sibling; 1124 merged = true; 1125 } 1126 } 1127 1128 /* 1129 * start end 1130 * | | 1131 * |<-----Prev----->|<------VA------>| 1132 * | | 1133 * start end 1134 */ 1135 if (next->prev != head) { 1136 sibling = list_entry(next->prev, struct vmap_area, list); 1137 if (sibling->va_end == va->va_start) { 1138 /* 1139 * If both neighbors are coalesced, it is important 1140 * to unlink the "next" node first, followed by merging 1141 * with "previous" one. Otherwise the tree might not be 1142 * fully populated if a sibling's augmented value is 1143 * "normalized" because of rotation operations. 1144 */ 1145 if (merged) 1146 unlink_va(va, root); 1147 1148 sibling->va_end = va->va_end; 1149 1150 /* Free vmap_area object. */ 1151 kmem_cache_free(vmap_area_cachep, va); 1152 1153 /* Point to the new merged area. */ 1154 va = sibling; 1155 merged = true; 1156 } 1157 } 1158 1159 insert: 1160 if (!merged) 1161 link_va(va, root, parent, link, head); 1162 1163 return va; 1164 } 1165 1166 static __always_inline struct vmap_area * 1167 merge_or_add_vmap_area_augment(struct vmap_area *va, 1168 struct rb_root *root, struct list_head *head) 1169 { 1170 va = merge_or_add_vmap_area(va, root, head); 1171 if (va) 1172 augment_tree_propagate_from(va); 1173 1174 return va; 1175 } 1176 1177 static __always_inline bool 1178 is_within_this_va(struct vmap_area *va, unsigned long size, 1179 unsigned long align, unsigned long vstart) 1180 { 1181 unsigned long nva_start_addr; 1182 1183 if (va->va_start > vstart) 1184 nva_start_addr = ALIGN(va->va_start, align); 1185 else 1186 nva_start_addr = ALIGN(vstart, align); 1187 1188 /* Can be overflowed due to big size or alignment. */ 1189 if (nva_start_addr + size < nva_start_addr || 1190 nva_start_addr < vstart) 1191 return false; 1192 1193 return (nva_start_addr + size <= va->va_end); 1194 } 1195 1196 /* 1197 * Find the first free block(lowest start address) in the tree, 1198 * that will accomplish the request corresponding to passing 1199 * parameters. Please note, with an alignment bigger than PAGE_SIZE, 1200 * a search length is adjusted to account for worst case alignment 1201 * overhead. 1202 */ 1203 static __always_inline struct vmap_area * 1204 find_vmap_lowest_match(unsigned long size, unsigned long align, 1205 unsigned long vstart, bool adjust_search_size) 1206 { 1207 struct vmap_area *va; 1208 struct rb_node *node; 1209 unsigned long length; 1210 1211 /* Start from the root. */ 1212 node = free_vmap_area_root.rb_node; 1213 1214 /* Adjust the search size for alignment overhead. */ 1215 length = adjust_search_size ? size + align - 1 : size; 1216 1217 while (node) { 1218 va = rb_entry(node, struct vmap_area, rb_node); 1219 1220 if (get_subtree_max_size(node->rb_left) >= length && 1221 vstart < va->va_start) { 1222 node = node->rb_left; 1223 } else { 1224 if (is_within_this_va(va, size, align, vstart)) 1225 return va; 1226 1227 /* 1228 * Does not make sense to go deeper towards the right 1229 * sub-tree if it does not have a free block that is 1230 * equal or bigger to the requested search length. 1231 */ 1232 if (get_subtree_max_size(node->rb_right) >= length) { 1233 node = node->rb_right; 1234 continue; 1235 } 1236 1237 /* 1238 * OK. We roll back and find the first right sub-tree, 1239 * that will satisfy the search criteria. It can happen 1240 * due to "vstart" restriction or an alignment overhead 1241 * that is bigger then PAGE_SIZE. 1242 */ 1243 while ((node = rb_parent(node))) { 1244 va = rb_entry(node, struct vmap_area, rb_node); 1245 if (is_within_this_va(va, size, align, vstart)) 1246 return va; 1247 1248 if (get_subtree_max_size(node->rb_right) >= length && 1249 vstart <= va->va_start) { 1250 /* 1251 * Shift the vstart forward. Please note, we update it with 1252 * parent's start address adding "1" because we do not want 1253 * to enter same sub-tree after it has already been checked 1254 * and no suitable free block found there. 1255 */ 1256 vstart = va->va_start + 1; 1257 node = node->rb_right; 1258 break; 1259 } 1260 } 1261 } 1262 } 1263 1264 return NULL; 1265 } 1266 1267 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1268 #include <linux/random.h> 1269 1270 static struct vmap_area * 1271 find_vmap_lowest_linear_match(unsigned long size, 1272 unsigned long align, unsigned long vstart) 1273 { 1274 struct vmap_area *va; 1275 1276 list_for_each_entry(va, &free_vmap_area_list, list) { 1277 if (!is_within_this_va(va, size, align, vstart)) 1278 continue; 1279 1280 return va; 1281 } 1282 1283 return NULL; 1284 } 1285 1286 static void 1287 find_vmap_lowest_match_check(unsigned long size, unsigned long align) 1288 { 1289 struct vmap_area *va_1, *va_2; 1290 unsigned long vstart; 1291 unsigned int rnd; 1292 1293 get_random_bytes(&rnd, sizeof(rnd)); 1294 vstart = VMALLOC_START + rnd; 1295 1296 va_1 = find_vmap_lowest_match(size, align, vstart, false); 1297 va_2 = find_vmap_lowest_linear_match(size, align, vstart); 1298 1299 if (va_1 != va_2) 1300 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1301 va_1, va_2, vstart); 1302 } 1303 #endif 1304 1305 enum fit_type { 1306 NOTHING_FIT = 0, 1307 FL_FIT_TYPE = 1, /* full fit */ 1308 LE_FIT_TYPE = 2, /* left edge fit */ 1309 RE_FIT_TYPE = 3, /* right edge fit */ 1310 NE_FIT_TYPE = 4 /* no edge fit */ 1311 }; 1312 1313 static __always_inline enum fit_type 1314 classify_va_fit_type(struct vmap_area *va, 1315 unsigned long nva_start_addr, unsigned long size) 1316 { 1317 enum fit_type type; 1318 1319 /* Check if it is within VA. */ 1320 if (nva_start_addr < va->va_start || 1321 nva_start_addr + size > va->va_end) 1322 return NOTHING_FIT; 1323 1324 /* Now classify. */ 1325 if (va->va_start == nva_start_addr) { 1326 if (va->va_end == nva_start_addr + size) 1327 type = FL_FIT_TYPE; 1328 else 1329 type = LE_FIT_TYPE; 1330 } else if (va->va_end == nva_start_addr + size) { 1331 type = RE_FIT_TYPE; 1332 } else { 1333 type = NE_FIT_TYPE; 1334 } 1335 1336 return type; 1337 } 1338 1339 static __always_inline int 1340 adjust_va_to_fit_type(struct vmap_area *va, 1341 unsigned long nva_start_addr, unsigned long size, 1342 enum fit_type type) 1343 { 1344 struct vmap_area *lva = NULL; 1345 1346 if (type == FL_FIT_TYPE) { 1347 /* 1348 * No need to split VA, it fully fits. 1349 * 1350 * | | 1351 * V NVA V 1352 * |---------------| 1353 */ 1354 unlink_va(va, &free_vmap_area_root); 1355 kmem_cache_free(vmap_area_cachep, va); 1356 } else if (type == LE_FIT_TYPE) { 1357 /* 1358 * Split left edge of fit VA. 1359 * 1360 * | | 1361 * V NVA V R 1362 * |-------|-------| 1363 */ 1364 va->va_start += size; 1365 } else if (type == RE_FIT_TYPE) { 1366 /* 1367 * Split right edge of fit VA. 1368 * 1369 * | | 1370 * L V NVA V 1371 * |-------|-------| 1372 */ 1373 va->va_end = nva_start_addr; 1374 } else if (type == NE_FIT_TYPE) { 1375 /* 1376 * Split no edge of fit VA. 1377 * 1378 * | | 1379 * L V NVA V R 1380 * |---|-------|---| 1381 */ 1382 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1383 if (unlikely(!lva)) { 1384 /* 1385 * For percpu allocator we do not do any pre-allocation 1386 * and leave it as it is. The reason is it most likely 1387 * never ends up with NE_FIT_TYPE splitting. In case of 1388 * percpu allocations offsets and sizes are aligned to 1389 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1390 * are its main fitting cases. 1391 * 1392 * There are a few exceptions though, as an example it is 1393 * a first allocation (early boot up) when we have "one" 1394 * big free space that has to be split. 1395 * 1396 * Also we can hit this path in case of regular "vmap" 1397 * allocations, if "this" current CPU was not preloaded. 1398 * See the comment in alloc_vmap_area() why. If so, then 1399 * GFP_NOWAIT is used instead to get an extra object for 1400 * split purpose. That is rare and most time does not 1401 * occur. 1402 * 1403 * What happens if an allocation gets failed. Basically, 1404 * an "overflow" path is triggered to purge lazily freed 1405 * areas to free some memory, then, the "retry" path is 1406 * triggered to repeat one more time. See more details 1407 * in alloc_vmap_area() function. 1408 */ 1409 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1410 if (!lva) 1411 return -1; 1412 } 1413 1414 /* 1415 * Build the remainder. 1416 */ 1417 lva->va_start = va->va_start; 1418 lva->va_end = nva_start_addr; 1419 1420 /* 1421 * Shrink this VA to remaining size. 1422 */ 1423 va->va_start = nva_start_addr + size; 1424 } else { 1425 return -1; 1426 } 1427 1428 if (type != FL_FIT_TYPE) { 1429 augment_tree_propagate_from(va); 1430 1431 if (lva) /* type == NE_FIT_TYPE */ 1432 insert_vmap_area_augment(lva, &va->rb_node, 1433 &free_vmap_area_root, &free_vmap_area_list); 1434 } 1435 1436 return 0; 1437 } 1438 1439 /* 1440 * Returns a start address of the newly allocated area, if success. 1441 * Otherwise a vend is returned that indicates failure. 1442 */ 1443 static __always_inline unsigned long 1444 __alloc_vmap_area(unsigned long size, unsigned long align, 1445 unsigned long vstart, unsigned long vend) 1446 { 1447 bool adjust_search_size = true; 1448 unsigned long nva_start_addr; 1449 struct vmap_area *va; 1450 enum fit_type type; 1451 int ret; 1452 1453 /* 1454 * Do not adjust when: 1455 * a) align <= PAGE_SIZE, because it does not make any sense. 1456 * All blocks(their start addresses) are at least PAGE_SIZE 1457 * aligned anyway; 1458 * b) a short range where a requested size corresponds to exactly 1459 * specified [vstart:vend] interval and an alignment > PAGE_SIZE. 1460 * With adjusted search length an allocation would not succeed. 1461 */ 1462 if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size)) 1463 adjust_search_size = false; 1464 1465 va = find_vmap_lowest_match(size, align, vstart, adjust_search_size); 1466 if (unlikely(!va)) 1467 return vend; 1468 1469 if (va->va_start > vstart) 1470 nva_start_addr = ALIGN(va->va_start, align); 1471 else 1472 nva_start_addr = ALIGN(vstart, align); 1473 1474 /* Check the "vend" restriction. */ 1475 if (nva_start_addr + size > vend) 1476 return vend; 1477 1478 /* Classify what we have found. */ 1479 type = classify_va_fit_type(va, nva_start_addr, size); 1480 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1481 return vend; 1482 1483 /* Update the free vmap_area. */ 1484 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1485 if (ret) 1486 return vend; 1487 1488 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1489 find_vmap_lowest_match_check(size, align); 1490 #endif 1491 1492 return nva_start_addr; 1493 } 1494 1495 /* 1496 * Free a region of KVA allocated by alloc_vmap_area 1497 */ 1498 static void free_vmap_area(struct vmap_area *va) 1499 { 1500 /* 1501 * Remove from the busy tree/list. 1502 */ 1503 spin_lock(&vmap_area_lock); 1504 unlink_va(va, &vmap_area_root); 1505 spin_unlock(&vmap_area_lock); 1506 1507 /* 1508 * Insert/Merge it back to the free tree/list. 1509 */ 1510 spin_lock(&free_vmap_area_lock); 1511 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1512 spin_unlock(&free_vmap_area_lock); 1513 } 1514 1515 static inline void 1516 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1517 { 1518 struct vmap_area *va = NULL; 1519 1520 /* 1521 * Preload this CPU with one extra vmap_area object. It is used 1522 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1523 * a CPU that does an allocation is preloaded. 1524 * 1525 * We do it in non-atomic context, thus it allows us to use more 1526 * permissive allocation masks to be more stable under low memory 1527 * condition and high memory pressure. 1528 */ 1529 if (!this_cpu_read(ne_fit_preload_node)) 1530 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1531 1532 spin_lock(lock); 1533 1534 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1535 kmem_cache_free(vmap_area_cachep, va); 1536 } 1537 1538 /* 1539 * Allocate a region of KVA of the specified size and alignment, within the 1540 * vstart and vend. 1541 */ 1542 static struct vmap_area *alloc_vmap_area(unsigned long size, 1543 unsigned long align, 1544 unsigned long vstart, unsigned long vend, 1545 int node, gfp_t gfp_mask) 1546 { 1547 struct vmap_area *va; 1548 unsigned long freed; 1549 unsigned long addr; 1550 int purged = 0; 1551 int ret; 1552 1553 BUG_ON(!size); 1554 BUG_ON(offset_in_page(size)); 1555 BUG_ON(!is_power_of_2(align)); 1556 1557 if (unlikely(!vmap_initialized)) 1558 return ERR_PTR(-EBUSY); 1559 1560 might_sleep(); 1561 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1562 1563 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1564 if (unlikely(!va)) 1565 return ERR_PTR(-ENOMEM); 1566 1567 /* 1568 * Only scan the relevant parts containing pointers to other objects 1569 * to avoid false negatives. 1570 */ 1571 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1572 1573 retry: 1574 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1575 addr = __alloc_vmap_area(size, align, vstart, vend); 1576 spin_unlock(&free_vmap_area_lock); 1577 1578 /* 1579 * If an allocation fails, the "vend" address is 1580 * returned. Therefore trigger the overflow path. 1581 */ 1582 if (unlikely(addr == vend)) 1583 goto overflow; 1584 1585 va->va_start = addr; 1586 va->va_end = addr + size; 1587 va->vm = NULL; 1588 1589 spin_lock(&vmap_area_lock); 1590 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1591 spin_unlock(&vmap_area_lock); 1592 1593 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1594 BUG_ON(va->va_start < vstart); 1595 BUG_ON(va->va_end > vend); 1596 1597 ret = kasan_populate_vmalloc(addr, size); 1598 if (ret) { 1599 free_vmap_area(va); 1600 return ERR_PTR(ret); 1601 } 1602 1603 return va; 1604 1605 overflow: 1606 if (!purged) { 1607 purge_vmap_area_lazy(); 1608 purged = 1; 1609 goto retry; 1610 } 1611 1612 freed = 0; 1613 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1614 1615 if (freed > 0) { 1616 purged = 0; 1617 goto retry; 1618 } 1619 1620 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1621 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1622 size); 1623 1624 kmem_cache_free(vmap_area_cachep, va); 1625 return ERR_PTR(-EBUSY); 1626 } 1627 1628 int register_vmap_purge_notifier(struct notifier_block *nb) 1629 { 1630 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1631 } 1632 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1633 1634 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1635 { 1636 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1637 } 1638 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1639 1640 /* 1641 * lazy_max_pages is the maximum amount of virtual address space we gather up 1642 * before attempting to purge with a TLB flush. 1643 * 1644 * There is a tradeoff here: a larger number will cover more kernel page tables 1645 * and take slightly longer to purge, but it will linearly reduce the number of 1646 * global TLB flushes that must be performed. It would seem natural to scale 1647 * this number up linearly with the number of CPUs (because vmapping activity 1648 * could also scale linearly with the number of CPUs), however it is likely 1649 * that in practice, workloads might be constrained in other ways that mean 1650 * vmap activity will not scale linearly with CPUs. Also, I want to be 1651 * conservative and not introduce a big latency on huge systems, so go with 1652 * a less aggressive log scale. It will still be an improvement over the old 1653 * code, and it will be simple to change the scale factor if we find that it 1654 * becomes a problem on bigger systems. 1655 */ 1656 static unsigned long lazy_max_pages(void) 1657 { 1658 unsigned int log; 1659 1660 log = fls(num_online_cpus()); 1661 1662 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1663 } 1664 1665 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1666 1667 /* 1668 * Serialize vmap purging. There is no actual critical section protected 1669 * by this look, but we want to avoid concurrent calls for performance 1670 * reasons and to make the pcpu_get_vm_areas more deterministic. 1671 */ 1672 static DEFINE_MUTEX(vmap_purge_lock); 1673 1674 /* for per-CPU blocks */ 1675 static void purge_fragmented_blocks_allcpus(void); 1676 1677 /* 1678 * Purges all lazily-freed vmap areas. 1679 */ 1680 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1681 { 1682 unsigned long resched_threshold; 1683 struct list_head local_pure_list; 1684 struct vmap_area *va, *n_va; 1685 1686 lockdep_assert_held(&vmap_purge_lock); 1687 1688 spin_lock(&purge_vmap_area_lock); 1689 purge_vmap_area_root = RB_ROOT; 1690 list_replace_init(&purge_vmap_area_list, &local_pure_list); 1691 spin_unlock(&purge_vmap_area_lock); 1692 1693 if (unlikely(list_empty(&local_pure_list))) 1694 return false; 1695 1696 start = min(start, 1697 list_first_entry(&local_pure_list, 1698 struct vmap_area, list)->va_start); 1699 1700 end = max(end, 1701 list_last_entry(&local_pure_list, 1702 struct vmap_area, list)->va_end); 1703 1704 flush_tlb_kernel_range(start, end); 1705 resched_threshold = lazy_max_pages() << 1; 1706 1707 spin_lock(&free_vmap_area_lock); 1708 list_for_each_entry_safe(va, n_va, &local_pure_list, list) { 1709 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1710 unsigned long orig_start = va->va_start; 1711 unsigned long orig_end = va->va_end; 1712 1713 /* 1714 * Finally insert or merge lazily-freed area. It is 1715 * detached and there is no need to "unlink" it from 1716 * anything. 1717 */ 1718 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1719 &free_vmap_area_list); 1720 1721 if (!va) 1722 continue; 1723 1724 if (is_vmalloc_or_module_addr((void *)orig_start)) 1725 kasan_release_vmalloc(orig_start, orig_end, 1726 va->va_start, va->va_end); 1727 1728 atomic_long_sub(nr, &vmap_lazy_nr); 1729 1730 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1731 cond_resched_lock(&free_vmap_area_lock); 1732 } 1733 spin_unlock(&free_vmap_area_lock); 1734 return true; 1735 } 1736 1737 /* 1738 * Kick off a purge of the outstanding lazy areas. 1739 */ 1740 static void purge_vmap_area_lazy(void) 1741 { 1742 mutex_lock(&vmap_purge_lock); 1743 purge_fragmented_blocks_allcpus(); 1744 __purge_vmap_area_lazy(ULONG_MAX, 0); 1745 mutex_unlock(&vmap_purge_lock); 1746 } 1747 1748 static void drain_vmap_area_work(struct work_struct *work) 1749 { 1750 unsigned long nr_lazy; 1751 1752 do { 1753 mutex_lock(&vmap_purge_lock); 1754 __purge_vmap_area_lazy(ULONG_MAX, 0); 1755 mutex_unlock(&vmap_purge_lock); 1756 1757 /* Recheck if further work is required. */ 1758 nr_lazy = atomic_long_read(&vmap_lazy_nr); 1759 } while (nr_lazy > lazy_max_pages()); 1760 } 1761 1762 /* 1763 * Free a vmap area, caller ensuring that the area has been unmapped 1764 * and flush_cache_vunmap had been called for the correct range 1765 * previously. 1766 */ 1767 static void free_vmap_area_noflush(struct vmap_area *va) 1768 { 1769 unsigned long nr_lazy; 1770 1771 spin_lock(&vmap_area_lock); 1772 unlink_va(va, &vmap_area_root); 1773 spin_unlock(&vmap_area_lock); 1774 1775 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1776 PAGE_SHIFT, &vmap_lazy_nr); 1777 1778 /* 1779 * Merge or place it to the purge tree/list. 1780 */ 1781 spin_lock(&purge_vmap_area_lock); 1782 merge_or_add_vmap_area(va, 1783 &purge_vmap_area_root, &purge_vmap_area_list); 1784 spin_unlock(&purge_vmap_area_lock); 1785 1786 /* After this point, we may free va at any time */ 1787 if (unlikely(nr_lazy > lazy_max_pages())) 1788 schedule_work(&drain_vmap_work); 1789 } 1790 1791 /* 1792 * Free and unmap a vmap area 1793 */ 1794 static void free_unmap_vmap_area(struct vmap_area *va) 1795 { 1796 flush_cache_vunmap(va->va_start, va->va_end); 1797 vunmap_range_noflush(va->va_start, va->va_end); 1798 if (debug_pagealloc_enabled_static()) 1799 flush_tlb_kernel_range(va->va_start, va->va_end); 1800 1801 free_vmap_area_noflush(va); 1802 } 1803 1804 static struct vmap_area *find_vmap_area(unsigned long addr) 1805 { 1806 struct vmap_area *va; 1807 1808 spin_lock(&vmap_area_lock); 1809 va = __find_vmap_area(addr); 1810 spin_unlock(&vmap_area_lock); 1811 1812 return va; 1813 } 1814 1815 /*** Per cpu kva allocator ***/ 1816 1817 /* 1818 * vmap space is limited especially on 32 bit architectures. Ensure there is 1819 * room for at least 16 percpu vmap blocks per CPU. 1820 */ 1821 /* 1822 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1823 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1824 * instead (we just need a rough idea) 1825 */ 1826 #if BITS_PER_LONG == 32 1827 #define VMALLOC_SPACE (128UL*1024*1024) 1828 #else 1829 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1830 #endif 1831 1832 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1833 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1834 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1835 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1836 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1837 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1838 #define VMAP_BBMAP_BITS \ 1839 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1840 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1841 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1842 1843 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1844 1845 struct vmap_block_queue { 1846 spinlock_t lock; 1847 struct list_head free; 1848 }; 1849 1850 struct vmap_block { 1851 spinlock_t lock; 1852 struct vmap_area *va; 1853 unsigned long free, dirty; 1854 unsigned long dirty_min, dirty_max; /*< dirty range */ 1855 struct list_head free_list; 1856 struct rcu_head rcu_head; 1857 struct list_head purge; 1858 }; 1859 1860 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1861 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1862 1863 /* 1864 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1865 * in the free path. Could get rid of this if we change the API to return a 1866 * "cookie" from alloc, to be passed to free. But no big deal yet. 1867 */ 1868 static DEFINE_XARRAY(vmap_blocks); 1869 1870 /* 1871 * We should probably have a fallback mechanism to allocate virtual memory 1872 * out of partially filled vmap blocks. However vmap block sizing should be 1873 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1874 * big problem. 1875 */ 1876 1877 static unsigned long addr_to_vb_idx(unsigned long addr) 1878 { 1879 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1880 addr /= VMAP_BLOCK_SIZE; 1881 return addr; 1882 } 1883 1884 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1885 { 1886 unsigned long addr; 1887 1888 addr = va_start + (pages_off << PAGE_SHIFT); 1889 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1890 return (void *)addr; 1891 } 1892 1893 /** 1894 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1895 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1896 * @order: how many 2^order pages should be occupied in newly allocated block 1897 * @gfp_mask: flags for the page level allocator 1898 * 1899 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1900 */ 1901 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1902 { 1903 struct vmap_block_queue *vbq; 1904 struct vmap_block *vb; 1905 struct vmap_area *va; 1906 unsigned long vb_idx; 1907 int node, err; 1908 void *vaddr; 1909 1910 node = numa_node_id(); 1911 1912 vb = kmalloc_node(sizeof(struct vmap_block), 1913 gfp_mask & GFP_RECLAIM_MASK, node); 1914 if (unlikely(!vb)) 1915 return ERR_PTR(-ENOMEM); 1916 1917 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1918 VMALLOC_START, VMALLOC_END, 1919 node, gfp_mask); 1920 if (IS_ERR(va)) { 1921 kfree(vb); 1922 return ERR_CAST(va); 1923 } 1924 1925 vaddr = vmap_block_vaddr(va->va_start, 0); 1926 spin_lock_init(&vb->lock); 1927 vb->va = va; 1928 /* At least something should be left free */ 1929 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1930 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1931 vb->dirty = 0; 1932 vb->dirty_min = VMAP_BBMAP_BITS; 1933 vb->dirty_max = 0; 1934 INIT_LIST_HEAD(&vb->free_list); 1935 1936 vb_idx = addr_to_vb_idx(va->va_start); 1937 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1938 if (err) { 1939 kfree(vb); 1940 free_vmap_area(va); 1941 return ERR_PTR(err); 1942 } 1943 1944 vbq = &get_cpu_var(vmap_block_queue); 1945 spin_lock(&vbq->lock); 1946 list_add_tail_rcu(&vb->free_list, &vbq->free); 1947 spin_unlock(&vbq->lock); 1948 put_cpu_var(vmap_block_queue); 1949 1950 return vaddr; 1951 } 1952 1953 static void free_vmap_block(struct vmap_block *vb) 1954 { 1955 struct vmap_block *tmp; 1956 1957 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 1958 BUG_ON(tmp != vb); 1959 1960 free_vmap_area_noflush(vb->va); 1961 kfree_rcu(vb, rcu_head); 1962 } 1963 1964 static void purge_fragmented_blocks(int cpu) 1965 { 1966 LIST_HEAD(purge); 1967 struct vmap_block *vb; 1968 struct vmap_block *n_vb; 1969 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1970 1971 rcu_read_lock(); 1972 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1973 1974 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1975 continue; 1976 1977 spin_lock(&vb->lock); 1978 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1979 vb->free = 0; /* prevent further allocs after releasing lock */ 1980 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1981 vb->dirty_min = 0; 1982 vb->dirty_max = VMAP_BBMAP_BITS; 1983 spin_lock(&vbq->lock); 1984 list_del_rcu(&vb->free_list); 1985 spin_unlock(&vbq->lock); 1986 spin_unlock(&vb->lock); 1987 list_add_tail(&vb->purge, &purge); 1988 } else 1989 spin_unlock(&vb->lock); 1990 } 1991 rcu_read_unlock(); 1992 1993 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1994 list_del(&vb->purge); 1995 free_vmap_block(vb); 1996 } 1997 } 1998 1999 static void purge_fragmented_blocks_allcpus(void) 2000 { 2001 int cpu; 2002 2003 for_each_possible_cpu(cpu) 2004 purge_fragmented_blocks(cpu); 2005 } 2006 2007 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 2008 { 2009 struct vmap_block_queue *vbq; 2010 struct vmap_block *vb; 2011 void *vaddr = NULL; 2012 unsigned int order; 2013 2014 BUG_ON(offset_in_page(size)); 2015 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2016 if (WARN_ON(size == 0)) { 2017 /* 2018 * Allocating 0 bytes isn't what caller wants since 2019 * get_order(0) returns funny result. Just warn and terminate 2020 * early. 2021 */ 2022 return NULL; 2023 } 2024 order = get_order(size); 2025 2026 rcu_read_lock(); 2027 vbq = &get_cpu_var(vmap_block_queue); 2028 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2029 unsigned long pages_off; 2030 2031 spin_lock(&vb->lock); 2032 if (vb->free < (1UL << order)) { 2033 spin_unlock(&vb->lock); 2034 continue; 2035 } 2036 2037 pages_off = VMAP_BBMAP_BITS - vb->free; 2038 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 2039 vb->free -= 1UL << order; 2040 if (vb->free == 0) { 2041 spin_lock(&vbq->lock); 2042 list_del_rcu(&vb->free_list); 2043 spin_unlock(&vbq->lock); 2044 } 2045 2046 spin_unlock(&vb->lock); 2047 break; 2048 } 2049 2050 put_cpu_var(vmap_block_queue); 2051 rcu_read_unlock(); 2052 2053 /* Allocate new block if nothing was found */ 2054 if (!vaddr) 2055 vaddr = new_vmap_block(order, gfp_mask); 2056 2057 return vaddr; 2058 } 2059 2060 static void vb_free(unsigned long addr, unsigned long size) 2061 { 2062 unsigned long offset; 2063 unsigned int order; 2064 struct vmap_block *vb; 2065 2066 BUG_ON(offset_in_page(size)); 2067 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2068 2069 flush_cache_vunmap(addr, addr + size); 2070 2071 order = get_order(size); 2072 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2073 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2074 2075 vunmap_range_noflush(addr, addr + size); 2076 2077 if (debug_pagealloc_enabled_static()) 2078 flush_tlb_kernel_range(addr, addr + size); 2079 2080 spin_lock(&vb->lock); 2081 2082 /* Expand dirty range */ 2083 vb->dirty_min = min(vb->dirty_min, offset); 2084 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2085 2086 vb->dirty += 1UL << order; 2087 if (vb->dirty == VMAP_BBMAP_BITS) { 2088 BUG_ON(vb->free); 2089 spin_unlock(&vb->lock); 2090 free_vmap_block(vb); 2091 } else 2092 spin_unlock(&vb->lock); 2093 } 2094 2095 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2096 { 2097 int cpu; 2098 2099 if (unlikely(!vmap_initialized)) 2100 return; 2101 2102 might_sleep(); 2103 2104 for_each_possible_cpu(cpu) { 2105 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2106 struct vmap_block *vb; 2107 2108 rcu_read_lock(); 2109 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2110 spin_lock(&vb->lock); 2111 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2112 unsigned long va_start = vb->va->va_start; 2113 unsigned long s, e; 2114 2115 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2116 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2117 2118 start = min(s, start); 2119 end = max(e, end); 2120 2121 flush = 1; 2122 } 2123 spin_unlock(&vb->lock); 2124 } 2125 rcu_read_unlock(); 2126 } 2127 2128 mutex_lock(&vmap_purge_lock); 2129 purge_fragmented_blocks_allcpus(); 2130 if (!__purge_vmap_area_lazy(start, end) && flush) 2131 flush_tlb_kernel_range(start, end); 2132 mutex_unlock(&vmap_purge_lock); 2133 } 2134 2135 /** 2136 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2137 * 2138 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2139 * to amortize TLB flushing overheads. What this means is that any page you 2140 * have now, may, in a former life, have been mapped into kernel virtual 2141 * address by the vmap layer and so there might be some CPUs with TLB entries 2142 * still referencing that page (additional to the regular 1:1 kernel mapping). 2143 * 2144 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2145 * be sure that none of the pages we have control over will have any aliases 2146 * from the vmap layer. 2147 */ 2148 void vm_unmap_aliases(void) 2149 { 2150 unsigned long start = ULONG_MAX, end = 0; 2151 int flush = 0; 2152 2153 _vm_unmap_aliases(start, end, flush); 2154 } 2155 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2156 2157 /** 2158 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2159 * @mem: the pointer returned by vm_map_ram 2160 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2161 */ 2162 void vm_unmap_ram(const void *mem, unsigned int count) 2163 { 2164 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2165 unsigned long addr = (unsigned long)kasan_reset_tag(mem); 2166 struct vmap_area *va; 2167 2168 might_sleep(); 2169 BUG_ON(!addr); 2170 BUG_ON(addr < VMALLOC_START); 2171 BUG_ON(addr > VMALLOC_END); 2172 BUG_ON(!PAGE_ALIGNED(addr)); 2173 2174 kasan_poison_vmalloc(mem, size); 2175 2176 if (likely(count <= VMAP_MAX_ALLOC)) { 2177 debug_check_no_locks_freed(mem, size); 2178 vb_free(addr, size); 2179 return; 2180 } 2181 2182 va = find_vmap_area(addr); 2183 BUG_ON(!va); 2184 debug_check_no_locks_freed((void *)va->va_start, 2185 (va->va_end - va->va_start)); 2186 free_unmap_vmap_area(va); 2187 } 2188 EXPORT_SYMBOL(vm_unmap_ram); 2189 2190 /** 2191 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2192 * @pages: an array of pointers to the pages to be mapped 2193 * @count: number of pages 2194 * @node: prefer to allocate data structures on this node 2195 * 2196 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2197 * faster than vmap so it's good. But if you mix long-life and short-life 2198 * objects with vm_map_ram(), it could consume lots of address space through 2199 * fragmentation (especially on a 32bit machine). You could see failures in 2200 * the end. Please use this function for short-lived objects. 2201 * 2202 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2203 */ 2204 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2205 { 2206 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2207 unsigned long addr; 2208 void *mem; 2209 2210 if (likely(count <= VMAP_MAX_ALLOC)) { 2211 mem = vb_alloc(size, GFP_KERNEL); 2212 if (IS_ERR(mem)) 2213 return NULL; 2214 addr = (unsigned long)mem; 2215 } else { 2216 struct vmap_area *va; 2217 va = alloc_vmap_area(size, PAGE_SIZE, 2218 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2219 if (IS_ERR(va)) 2220 return NULL; 2221 2222 addr = va->va_start; 2223 mem = (void *)addr; 2224 } 2225 2226 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2227 pages, PAGE_SHIFT) < 0) { 2228 vm_unmap_ram(mem, count); 2229 return NULL; 2230 } 2231 2232 /* 2233 * Mark the pages as accessible, now that they are mapped. 2234 * With hardware tag-based KASAN, marking is skipped for 2235 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2236 */ 2237 mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL); 2238 2239 return mem; 2240 } 2241 EXPORT_SYMBOL(vm_map_ram); 2242 2243 static struct vm_struct *vmlist __initdata; 2244 2245 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2246 { 2247 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2248 return vm->page_order; 2249 #else 2250 return 0; 2251 #endif 2252 } 2253 2254 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2255 { 2256 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2257 vm->page_order = order; 2258 #else 2259 BUG_ON(order != 0); 2260 #endif 2261 } 2262 2263 /** 2264 * vm_area_add_early - add vmap area early during boot 2265 * @vm: vm_struct to add 2266 * 2267 * This function is used to add fixed kernel vm area to vmlist before 2268 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2269 * should contain proper values and the other fields should be zero. 2270 * 2271 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2272 */ 2273 void __init vm_area_add_early(struct vm_struct *vm) 2274 { 2275 struct vm_struct *tmp, **p; 2276 2277 BUG_ON(vmap_initialized); 2278 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2279 if (tmp->addr >= vm->addr) { 2280 BUG_ON(tmp->addr < vm->addr + vm->size); 2281 break; 2282 } else 2283 BUG_ON(tmp->addr + tmp->size > vm->addr); 2284 } 2285 vm->next = *p; 2286 *p = vm; 2287 } 2288 2289 /** 2290 * vm_area_register_early - register vmap area early during boot 2291 * @vm: vm_struct to register 2292 * @align: requested alignment 2293 * 2294 * This function is used to register kernel vm area before 2295 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2296 * proper values on entry and other fields should be zero. On return, 2297 * vm->addr contains the allocated address. 2298 * 2299 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2300 */ 2301 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2302 { 2303 unsigned long addr = ALIGN(VMALLOC_START, align); 2304 struct vm_struct *cur, **p; 2305 2306 BUG_ON(vmap_initialized); 2307 2308 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) { 2309 if ((unsigned long)cur->addr - addr >= vm->size) 2310 break; 2311 addr = ALIGN((unsigned long)cur->addr + cur->size, align); 2312 } 2313 2314 BUG_ON(addr > VMALLOC_END - vm->size); 2315 vm->addr = (void *)addr; 2316 vm->next = *p; 2317 *p = vm; 2318 kasan_populate_early_vm_area_shadow(vm->addr, vm->size); 2319 } 2320 2321 static void vmap_init_free_space(void) 2322 { 2323 unsigned long vmap_start = 1; 2324 const unsigned long vmap_end = ULONG_MAX; 2325 struct vmap_area *busy, *free; 2326 2327 /* 2328 * B F B B B F 2329 * -|-----|.....|-----|-----|-----|.....|- 2330 * | The KVA space | 2331 * |<--------------------------------->| 2332 */ 2333 list_for_each_entry(busy, &vmap_area_list, list) { 2334 if (busy->va_start - vmap_start > 0) { 2335 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2336 if (!WARN_ON_ONCE(!free)) { 2337 free->va_start = vmap_start; 2338 free->va_end = busy->va_start; 2339 2340 insert_vmap_area_augment(free, NULL, 2341 &free_vmap_area_root, 2342 &free_vmap_area_list); 2343 } 2344 } 2345 2346 vmap_start = busy->va_end; 2347 } 2348 2349 if (vmap_end - vmap_start > 0) { 2350 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2351 if (!WARN_ON_ONCE(!free)) { 2352 free->va_start = vmap_start; 2353 free->va_end = vmap_end; 2354 2355 insert_vmap_area_augment(free, NULL, 2356 &free_vmap_area_root, 2357 &free_vmap_area_list); 2358 } 2359 } 2360 } 2361 2362 void __init vmalloc_init(void) 2363 { 2364 struct vmap_area *va; 2365 struct vm_struct *tmp; 2366 int i; 2367 2368 /* 2369 * Create the cache for vmap_area objects. 2370 */ 2371 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2372 2373 for_each_possible_cpu(i) { 2374 struct vmap_block_queue *vbq; 2375 struct vfree_deferred *p; 2376 2377 vbq = &per_cpu(vmap_block_queue, i); 2378 spin_lock_init(&vbq->lock); 2379 INIT_LIST_HEAD(&vbq->free); 2380 p = &per_cpu(vfree_deferred, i); 2381 init_llist_head(&p->list); 2382 INIT_WORK(&p->wq, free_work); 2383 } 2384 2385 /* Import existing vmlist entries. */ 2386 for (tmp = vmlist; tmp; tmp = tmp->next) { 2387 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2388 if (WARN_ON_ONCE(!va)) 2389 continue; 2390 2391 va->va_start = (unsigned long)tmp->addr; 2392 va->va_end = va->va_start + tmp->size; 2393 va->vm = tmp; 2394 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2395 } 2396 2397 /* 2398 * Now we can initialize a free vmap space. 2399 */ 2400 vmap_init_free_space(); 2401 vmap_initialized = true; 2402 } 2403 2404 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2405 struct vmap_area *va, unsigned long flags, const void *caller) 2406 { 2407 vm->flags = flags; 2408 vm->addr = (void *)va->va_start; 2409 vm->size = va->va_end - va->va_start; 2410 vm->caller = caller; 2411 va->vm = vm; 2412 } 2413 2414 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2415 unsigned long flags, const void *caller) 2416 { 2417 spin_lock(&vmap_area_lock); 2418 setup_vmalloc_vm_locked(vm, va, flags, caller); 2419 spin_unlock(&vmap_area_lock); 2420 } 2421 2422 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2423 { 2424 /* 2425 * Before removing VM_UNINITIALIZED, 2426 * we should make sure that vm has proper values. 2427 * Pair with smp_rmb() in show_numa_info(). 2428 */ 2429 smp_wmb(); 2430 vm->flags &= ~VM_UNINITIALIZED; 2431 } 2432 2433 static struct vm_struct *__get_vm_area_node(unsigned long size, 2434 unsigned long align, unsigned long shift, unsigned long flags, 2435 unsigned long start, unsigned long end, int node, 2436 gfp_t gfp_mask, const void *caller) 2437 { 2438 struct vmap_area *va; 2439 struct vm_struct *area; 2440 unsigned long requested_size = size; 2441 2442 BUG_ON(in_interrupt()); 2443 size = ALIGN(size, 1ul << shift); 2444 if (unlikely(!size)) 2445 return NULL; 2446 2447 if (flags & VM_IOREMAP) 2448 align = 1ul << clamp_t(int, get_count_order_long(size), 2449 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2450 2451 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2452 if (unlikely(!area)) 2453 return NULL; 2454 2455 if (!(flags & VM_NO_GUARD)) 2456 size += PAGE_SIZE; 2457 2458 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2459 if (IS_ERR(va)) { 2460 kfree(area); 2461 return NULL; 2462 } 2463 2464 setup_vmalloc_vm(area, va, flags, caller); 2465 2466 /* 2467 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a 2468 * best-effort approach, as they can be mapped outside of vmalloc code. 2469 * For VM_ALLOC mappings, the pages are marked as accessible after 2470 * getting mapped in __vmalloc_node_range(). 2471 * With hardware tag-based KASAN, marking is skipped for 2472 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 2473 */ 2474 if (!(flags & VM_ALLOC)) 2475 area->addr = kasan_unpoison_vmalloc(area->addr, requested_size, 2476 KASAN_VMALLOC_PROT_NORMAL); 2477 2478 return area; 2479 } 2480 2481 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2482 unsigned long start, unsigned long end, 2483 const void *caller) 2484 { 2485 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2486 NUMA_NO_NODE, GFP_KERNEL, caller); 2487 } 2488 2489 /** 2490 * get_vm_area - reserve a contiguous kernel virtual area 2491 * @size: size of the area 2492 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2493 * 2494 * Search an area of @size in the kernel virtual mapping area, 2495 * and reserved it for out purposes. Returns the area descriptor 2496 * on success or %NULL on failure. 2497 * 2498 * Return: the area descriptor on success or %NULL on failure. 2499 */ 2500 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2501 { 2502 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2503 VMALLOC_START, VMALLOC_END, 2504 NUMA_NO_NODE, GFP_KERNEL, 2505 __builtin_return_address(0)); 2506 } 2507 2508 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2509 const void *caller) 2510 { 2511 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2512 VMALLOC_START, VMALLOC_END, 2513 NUMA_NO_NODE, GFP_KERNEL, caller); 2514 } 2515 2516 /** 2517 * find_vm_area - find a continuous kernel virtual area 2518 * @addr: base address 2519 * 2520 * Search for the kernel VM area starting at @addr, and return it. 2521 * It is up to the caller to do all required locking to keep the returned 2522 * pointer valid. 2523 * 2524 * Return: the area descriptor on success or %NULL on failure. 2525 */ 2526 struct vm_struct *find_vm_area(const void *addr) 2527 { 2528 struct vmap_area *va; 2529 2530 va = find_vmap_area((unsigned long)addr); 2531 if (!va) 2532 return NULL; 2533 2534 return va->vm; 2535 } 2536 2537 /** 2538 * remove_vm_area - find and remove a continuous kernel virtual area 2539 * @addr: base address 2540 * 2541 * Search for the kernel VM area starting at @addr, and remove it. 2542 * This function returns the found VM area, but using it is NOT safe 2543 * on SMP machines, except for its size or flags. 2544 * 2545 * Return: the area descriptor on success or %NULL on failure. 2546 */ 2547 struct vm_struct *remove_vm_area(const void *addr) 2548 { 2549 struct vmap_area *va; 2550 2551 might_sleep(); 2552 2553 spin_lock(&vmap_area_lock); 2554 va = __find_vmap_area((unsigned long)addr); 2555 if (va && va->vm) { 2556 struct vm_struct *vm = va->vm; 2557 2558 va->vm = NULL; 2559 spin_unlock(&vmap_area_lock); 2560 2561 kasan_free_module_shadow(vm); 2562 free_unmap_vmap_area(va); 2563 2564 return vm; 2565 } 2566 2567 spin_unlock(&vmap_area_lock); 2568 return NULL; 2569 } 2570 2571 static inline void set_area_direct_map(const struct vm_struct *area, 2572 int (*set_direct_map)(struct page *page)) 2573 { 2574 int i; 2575 2576 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2577 for (i = 0; i < area->nr_pages; i++) 2578 if (page_address(area->pages[i])) 2579 set_direct_map(area->pages[i]); 2580 } 2581 2582 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2583 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2584 { 2585 unsigned long start = ULONG_MAX, end = 0; 2586 unsigned int page_order = vm_area_page_order(area); 2587 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2588 int flush_dmap = 0; 2589 int i; 2590 2591 remove_vm_area(area->addr); 2592 2593 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2594 if (!flush_reset) 2595 return; 2596 2597 /* 2598 * If not deallocating pages, just do the flush of the VM area and 2599 * return. 2600 */ 2601 if (!deallocate_pages) { 2602 vm_unmap_aliases(); 2603 return; 2604 } 2605 2606 /* 2607 * If execution gets here, flush the vm mapping and reset the direct 2608 * map. Find the start and end range of the direct mappings to make sure 2609 * the vm_unmap_aliases() flush includes the direct map. 2610 */ 2611 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2612 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2613 if (addr) { 2614 unsigned long page_size; 2615 2616 page_size = PAGE_SIZE << page_order; 2617 start = min(addr, start); 2618 end = max(addr + page_size, end); 2619 flush_dmap = 1; 2620 } 2621 } 2622 2623 /* 2624 * Set direct map to something invalid so that it won't be cached if 2625 * there are any accesses after the TLB flush, then flush the TLB and 2626 * reset the direct map permissions to the default. 2627 */ 2628 set_area_direct_map(area, set_direct_map_invalid_noflush); 2629 _vm_unmap_aliases(start, end, flush_dmap); 2630 set_area_direct_map(area, set_direct_map_default_noflush); 2631 } 2632 2633 static void __vunmap(const void *addr, int deallocate_pages) 2634 { 2635 struct vm_struct *area; 2636 2637 if (!addr) 2638 return; 2639 2640 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2641 addr)) 2642 return; 2643 2644 area = find_vm_area(addr); 2645 if (unlikely(!area)) { 2646 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2647 addr); 2648 return; 2649 } 2650 2651 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2652 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2653 2654 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2655 2656 vm_remove_mappings(area, deallocate_pages); 2657 2658 if (deallocate_pages) { 2659 int i; 2660 2661 for (i = 0; i < area->nr_pages; i++) { 2662 struct page *page = area->pages[i]; 2663 2664 BUG_ON(!page); 2665 mod_memcg_page_state(page, MEMCG_VMALLOC, -1); 2666 /* 2667 * High-order allocs for huge vmallocs are split, so 2668 * can be freed as an array of order-0 allocations 2669 */ 2670 __free_pages(page, 0); 2671 cond_resched(); 2672 } 2673 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2674 2675 kvfree(area->pages); 2676 } 2677 2678 kfree(area); 2679 } 2680 2681 static inline void __vfree_deferred(const void *addr) 2682 { 2683 /* 2684 * Use raw_cpu_ptr() because this can be called from preemptible 2685 * context. Preemption is absolutely fine here, because the llist_add() 2686 * implementation is lockless, so it works even if we are adding to 2687 * another cpu's list. schedule_work() should be fine with this too. 2688 */ 2689 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2690 2691 if (llist_add((struct llist_node *)addr, &p->list)) 2692 schedule_work(&p->wq); 2693 } 2694 2695 /** 2696 * vfree_atomic - release memory allocated by vmalloc() 2697 * @addr: memory base address 2698 * 2699 * This one is just like vfree() but can be called in any atomic context 2700 * except NMIs. 2701 */ 2702 void vfree_atomic(const void *addr) 2703 { 2704 BUG_ON(in_nmi()); 2705 2706 kmemleak_free(addr); 2707 2708 if (!addr) 2709 return; 2710 __vfree_deferred(addr); 2711 } 2712 2713 static void __vfree(const void *addr) 2714 { 2715 if (unlikely(in_interrupt())) 2716 __vfree_deferred(addr); 2717 else 2718 __vunmap(addr, 1); 2719 } 2720 2721 /** 2722 * vfree - Release memory allocated by vmalloc() 2723 * @addr: Memory base address 2724 * 2725 * Free the virtually continuous memory area starting at @addr, as obtained 2726 * from one of the vmalloc() family of APIs. This will usually also free the 2727 * physical memory underlying the virtual allocation, but that memory is 2728 * reference counted, so it will not be freed until the last user goes away. 2729 * 2730 * If @addr is NULL, no operation is performed. 2731 * 2732 * Context: 2733 * May sleep if called *not* from interrupt context. 2734 * Must not be called in NMI context (strictly speaking, it could be 2735 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2736 * conventions for vfree() arch-dependent would be a really bad idea). 2737 */ 2738 void vfree(const void *addr) 2739 { 2740 BUG_ON(in_nmi()); 2741 2742 kmemleak_free(addr); 2743 2744 might_sleep_if(!in_interrupt()); 2745 2746 if (!addr) 2747 return; 2748 2749 __vfree(addr); 2750 } 2751 EXPORT_SYMBOL(vfree); 2752 2753 /** 2754 * vunmap - release virtual mapping obtained by vmap() 2755 * @addr: memory base address 2756 * 2757 * Free the virtually contiguous memory area starting at @addr, 2758 * which was created from the page array passed to vmap(). 2759 * 2760 * Must not be called in interrupt context. 2761 */ 2762 void vunmap(const void *addr) 2763 { 2764 BUG_ON(in_interrupt()); 2765 might_sleep(); 2766 if (addr) 2767 __vunmap(addr, 0); 2768 } 2769 EXPORT_SYMBOL(vunmap); 2770 2771 /** 2772 * vmap - map an array of pages into virtually contiguous space 2773 * @pages: array of page pointers 2774 * @count: number of pages to map 2775 * @flags: vm_area->flags 2776 * @prot: page protection for the mapping 2777 * 2778 * Maps @count pages from @pages into contiguous kernel virtual space. 2779 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2780 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2781 * are transferred from the caller to vmap(), and will be freed / dropped when 2782 * vfree() is called on the return value. 2783 * 2784 * Return: the address of the area or %NULL on failure 2785 */ 2786 void *vmap(struct page **pages, unsigned int count, 2787 unsigned long flags, pgprot_t prot) 2788 { 2789 struct vm_struct *area; 2790 unsigned long addr; 2791 unsigned long size; /* In bytes */ 2792 2793 might_sleep(); 2794 2795 /* 2796 * Your top guard is someone else's bottom guard. Not having a top 2797 * guard compromises someone else's mappings too. 2798 */ 2799 if (WARN_ON_ONCE(flags & VM_NO_GUARD)) 2800 flags &= ~VM_NO_GUARD; 2801 2802 if (count > totalram_pages()) 2803 return NULL; 2804 2805 size = (unsigned long)count << PAGE_SHIFT; 2806 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2807 if (!area) 2808 return NULL; 2809 2810 addr = (unsigned long)area->addr; 2811 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2812 pages, PAGE_SHIFT) < 0) { 2813 vunmap(area->addr); 2814 return NULL; 2815 } 2816 2817 if (flags & VM_MAP_PUT_PAGES) { 2818 area->pages = pages; 2819 area->nr_pages = count; 2820 } 2821 return area->addr; 2822 } 2823 EXPORT_SYMBOL(vmap); 2824 2825 #ifdef CONFIG_VMAP_PFN 2826 struct vmap_pfn_data { 2827 unsigned long *pfns; 2828 pgprot_t prot; 2829 unsigned int idx; 2830 }; 2831 2832 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2833 { 2834 struct vmap_pfn_data *data = private; 2835 2836 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2837 return -EINVAL; 2838 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2839 return 0; 2840 } 2841 2842 /** 2843 * vmap_pfn - map an array of PFNs into virtually contiguous space 2844 * @pfns: array of PFNs 2845 * @count: number of pages to map 2846 * @prot: page protection for the mapping 2847 * 2848 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2849 * the start address of the mapping. 2850 */ 2851 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2852 { 2853 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2854 struct vm_struct *area; 2855 2856 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2857 __builtin_return_address(0)); 2858 if (!area) 2859 return NULL; 2860 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2861 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2862 free_vm_area(area); 2863 return NULL; 2864 } 2865 return area->addr; 2866 } 2867 EXPORT_SYMBOL_GPL(vmap_pfn); 2868 #endif /* CONFIG_VMAP_PFN */ 2869 2870 static inline unsigned int 2871 vm_area_alloc_pages(gfp_t gfp, int nid, 2872 unsigned int order, unsigned int nr_pages, struct page **pages) 2873 { 2874 unsigned int nr_allocated = 0; 2875 struct page *page; 2876 int i; 2877 2878 /* 2879 * For order-0 pages we make use of bulk allocator, if 2880 * the page array is partly or not at all populated due 2881 * to fails, fallback to a single page allocator that is 2882 * more permissive. 2883 */ 2884 if (!order) { 2885 gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL; 2886 2887 while (nr_allocated < nr_pages) { 2888 unsigned int nr, nr_pages_request; 2889 2890 /* 2891 * A maximum allowed request is hard-coded and is 100 2892 * pages per call. That is done in order to prevent a 2893 * long preemption off scenario in the bulk-allocator 2894 * so the range is [1:100]. 2895 */ 2896 nr_pages_request = min(100U, nr_pages - nr_allocated); 2897 2898 /* memory allocation should consider mempolicy, we can't 2899 * wrongly use nearest node when nid == NUMA_NO_NODE, 2900 * otherwise memory may be allocated in only one node, 2901 * but mempolicy wants to alloc memory by interleaving. 2902 */ 2903 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE) 2904 nr = alloc_pages_bulk_array_mempolicy(bulk_gfp, 2905 nr_pages_request, 2906 pages + nr_allocated); 2907 2908 else 2909 nr = alloc_pages_bulk_array_node(bulk_gfp, nid, 2910 nr_pages_request, 2911 pages + nr_allocated); 2912 2913 nr_allocated += nr; 2914 cond_resched(); 2915 2916 /* 2917 * If zero or pages were obtained partly, 2918 * fallback to a single page allocator. 2919 */ 2920 if (nr != nr_pages_request) 2921 break; 2922 } 2923 } 2924 2925 /* High-order pages or fallback path if "bulk" fails. */ 2926 2927 while (nr_allocated < nr_pages) { 2928 if (fatal_signal_pending(current)) 2929 break; 2930 2931 if (nid == NUMA_NO_NODE) 2932 page = alloc_pages(gfp, order); 2933 else 2934 page = alloc_pages_node(nid, gfp, order); 2935 if (unlikely(!page)) 2936 break; 2937 /* 2938 * Higher order allocations must be able to be treated as 2939 * indepdenent small pages by callers (as they can with 2940 * small-page vmallocs). Some drivers do their own refcounting 2941 * on vmalloc_to_page() pages, some use page->mapping, 2942 * page->lru, etc. 2943 */ 2944 if (order) 2945 split_page(page, order); 2946 2947 /* 2948 * Careful, we allocate and map page-order pages, but 2949 * tracking is done per PAGE_SIZE page so as to keep the 2950 * vm_struct APIs independent of the physical/mapped size. 2951 */ 2952 for (i = 0; i < (1U << order); i++) 2953 pages[nr_allocated + i] = page + i; 2954 2955 cond_resched(); 2956 nr_allocated += 1U << order; 2957 } 2958 2959 return nr_allocated; 2960 } 2961 2962 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2963 pgprot_t prot, unsigned int page_shift, 2964 int node) 2965 { 2966 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2967 bool nofail = gfp_mask & __GFP_NOFAIL; 2968 unsigned long addr = (unsigned long)area->addr; 2969 unsigned long size = get_vm_area_size(area); 2970 unsigned long array_size; 2971 unsigned int nr_small_pages = size >> PAGE_SHIFT; 2972 unsigned int page_order; 2973 unsigned int flags; 2974 int ret; 2975 2976 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 2977 gfp_mask |= __GFP_NOWARN; 2978 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 2979 gfp_mask |= __GFP_HIGHMEM; 2980 2981 /* Please note that the recursion is strictly bounded. */ 2982 if (array_size > PAGE_SIZE) { 2983 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 2984 area->caller); 2985 } else { 2986 area->pages = kmalloc_node(array_size, nested_gfp, node); 2987 } 2988 2989 if (!area->pages) { 2990 warn_alloc(gfp_mask, NULL, 2991 "vmalloc error: size %lu, failed to allocated page array size %lu", 2992 nr_small_pages * PAGE_SIZE, array_size); 2993 free_vm_area(area); 2994 return NULL; 2995 } 2996 2997 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 2998 page_order = vm_area_page_order(area); 2999 3000 area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN, 3001 node, page_order, nr_small_pages, area->pages); 3002 3003 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 3004 if (gfp_mask & __GFP_ACCOUNT) { 3005 int i; 3006 3007 for (i = 0; i < area->nr_pages; i++) 3008 mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1); 3009 } 3010 3011 /* 3012 * If not enough pages were obtained to accomplish an 3013 * allocation request, free them via __vfree() if any. 3014 */ 3015 if (area->nr_pages != nr_small_pages) { 3016 warn_alloc(gfp_mask, NULL, 3017 "vmalloc error: size %lu, page order %u, failed to allocate pages", 3018 area->nr_pages * PAGE_SIZE, page_order); 3019 goto fail; 3020 } 3021 3022 /* 3023 * page tables allocations ignore external gfp mask, enforce it 3024 * by the scope API 3025 */ 3026 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3027 flags = memalloc_nofs_save(); 3028 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3029 flags = memalloc_noio_save(); 3030 3031 do { 3032 ret = vmap_pages_range(addr, addr + size, prot, area->pages, 3033 page_shift); 3034 if (nofail && (ret < 0)) 3035 schedule_timeout_uninterruptible(1); 3036 } while (nofail && (ret < 0)); 3037 3038 if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO) 3039 memalloc_nofs_restore(flags); 3040 else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0) 3041 memalloc_noio_restore(flags); 3042 3043 if (ret < 0) { 3044 warn_alloc(gfp_mask, NULL, 3045 "vmalloc error: size %lu, failed to map pages", 3046 area->nr_pages * PAGE_SIZE); 3047 goto fail; 3048 } 3049 3050 return area->addr; 3051 3052 fail: 3053 __vfree(area->addr); 3054 return NULL; 3055 } 3056 3057 /** 3058 * __vmalloc_node_range - allocate virtually contiguous memory 3059 * @size: allocation size 3060 * @align: desired alignment 3061 * @start: vm area range start 3062 * @end: vm area range end 3063 * @gfp_mask: flags for the page level allocator 3064 * @prot: protection mask for the allocated pages 3065 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 3066 * @node: node to use for allocation or NUMA_NO_NODE 3067 * @caller: caller's return address 3068 * 3069 * Allocate enough pages to cover @size from the page level 3070 * allocator with @gfp_mask flags. Please note that the full set of gfp 3071 * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all 3072 * supported. 3073 * Zone modifiers are not supported. From the reclaim modifiers 3074 * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported) 3075 * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and 3076 * __GFP_RETRY_MAYFAIL are not supported). 3077 * 3078 * __GFP_NOWARN can be used to suppress failures messages. 3079 * 3080 * Map them into contiguous kernel virtual space, using a pagetable 3081 * protection of @prot. 3082 * 3083 * Return: the address of the area or %NULL on failure 3084 */ 3085 void *__vmalloc_node_range(unsigned long size, unsigned long align, 3086 unsigned long start, unsigned long end, gfp_t gfp_mask, 3087 pgprot_t prot, unsigned long vm_flags, int node, 3088 const void *caller) 3089 { 3090 struct vm_struct *area; 3091 void *ret; 3092 kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE; 3093 unsigned long real_size = size; 3094 unsigned long real_align = align; 3095 unsigned int shift = PAGE_SHIFT; 3096 3097 if (WARN_ON_ONCE(!size)) 3098 return NULL; 3099 3100 if ((size >> PAGE_SHIFT) > totalram_pages()) { 3101 warn_alloc(gfp_mask, NULL, 3102 "vmalloc error: size %lu, exceeds total pages", 3103 real_size); 3104 return NULL; 3105 } 3106 3107 if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) { 3108 unsigned long size_per_node; 3109 3110 /* 3111 * Try huge pages. Only try for PAGE_KERNEL allocations, 3112 * others like modules don't yet expect huge pages in 3113 * their allocations due to apply_to_page_range not 3114 * supporting them. 3115 */ 3116 3117 size_per_node = size; 3118 if (node == NUMA_NO_NODE) 3119 size_per_node /= num_online_nodes(); 3120 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 3121 shift = PMD_SHIFT; 3122 else 3123 shift = arch_vmap_pte_supported_shift(size_per_node); 3124 3125 align = max(real_align, 1UL << shift); 3126 size = ALIGN(real_size, 1UL << shift); 3127 } 3128 3129 again: 3130 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 3131 VM_UNINITIALIZED | vm_flags, start, end, node, 3132 gfp_mask, caller); 3133 if (!area) { 3134 bool nofail = gfp_mask & __GFP_NOFAIL; 3135 warn_alloc(gfp_mask, NULL, 3136 "vmalloc error: size %lu, vm_struct allocation failed%s", 3137 real_size, (nofail) ? ". Retrying." : ""); 3138 if (nofail) { 3139 schedule_timeout_uninterruptible(1); 3140 goto again; 3141 } 3142 goto fail; 3143 } 3144 3145 /* 3146 * Prepare arguments for __vmalloc_area_node() and 3147 * kasan_unpoison_vmalloc(). 3148 */ 3149 if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) { 3150 if (kasan_hw_tags_enabled()) { 3151 /* 3152 * Modify protection bits to allow tagging. 3153 * This must be done before mapping. 3154 */ 3155 prot = arch_vmap_pgprot_tagged(prot); 3156 3157 /* 3158 * Skip page_alloc poisoning and zeroing for physical 3159 * pages backing VM_ALLOC mapping. Memory is instead 3160 * poisoned and zeroed by kasan_unpoison_vmalloc(). 3161 */ 3162 gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO; 3163 } 3164 3165 /* Take note that the mapping is PAGE_KERNEL. */ 3166 kasan_flags |= KASAN_VMALLOC_PROT_NORMAL; 3167 } 3168 3169 /* Allocate physical pages and map them into vmalloc space. */ 3170 ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 3171 if (!ret) 3172 goto fail; 3173 3174 /* 3175 * Mark the pages as accessible, now that they are mapped. 3176 * The init condition should match the one in post_alloc_hook() 3177 * (except for the should_skip_init() check) to make sure that memory 3178 * is initialized under the same conditions regardless of the enabled 3179 * KASAN mode. 3180 * Tag-based KASAN modes only assign tags to normal non-executable 3181 * allocations, see __kasan_unpoison_vmalloc(). 3182 */ 3183 kasan_flags |= KASAN_VMALLOC_VM_ALLOC; 3184 if (!want_init_on_free() && want_init_on_alloc(gfp_mask)) 3185 kasan_flags |= KASAN_VMALLOC_INIT; 3186 /* KASAN_VMALLOC_PROT_NORMAL already set if required. */ 3187 area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags); 3188 3189 /* 3190 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 3191 * flag. It means that vm_struct is not fully initialized. 3192 * Now, it is fully initialized, so remove this flag here. 3193 */ 3194 clear_vm_uninitialized_flag(area); 3195 3196 size = PAGE_ALIGN(size); 3197 if (!(vm_flags & VM_DEFER_KMEMLEAK)) 3198 kmemleak_vmalloc(area, size, gfp_mask); 3199 3200 return area->addr; 3201 3202 fail: 3203 if (shift > PAGE_SHIFT) { 3204 shift = PAGE_SHIFT; 3205 align = real_align; 3206 size = real_size; 3207 goto again; 3208 } 3209 3210 return NULL; 3211 } 3212 3213 /** 3214 * __vmalloc_node - allocate virtually contiguous memory 3215 * @size: allocation size 3216 * @align: desired alignment 3217 * @gfp_mask: flags for the page level allocator 3218 * @node: node to use for allocation or NUMA_NO_NODE 3219 * @caller: caller's return address 3220 * 3221 * Allocate enough pages to cover @size from the page level allocator with 3222 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3223 * 3224 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3225 * and __GFP_NOFAIL are not supported 3226 * 3227 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3228 * with mm people. 3229 * 3230 * Return: pointer to the allocated memory or %NULL on error 3231 */ 3232 void *__vmalloc_node(unsigned long size, unsigned long align, 3233 gfp_t gfp_mask, int node, const void *caller) 3234 { 3235 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3236 gfp_mask, PAGE_KERNEL, 0, node, caller); 3237 } 3238 /* 3239 * This is only for performance analysis of vmalloc and stress purpose. 3240 * It is required by vmalloc test module, therefore do not use it other 3241 * than that. 3242 */ 3243 #ifdef CONFIG_TEST_VMALLOC_MODULE 3244 EXPORT_SYMBOL_GPL(__vmalloc_node); 3245 #endif 3246 3247 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3248 { 3249 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3250 __builtin_return_address(0)); 3251 } 3252 EXPORT_SYMBOL(__vmalloc); 3253 3254 /** 3255 * vmalloc - allocate virtually contiguous memory 3256 * @size: allocation size 3257 * 3258 * Allocate enough pages to cover @size from the page level 3259 * allocator and map them into contiguous kernel virtual space. 3260 * 3261 * For tight control over page level allocator and protection flags 3262 * use __vmalloc() instead. 3263 * 3264 * Return: pointer to the allocated memory or %NULL on error 3265 */ 3266 void *vmalloc(unsigned long size) 3267 { 3268 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3269 __builtin_return_address(0)); 3270 } 3271 EXPORT_SYMBOL(vmalloc); 3272 3273 /** 3274 * vmalloc_huge - allocate virtually contiguous memory, allow huge pages 3275 * @size: allocation size 3276 * @gfp_mask: flags for the page level allocator 3277 * 3278 * Allocate enough pages to cover @size from the page level 3279 * allocator and map them into contiguous kernel virtual space. 3280 * If @size is greater than or equal to PMD_SIZE, allow using 3281 * huge pages for the memory 3282 * 3283 * Return: pointer to the allocated memory or %NULL on error 3284 */ 3285 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) 3286 { 3287 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3288 gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 3289 NUMA_NO_NODE, __builtin_return_address(0)); 3290 } 3291 EXPORT_SYMBOL_GPL(vmalloc_huge); 3292 3293 /** 3294 * vzalloc - allocate virtually contiguous memory with zero fill 3295 * @size: allocation size 3296 * 3297 * Allocate enough pages to cover @size from the page level 3298 * allocator and map them into contiguous kernel virtual space. 3299 * The memory allocated is set to zero. 3300 * 3301 * For tight control over page level allocator and protection flags 3302 * use __vmalloc() instead. 3303 * 3304 * Return: pointer to the allocated memory or %NULL on error 3305 */ 3306 void *vzalloc(unsigned long size) 3307 { 3308 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3309 __builtin_return_address(0)); 3310 } 3311 EXPORT_SYMBOL(vzalloc); 3312 3313 /** 3314 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3315 * @size: allocation size 3316 * 3317 * The resulting memory area is zeroed so it can be mapped to userspace 3318 * without leaking data. 3319 * 3320 * Return: pointer to the allocated memory or %NULL on error 3321 */ 3322 void *vmalloc_user(unsigned long size) 3323 { 3324 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3325 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3326 VM_USERMAP, NUMA_NO_NODE, 3327 __builtin_return_address(0)); 3328 } 3329 EXPORT_SYMBOL(vmalloc_user); 3330 3331 /** 3332 * vmalloc_node - allocate memory on a specific node 3333 * @size: allocation size 3334 * @node: numa node 3335 * 3336 * Allocate enough pages to cover @size from the page level 3337 * allocator and map them into contiguous kernel virtual space. 3338 * 3339 * For tight control over page level allocator and protection flags 3340 * use __vmalloc() instead. 3341 * 3342 * Return: pointer to the allocated memory or %NULL on error 3343 */ 3344 void *vmalloc_node(unsigned long size, int node) 3345 { 3346 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3347 __builtin_return_address(0)); 3348 } 3349 EXPORT_SYMBOL(vmalloc_node); 3350 3351 /** 3352 * vzalloc_node - allocate memory on a specific node with zero fill 3353 * @size: allocation size 3354 * @node: numa node 3355 * 3356 * Allocate enough pages to cover @size from the page level 3357 * allocator and map them into contiguous kernel virtual space. 3358 * The memory allocated is set to zero. 3359 * 3360 * Return: pointer to the allocated memory or %NULL on error 3361 */ 3362 void *vzalloc_node(unsigned long size, int node) 3363 { 3364 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3365 __builtin_return_address(0)); 3366 } 3367 EXPORT_SYMBOL(vzalloc_node); 3368 3369 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3370 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3371 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3372 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3373 #else 3374 /* 3375 * 64b systems should always have either DMA or DMA32 zones. For others 3376 * GFP_DMA32 should do the right thing and use the normal zone. 3377 */ 3378 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3379 #endif 3380 3381 /** 3382 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3383 * @size: allocation size 3384 * 3385 * Allocate enough 32bit PA addressable pages to cover @size from the 3386 * page level allocator and map them into contiguous kernel virtual space. 3387 * 3388 * Return: pointer to the allocated memory or %NULL on error 3389 */ 3390 void *vmalloc_32(unsigned long size) 3391 { 3392 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3393 __builtin_return_address(0)); 3394 } 3395 EXPORT_SYMBOL(vmalloc_32); 3396 3397 /** 3398 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3399 * @size: allocation size 3400 * 3401 * The resulting memory area is 32bit addressable and zeroed so it can be 3402 * mapped to userspace without leaking data. 3403 * 3404 * Return: pointer to the allocated memory or %NULL on error 3405 */ 3406 void *vmalloc_32_user(unsigned long size) 3407 { 3408 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3409 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3410 VM_USERMAP, NUMA_NO_NODE, 3411 __builtin_return_address(0)); 3412 } 3413 EXPORT_SYMBOL(vmalloc_32_user); 3414 3415 /* 3416 * small helper routine , copy contents to buf from addr. 3417 * If the page is not present, fill zero. 3418 */ 3419 3420 static int aligned_vread(char *buf, char *addr, unsigned long count) 3421 { 3422 struct page *p; 3423 int copied = 0; 3424 3425 while (count) { 3426 unsigned long offset, length; 3427 3428 offset = offset_in_page(addr); 3429 length = PAGE_SIZE - offset; 3430 if (length > count) 3431 length = count; 3432 p = vmalloc_to_page(addr); 3433 /* 3434 * To do safe access to this _mapped_ area, we need 3435 * lock. But adding lock here means that we need to add 3436 * overhead of vmalloc()/vfree() calls for this _debug_ 3437 * interface, rarely used. Instead of that, we'll use 3438 * kmap() and get small overhead in this access function. 3439 */ 3440 if (p) { 3441 /* We can expect USER0 is not used -- see vread() */ 3442 void *map = kmap_atomic(p); 3443 memcpy(buf, map + offset, length); 3444 kunmap_atomic(map); 3445 } else 3446 memset(buf, 0, length); 3447 3448 addr += length; 3449 buf += length; 3450 copied += length; 3451 count -= length; 3452 } 3453 return copied; 3454 } 3455 3456 /** 3457 * vread() - read vmalloc area in a safe way. 3458 * @buf: buffer for reading data 3459 * @addr: vm address. 3460 * @count: number of bytes to be read. 3461 * 3462 * This function checks that addr is a valid vmalloc'ed area, and 3463 * copy data from that area to a given buffer. If the given memory range 3464 * of [addr...addr+count) includes some valid address, data is copied to 3465 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3466 * IOREMAP area is treated as memory hole and no copy is done. 3467 * 3468 * If [addr...addr+count) doesn't includes any intersects with alive 3469 * vm_struct area, returns 0. @buf should be kernel's buffer. 3470 * 3471 * Note: In usual ops, vread() is never necessary because the caller 3472 * should know vmalloc() area is valid and can use memcpy(). 3473 * This is for routines which have to access vmalloc area without 3474 * any information, as /proc/kcore. 3475 * 3476 * Return: number of bytes for which addr and buf should be increased 3477 * (same number as @count) or %0 if [addr...addr+count) doesn't 3478 * include any intersection with valid vmalloc area 3479 */ 3480 long vread(char *buf, char *addr, unsigned long count) 3481 { 3482 struct vmap_area *va; 3483 struct vm_struct *vm; 3484 char *vaddr, *buf_start = buf; 3485 unsigned long buflen = count; 3486 unsigned long n; 3487 3488 addr = kasan_reset_tag(addr); 3489 3490 /* Don't allow overflow */ 3491 if ((unsigned long) addr + count < count) 3492 count = -(unsigned long) addr; 3493 3494 spin_lock(&vmap_area_lock); 3495 va = find_vmap_area_exceed_addr((unsigned long)addr); 3496 if (!va) 3497 goto finished; 3498 3499 /* no intersects with alive vmap_area */ 3500 if ((unsigned long)addr + count <= va->va_start) 3501 goto finished; 3502 3503 list_for_each_entry_from(va, &vmap_area_list, list) { 3504 if (!count) 3505 break; 3506 3507 if (!va->vm) 3508 continue; 3509 3510 vm = va->vm; 3511 vaddr = (char *) vm->addr; 3512 if (addr >= vaddr + get_vm_area_size(vm)) 3513 continue; 3514 while (addr < vaddr) { 3515 if (count == 0) 3516 goto finished; 3517 *buf = '\0'; 3518 buf++; 3519 addr++; 3520 count--; 3521 } 3522 n = vaddr + get_vm_area_size(vm) - addr; 3523 if (n > count) 3524 n = count; 3525 if (!(vm->flags & VM_IOREMAP)) 3526 aligned_vread(buf, addr, n); 3527 else /* IOREMAP area is treated as memory hole */ 3528 memset(buf, 0, n); 3529 buf += n; 3530 addr += n; 3531 count -= n; 3532 } 3533 finished: 3534 spin_unlock(&vmap_area_lock); 3535 3536 if (buf == buf_start) 3537 return 0; 3538 /* zero-fill memory holes */ 3539 if (buf != buf_start + buflen) 3540 memset(buf, 0, buflen - (buf - buf_start)); 3541 3542 return buflen; 3543 } 3544 3545 /** 3546 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3547 * @vma: vma to cover 3548 * @uaddr: target user address to start at 3549 * @kaddr: virtual address of vmalloc kernel memory 3550 * @pgoff: offset from @kaddr to start at 3551 * @size: size of map area 3552 * 3553 * Returns: 0 for success, -Exxx on failure 3554 * 3555 * This function checks that @kaddr is a valid vmalloc'ed area, 3556 * and that it is big enough to cover the range starting at 3557 * @uaddr in @vma. Will return failure if that criteria isn't 3558 * met. 3559 * 3560 * Similar to remap_pfn_range() (see mm/memory.c) 3561 */ 3562 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3563 void *kaddr, unsigned long pgoff, 3564 unsigned long size) 3565 { 3566 struct vm_struct *area; 3567 unsigned long off; 3568 unsigned long end_index; 3569 3570 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3571 return -EINVAL; 3572 3573 size = PAGE_ALIGN(size); 3574 3575 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3576 return -EINVAL; 3577 3578 area = find_vm_area(kaddr); 3579 if (!area) 3580 return -EINVAL; 3581 3582 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3583 return -EINVAL; 3584 3585 if (check_add_overflow(size, off, &end_index) || 3586 end_index > get_vm_area_size(area)) 3587 return -EINVAL; 3588 kaddr += off; 3589 3590 do { 3591 struct page *page = vmalloc_to_page(kaddr); 3592 int ret; 3593 3594 ret = vm_insert_page(vma, uaddr, page); 3595 if (ret) 3596 return ret; 3597 3598 uaddr += PAGE_SIZE; 3599 kaddr += PAGE_SIZE; 3600 size -= PAGE_SIZE; 3601 } while (size > 0); 3602 3603 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3604 3605 return 0; 3606 } 3607 3608 /** 3609 * remap_vmalloc_range - map vmalloc pages to userspace 3610 * @vma: vma to cover (map full range of vma) 3611 * @addr: vmalloc memory 3612 * @pgoff: number of pages into addr before first page to map 3613 * 3614 * Returns: 0 for success, -Exxx on failure 3615 * 3616 * This function checks that addr is a valid vmalloc'ed area, and 3617 * that it is big enough to cover the vma. Will return failure if 3618 * that criteria isn't met. 3619 * 3620 * Similar to remap_pfn_range() (see mm/memory.c) 3621 */ 3622 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3623 unsigned long pgoff) 3624 { 3625 return remap_vmalloc_range_partial(vma, vma->vm_start, 3626 addr, pgoff, 3627 vma->vm_end - vma->vm_start); 3628 } 3629 EXPORT_SYMBOL(remap_vmalloc_range); 3630 3631 void free_vm_area(struct vm_struct *area) 3632 { 3633 struct vm_struct *ret; 3634 ret = remove_vm_area(area->addr); 3635 BUG_ON(ret != area); 3636 kfree(area); 3637 } 3638 EXPORT_SYMBOL_GPL(free_vm_area); 3639 3640 #ifdef CONFIG_SMP 3641 static struct vmap_area *node_to_va(struct rb_node *n) 3642 { 3643 return rb_entry_safe(n, struct vmap_area, rb_node); 3644 } 3645 3646 /** 3647 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3648 * @addr: target address 3649 * 3650 * Returns: vmap_area if it is found. If there is no such area 3651 * the first highest(reverse order) vmap_area is returned 3652 * i.e. va->va_start < addr && va->va_end < addr or NULL 3653 * if there are no any areas before @addr. 3654 */ 3655 static struct vmap_area * 3656 pvm_find_va_enclose_addr(unsigned long addr) 3657 { 3658 struct vmap_area *va, *tmp; 3659 struct rb_node *n; 3660 3661 n = free_vmap_area_root.rb_node; 3662 va = NULL; 3663 3664 while (n) { 3665 tmp = rb_entry(n, struct vmap_area, rb_node); 3666 if (tmp->va_start <= addr) { 3667 va = tmp; 3668 if (tmp->va_end >= addr) 3669 break; 3670 3671 n = n->rb_right; 3672 } else { 3673 n = n->rb_left; 3674 } 3675 } 3676 3677 return va; 3678 } 3679 3680 /** 3681 * pvm_determine_end_from_reverse - find the highest aligned address 3682 * of free block below VMALLOC_END 3683 * @va: 3684 * in - the VA we start the search(reverse order); 3685 * out - the VA with the highest aligned end address. 3686 * @align: alignment for required highest address 3687 * 3688 * Returns: determined end address within vmap_area 3689 */ 3690 static unsigned long 3691 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3692 { 3693 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3694 unsigned long addr; 3695 3696 if (likely(*va)) { 3697 list_for_each_entry_from_reverse((*va), 3698 &free_vmap_area_list, list) { 3699 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3700 if ((*va)->va_start < addr) 3701 return addr; 3702 } 3703 } 3704 3705 return 0; 3706 } 3707 3708 /** 3709 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3710 * @offsets: array containing offset of each area 3711 * @sizes: array containing size of each area 3712 * @nr_vms: the number of areas to allocate 3713 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3714 * 3715 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3716 * vm_structs on success, %NULL on failure 3717 * 3718 * Percpu allocator wants to use congruent vm areas so that it can 3719 * maintain the offsets among percpu areas. This function allocates 3720 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3721 * be scattered pretty far, distance between two areas easily going up 3722 * to gigabytes. To avoid interacting with regular vmallocs, these 3723 * areas are allocated from top. 3724 * 3725 * Despite its complicated look, this allocator is rather simple. It 3726 * does everything top-down and scans free blocks from the end looking 3727 * for matching base. While scanning, if any of the areas do not fit the 3728 * base address is pulled down to fit the area. Scanning is repeated till 3729 * all the areas fit and then all necessary data structures are inserted 3730 * and the result is returned. 3731 */ 3732 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3733 const size_t *sizes, int nr_vms, 3734 size_t align) 3735 { 3736 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3737 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3738 struct vmap_area **vas, *va; 3739 struct vm_struct **vms; 3740 int area, area2, last_area, term_area; 3741 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3742 bool purged = false; 3743 enum fit_type type; 3744 3745 /* verify parameters and allocate data structures */ 3746 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3747 for (last_area = 0, area = 0; area < nr_vms; area++) { 3748 start = offsets[area]; 3749 end = start + sizes[area]; 3750 3751 /* is everything aligned properly? */ 3752 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3753 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3754 3755 /* detect the area with the highest address */ 3756 if (start > offsets[last_area]) 3757 last_area = area; 3758 3759 for (area2 = area + 1; area2 < nr_vms; area2++) { 3760 unsigned long start2 = offsets[area2]; 3761 unsigned long end2 = start2 + sizes[area2]; 3762 3763 BUG_ON(start2 < end && start < end2); 3764 } 3765 } 3766 last_end = offsets[last_area] + sizes[last_area]; 3767 3768 if (vmalloc_end - vmalloc_start < last_end) { 3769 WARN_ON(true); 3770 return NULL; 3771 } 3772 3773 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3774 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3775 if (!vas || !vms) 3776 goto err_free2; 3777 3778 for (area = 0; area < nr_vms; area++) { 3779 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3780 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3781 if (!vas[area] || !vms[area]) 3782 goto err_free; 3783 } 3784 retry: 3785 spin_lock(&free_vmap_area_lock); 3786 3787 /* start scanning - we scan from the top, begin with the last area */ 3788 area = term_area = last_area; 3789 start = offsets[area]; 3790 end = start + sizes[area]; 3791 3792 va = pvm_find_va_enclose_addr(vmalloc_end); 3793 base = pvm_determine_end_from_reverse(&va, align) - end; 3794 3795 while (true) { 3796 /* 3797 * base might have underflowed, add last_end before 3798 * comparing. 3799 */ 3800 if (base + last_end < vmalloc_start + last_end) 3801 goto overflow; 3802 3803 /* 3804 * Fitting base has not been found. 3805 */ 3806 if (va == NULL) 3807 goto overflow; 3808 3809 /* 3810 * If required width exceeds current VA block, move 3811 * base downwards and then recheck. 3812 */ 3813 if (base + end > va->va_end) { 3814 base = pvm_determine_end_from_reverse(&va, align) - end; 3815 term_area = area; 3816 continue; 3817 } 3818 3819 /* 3820 * If this VA does not fit, move base downwards and recheck. 3821 */ 3822 if (base + start < va->va_start) { 3823 va = node_to_va(rb_prev(&va->rb_node)); 3824 base = pvm_determine_end_from_reverse(&va, align) - end; 3825 term_area = area; 3826 continue; 3827 } 3828 3829 /* 3830 * This area fits, move on to the previous one. If 3831 * the previous one is the terminal one, we're done. 3832 */ 3833 area = (area + nr_vms - 1) % nr_vms; 3834 if (area == term_area) 3835 break; 3836 3837 start = offsets[area]; 3838 end = start + sizes[area]; 3839 va = pvm_find_va_enclose_addr(base + end); 3840 } 3841 3842 /* we've found a fitting base, insert all va's */ 3843 for (area = 0; area < nr_vms; area++) { 3844 int ret; 3845 3846 start = base + offsets[area]; 3847 size = sizes[area]; 3848 3849 va = pvm_find_va_enclose_addr(start); 3850 if (WARN_ON_ONCE(va == NULL)) 3851 /* It is a BUG(), but trigger recovery instead. */ 3852 goto recovery; 3853 3854 type = classify_va_fit_type(va, start, size); 3855 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3856 /* It is a BUG(), but trigger recovery instead. */ 3857 goto recovery; 3858 3859 ret = adjust_va_to_fit_type(va, start, size, type); 3860 if (unlikely(ret)) 3861 goto recovery; 3862 3863 /* Allocated area. */ 3864 va = vas[area]; 3865 va->va_start = start; 3866 va->va_end = start + size; 3867 } 3868 3869 spin_unlock(&free_vmap_area_lock); 3870 3871 /* populate the kasan shadow space */ 3872 for (area = 0; area < nr_vms; area++) { 3873 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3874 goto err_free_shadow; 3875 } 3876 3877 /* insert all vm's */ 3878 spin_lock(&vmap_area_lock); 3879 for (area = 0; area < nr_vms; area++) { 3880 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3881 3882 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3883 pcpu_get_vm_areas); 3884 } 3885 spin_unlock(&vmap_area_lock); 3886 3887 /* 3888 * Mark allocated areas as accessible. Do it now as a best-effort 3889 * approach, as they can be mapped outside of vmalloc code. 3890 * With hardware tag-based KASAN, marking is skipped for 3891 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 3892 */ 3893 for (area = 0; area < nr_vms; area++) 3894 vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr, 3895 vms[area]->size, KASAN_VMALLOC_PROT_NORMAL); 3896 3897 kfree(vas); 3898 return vms; 3899 3900 recovery: 3901 /* 3902 * Remove previously allocated areas. There is no 3903 * need in removing these areas from the busy tree, 3904 * because they are inserted only on the final step 3905 * and when pcpu_get_vm_areas() is success. 3906 */ 3907 while (area--) { 3908 orig_start = vas[area]->va_start; 3909 orig_end = vas[area]->va_end; 3910 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3911 &free_vmap_area_list); 3912 if (va) 3913 kasan_release_vmalloc(orig_start, orig_end, 3914 va->va_start, va->va_end); 3915 vas[area] = NULL; 3916 } 3917 3918 overflow: 3919 spin_unlock(&free_vmap_area_lock); 3920 if (!purged) { 3921 purge_vmap_area_lazy(); 3922 purged = true; 3923 3924 /* Before "retry", check if we recover. */ 3925 for (area = 0; area < nr_vms; area++) { 3926 if (vas[area]) 3927 continue; 3928 3929 vas[area] = kmem_cache_zalloc( 3930 vmap_area_cachep, GFP_KERNEL); 3931 if (!vas[area]) 3932 goto err_free; 3933 } 3934 3935 goto retry; 3936 } 3937 3938 err_free: 3939 for (area = 0; area < nr_vms; area++) { 3940 if (vas[area]) 3941 kmem_cache_free(vmap_area_cachep, vas[area]); 3942 3943 kfree(vms[area]); 3944 } 3945 err_free2: 3946 kfree(vas); 3947 kfree(vms); 3948 return NULL; 3949 3950 err_free_shadow: 3951 spin_lock(&free_vmap_area_lock); 3952 /* 3953 * We release all the vmalloc shadows, even the ones for regions that 3954 * hadn't been successfully added. This relies on kasan_release_vmalloc 3955 * being able to tolerate this case. 3956 */ 3957 for (area = 0; area < nr_vms; area++) { 3958 orig_start = vas[area]->va_start; 3959 orig_end = vas[area]->va_end; 3960 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3961 &free_vmap_area_list); 3962 if (va) 3963 kasan_release_vmalloc(orig_start, orig_end, 3964 va->va_start, va->va_end); 3965 vas[area] = NULL; 3966 kfree(vms[area]); 3967 } 3968 spin_unlock(&free_vmap_area_lock); 3969 kfree(vas); 3970 kfree(vms); 3971 return NULL; 3972 } 3973 3974 /** 3975 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3976 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3977 * @nr_vms: the number of allocated areas 3978 * 3979 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3980 */ 3981 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3982 { 3983 int i; 3984 3985 for (i = 0; i < nr_vms; i++) 3986 free_vm_area(vms[i]); 3987 kfree(vms); 3988 } 3989 #endif /* CONFIG_SMP */ 3990 3991 #ifdef CONFIG_PRINTK 3992 bool vmalloc_dump_obj(void *object) 3993 { 3994 struct vm_struct *vm; 3995 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 3996 3997 vm = find_vm_area(objp); 3998 if (!vm) 3999 return false; 4000 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 4001 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 4002 return true; 4003 } 4004 #endif 4005 4006 #ifdef CONFIG_PROC_FS 4007 static void *s_start(struct seq_file *m, loff_t *pos) 4008 __acquires(&vmap_purge_lock) 4009 __acquires(&vmap_area_lock) 4010 { 4011 mutex_lock(&vmap_purge_lock); 4012 spin_lock(&vmap_area_lock); 4013 4014 return seq_list_start(&vmap_area_list, *pos); 4015 } 4016 4017 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 4018 { 4019 return seq_list_next(p, &vmap_area_list, pos); 4020 } 4021 4022 static void s_stop(struct seq_file *m, void *p) 4023 __releases(&vmap_area_lock) 4024 __releases(&vmap_purge_lock) 4025 { 4026 spin_unlock(&vmap_area_lock); 4027 mutex_unlock(&vmap_purge_lock); 4028 } 4029 4030 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 4031 { 4032 if (IS_ENABLED(CONFIG_NUMA)) { 4033 unsigned int nr, *counters = m->private; 4034 unsigned int step = 1U << vm_area_page_order(v); 4035 4036 if (!counters) 4037 return; 4038 4039 if (v->flags & VM_UNINITIALIZED) 4040 return; 4041 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 4042 smp_rmb(); 4043 4044 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 4045 4046 for (nr = 0; nr < v->nr_pages; nr += step) 4047 counters[page_to_nid(v->pages[nr])] += step; 4048 for_each_node_state(nr, N_HIGH_MEMORY) 4049 if (counters[nr]) 4050 seq_printf(m, " N%u=%u", nr, counters[nr]); 4051 } 4052 } 4053 4054 static void show_purge_info(struct seq_file *m) 4055 { 4056 struct vmap_area *va; 4057 4058 spin_lock(&purge_vmap_area_lock); 4059 list_for_each_entry(va, &purge_vmap_area_list, list) { 4060 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 4061 (void *)va->va_start, (void *)va->va_end, 4062 va->va_end - va->va_start); 4063 } 4064 spin_unlock(&purge_vmap_area_lock); 4065 } 4066 4067 static int s_show(struct seq_file *m, void *p) 4068 { 4069 struct vmap_area *va; 4070 struct vm_struct *v; 4071 4072 va = list_entry(p, struct vmap_area, list); 4073 4074 /* 4075 * s_show can encounter race with remove_vm_area, !vm on behalf 4076 * of vmap area is being tear down or vm_map_ram allocation. 4077 */ 4078 if (!va->vm) { 4079 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 4080 (void *)va->va_start, (void *)va->va_end, 4081 va->va_end - va->va_start); 4082 4083 goto final; 4084 } 4085 4086 v = va->vm; 4087 4088 seq_printf(m, "0x%pK-0x%pK %7ld", 4089 v->addr, v->addr + v->size, v->size); 4090 4091 if (v->caller) 4092 seq_printf(m, " %pS", v->caller); 4093 4094 if (v->nr_pages) 4095 seq_printf(m, " pages=%d", v->nr_pages); 4096 4097 if (v->phys_addr) 4098 seq_printf(m, " phys=%pa", &v->phys_addr); 4099 4100 if (v->flags & VM_IOREMAP) 4101 seq_puts(m, " ioremap"); 4102 4103 if (v->flags & VM_ALLOC) 4104 seq_puts(m, " vmalloc"); 4105 4106 if (v->flags & VM_MAP) 4107 seq_puts(m, " vmap"); 4108 4109 if (v->flags & VM_USERMAP) 4110 seq_puts(m, " user"); 4111 4112 if (v->flags & VM_DMA_COHERENT) 4113 seq_puts(m, " dma-coherent"); 4114 4115 if (is_vmalloc_addr(v->pages)) 4116 seq_puts(m, " vpages"); 4117 4118 show_numa_info(m, v); 4119 seq_putc(m, '\n'); 4120 4121 /* 4122 * As a final step, dump "unpurged" areas. 4123 */ 4124 final: 4125 if (list_is_last(&va->list, &vmap_area_list)) 4126 show_purge_info(m); 4127 4128 return 0; 4129 } 4130 4131 static const struct seq_operations vmalloc_op = { 4132 .start = s_start, 4133 .next = s_next, 4134 .stop = s_stop, 4135 .show = s_show, 4136 }; 4137 4138 static int __init proc_vmalloc_init(void) 4139 { 4140 if (IS_ENABLED(CONFIG_NUMA)) 4141 proc_create_seq_private("vmallocinfo", 0400, NULL, 4142 &vmalloc_op, 4143 nr_node_ids * sizeof(unsigned int), NULL); 4144 else 4145 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 4146 return 0; 4147 } 4148 module_init(proc_vmalloc_init); 4149 4150 #endif 4151