xref: /openbmc/linux/mm/vmalloc.c (revision 3db55767)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/uio.h>
37 #include <linux/bitops.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/overflow.h>
40 #include <linux/pgtable.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48 
49 #include "internal.h"
50 #include "pgalloc-track.h"
51 
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54 
55 static int __init set_nohugeiomap(char *str)
56 {
57 	ioremap_max_page_shift = PAGE_SHIFT;
58 	return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
64 
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67 
68 static int __init set_nohugevmalloc(char *str)
69 {
70 	vmap_allow_huge = false;
71 	return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77 
78 bool is_vmalloc_addr(const void *x)
79 {
80 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 
82 	return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85 
86 struct vfree_deferred {
87 	struct llist_head list;
88 	struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91 
92 /*** Page table manipulation functions ***/
93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 			phys_addr_t phys_addr, pgprot_t prot,
95 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 	pte_t *pte;
98 	u64 pfn;
99 	unsigned long size = PAGE_SIZE;
100 
101 	pfn = phys_addr >> PAGE_SHIFT;
102 	pte = pte_alloc_kernel_track(pmd, addr, mask);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		BUG_ON(!pte_none(*pte));
107 
108 #ifdef CONFIG_HUGETLB_PAGE
109 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 		if (size != PAGE_SIZE) {
111 			pte_t entry = pfn_pte(pfn, prot);
112 
113 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 			set_huge_pte_at(&init_mm, addr, pte, entry);
115 			pfn += PFN_DOWN(size);
116 			continue;
117 		}
118 #endif
119 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 		pfn++;
121 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
122 	*mask |= PGTBL_PTE_MODIFIED;
123 	return 0;
124 }
125 
126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 			phys_addr_t phys_addr, pgprot_t prot,
128 			unsigned int max_page_shift)
129 {
130 	if (max_page_shift < PMD_SHIFT)
131 		return 0;
132 
133 	if (!arch_vmap_pmd_supported(prot))
134 		return 0;
135 
136 	if ((end - addr) != PMD_SIZE)
137 		return 0;
138 
139 	if (!IS_ALIGNED(addr, PMD_SIZE))
140 		return 0;
141 
142 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 		return 0;
144 
145 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 		return 0;
147 
148 	return pmd_set_huge(pmd, phys_addr, prot);
149 }
150 
151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 			phys_addr_t phys_addr, pgprot_t prot,
153 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 	pmd_t *pmd;
156 	unsigned long next;
157 
158 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 	if (!pmd)
160 		return -ENOMEM;
161 	do {
162 		next = pmd_addr_end(addr, end);
163 
164 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 					max_page_shift)) {
166 			*mask |= PGTBL_PMD_MODIFIED;
167 			continue;
168 		}
169 
170 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 			return -ENOMEM;
172 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 	return 0;
174 }
175 
176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 			phys_addr_t phys_addr, pgprot_t prot,
178 			unsigned int max_page_shift)
179 {
180 	if (max_page_shift < PUD_SHIFT)
181 		return 0;
182 
183 	if (!arch_vmap_pud_supported(prot))
184 		return 0;
185 
186 	if ((end - addr) != PUD_SIZE)
187 		return 0;
188 
189 	if (!IS_ALIGNED(addr, PUD_SIZE))
190 		return 0;
191 
192 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 		return 0;
194 
195 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 		return 0;
197 
198 	return pud_set_huge(pud, phys_addr, prot);
199 }
200 
201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 			phys_addr_t phys_addr, pgprot_t prot,
203 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 	pud_t *pud;
206 	unsigned long next;
207 
208 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 	if (!pud)
210 		return -ENOMEM;
211 	do {
212 		next = pud_addr_end(addr, end);
213 
214 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 					max_page_shift)) {
216 			*mask |= PGTBL_PUD_MODIFIED;
217 			continue;
218 		}
219 
220 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 					max_page_shift, mask))
222 			return -ENOMEM;
223 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 	return 0;
225 }
226 
227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 			phys_addr_t phys_addr, pgprot_t prot,
229 			unsigned int max_page_shift)
230 {
231 	if (max_page_shift < P4D_SHIFT)
232 		return 0;
233 
234 	if (!arch_vmap_p4d_supported(prot))
235 		return 0;
236 
237 	if ((end - addr) != P4D_SIZE)
238 		return 0;
239 
240 	if (!IS_ALIGNED(addr, P4D_SIZE))
241 		return 0;
242 
243 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 		return 0;
245 
246 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 		return 0;
248 
249 	return p4d_set_huge(p4d, phys_addr, prot);
250 }
251 
252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 			phys_addr_t phys_addr, pgprot_t prot,
254 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 	p4d_t *p4d;
257 	unsigned long next;
258 
259 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 	if (!p4d)
261 		return -ENOMEM;
262 	do {
263 		next = p4d_addr_end(addr, end);
264 
265 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 					max_page_shift)) {
267 			*mask |= PGTBL_P4D_MODIFIED;
268 			continue;
269 		}
270 
271 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 					max_page_shift, mask))
273 			return -ENOMEM;
274 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 	return 0;
276 }
277 
278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 			phys_addr_t phys_addr, pgprot_t prot,
280 			unsigned int max_page_shift)
281 {
282 	pgd_t *pgd;
283 	unsigned long start;
284 	unsigned long next;
285 	int err;
286 	pgtbl_mod_mask mask = 0;
287 
288 	might_sleep();
289 	BUG_ON(addr >= end);
290 
291 	start = addr;
292 	pgd = pgd_offset_k(addr);
293 	do {
294 		next = pgd_addr_end(addr, end);
295 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 					max_page_shift, &mask);
297 		if (err)
298 			break;
299 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300 
301 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 		arch_sync_kernel_mappings(start, end);
303 
304 	return err;
305 }
306 
307 int ioremap_page_range(unsigned long addr, unsigned long end,
308 		phys_addr_t phys_addr, pgprot_t prot)
309 {
310 	int err;
311 
312 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 				 ioremap_max_page_shift);
314 	flush_cache_vmap(addr, end);
315 	if (!err)
316 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 					       ioremap_max_page_shift);
318 	return err;
319 }
320 
321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 			     pgtbl_mod_mask *mask)
323 {
324 	pte_t *pte;
325 
326 	pte = pte_offset_kernel(pmd, addr);
327 	do {
328 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 	} while (pte++, addr += PAGE_SIZE, addr != end);
331 	*mask |= PGTBL_PTE_MODIFIED;
332 }
333 
334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 			     pgtbl_mod_mask *mask)
336 {
337 	pmd_t *pmd;
338 	unsigned long next;
339 	int cleared;
340 
341 	pmd = pmd_offset(pud, addr);
342 	do {
343 		next = pmd_addr_end(addr, end);
344 
345 		cleared = pmd_clear_huge(pmd);
346 		if (cleared || pmd_bad(*pmd))
347 			*mask |= PGTBL_PMD_MODIFIED;
348 
349 		if (cleared)
350 			continue;
351 		if (pmd_none_or_clear_bad(pmd))
352 			continue;
353 		vunmap_pte_range(pmd, addr, next, mask);
354 
355 		cond_resched();
356 	} while (pmd++, addr = next, addr != end);
357 }
358 
359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 			     pgtbl_mod_mask *mask)
361 {
362 	pud_t *pud;
363 	unsigned long next;
364 	int cleared;
365 
366 	pud = pud_offset(p4d, addr);
367 	do {
368 		next = pud_addr_end(addr, end);
369 
370 		cleared = pud_clear_huge(pud);
371 		if (cleared || pud_bad(*pud))
372 			*mask |= PGTBL_PUD_MODIFIED;
373 
374 		if (cleared)
375 			continue;
376 		if (pud_none_or_clear_bad(pud))
377 			continue;
378 		vunmap_pmd_range(pud, addr, next, mask);
379 	} while (pud++, addr = next, addr != end);
380 }
381 
382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 			     pgtbl_mod_mask *mask)
384 {
385 	p4d_t *p4d;
386 	unsigned long next;
387 
388 	p4d = p4d_offset(pgd, addr);
389 	do {
390 		next = p4d_addr_end(addr, end);
391 
392 		p4d_clear_huge(p4d);
393 		if (p4d_bad(*p4d))
394 			*mask |= PGTBL_P4D_MODIFIED;
395 
396 		if (p4d_none_or_clear_bad(p4d))
397 			continue;
398 		vunmap_pud_range(p4d, addr, next, mask);
399 	} while (p4d++, addr = next, addr != end);
400 }
401 
402 /*
403  * vunmap_range_noflush is similar to vunmap_range, but does not
404  * flush caches or TLBs.
405  *
406  * The caller is responsible for calling flush_cache_vmap() before calling
407  * this function, and flush_tlb_kernel_range after it has returned
408  * successfully (and before the addresses are expected to cause a page fault
409  * or be re-mapped for something else, if TLB flushes are being delayed or
410  * coalesced).
411  *
412  * This is an internal function only. Do not use outside mm/.
413  */
414 void __vunmap_range_noflush(unsigned long start, unsigned long end)
415 {
416 	unsigned long next;
417 	pgd_t *pgd;
418 	unsigned long addr = start;
419 	pgtbl_mod_mask mask = 0;
420 
421 	BUG_ON(addr >= end);
422 	pgd = pgd_offset_k(addr);
423 	do {
424 		next = pgd_addr_end(addr, end);
425 		if (pgd_bad(*pgd))
426 			mask |= PGTBL_PGD_MODIFIED;
427 		if (pgd_none_or_clear_bad(pgd))
428 			continue;
429 		vunmap_p4d_range(pgd, addr, next, &mask);
430 	} while (pgd++, addr = next, addr != end);
431 
432 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 		arch_sync_kernel_mappings(start, end);
434 }
435 
436 void vunmap_range_noflush(unsigned long start, unsigned long end)
437 {
438 	kmsan_vunmap_range_noflush(start, end);
439 	__vunmap_range_noflush(start, end);
440 }
441 
442 /**
443  * vunmap_range - unmap kernel virtual addresses
444  * @addr: start of the VM area to unmap
445  * @end: end of the VM area to unmap (non-inclusive)
446  *
447  * Clears any present PTEs in the virtual address range, flushes TLBs and
448  * caches. Any subsequent access to the address before it has been re-mapped
449  * is a kernel bug.
450  */
451 void vunmap_range(unsigned long addr, unsigned long end)
452 {
453 	flush_cache_vunmap(addr, end);
454 	vunmap_range_noflush(addr, end);
455 	flush_tlb_kernel_range(addr, end);
456 }
457 
458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 		pgtbl_mod_mask *mask)
461 {
462 	pte_t *pte;
463 
464 	/*
465 	 * nr is a running index into the array which helps higher level
466 	 * callers keep track of where we're up to.
467 	 */
468 
469 	pte = pte_alloc_kernel_track(pmd, addr, mask);
470 	if (!pte)
471 		return -ENOMEM;
472 	do {
473 		struct page *page = pages[*nr];
474 
475 		if (WARN_ON(!pte_none(*pte)))
476 			return -EBUSY;
477 		if (WARN_ON(!page))
478 			return -ENOMEM;
479 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 			return -EINVAL;
481 
482 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
483 		(*nr)++;
484 	} while (pte++, addr += PAGE_SIZE, addr != end);
485 	*mask |= PGTBL_PTE_MODIFIED;
486 	return 0;
487 }
488 
489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
490 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 		pgtbl_mod_mask *mask)
492 {
493 	pmd_t *pmd;
494 	unsigned long next;
495 
496 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
497 	if (!pmd)
498 		return -ENOMEM;
499 	do {
500 		next = pmd_addr_end(addr, end);
501 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
502 			return -ENOMEM;
503 	} while (pmd++, addr = next, addr != end);
504 	return 0;
505 }
506 
507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
508 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 		pgtbl_mod_mask *mask)
510 {
511 	pud_t *pud;
512 	unsigned long next;
513 
514 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
515 	if (!pud)
516 		return -ENOMEM;
517 	do {
518 		next = pud_addr_end(addr, end);
519 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
520 			return -ENOMEM;
521 	} while (pud++, addr = next, addr != end);
522 	return 0;
523 }
524 
525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
526 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 		pgtbl_mod_mask *mask)
528 {
529 	p4d_t *p4d;
530 	unsigned long next;
531 
532 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
533 	if (!p4d)
534 		return -ENOMEM;
535 	do {
536 		next = p4d_addr_end(addr, end);
537 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
538 			return -ENOMEM;
539 	} while (p4d++, addr = next, addr != end);
540 	return 0;
541 }
542 
543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 		pgprot_t prot, struct page **pages)
545 {
546 	unsigned long start = addr;
547 	pgd_t *pgd;
548 	unsigned long next;
549 	int err = 0;
550 	int nr = 0;
551 	pgtbl_mod_mask mask = 0;
552 
553 	BUG_ON(addr >= end);
554 	pgd = pgd_offset_k(addr);
555 	do {
556 		next = pgd_addr_end(addr, end);
557 		if (pgd_bad(*pgd))
558 			mask |= PGTBL_PGD_MODIFIED;
559 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
560 		if (err)
561 			return err;
562 	} while (pgd++, addr = next, addr != end);
563 
564 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 		arch_sync_kernel_mappings(start, end);
566 
567 	return 0;
568 }
569 
570 /*
571  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572  * flush caches.
573  *
574  * The caller is responsible for calling flush_cache_vmap() after this
575  * function returns successfully and before the addresses are accessed.
576  *
577  * This is an internal function only. Do not use outside mm/.
578  */
579 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
580 		pgprot_t prot, struct page **pages, unsigned int page_shift)
581 {
582 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583 
584 	WARN_ON(page_shift < PAGE_SHIFT);
585 
586 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 			page_shift == PAGE_SHIFT)
588 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
589 
590 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 		int err;
592 
593 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
594 					page_to_phys(pages[i]), prot,
595 					page_shift);
596 		if (err)
597 			return err;
598 
599 		addr += 1UL << page_shift;
600 	}
601 
602 	return 0;
603 }
604 
605 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 		pgprot_t prot, struct page **pages, unsigned int page_shift)
607 {
608 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 						 page_shift);
610 
611 	if (ret)
612 		return ret;
613 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614 }
615 
616 /**
617  * vmap_pages_range - map pages to a kernel virtual address
618  * @addr: start of the VM area to map
619  * @end: end of the VM area to map (non-inclusive)
620  * @prot: page protection flags to use
621  * @pages: pages to map (always PAGE_SIZE pages)
622  * @page_shift: maximum shift that the pages may be mapped with, @pages must
623  * be aligned and contiguous up to at least this shift.
624  *
625  * RETURNS:
626  * 0 on success, -errno on failure.
627  */
628 static int vmap_pages_range(unsigned long addr, unsigned long end,
629 		pgprot_t prot, struct page **pages, unsigned int page_shift)
630 {
631 	int err;
632 
633 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 	flush_cache_vmap(addr, end);
635 	return err;
636 }
637 
638 int is_vmalloc_or_module_addr(const void *x)
639 {
640 	/*
641 	 * ARM, x86-64 and sparc64 put modules in a special place,
642 	 * and fall back on vmalloc() if that fails. Others
643 	 * just put it in the vmalloc space.
644 	 */
645 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
646 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
647 	if (addr >= MODULES_VADDR && addr < MODULES_END)
648 		return 1;
649 #endif
650 	return is_vmalloc_addr(x);
651 }
652 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
653 
654 /*
655  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656  * return the tail page that corresponds to the base page address, which
657  * matches small vmap mappings.
658  */
659 struct page *vmalloc_to_page(const void *vmalloc_addr)
660 {
661 	unsigned long addr = (unsigned long) vmalloc_addr;
662 	struct page *page = NULL;
663 	pgd_t *pgd = pgd_offset_k(addr);
664 	p4d_t *p4d;
665 	pud_t *pud;
666 	pmd_t *pmd;
667 	pte_t *ptep, pte;
668 
669 	/*
670 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 	 * architectures that do not vmalloc module space
672 	 */
673 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
674 
675 	if (pgd_none(*pgd))
676 		return NULL;
677 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 		return NULL; /* XXX: no allowance for huge pgd */
679 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 		return NULL;
681 
682 	p4d = p4d_offset(pgd, addr);
683 	if (p4d_none(*p4d))
684 		return NULL;
685 	if (p4d_leaf(*p4d))
686 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 		return NULL;
689 
690 	pud = pud_offset(p4d, addr);
691 	if (pud_none(*pud))
692 		return NULL;
693 	if (pud_leaf(*pud))
694 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 	if (WARN_ON_ONCE(pud_bad(*pud)))
696 		return NULL;
697 
698 	pmd = pmd_offset(pud, addr);
699 	if (pmd_none(*pmd))
700 		return NULL;
701 	if (pmd_leaf(*pmd))
702 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
704 		return NULL;
705 
706 	ptep = pte_offset_map(pmd, addr);
707 	pte = *ptep;
708 	if (pte_present(pte))
709 		page = pte_page(pte);
710 	pte_unmap(ptep);
711 
712 	return page;
713 }
714 EXPORT_SYMBOL(vmalloc_to_page);
715 
716 /*
717  * Map a vmalloc()-space virtual address to the physical page frame number.
718  */
719 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
720 {
721 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
722 }
723 EXPORT_SYMBOL(vmalloc_to_pfn);
724 
725 
726 /*** Global kva allocator ***/
727 
728 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
729 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
730 
731 
732 static DEFINE_SPINLOCK(vmap_area_lock);
733 static DEFINE_SPINLOCK(free_vmap_area_lock);
734 /* Export for kexec only */
735 LIST_HEAD(vmap_area_list);
736 static struct rb_root vmap_area_root = RB_ROOT;
737 static bool vmap_initialized __read_mostly;
738 
739 static struct rb_root purge_vmap_area_root = RB_ROOT;
740 static LIST_HEAD(purge_vmap_area_list);
741 static DEFINE_SPINLOCK(purge_vmap_area_lock);
742 
743 /*
744  * This kmem_cache is used for vmap_area objects. Instead of
745  * allocating from slab we reuse an object from this cache to
746  * make things faster. Especially in "no edge" splitting of
747  * free block.
748  */
749 static struct kmem_cache *vmap_area_cachep;
750 
751 /*
752  * This linked list is used in pair with free_vmap_area_root.
753  * It gives O(1) access to prev/next to perform fast coalescing.
754  */
755 static LIST_HEAD(free_vmap_area_list);
756 
757 /*
758  * This augment red-black tree represents the free vmap space.
759  * All vmap_area objects in this tree are sorted by va->va_start
760  * address. It is used for allocation and merging when a vmap
761  * object is released.
762  *
763  * Each vmap_area node contains a maximum available free block
764  * of its sub-tree, right or left. Therefore it is possible to
765  * find a lowest match of free area.
766  */
767 static struct rb_root free_vmap_area_root = RB_ROOT;
768 
769 /*
770  * Preload a CPU with one object for "no edge" split case. The
771  * aim is to get rid of allocations from the atomic context, thus
772  * to use more permissive allocation masks.
773  */
774 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
775 
776 static __always_inline unsigned long
777 va_size(struct vmap_area *va)
778 {
779 	return (va->va_end - va->va_start);
780 }
781 
782 static __always_inline unsigned long
783 get_subtree_max_size(struct rb_node *node)
784 {
785 	struct vmap_area *va;
786 
787 	va = rb_entry_safe(node, struct vmap_area, rb_node);
788 	return va ? va->subtree_max_size : 0;
789 }
790 
791 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
792 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
793 
794 static void purge_vmap_area_lazy(void);
795 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
796 static void drain_vmap_area_work(struct work_struct *work);
797 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
798 
799 static atomic_long_t nr_vmalloc_pages;
800 
801 unsigned long vmalloc_nr_pages(void)
802 {
803 	return atomic_long_read(&nr_vmalloc_pages);
804 }
805 
806 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
807 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
808 {
809 	struct vmap_area *va = NULL;
810 	struct rb_node *n = vmap_area_root.rb_node;
811 
812 	addr = (unsigned long)kasan_reset_tag((void *)addr);
813 
814 	while (n) {
815 		struct vmap_area *tmp;
816 
817 		tmp = rb_entry(n, struct vmap_area, rb_node);
818 		if (tmp->va_end > addr) {
819 			va = tmp;
820 			if (tmp->va_start <= addr)
821 				break;
822 
823 			n = n->rb_left;
824 		} else
825 			n = n->rb_right;
826 	}
827 
828 	return va;
829 }
830 
831 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
832 {
833 	struct rb_node *n = root->rb_node;
834 
835 	addr = (unsigned long)kasan_reset_tag((void *)addr);
836 
837 	while (n) {
838 		struct vmap_area *va;
839 
840 		va = rb_entry(n, struct vmap_area, rb_node);
841 		if (addr < va->va_start)
842 			n = n->rb_left;
843 		else if (addr >= va->va_end)
844 			n = n->rb_right;
845 		else
846 			return va;
847 	}
848 
849 	return NULL;
850 }
851 
852 /*
853  * This function returns back addresses of parent node
854  * and its left or right link for further processing.
855  *
856  * Otherwise NULL is returned. In that case all further
857  * steps regarding inserting of conflicting overlap range
858  * have to be declined and actually considered as a bug.
859  */
860 static __always_inline struct rb_node **
861 find_va_links(struct vmap_area *va,
862 	struct rb_root *root, struct rb_node *from,
863 	struct rb_node **parent)
864 {
865 	struct vmap_area *tmp_va;
866 	struct rb_node **link;
867 
868 	if (root) {
869 		link = &root->rb_node;
870 		if (unlikely(!*link)) {
871 			*parent = NULL;
872 			return link;
873 		}
874 	} else {
875 		link = &from;
876 	}
877 
878 	/*
879 	 * Go to the bottom of the tree. When we hit the last point
880 	 * we end up with parent rb_node and correct direction, i name
881 	 * it link, where the new va->rb_node will be attached to.
882 	 */
883 	do {
884 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
885 
886 		/*
887 		 * During the traversal we also do some sanity check.
888 		 * Trigger the BUG() if there are sides(left/right)
889 		 * or full overlaps.
890 		 */
891 		if (va->va_end <= tmp_va->va_start)
892 			link = &(*link)->rb_left;
893 		else if (va->va_start >= tmp_va->va_end)
894 			link = &(*link)->rb_right;
895 		else {
896 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
897 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
898 
899 			return NULL;
900 		}
901 	} while (*link);
902 
903 	*parent = &tmp_va->rb_node;
904 	return link;
905 }
906 
907 static __always_inline struct list_head *
908 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
909 {
910 	struct list_head *list;
911 
912 	if (unlikely(!parent))
913 		/*
914 		 * The red-black tree where we try to find VA neighbors
915 		 * before merging or inserting is empty, i.e. it means
916 		 * there is no free vmap space. Normally it does not
917 		 * happen but we handle this case anyway.
918 		 */
919 		return NULL;
920 
921 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
922 	return (&parent->rb_right == link ? list->next : list);
923 }
924 
925 static __always_inline void
926 __link_va(struct vmap_area *va, struct rb_root *root,
927 	struct rb_node *parent, struct rb_node **link,
928 	struct list_head *head, bool augment)
929 {
930 	/*
931 	 * VA is still not in the list, but we can
932 	 * identify its future previous list_head node.
933 	 */
934 	if (likely(parent)) {
935 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
936 		if (&parent->rb_right != link)
937 			head = head->prev;
938 	}
939 
940 	/* Insert to the rb-tree */
941 	rb_link_node(&va->rb_node, parent, link);
942 	if (augment) {
943 		/*
944 		 * Some explanation here. Just perform simple insertion
945 		 * to the tree. We do not set va->subtree_max_size to
946 		 * its current size before calling rb_insert_augmented().
947 		 * It is because we populate the tree from the bottom
948 		 * to parent levels when the node _is_ in the tree.
949 		 *
950 		 * Therefore we set subtree_max_size to zero after insertion,
951 		 * to let __augment_tree_propagate_from() puts everything to
952 		 * the correct order later on.
953 		 */
954 		rb_insert_augmented(&va->rb_node,
955 			root, &free_vmap_area_rb_augment_cb);
956 		va->subtree_max_size = 0;
957 	} else {
958 		rb_insert_color(&va->rb_node, root);
959 	}
960 
961 	/* Address-sort this list */
962 	list_add(&va->list, head);
963 }
964 
965 static __always_inline void
966 link_va(struct vmap_area *va, struct rb_root *root,
967 	struct rb_node *parent, struct rb_node **link,
968 	struct list_head *head)
969 {
970 	__link_va(va, root, parent, link, head, false);
971 }
972 
973 static __always_inline void
974 link_va_augment(struct vmap_area *va, struct rb_root *root,
975 	struct rb_node *parent, struct rb_node **link,
976 	struct list_head *head)
977 {
978 	__link_va(va, root, parent, link, head, true);
979 }
980 
981 static __always_inline void
982 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
983 {
984 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
985 		return;
986 
987 	if (augment)
988 		rb_erase_augmented(&va->rb_node,
989 			root, &free_vmap_area_rb_augment_cb);
990 	else
991 		rb_erase(&va->rb_node, root);
992 
993 	list_del_init(&va->list);
994 	RB_CLEAR_NODE(&va->rb_node);
995 }
996 
997 static __always_inline void
998 unlink_va(struct vmap_area *va, struct rb_root *root)
999 {
1000 	__unlink_va(va, root, false);
1001 }
1002 
1003 static __always_inline void
1004 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1005 {
1006 	__unlink_va(va, root, true);
1007 }
1008 
1009 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1010 /*
1011  * Gets called when remove the node and rotate.
1012  */
1013 static __always_inline unsigned long
1014 compute_subtree_max_size(struct vmap_area *va)
1015 {
1016 	return max3(va_size(va),
1017 		get_subtree_max_size(va->rb_node.rb_left),
1018 		get_subtree_max_size(va->rb_node.rb_right));
1019 }
1020 
1021 static void
1022 augment_tree_propagate_check(void)
1023 {
1024 	struct vmap_area *va;
1025 	unsigned long computed_size;
1026 
1027 	list_for_each_entry(va, &free_vmap_area_list, list) {
1028 		computed_size = compute_subtree_max_size(va);
1029 		if (computed_size != va->subtree_max_size)
1030 			pr_emerg("tree is corrupted: %lu, %lu\n",
1031 				va_size(va), va->subtree_max_size);
1032 	}
1033 }
1034 #endif
1035 
1036 /*
1037  * This function populates subtree_max_size from bottom to upper
1038  * levels starting from VA point. The propagation must be done
1039  * when VA size is modified by changing its va_start/va_end. Or
1040  * in case of newly inserting of VA to the tree.
1041  *
1042  * It means that __augment_tree_propagate_from() must be called:
1043  * - After VA has been inserted to the tree(free path);
1044  * - After VA has been shrunk(allocation path);
1045  * - After VA has been increased(merging path).
1046  *
1047  * Please note that, it does not mean that upper parent nodes
1048  * and their subtree_max_size are recalculated all the time up
1049  * to the root node.
1050  *
1051  *       4--8
1052  *        /\
1053  *       /  \
1054  *      /    \
1055  *    2--2  8--8
1056  *
1057  * For example if we modify the node 4, shrinking it to 2, then
1058  * no any modification is required. If we shrink the node 2 to 1
1059  * its subtree_max_size is updated only, and set to 1. If we shrink
1060  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1061  * node becomes 4--6.
1062  */
1063 static __always_inline void
1064 augment_tree_propagate_from(struct vmap_area *va)
1065 {
1066 	/*
1067 	 * Populate the tree from bottom towards the root until
1068 	 * the calculated maximum available size of checked node
1069 	 * is equal to its current one.
1070 	 */
1071 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1072 
1073 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1074 	augment_tree_propagate_check();
1075 #endif
1076 }
1077 
1078 static void
1079 insert_vmap_area(struct vmap_area *va,
1080 	struct rb_root *root, struct list_head *head)
1081 {
1082 	struct rb_node **link;
1083 	struct rb_node *parent;
1084 
1085 	link = find_va_links(va, root, NULL, &parent);
1086 	if (link)
1087 		link_va(va, root, parent, link, head);
1088 }
1089 
1090 static void
1091 insert_vmap_area_augment(struct vmap_area *va,
1092 	struct rb_node *from, struct rb_root *root,
1093 	struct list_head *head)
1094 {
1095 	struct rb_node **link;
1096 	struct rb_node *parent;
1097 
1098 	if (from)
1099 		link = find_va_links(va, NULL, from, &parent);
1100 	else
1101 		link = find_va_links(va, root, NULL, &parent);
1102 
1103 	if (link) {
1104 		link_va_augment(va, root, parent, link, head);
1105 		augment_tree_propagate_from(va);
1106 	}
1107 }
1108 
1109 /*
1110  * Merge de-allocated chunk of VA memory with previous
1111  * and next free blocks. If coalesce is not done a new
1112  * free area is inserted. If VA has been merged, it is
1113  * freed.
1114  *
1115  * Please note, it can return NULL in case of overlap
1116  * ranges, followed by WARN() report. Despite it is a
1117  * buggy behaviour, a system can be alive and keep
1118  * ongoing.
1119  */
1120 static __always_inline struct vmap_area *
1121 __merge_or_add_vmap_area(struct vmap_area *va,
1122 	struct rb_root *root, struct list_head *head, bool augment)
1123 {
1124 	struct vmap_area *sibling;
1125 	struct list_head *next;
1126 	struct rb_node **link;
1127 	struct rb_node *parent;
1128 	bool merged = false;
1129 
1130 	/*
1131 	 * Find a place in the tree where VA potentially will be
1132 	 * inserted, unless it is merged with its sibling/siblings.
1133 	 */
1134 	link = find_va_links(va, root, NULL, &parent);
1135 	if (!link)
1136 		return NULL;
1137 
1138 	/*
1139 	 * Get next node of VA to check if merging can be done.
1140 	 */
1141 	next = get_va_next_sibling(parent, link);
1142 	if (unlikely(next == NULL))
1143 		goto insert;
1144 
1145 	/*
1146 	 * start            end
1147 	 * |                |
1148 	 * |<------VA------>|<-----Next----->|
1149 	 *                  |                |
1150 	 *                  start            end
1151 	 */
1152 	if (next != head) {
1153 		sibling = list_entry(next, struct vmap_area, list);
1154 		if (sibling->va_start == va->va_end) {
1155 			sibling->va_start = va->va_start;
1156 
1157 			/* Free vmap_area object. */
1158 			kmem_cache_free(vmap_area_cachep, va);
1159 
1160 			/* Point to the new merged area. */
1161 			va = sibling;
1162 			merged = true;
1163 		}
1164 	}
1165 
1166 	/*
1167 	 * start            end
1168 	 * |                |
1169 	 * |<-----Prev----->|<------VA------>|
1170 	 *                  |                |
1171 	 *                  start            end
1172 	 */
1173 	if (next->prev != head) {
1174 		sibling = list_entry(next->prev, struct vmap_area, list);
1175 		if (sibling->va_end == va->va_start) {
1176 			/*
1177 			 * If both neighbors are coalesced, it is important
1178 			 * to unlink the "next" node first, followed by merging
1179 			 * with "previous" one. Otherwise the tree might not be
1180 			 * fully populated if a sibling's augmented value is
1181 			 * "normalized" because of rotation operations.
1182 			 */
1183 			if (merged)
1184 				__unlink_va(va, root, augment);
1185 
1186 			sibling->va_end = va->va_end;
1187 
1188 			/* Free vmap_area object. */
1189 			kmem_cache_free(vmap_area_cachep, va);
1190 
1191 			/* Point to the new merged area. */
1192 			va = sibling;
1193 			merged = true;
1194 		}
1195 	}
1196 
1197 insert:
1198 	if (!merged)
1199 		__link_va(va, root, parent, link, head, augment);
1200 
1201 	return va;
1202 }
1203 
1204 static __always_inline struct vmap_area *
1205 merge_or_add_vmap_area(struct vmap_area *va,
1206 	struct rb_root *root, struct list_head *head)
1207 {
1208 	return __merge_or_add_vmap_area(va, root, head, false);
1209 }
1210 
1211 static __always_inline struct vmap_area *
1212 merge_or_add_vmap_area_augment(struct vmap_area *va,
1213 	struct rb_root *root, struct list_head *head)
1214 {
1215 	va = __merge_or_add_vmap_area(va, root, head, true);
1216 	if (va)
1217 		augment_tree_propagate_from(va);
1218 
1219 	return va;
1220 }
1221 
1222 static __always_inline bool
1223 is_within_this_va(struct vmap_area *va, unsigned long size,
1224 	unsigned long align, unsigned long vstart)
1225 {
1226 	unsigned long nva_start_addr;
1227 
1228 	if (va->va_start > vstart)
1229 		nva_start_addr = ALIGN(va->va_start, align);
1230 	else
1231 		nva_start_addr = ALIGN(vstart, align);
1232 
1233 	/* Can be overflowed due to big size or alignment. */
1234 	if (nva_start_addr + size < nva_start_addr ||
1235 			nva_start_addr < vstart)
1236 		return false;
1237 
1238 	return (nva_start_addr + size <= va->va_end);
1239 }
1240 
1241 /*
1242  * Find the first free block(lowest start address) in the tree,
1243  * that will accomplish the request corresponding to passing
1244  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1245  * a search length is adjusted to account for worst case alignment
1246  * overhead.
1247  */
1248 static __always_inline struct vmap_area *
1249 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1250 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1251 {
1252 	struct vmap_area *va;
1253 	struct rb_node *node;
1254 	unsigned long length;
1255 
1256 	/* Start from the root. */
1257 	node = root->rb_node;
1258 
1259 	/* Adjust the search size for alignment overhead. */
1260 	length = adjust_search_size ? size + align - 1 : size;
1261 
1262 	while (node) {
1263 		va = rb_entry(node, struct vmap_area, rb_node);
1264 
1265 		if (get_subtree_max_size(node->rb_left) >= length &&
1266 				vstart < va->va_start) {
1267 			node = node->rb_left;
1268 		} else {
1269 			if (is_within_this_va(va, size, align, vstart))
1270 				return va;
1271 
1272 			/*
1273 			 * Does not make sense to go deeper towards the right
1274 			 * sub-tree if it does not have a free block that is
1275 			 * equal or bigger to the requested search length.
1276 			 */
1277 			if (get_subtree_max_size(node->rb_right) >= length) {
1278 				node = node->rb_right;
1279 				continue;
1280 			}
1281 
1282 			/*
1283 			 * OK. We roll back and find the first right sub-tree,
1284 			 * that will satisfy the search criteria. It can happen
1285 			 * due to "vstart" restriction or an alignment overhead
1286 			 * that is bigger then PAGE_SIZE.
1287 			 */
1288 			while ((node = rb_parent(node))) {
1289 				va = rb_entry(node, struct vmap_area, rb_node);
1290 				if (is_within_this_va(va, size, align, vstart))
1291 					return va;
1292 
1293 				if (get_subtree_max_size(node->rb_right) >= length &&
1294 						vstart <= va->va_start) {
1295 					/*
1296 					 * Shift the vstart forward. Please note, we update it with
1297 					 * parent's start address adding "1" because we do not want
1298 					 * to enter same sub-tree after it has already been checked
1299 					 * and no suitable free block found there.
1300 					 */
1301 					vstart = va->va_start + 1;
1302 					node = node->rb_right;
1303 					break;
1304 				}
1305 			}
1306 		}
1307 	}
1308 
1309 	return NULL;
1310 }
1311 
1312 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1313 #include <linux/random.h>
1314 
1315 static struct vmap_area *
1316 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1317 	unsigned long align, unsigned long vstart)
1318 {
1319 	struct vmap_area *va;
1320 
1321 	list_for_each_entry(va, head, list) {
1322 		if (!is_within_this_va(va, size, align, vstart))
1323 			continue;
1324 
1325 		return va;
1326 	}
1327 
1328 	return NULL;
1329 }
1330 
1331 static void
1332 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1333 			     unsigned long size, unsigned long align)
1334 {
1335 	struct vmap_area *va_1, *va_2;
1336 	unsigned long vstart;
1337 	unsigned int rnd;
1338 
1339 	get_random_bytes(&rnd, sizeof(rnd));
1340 	vstart = VMALLOC_START + rnd;
1341 
1342 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1343 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1344 
1345 	if (va_1 != va_2)
1346 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1347 			va_1, va_2, vstart);
1348 }
1349 #endif
1350 
1351 enum fit_type {
1352 	NOTHING_FIT = 0,
1353 	FL_FIT_TYPE = 1,	/* full fit */
1354 	LE_FIT_TYPE = 2,	/* left edge fit */
1355 	RE_FIT_TYPE = 3,	/* right edge fit */
1356 	NE_FIT_TYPE = 4		/* no edge fit */
1357 };
1358 
1359 static __always_inline enum fit_type
1360 classify_va_fit_type(struct vmap_area *va,
1361 	unsigned long nva_start_addr, unsigned long size)
1362 {
1363 	enum fit_type type;
1364 
1365 	/* Check if it is within VA. */
1366 	if (nva_start_addr < va->va_start ||
1367 			nva_start_addr + size > va->va_end)
1368 		return NOTHING_FIT;
1369 
1370 	/* Now classify. */
1371 	if (va->va_start == nva_start_addr) {
1372 		if (va->va_end == nva_start_addr + size)
1373 			type = FL_FIT_TYPE;
1374 		else
1375 			type = LE_FIT_TYPE;
1376 	} else if (va->va_end == nva_start_addr + size) {
1377 		type = RE_FIT_TYPE;
1378 	} else {
1379 		type = NE_FIT_TYPE;
1380 	}
1381 
1382 	return type;
1383 }
1384 
1385 static __always_inline int
1386 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1387 		      struct vmap_area *va, unsigned long nva_start_addr,
1388 		      unsigned long size)
1389 {
1390 	struct vmap_area *lva = NULL;
1391 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1392 
1393 	if (type == FL_FIT_TYPE) {
1394 		/*
1395 		 * No need to split VA, it fully fits.
1396 		 *
1397 		 * |               |
1398 		 * V      NVA      V
1399 		 * |---------------|
1400 		 */
1401 		unlink_va_augment(va, root);
1402 		kmem_cache_free(vmap_area_cachep, va);
1403 	} else if (type == LE_FIT_TYPE) {
1404 		/*
1405 		 * Split left edge of fit VA.
1406 		 *
1407 		 * |       |
1408 		 * V  NVA  V   R
1409 		 * |-------|-------|
1410 		 */
1411 		va->va_start += size;
1412 	} else if (type == RE_FIT_TYPE) {
1413 		/*
1414 		 * Split right edge of fit VA.
1415 		 *
1416 		 *         |       |
1417 		 *     L   V  NVA  V
1418 		 * |-------|-------|
1419 		 */
1420 		va->va_end = nva_start_addr;
1421 	} else if (type == NE_FIT_TYPE) {
1422 		/*
1423 		 * Split no edge of fit VA.
1424 		 *
1425 		 *     |       |
1426 		 *   L V  NVA  V R
1427 		 * |---|-------|---|
1428 		 */
1429 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1430 		if (unlikely(!lva)) {
1431 			/*
1432 			 * For percpu allocator we do not do any pre-allocation
1433 			 * and leave it as it is. The reason is it most likely
1434 			 * never ends up with NE_FIT_TYPE splitting. In case of
1435 			 * percpu allocations offsets and sizes are aligned to
1436 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1437 			 * are its main fitting cases.
1438 			 *
1439 			 * There are a few exceptions though, as an example it is
1440 			 * a first allocation (early boot up) when we have "one"
1441 			 * big free space that has to be split.
1442 			 *
1443 			 * Also we can hit this path in case of regular "vmap"
1444 			 * allocations, if "this" current CPU was not preloaded.
1445 			 * See the comment in alloc_vmap_area() why. If so, then
1446 			 * GFP_NOWAIT is used instead to get an extra object for
1447 			 * split purpose. That is rare and most time does not
1448 			 * occur.
1449 			 *
1450 			 * What happens if an allocation gets failed. Basically,
1451 			 * an "overflow" path is triggered to purge lazily freed
1452 			 * areas to free some memory, then, the "retry" path is
1453 			 * triggered to repeat one more time. See more details
1454 			 * in alloc_vmap_area() function.
1455 			 */
1456 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1457 			if (!lva)
1458 				return -1;
1459 		}
1460 
1461 		/*
1462 		 * Build the remainder.
1463 		 */
1464 		lva->va_start = va->va_start;
1465 		lva->va_end = nva_start_addr;
1466 
1467 		/*
1468 		 * Shrink this VA to remaining size.
1469 		 */
1470 		va->va_start = nva_start_addr + size;
1471 	} else {
1472 		return -1;
1473 	}
1474 
1475 	if (type != FL_FIT_TYPE) {
1476 		augment_tree_propagate_from(va);
1477 
1478 		if (lva)	/* type == NE_FIT_TYPE */
1479 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 /*
1486  * Returns a start address of the newly allocated area, if success.
1487  * Otherwise a vend is returned that indicates failure.
1488  */
1489 static __always_inline unsigned long
1490 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1491 	unsigned long size, unsigned long align,
1492 	unsigned long vstart, unsigned long vend)
1493 {
1494 	bool adjust_search_size = true;
1495 	unsigned long nva_start_addr;
1496 	struct vmap_area *va;
1497 	int ret;
1498 
1499 	/*
1500 	 * Do not adjust when:
1501 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1502 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1503 	 *      aligned anyway;
1504 	 *   b) a short range where a requested size corresponds to exactly
1505 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1506 	 *      With adjusted search length an allocation would not succeed.
1507 	 */
1508 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1509 		adjust_search_size = false;
1510 
1511 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1512 	if (unlikely(!va))
1513 		return vend;
1514 
1515 	if (va->va_start > vstart)
1516 		nva_start_addr = ALIGN(va->va_start, align);
1517 	else
1518 		nva_start_addr = ALIGN(vstart, align);
1519 
1520 	/* Check the "vend" restriction. */
1521 	if (nva_start_addr + size > vend)
1522 		return vend;
1523 
1524 	/* Update the free vmap_area. */
1525 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1526 	if (WARN_ON_ONCE(ret))
1527 		return vend;
1528 
1529 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1530 	find_vmap_lowest_match_check(root, head, size, align);
1531 #endif
1532 
1533 	return nva_start_addr;
1534 }
1535 
1536 /*
1537  * Free a region of KVA allocated by alloc_vmap_area
1538  */
1539 static void free_vmap_area(struct vmap_area *va)
1540 {
1541 	/*
1542 	 * Remove from the busy tree/list.
1543 	 */
1544 	spin_lock(&vmap_area_lock);
1545 	unlink_va(va, &vmap_area_root);
1546 	spin_unlock(&vmap_area_lock);
1547 
1548 	/*
1549 	 * Insert/Merge it back to the free tree/list.
1550 	 */
1551 	spin_lock(&free_vmap_area_lock);
1552 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1553 	spin_unlock(&free_vmap_area_lock);
1554 }
1555 
1556 static inline void
1557 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1558 {
1559 	struct vmap_area *va = NULL;
1560 
1561 	/*
1562 	 * Preload this CPU with one extra vmap_area object. It is used
1563 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1564 	 * a CPU that does an allocation is preloaded.
1565 	 *
1566 	 * We do it in non-atomic context, thus it allows us to use more
1567 	 * permissive allocation masks to be more stable under low memory
1568 	 * condition and high memory pressure.
1569 	 */
1570 	if (!this_cpu_read(ne_fit_preload_node))
1571 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1572 
1573 	spin_lock(lock);
1574 
1575 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1576 		kmem_cache_free(vmap_area_cachep, va);
1577 }
1578 
1579 /*
1580  * Allocate a region of KVA of the specified size and alignment, within the
1581  * vstart and vend.
1582  */
1583 static struct vmap_area *alloc_vmap_area(unsigned long size,
1584 				unsigned long align,
1585 				unsigned long vstart, unsigned long vend,
1586 				int node, gfp_t gfp_mask,
1587 				unsigned long va_flags)
1588 {
1589 	struct vmap_area *va;
1590 	unsigned long freed;
1591 	unsigned long addr;
1592 	int purged = 0;
1593 	int ret;
1594 
1595 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1596 		return ERR_PTR(-EINVAL);
1597 
1598 	if (unlikely(!vmap_initialized))
1599 		return ERR_PTR(-EBUSY);
1600 
1601 	might_sleep();
1602 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1603 
1604 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1605 	if (unlikely(!va))
1606 		return ERR_PTR(-ENOMEM);
1607 
1608 	/*
1609 	 * Only scan the relevant parts containing pointers to other objects
1610 	 * to avoid false negatives.
1611 	 */
1612 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1613 
1614 retry:
1615 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1616 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1617 		size, align, vstart, vend);
1618 	spin_unlock(&free_vmap_area_lock);
1619 
1620 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1621 
1622 	/*
1623 	 * If an allocation fails, the "vend" address is
1624 	 * returned. Therefore trigger the overflow path.
1625 	 */
1626 	if (unlikely(addr == vend))
1627 		goto overflow;
1628 
1629 	va->va_start = addr;
1630 	va->va_end = addr + size;
1631 	va->vm = NULL;
1632 	va->flags = va_flags;
1633 
1634 	spin_lock(&vmap_area_lock);
1635 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1636 	spin_unlock(&vmap_area_lock);
1637 
1638 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1639 	BUG_ON(va->va_start < vstart);
1640 	BUG_ON(va->va_end > vend);
1641 
1642 	ret = kasan_populate_vmalloc(addr, size);
1643 	if (ret) {
1644 		free_vmap_area(va);
1645 		return ERR_PTR(ret);
1646 	}
1647 
1648 	return va;
1649 
1650 overflow:
1651 	if (!purged) {
1652 		purge_vmap_area_lazy();
1653 		purged = 1;
1654 		goto retry;
1655 	}
1656 
1657 	freed = 0;
1658 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1659 
1660 	if (freed > 0) {
1661 		purged = 0;
1662 		goto retry;
1663 	}
1664 
1665 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1666 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1667 			size);
1668 
1669 	kmem_cache_free(vmap_area_cachep, va);
1670 	return ERR_PTR(-EBUSY);
1671 }
1672 
1673 int register_vmap_purge_notifier(struct notifier_block *nb)
1674 {
1675 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1676 }
1677 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1678 
1679 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1680 {
1681 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1682 }
1683 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1684 
1685 /*
1686  * lazy_max_pages is the maximum amount of virtual address space we gather up
1687  * before attempting to purge with a TLB flush.
1688  *
1689  * There is a tradeoff here: a larger number will cover more kernel page tables
1690  * and take slightly longer to purge, but it will linearly reduce the number of
1691  * global TLB flushes that must be performed. It would seem natural to scale
1692  * this number up linearly with the number of CPUs (because vmapping activity
1693  * could also scale linearly with the number of CPUs), however it is likely
1694  * that in practice, workloads might be constrained in other ways that mean
1695  * vmap activity will not scale linearly with CPUs. Also, I want to be
1696  * conservative and not introduce a big latency on huge systems, so go with
1697  * a less aggressive log scale. It will still be an improvement over the old
1698  * code, and it will be simple to change the scale factor if we find that it
1699  * becomes a problem on bigger systems.
1700  */
1701 static unsigned long lazy_max_pages(void)
1702 {
1703 	unsigned int log;
1704 
1705 	log = fls(num_online_cpus());
1706 
1707 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1708 }
1709 
1710 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1711 
1712 /*
1713  * Serialize vmap purging.  There is no actual critical section protected
1714  * by this lock, but we want to avoid concurrent calls for performance
1715  * reasons and to make the pcpu_get_vm_areas more deterministic.
1716  */
1717 static DEFINE_MUTEX(vmap_purge_lock);
1718 
1719 /* for per-CPU blocks */
1720 static void purge_fragmented_blocks_allcpus(void);
1721 
1722 /*
1723  * Purges all lazily-freed vmap areas.
1724  */
1725 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1726 {
1727 	unsigned long resched_threshold;
1728 	unsigned int num_purged_areas = 0;
1729 	struct list_head local_purge_list;
1730 	struct vmap_area *va, *n_va;
1731 
1732 	lockdep_assert_held(&vmap_purge_lock);
1733 
1734 	spin_lock(&purge_vmap_area_lock);
1735 	purge_vmap_area_root = RB_ROOT;
1736 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1737 	spin_unlock(&purge_vmap_area_lock);
1738 
1739 	if (unlikely(list_empty(&local_purge_list)))
1740 		goto out;
1741 
1742 	start = min(start,
1743 		list_first_entry(&local_purge_list,
1744 			struct vmap_area, list)->va_start);
1745 
1746 	end = max(end,
1747 		list_last_entry(&local_purge_list,
1748 			struct vmap_area, list)->va_end);
1749 
1750 	flush_tlb_kernel_range(start, end);
1751 	resched_threshold = lazy_max_pages() << 1;
1752 
1753 	spin_lock(&free_vmap_area_lock);
1754 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1755 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1756 		unsigned long orig_start = va->va_start;
1757 		unsigned long orig_end = va->va_end;
1758 
1759 		/*
1760 		 * Finally insert or merge lazily-freed area. It is
1761 		 * detached and there is no need to "unlink" it from
1762 		 * anything.
1763 		 */
1764 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1765 				&free_vmap_area_list);
1766 
1767 		if (!va)
1768 			continue;
1769 
1770 		if (is_vmalloc_or_module_addr((void *)orig_start))
1771 			kasan_release_vmalloc(orig_start, orig_end,
1772 					      va->va_start, va->va_end);
1773 
1774 		atomic_long_sub(nr, &vmap_lazy_nr);
1775 		num_purged_areas++;
1776 
1777 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1778 			cond_resched_lock(&free_vmap_area_lock);
1779 	}
1780 	spin_unlock(&free_vmap_area_lock);
1781 
1782 out:
1783 	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1784 	return num_purged_areas > 0;
1785 }
1786 
1787 /*
1788  * Kick off a purge of the outstanding lazy areas.
1789  */
1790 static void purge_vmap_area_lazy(void)
1791 {
1792 	mutex_lock(&vmap_purge_lock);
1793 	purge_fragmented_blocks_allcpus();
1794 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1795 	mutex_unlock(&vmap_purge_lock);
1796 }
1797 
1798 static void drain_vmap_area_work(struct work_struct *work)
1799 {
1800 	unsigned long nr_lazy;
1801 
1802 	do {
1803 		mutex_lock(&vmap_purge_lock);
1804 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1805 		mutex_unlock(&vmap_purge_lock);
1806 
1807 		/* Recheck if further work is required. */
1808 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809 	} while (nr_lazy > lazy_max_pages());
1810 }
1811 
1812 /*
1813  * Free a vmap area, caller ensuring that the area has been unmapped,
1814  * unlinked and flush_cache_vunmap had been called for the correct
1815  * range previously.
1816  */
1817 static void free_vmap_area_noflush(struct vmap_area *va)
1818 {
1819 	unsigned long nr_lazy_max = lazy_max_pages();
1820 	unsigned long va_start = va->va_start;
1821 	unsigned long nr_lazy;
1822 
1823 	if (WARN_ON_ONCE(!list_empty(&va->list)))
1824 		return;
1825 
1826 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827 				PAGE_SHIFT, &vmap_lazy_nr);
1828 
1829 	/*
1830 	 * Merge or place it to the purge tree/list.
1831 	 */
1832 	spin_lock(&purge_vmap_area_lock);
1833 	merge_or_add_vmap_area(va,
1834 		&purge_vmap_area_root, &purge_vmap_area_list);
1835 	spin_unlock(&purge_vmap_area_lock);
1836 
1837 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838 
1839 	/* After this point, we may free va at any time */
1840 	if (unlikely(nr_lazy > nr_lazy_max))
1841 		schedule_work(&drain_vmap_work);
1842 }
1843 
1844 /*
1845  * Free and unmap a vmap area
1846  */
1847 static void free_unmap_vmap_area(struct vmap_area *va)
1848 {
1849 	flush_cache_vunmap(va->va_start, va->va_end);
1850 	vunmap_range_noflush(va->va_start, va->va_end);
1851 	if (debug_pagealloc_enabled_static())
1852 		flush_tlb_kernel_range(va->va_start, va->va_end);
1853 
1854 	free_vmap_area_noflush(va);
1855 }
1856 
1857 struct vmap_area *find_vmap_area(unsigned long addr)
1858 {
1859 	struct vmap_area *va;
1860 
1861 	spin_lock(&vmap_area_lock);
1862 	va = __find_vmap_area(addr, &vmap_area_root);
1863 	spin_unlock(&vmap_area_lock);
1864 
1865 	return va;
1866 }
1867 
1868 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869 {
1870 	struct vmap_area *va;
1871 
1872 	spin_lock(&vmap_area_lock);
1873 	va = __find_vmap_area(addr, &vmap_area_root);
1874 	if (va)
1875 		unlink_va(va, &vmap_area_root);
1876 	spin_unlock(&vmap_area_lock);
1877 
1878 	return va;
1879 }
1880 
1881 /*** Per cpu kva allocator ***/
1882 
1883 /*
1884  * vmap space is limited especially on 32 bit architectures. Ensure there is
1885  * room for at least 16 percpu vmap blocks per CPU.
1886  */
1887 /*
1888  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1890  * instead (we just need a rough idea)
1891  */
1892 #if BITS_PER_LONG == 32
1893 #define VMALLOC_SPACE		(128UL*1024*1024)
1894 #else
1895 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1896 #endif
1897 
1898 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1899 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1900 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1901 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1902 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1903 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1904 #define VMAP_BBMAP_BITS		\
1905 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1906 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1907 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1908 
1909 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1910 
1911 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
1912 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
1913 #define VMAP_FLAGS_MASK		0x3
1914 
1915 struct vmap_block_queue {
1916 	spinlock_t lock;
1917 	struct list_head free;
1918 
1919 	/*
1920 	 * An xarray requires an extra memory dynamically to
1921 	 * be allocated. If it is an issue, we can use rb-tree
1922 	 * instead.
1923 	 */
1924 	struct xarray vmap_blocks;
1925 };
1926 
1927 struct vmap_block {
1928 	spinlock_t lock;
1929 	struct vmap_area *va;
1930 	unsigned long free, dirty;
1931 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1932 	unsigned long dirty_min, dirty_max; /*< dirty range */
1933 	struct list_head free_list;
1934 	struct rcu_head rcu_head;
1935 	struct list_head purge;
1936 };
1937 
1938 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1939 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1940 
1941 /*
1942  * In order to fast access to any "vmap_block" associated with a
1943  * specific address, we use a hash.
1944  *
1945  * A per-cpu vmap_block_queue is used in both ways, to serialize
1946  * an access to free block chains among CPUs(alloc path) and it
1947  * also acts as a vmap_block hash(alloc/free paths). It means we
1948  * overload it, since we already have the per-cpu array which is
1949  * used as a hash table. When used as a hash a 'cpu' passed to
1950  * per_cpu() is not actually a CPU but rather a hash index.
1951  *
1952  * A hash function is addr_to_vb_xa() which hashes any address
1953  * to a specific index(in a hash) it belongs to. This then uses a
1954  * per_cpu() macro to access an array with generated index.
1955  *
1956  * An example:
1957  *
1958  *  CPU_1  CPU_2  CPU_0
1959  *    |      |      |
1960  *    V      V      V
1961  * 0     10     20     30     40     50     60
1962  * |------|------|------|------|------|------|...<vmap address space>
1963  *   CPU0   CPU1   CPU2   CPU0   CPU1   CPU2
1964  *
1965  * - CPU_1 invokes vm_unmap_ram(6), 6 belongs to CPU0 zone, thus
1966  *   it access: CPU0/INDEX0 -> vmap_blocks -> xa_lock;
1967  *
1968  * - CPU_2 invokes vm_unmap_ram(11), 11 belongs to CPU1 zone, thus
1969  *   it access: CPU1/INDEX1 -> vmap_blocks -> xa_lock;
1970  *
1971  * - CPU_0 invokes vm_unmap_ram(20), 20 belongs to CPU2 zone, thus
1972  *   it access: CPU2/INDEX2 -> vmap_blocks -> xa_lock.
1973  *
1974  * This technique almost always avoids lock contention on insert/remove,
1975  * however xarray spinlocks protect against any contention that remains.
1976  */
1977 static struct xarray *
1978 addr_to_vb_xa(unsigned long addr)
1979 {
1980 	int index = (addr / VMAP_BLOCK_SIZE) % num_possible_cpus();
1981 
1982 	return &per_cpu(vmap_block_queue, index).vmap_blocks;
1983 }
1984 
1985 /*
1986  * We should probably have a fallback mechanism to allocate virtual memory
1987  * out of partially filled vmap blocks. However vmap block sizing should be
1988  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1989  * big problem.
1990  */
1991 
1992 static unsigned long addr_to_vb_idx(unsigned long addr)
1993 {
1994 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1995 	addr /= VMAP_BLOCK_SIZE;
1996 	return addr;
1997 }
1998 
1999 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
2000 {
2001 	unsigned long addr;
2002 
2003 	addr = va_start + (pages_off << PAGE_SHIFT);
2004 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
2005 	return (void *)addr;
2006 }
2007 
2008 /**
2009  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
2010  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
2011  * @order:    how many 2^order pages should be occupied in newly allocated block
2012  * @gfp_mask: flags for the page level allocator
2013  *
2014  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
2015  */
2016 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
2017 {
2018 	struct vmap_block_queue *vbq;
2019 	struct vmap_block *vb;
2020 	struct vmap_area *va;
2021 	struct xarray *xa;
2022 	unsigned long vb_idx;
2023 	int node, err;
2024 	void *vaddr;
2025 
2026 	node = numa_node_id();
2027 
2028 	vb = kmalloc_node(sizeof(struct vmap_block),
2029 			gfp_mask & GFP_RECLAIM_MASK, node);
2030 	if (unlikely(!vb))
2031 		return ERR_PTR(-ENOMEM);
2032 
2033 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
2034 					VMALLOC_START, VMALLOC_END,
2035 					node, gfp_mask,
2036 					VMAP_RAM|VMAP_BLOCK);
2037 	if (IS_ERR(va)) {
2038 		kfree(vb);
2039 		return ERR_CAST(va);
2040 	}
2041 
2042 	vaddr = vmap_block_vaddr(va->va_start, 0);
2043 	spin_lock_init(&vb->lock);
2044 	vb->va = va;
2045 	/* At least something should be left free */
2046 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2047 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2048 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2049 	vb->dirty = 0;
2050 	vb->dirty_min = VMAP_BBMAP_BITS;
2051 	vb->dirty_max = 0;
2052 	bitmap_set(vb->used_map, 0, (1UL << order));
2053 	INIT_LIST_HEAD(&vb->free_list);
2054 
2055 	xa = addr_to_vb_xa(va->va_start);
2056 	vb_idx = addr_to_vb_idx(va->va_start);
2057 	err = xa_insert(xa, vb_idx, vb, gfp_mask);
2058 	if (err) {
2059 		kfree(vb);
2060 		free_vmap_area(va);
2061 		return ERR_PTR(err);
2062 	}
2063 
2064 	vbq = raw_cpu_ptr(&vmap_block_queue);
2065 	spin_lock(&vbq->lock);
2066 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2067 	spin_unlock(&vbq->lock);
2068 
2069 	return vaddr;
2070 }
2071 
2072 static void free_vmap_block(struct vmap_block *vb)
2073 {
2074 	struct vmap_block *tmp;
2075 	struct xarray *xa;
2076 
2077 	xa = addr_to_vb_xa(vb->va->va_start);
2078 	tmp = xa_erase(xa, addr_to_vb_idx(vb->va->va_start));
2079 	BUG_ON(tmp != vb);
2080 
2081 	spin_lock(&vmap_area_lock);
2082 	unlink_va(vb->va, &vmap_area_root);
2083 	spin_unlock(&vmap_area_lock);
2084 
2085 	free_vmap_area_noflush(vb->va);
2086 	kfree_rcu(vb, rcu_head);
2087 }
2088 
2089 static void purge_fragmented_blocks(int cpu)
2090 {
2091 	LIST_HEAD(purge);
2092 	struct vmap_block *vb;
2093 	struct vmap_block *n_vb;
2094 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2095 
2096 	rcu_read_lock();
2097 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2098 
2099 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2100 			continue;
2101 
2102 		spin_lock(&vb->lock);
2103 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2104 			vb->free = 0; /* prevent further allocs after releasing lock */
2105 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2106 			vb->dirty_min = 0;
2107 			vb->dirty_max = VMAP_BBMAP_BITS;
2108 			spin_lock(&vbq->lock);
2109 			list_del_rcu(&vb->free_list);
2110 			spin_unlock(&vbq->lock);
2111 			spin_unlock(&vb->lock);
2112 			list_add_tail(&vb->purge, &purge);
2113 		} else
2114 			spin_unlock(&vb->lock);
2115 	}
2116 	rcu_read_unlock();
2117 
2118 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2119 		list_del(&vb->purge);
2120 		free_vmap_block(vb);
2121 	}
2122 }
2123 
2124 static void purge_fragmented_blocks_allcpus(void)
2125 {
2126 	int cpu;
2127 
2128 	for_each_possible_cpu(cpu)
2129 		purge_fragmented_blocks(cpu);
2130 }
2131 
2132 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2133 {
2134 	struct vmap_block_queue *vbq;
2135 	struct vmap_block *vb;
2136 	void *vaddr = NULL;
2137 	unsigned int order;
2138 
2139 	BUG_ON(offset_in_page(size));
2140 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2141 	if (WARN_ON(size == 0)) {
2142 		/*
2143 		 * Allocating 0 bytes isn't what caller wants since
2144 		 * get_order(0) returns funny result. Just warn and terminate
2145 		 * early.
2146 		 */
2147 		return NULL;
2148 	}
2149 	order = get_order(size);
2150 
2151 	rcu_read_lock();
2152 	vbq = raw_cpu_ptr(&vmap_block_queue);
2153 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2154 		unsigned long pages_off;
2155 
2156 		spin_lock(&vb->lock);
2157 		if (vb->free < (1UL << order)) {
2158 			spin_unlock(&vb->lock);
2159 			continue;
2160 		}
2161 
2162 		pages_off = VMAP_BBMAP_BITS - vb->free;
2163 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2164 		vb->free -= 1UL << order;
2165 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2166 		if (vb->free == 0) {
2167 			spin_lock(&vbq->lock);
2168 			list_del_rcu(&vb->free_list);
2169 			spin_unlock(&vbq->lock);
2170 		}
2171 
2172 		spin_unlock(&vb->lock);
2173 		break;
2174 	}
2175 
2176 	rcu_read_unlock();
2177 
2178 	/* Allocate new block if nothing was found */
2179 	if (!vaddr)
2180 		vaddr = new_vmap_block(order, gfp_mask);
2181 
2182 	return vaddr;
2183 }
2184 
2185 static void vb_free(unsigned long addr, unsigned long size)
2186 {
2187 	unsigned long offset;
2188 	unsigned int order;
2189 	struct vmap_block *vb;
2190 	struct xarray *xa;
2191 
2192 	BUG_ON(offset_in_page(size));
2193 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2194 
2195 	flush_cache_vunmap(addr, addr + size);
2196 
2197 	order = get_order(size);
2198 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2199 
2200 	xa = addr_to_vb_xa(addr);
2201 	vb = xa_load(xa, addr_to_vb_idx(addr));
2202 
2203 	spin_lock(&vb->lock);
2204 	bitmap_clear(vb->used_map, offset, (1UL << order));
2205 	spin_unlock(&vb->lock);
2206 
2207 	vunmap_range_noflush(addr, addr + size);
2208 
2209 	if (debug_pagealloc_enabled_static())
2210 		flush_tlb_kernel_range(addr, addr + size);
2211 
2212 	spin_lock(&vb->lock);
2213 
2214 	/* Expand dirty range */
2215 	vb->dirty_min = min(vb->dirty_min, offset);
2216 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2217 
2218 	vb->dirty += 1UL << order;
2219 	if (vb->dirty == VMAP_BBMAP_BITS) {
2220 		BUG_ON(vb->free);
2221 		spin_unlock(&vb->lock);
2222 		free_vmap_block(vb);
2223 	} else
2224 		spin_unlock(&vb->lock);
2225 }
2226 
2227 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2228 {
2229 	int cpu;
2230 
2231 	if (unlikely(!vmap_initialized))
2232 		return;
2233 
2234 	might_sleep();
2235 
2236 	for_each_possible_cpu(cpu) {
2237 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2238 		struct vmap_block *vb;
2239 
2240 		rcu_read_lock();
2241 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2242 			spin_lock(&vb->lock);
2243 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2244 				unsigned long va_start = vb->va->va_start;
2245 				unsigned long s, e;
2246 
2247 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2248 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2249 
2250 				start = min(s, start);
2251 				end   = max(e, end);
2252 
2253 				flush = 1;
2254 			}
2255 			spin_unlock(&vb->lock);
2256 		}
2257 		rcu_read_unlock();
2258 	}
2259 
2260 	mutex_lock(&vmap_purge_lock);
2261 	purge_fragmented_blocks_allcpus();
2262 	if (!__purge_vmap_area_lazy(start, end) && flush)
2263 		flush_tlb_kernel_range(start, end);
2264 	mutex_unlock(&vmap_purge_lock);
2265 }
2266 
2267 /**
2268  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2269  *
2270  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2271  * to amortize TLB flushing overheads. What this means is that any page you
2272  * have now, may, in a former life, have been mapped into kernel virtual
2273  * address by the vmap layer and so there might be some CPUs with TLB entries
2274  * still referencing that page (additional to the regular 1:1 kernel mapping).
2275  *
2276  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2277  * be sure that none of the pages we have control over will have any aliases
2278  * from the vmap layer.
2279  */
2280 void vm_unmap_aliases(void)
2281 {
2282 	unsigned long start = ULONG_MAX, end = 0;
2283 	int flush = 0;
2284 
2285 	_vm_unmap_aliases(start, end, flush);
2286 }
2287 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2288 
2289 /**
2290  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2291  * @mem: the pointer returned by vm_map_ram
2292  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2293  */
2294 void vm_unmap_ram(const void *mem, unsigned int count)
2295 {
2296 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2297 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2298 	struct vmap_area *va;
2299 
2300 	might_sleep();
2301 	BUG_ON(!addr);
2302 	BUG_ON(addr < VMALLOC_START);
2303 	BUG_ON(addr > VMALLOC_END);
2304 	BUG_ON(!PAGE_ALIGNED(addr));
2305 
2306 	kasan_poison_vmalloc(mem, size);
2307 
2308 	if (likely(count <= VMAP_MAX_ALLOC)) {
2309 		debug_check_no_locks_freed(mem, size);
2310 		vb_free(addr, size);
2311 		return;
2312 	}
2313 
2314 	va = find_unlink_vmap_area(addr);
2315 	if (WARN_ON_ONCE(!va))
2316 		return;
2317 
2318 	debug_check_no_locks_freed((void *)va->va_start,
2319 				    (va->va_end - va->va_start));
2320 	free_unmap_vmap_area(va);
2321 }
2322 EXPORT_SYMBOL(vm_unmap_ram);
2323 
2324 /**
2325  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2326  * @pages: an array of pointers to the pages to be mapped
2327  * @count: number of pages
2328  * @node: prefer to allocate data structures on this node
2329  *
2330  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2331  * faster than vmap so it's good.  But if you mix long-life and short-life
2332  * objects with vm_map_ram(), it could consume lots of address space through
2333  * fragmentation (especially on a 32bit machine).  You could see failures in
2334  * the end.  Please use this function for short-lived objects.
2335  *
2336  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2337  */
2338 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2339 {
2340 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2341 	unsigned long addr;
2342 	void *mem;
2343 
2344 	if (likely(count <= VMAP_MAX_ALLOC)) {
2345 		mem = vb_alloc(size, GFP_KERNEL);
2346 		if (IS_ERR(mem))
2347 			return NULL;
2348 		addr = (unsigned long)mem;
2349 	} else {
2350 		struct vmap_area *va;
2351 		va = alloc_vmap_area(size, PAGE_SIZE,
2352 				VMALLOC_START, VMALLOC_END,
2353 				node, GFP_KERNEL, VMAP_RAM);
2354 		if (IS_ERR(va))
2355 			return NULL;
2356 
2357 		addr = va->va_start;
2358 		mem = (void *)addr;
2359 	}
2360 
2361 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2362 				pages, PAGE_SHIFT) < 0) {
2363 		vm_unmap_ram(mem, count);
2364 		return NULL;
2365 	}
2366 
2367 	/*
2368 	 * Mark the pages as accessible, now that they are mapped.
2369 	 * With hardware tag-based KASAN, marking is skipped for
2370 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2371 	 */
2372 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2373 
2374 	return mem;
2375 }
2376 EXPORT_SYMBOL(vm_map_ram);
2377 
2378 static struct vm_struct *vmlist __initdata;
2379 
2380 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2381 {
2382 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2383 	return vm->page_order;
2384 #else
2385 	return 0;
2386 #endif
2387 }
2388 
2389 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2390 {
2391 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2392 	vm->page_order = order;
2393 #else
2394 	BUG_ON(order != 0);
2395 #endif
2396 }
2397 
2398 /**
2399  * vm_area_add_early - add vmap area early during boot
2400  * @vm: vm_struct to add
2401  *
2402  * This function is used to add fixed kernel vm area to vmlist before
2403  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2404  * should contain proper values and the other fields should be zero.
2405  *
2406  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2407  */
2408 void __init vm_area_add_early(struct vm_struct *vm)
2409 {
2410 	struct vm_struct *tmp, **p;
2411 
2412 	BUG_ON(vmap_initialized);
2413 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2414 		if (tmp->addr >= vm->addr) {
2415 			BUG_ON(tmp->addr < vm->addr + vm->size);
2416 			break;
2417 		} else
2418 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2419 	}
2420 	vm->next = *p;
2421 	*p = vm;
2422 }
2423 
2424 /**
2425  * vm_area_register_early - register vmap area early during boot
2426  * @vm: vm_struct to register
2427  * @align: requested alignment
2428  *
2429  * This function is used to register kernel vm area before
2430  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2431  * proper values on entry and other fields should be zero.  On return,
2432  * vm->addr contains the allocated address.
2433  *
2434  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2435  */
2436 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2437 {
2438 	unsigned long addr = ALIGN(VMALLOC_START, align);
2439 	struct vm_struct *cur, **p;
2440 
2441 	BUG_ON(vmap_initialized);
2442 
2443 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2444 		if ((unsigned long)cur->addr - addr >= vm->size)
2445 			break;
2446 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2447 	}
2448 
2449 	BUG_ON(addr > VMALLOC_END - vm->size);
2450 	vm->addr = (void *)addr;
2451 	vm->next = *p;
2452 	*p = vm;
2453 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2454 }
2455 
2456 static void vmap_init_free_space(void)
2457 {
2458 	unsigned long vmap_start = 1;
2459 	const unsigned long vmap_end = ULONG_MAX;
2460 	struct vmap_area *busy, *free;
2461 
2462 	/*
2463 	 *     B     F     B     B     B     F
2464 	 * -|-----|.....|-----|-----|-----|.....|-
2465 	 *  |           The KVA space           |
2466 	 *  |<--------------------------------->|
2467 	 */
2468 	list_for_each_entry(busy, &vmap_area_list, list) {
2469 		if (busy->va_start - vmap_start > 0) {
2470 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2471 			if (!WARN_ON_ONCE(!free)) {
2472 				free->va_start = vmap_start;
2473 				free->va_end = busy->va_start;
2474 
2475 				insert_vmap_area_augment(free, NULL,
2476 					&free_vmap_area_root,
2477 						&free_vmap_area_list);
2478 			}
2479 		}
2480 
2481 		vmap_start = busy->va_end;
2482 	}
2483 
2484 	if (vmap_end - vmap_start > 0) {
2485 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2486 		if (!WARN_ON_ONCE(!free)) {
2487 			free->va_start = vmap_start;
2488 			free->va_end = vmap_end;
2489 
2490 			insert_vmap_area_augment(free, NULL,
2491 				&free_vmap_area_root,
2492 					&free_vmap_area_list);
2493 		}
2494 	}
2495 }
2496 
2497 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2498 	struct vmap_area *va, unsigned long flags, const void *caller)
2499 {
2500 	vm->flags = flags;
2501 	vm->addr = (void *)va->va_start;
2502 	vm->size = va->va_end - va->va_start;
2503 	vm->caller = caller;
2504 	va->vm = vm;
2505 }
2506 
2507 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2508 			      unsigned long flags, const void *caller)
2509 {
2510 	spin_lock(&vmap_area_lock);
2511 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2512 	spin_unlock(&vmap_area_lock);
2513 }
2514 
2515 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2516 {
2517 	/*
2518 	 * Before removing VM_UNINITIALIZED,
2519 	 * we should make sure that vm has proper values.
2520 	 * Pair with smp_rmb() in show_numa_info().
2521 	 */
2522 	smp_wmb();
2523 	vm->flags &= ~VM_UNINITIALIZED;
2524 }
2525 
2526 static struct vm_struct *__get_vm_area_node(unsigned long size,
2527 		unsigned long align, unsigned long shift, unsigned long flags,
2528 		unsigned long start, unsigned long end, int node,
2529 		gfp_t gfp_mask, const void *caller)
2530 {
2531 	struct vmap_area *va;
2532 	struct vm_struct *area;
2533 	unsigned long requested_size = size;
2534 
2535 	BUG_ON(in_interrupt());
2536 	size = ALIGN(size, 1ul << shift);
2537 	if (unlikely(!size))
2538 		return NULL;
2539 
2540 	if (flags & VM_IOREMAP)
2541 		align = 1ul << clamp_t(int, get_count_order_long(size),
2542 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2543 
2544 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2545 	if (unlikely(!area))
2546 		return NULL;
2547 
2548 	if (!(flags & VM_NO_GUARD))
2549 		size += PAGE_SIZE;
2550 
2551 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2552 	if (IS_ERR(va)) {
2553 		kfree(area);
2554 		return NULL;
2555 	}
2556 
2557 	setup_vmalloc_vm(area, va, flags, caller);
2558 
2559 	/*
2560 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2561 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2562 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2563 	 * getting mapped in __vmalloc_node_range().
2564 	 * With hardware tag-based KASAN, marking is skipped for
2565 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2566 	 */
2567 	if (!(flags & VM_ALLOC))
2568 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2569 						    KASAN_VMALLOC_PROT_NORMAL);
2570 
2571 	return area;
2572 }
2573 
2574 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2575 				       unsigned long start, unsigned long end,
2576 				       const void *caller)
2577 {
2578 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2579 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2580 }
2581 
2582 /**
2583  * get_vm_area - reserve a contiguous kernel virtual area
2584  * @size:	 size of the area
2585  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2586  *
2587  * Search an area of @size in the kernel virtual mapping area,
2588  * and reserved it for out purposes.  Returns the area descriptor
2589  * on success or %NULL on failure.
2590  *
2591  * Return: the area descriptor on success or %NULL on failure.
2592  */
2593 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2594 {
2595 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2596 				  VMALLOC_START, VMALLOC_END,
2597 				  NUMA_NO_NODE, GFP_KERNEL,
2598 				  __builtin_return_address(0));
2599 }
2600 
2601 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2602 				const void *caller)
2603 {
2604 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2605 				  VMALLOC_START, VMALLOC_END,
2606 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2607 }
2608 
2609 /**
2610  * find_vm_area - find a continuous kernel virtual area
2611  * @addr:	  base address
2612  *
2613  * Search for the kernel VM area starting at @addr, and return it.
2614  * It is up to the caller to do all required locking to keep the returned
2615  * pointer valid.
2616  *
2617  * Return: the area descriptor on success or %NULL on failure.
2618  */
2619 struct vm_struct *find_vm_area(const void *addr)
2620 {
2621 	struct vmap_area *va;
2622 
2623 	va = find_vmap_area((unsigned long)addr);
2624 	if (!va)
2625 		return NULL;
2626 
2627 	return va->vm;
2628 }
2629 
2630 /**
2631  * remove_vm_area - find and remove a continuous kernel virtual area
2632  * @addr:	    base address
2633  *
2634  * Search for the kernel VM area starting at @addr, and remove it.
2635  * This function returns the found VM area, but using it is NOT safe
2636  * on SMP machines, except for its size or flags.
2637  *
2638  * Return: the area descriptor on success or %NULL on failure.
2639  */
2640 struct vm_struct *remove_vm_area(const void *addr)
2641 {
2642 	struct vmap_area *va;
2643 	struct vm_struct *vm;
2644 
2645 	might_sleep();
2646 
2647 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2648 			addr))
2649 		return NULL;
2650 
2651 	va = find_unlink_vmap_area((unsigned long)addr);
2652 	if (!va || !va->vm)
2653 		return NULL;
2654 	vm = va->vm;
2655 
2656 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2657 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2658 	kasan_free_module_shadow(vm);
2659 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2660 
2661 	free_unmap_vmap_area(va);
2662 	return vm;
2663 }
2664 
2665 static inline void set_area_direct_map(const struct vm_struct *area,
2666 				       int (*set_direct_map)(struct page *page))
2667 {
2668 	int i;
2669 
2670 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2671 	for (i = 0; i < area->nr_pages; i++)
2672 		if (page_address(area->pages[i]))
2673 			set_direct_map(area->pages[i]);
2674 }
2675 
2676 /*
2677  * Flush the vm mapping and reset the direct map.
2678  */
2679 static void vm_reset_perms(struct vm_struct *area)
2680 {
2681 	unsigned long start = ULONG_MAX, end = 0;
2682 	unsigned int page_order = vm_area_page_order(area);
2683 	int flush_dmap = 0;
2684 	int i;
2685 
2686 	/*
2687 	 * Find the start and end range of the direct mappings to make sure that
2688 	 * the vm_unmap_aliases() flush includes the direct map.
2689 	 */
2690 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2691 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2692 
2693 		if (addr) {
2694 			unsigned long page_size;
2695 
2696 			page_size = PAGE_SIZE << page_order;
2697 			start = min(addr, start);
2698 			end = max(addr + page_size, end);
2699 			flush_dmap = 1;
2700 		}
2701 	}
2702 
2703 	/*
2704 	 * Set direct map to something invalid so that it won't be cached if
2705 	 * there are any accesses after the TLB flush, then flush the TLB and
2706 	 * reset the direct map permissions to the default.
2707 	 */
2708 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2709 	_vm_unmap_aliases(start, end, flush_dmap);
2710 	set_area_direct_map(area, set_direct_map_default_noflush);
2711 }
2712 
2713 static void delayed_vfree_work(struct work_struct *w)
2714 {
2715 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2716 	struct llist_node *t, *llnode;
2717 
2718 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2719 		vfree(llnode);
2720 }
2721 
2722 /**
2723  * vfree_atomic - release memory allocated by vmalloc()
2724  * @addr:	  memory base address
2725  *
2726  * This one is just like vfree() but can be called in any atomic context
2727  * except NMIs.
2728  */
2729 void vfree_atomic(const void *addr)
2730 {
2731 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2732 
2733 	BUG_ON(in_nmi());
2734 	kmemleak_free(addr);
2735 
2736 	/*
2737 	 * Use raw_cpu_ptr() because this can be called from preemptible
2738 	 * context. Preemption is absolutely fine here, because the llist_add()
2739 	 * implementation is lockless, so it works even if we are adding to
2740 	 * another cpu's list. schedule_work() should be fine with this too.
2741 	 */
2742 	if (addr && llist_add((struct llist_node *)addr, &p->list))
2743 		schedule_work(&p->wq);
2744 }
2745 
2746 /**
2747  * vfree - Release memory allocated by vmalloc()
2748  * @addr:  Memory base address
2749  *
2750  * Free the virtually continuous memory area starting at @addr, as obtained
2751  * from one of the vmalloc() family of APIs.  This will usually also free the
2752  * physical memory underlying the virtual allocation, but that memory is
2753  * reference counted, so it will not be freed until the last user goes away.
2754  *
2755  * If @addr is NULL, no operation is performed.
2756  *
2757  * Context:
2758  * May sleep if called *not* from interrupt context.
2759  * Must not be called in NMI context (strictly speaking, it could be
2760  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2761  * conventions for vfree() arch-dependent would be a really bad idea).
2762  */
2763 void vfree(const void *addr)
2764 {
2765 	struct vm_struct *vm;
2766 	int i;
2767 
2768 	if (unlikely(in_interrupt())) {
2769 		vfree_atomic(addr);
2770 		return;
2771 	}
2772 
2773 	BUG_ON(in_nmi());
2774 	kmemleak_free(addr);
2775 	might_sleep();
2776 
2777 	if (!addr)
2778 		return;
2779 
2780 	vm = remove_vm_area(addr);
2781 	if (unlikely(!vm)) {
2782 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2783 				addr);
2784 		return;
2785 	}
2786 
2787 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2788 		vm_reset_perms(vm);
2789 	for (i = 0; i < vm->nr_pages; i++) {
2790 		struct page *page = vm->pages[i];
2791 
2792 		BUG_ON(!page);
2793 		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2794 		/*
2795 		 * High-order allocs for huge vmallocs are split, so
2796 		 * can be freed as an array of order-0 allocations
2797 		 */
2798 		__free_page(page);
2799 		cond_resched();
2800 	}
2801 	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2802 	kvfree(vm->pages);
2803 	kfree(vm);
2804 }
2805 EXPORT_SYMBOL(vfree);
2806 
2807 /**
2808  * vunmap - release virtual mapping obtained by vmap()
2809  * @addr:   memory base address
2810  *
2811  * Free the virtually contiguous memory area starting at @addr,
2812  * which was created from the page array passed to vmap().
2813  *
2814  * Must not be called in interrupt context.
2815  */
2816 void vunmap(const void *addr)
2817 {
2818 	struct vm_struct *vm;
2819 
2820 	BUG_ON(in_interrupt());
2821 	might_sleep();
2822 
2823 	if (!addr)
2824 		return;
2825 	vm = remove_vm_area(addr);
2826 	if (unlikely(!vm)) {
2827 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2828 				addr);
2829 		return;
2830 	}
2831 	kfree(vm);
2832 }
2833 EXPORT_SYMBOL(vunmap);
2834 
2835 /**
2836  * vmap - map an array of pages into virtually contiguous space
2837  * @pages: array of page pointers
2838  * @count: number of pages to map
2839  * @flags: vm_area->flags
2840  * @prot: page protection for the mapping
2841  *
2842  * Maps @count pages from @pages into contiguous kernel virtual space.
2843  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2844  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2845  * are transferred from the caller to vmap(), and will be freed / dropped when
2846  * vfree() is called on the return value.
2847  *
2848  * Return: the address of the area or %NULL on failure
2849  */
2850 void *vmap(struct page **pages, unsigned int count,
2851 	   unsigned long flags, pgprot_t prot)
2852 {
2853 	struct vm_struct *area;
2854 	unsigned long addr;
2855 	unsigned long size;		/* In bytes */
2856 
2857 	might_sleep();
2858 
2859 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2860 		return NULL;
2861 
2862 	/*
2863 	 * Your top guard is someone else's bottom guard. Not having a top
2864 	 * guard compromises someone else's mappings too.
2865 	 */
2866 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2867 		flags &= ~VM_NO_GUARD;
2868 
2869 	if (count > totalram_pages())
2870 		return NULL;
2871 
2872 	size = (unsigned long)count << PAGE_SHIFT;
2873 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2874 	if (!area)
2875 		return NULL;
2876 
2877 	addr = (unsigned long)area->addr;
2878 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2879 				pages, PAGE_SHIFT) < 0) {
2880 		vunmap(area->addr);
2881 		return NULL;
2882 	}
2883 
2884 	if (flags & VM_MAP_PUT_PAGES) {
2885 		area->pages = pages;
2886 		area->nr_pages = count;
2887 	}
2888 	return area->addr;
2889 }
2890 EXPORT_SYMBOL(vmap);
2891 
2892 #ifdef CONFIG_VMAP_PFN
2893 struct vmap_pfn_data {
2894 	unsigned long	*pfns;
2895 	pgprot_t	prot;
2896 	unsigned int	idx;
2897 };
2898 
2899 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2900 {
2901 	struct vmap_pfn_data *data = private;
2902 
2903 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2904 		return -EINVAL;
2905 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2906 	return 0;
2907 }
2908 
2909 /**
2910  * vmap_pfn - map an array of PFNs into virtually contiguous space
2911  * @pfns: array of PFNs
2912  * @count: number of pages to map
2913  * @prot: page protection for the mapping
2914  *
2915  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2916  * the start address of the mapping.
2917  */
2918 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2919 {
2920 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2921 	struct vm_struct *area;
2922 
2923 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2924 			__builtin_return_address(0));
2925 	if (!area)
2926 		return NULL;
2927 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2928 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2929 		free_vm_area(area);
2930 		return NULL;
2931 	}
2932 	return area->addr;
2933 }
2934 EXPORT_SYMBOL_GPL(vmap_pfn);
2935 #endif /* CONFIG_VMAP_PFN */
2936 
2937 static inline unsigned int
2938 vm_area_alloc_pages(gfp_t gfp, int nid,
2939 		unsigned int order, unsigned int nr_pages, struct page **pages)
2940 {
2941 	unsigned int nr_allocated = 0;
2942 	gfp_t alloc_gfp = gfp;
2943 	bool nofail = false;
2944 	struct page *page;
2945 	int i;
2946 
2947 	/*
2948 	 * For order-0 pages we make use of bulk allocator, if
2949 	 * the page array is partly or not at all populated due
2950 	 * to fails, fallback to a single page allocator that is
2951 	 * more permissive.
2952 	 */
2953 	if (!order) {
2954 		/* bulk allocator doesn't support nofail req. officially */
2955 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2956 
2957 		while (nr_allocated < nr_pages) {
2958 			unsigned int nr, nr_pages_request;
2959 
2960 			/*
2961 			 * A maximum allowed request is hard-coded and is 100
2962 			 * pages per call. That is done in order to prevent a
2963 			 * long preemption off scenario in the bulk-allocator
2964 			 * so the range is [1:100].
2965 			 */
2966 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2967 
2968 			/* memory allocation should consider mempolicy, we can't
2969 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
2970 			 * otherwise memory may be allocated in only one node,
2971 			 * but mempolicy wants to alloc memory by interleaving.
2972 			 */
2973 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2974 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2975 							nr_pages_request,
2976 							pages + nr_allocated);
2977 
2978 			else
2979 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2980 							nr_pages_request,
2981 							pages + nr_allocated);
2982 
2983 			nr_allocated += nr;
2984 			cond_resched();
2985 
2986 			/*
2987 			 * If zero or pages were obtained partly,
2988 			 * fallback to a single page allocator.
2989 			 */
2990 			if (nr != nr_pages_request)
2991 				break;
2992 		}
2993 	} else if (gfp & __GFP_NOFAIL) {
2994 		/*
2995 		 * Higher order nofail allocations are really expensive and
2996 		 * potentially dangerous (pre-mature OOM, disruptive reclaim
2997 		 * and compaction etc.
2998 		 */
2999 		alloc_gfp &= ~__GFP_NOFAIL;
3000 		nofail = true;
3001 	}
3002 
3003 	/* High-order pages or fallback path if "bulk" fails. */
3004 	while (nr_allocated < nr_pages) {
3005 		if (fatal_signal_pending(current))
3006 			break;
3007 
3008 		if (nid == NUMA_NO_NODE)
3009 			page = alloc_pages(alloc_gfp, order);
3010 		else
3011 			page = alloc_pages_node(nid, alloc_gfp, order);
3012 		if (unlikely(!page)) {
3013 			if (!nofail)
3014 				break;
3015 
3016 			/* fall back to the zero order allocations */
3017 			alloc_gfp |= __GFP_NOFAIL;
3018 			order = 0;
3019 			continue;
3020 		}
3021 
3022 		/*
3023 		 * Higher order allocations must be able to be treated as
3024 		 * indepdenent small pages by callers (as they can with
3025 		 * small-page vmallocs). Some drivers do their own refcounting
3026 		 * on vmalloc_to_page() pages, some use page->mapping,
3027 		 * page->lru, etc.
3028 		 */
3029 		if (order)
3030 			split_page(page, order);
3031 
3032 		/*
3033 		 * Careful, we allocate and map page-order pages, but
3034 		 * tracking is done per PAGE_SIZE page so as to keep the
3035 		 * vm_struct APIs independent of the physical/mapped size.
3036 		 */
3037 		for (i = 0; i < (1U << order); i++)
3038 			pages[nr_allocated + i] = page + i;
3039 
3040 		cond_resched();
3041 		nr_allocated += 1U << order;
3042 	}
3043 
3044 	return nr_allocated;
3045 }
3046 
3047 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3048 				 pgprot_t prot, unsigned int page_shift,
3049 				 int node)
3050 {
3051 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3052 	bool nofail = gfp_mask & __GFP_NOFAIL;
3053 	unsigned long addr = (unsigned long)area->addr;
3054 	unsigned long size = get_vm_area_size(area);
3055 	unsigned long array_size;
3056 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3057 	unsigned int page_order;
3058 	unsigned int flags;
3059 	int ret;
3060 
3061 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3062 
3063 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3064 		gfp_mask |= __GFP_HIGHMEM;
3065 
3066 	/* Please note that the recursion is strictly bounded. */
3067 	if (array_size > PAGE_SIZE) {
3068 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3069 					area->caller);
3070 	} else {
3071 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3072 	}
3073 
3074 	if (!area->pages) {
3075 		warn_alloc(gfp_mask, NULL,
3076 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3077 			nr_small_pages * PAGE_SIZE, array_size);
3078 		free_vm_area(area);
3079 		return NULL;
3080 	}
3081 
3082 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3083 	page_order = vm_area_page_order(area);
3084 
3085 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3086 		node, page_order, nr_small_pages, area->pages);
3087 
3088 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3089 	if (gfp_mask & __GFP_ACCOUNT) {
3090 		int i;
3091 
3092 		for (i = 0; i < area->nr_pages; i++)
3093 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3094 	}
3095 
3096 	/*
3097 	 * If not enough pages were obtained to accomplish an
3098 	 * allocation request, free them via vfree() if any.
3099 	 */
3100 	if (area->nr_pages != nr_small_pages) {
3101 		/* vm_area_alloc_pages() can also fail due to a fatal signal */
3102 		if (!fatal_signal_pending(current))
3103 			warn_alloc(gfp_mask, NULL,
3104 				"vmalloc error: size %lu, page order %u, failed to allocate pages",
3105 				area->nr_pages * PAGE_SIZE, page_order);
3106 		goto fail;
3107 	}
3108 
3109 	/*
3110 	 * page tables allocations ignore external gfp mask, enforce it
3111 	 * by the scope API
3112 	 */
3113 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3114 		flags = memalloc_nofs_save();
3115 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3116 		flags = memalloc_noio_save();
3117 
3118 	do {
3119 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3120 			page_shift);
3121 		if (nofail && (ret < 0))
3122 			schedule_timeout_uninterruptible(1);
3123 	} while (nofail && (ret < 0));
3124 
3125 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3126 		memalloc_nofs_restore(flags);
3127 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3128 		memalloc_noio_restore(flags);
3129 
3130 	if (ret < 0) {
3131 		warn_alloc(gfp_mask, NULL,
3132 			"vmalloc error: size %lu, failed to map pages",
3133 			area->nr_pages * PAGE_SIZE);
3134 		goto fail;
3135 	}
3136 
3137 	return area->addr;
3138 
3139 fail:
3140 	vfree(area->addr);
3141 	return NULL;
3142 }
3143 
3144 /**
3145  * __vmalloc_node_range - allocate virtually contiguous memory
3146  * @size:		  allocation size
3147  * @align:		  desired alignment
3148  * @start:		  vm area range start
3149  * @end:		  vm area range end
3150  * @gfp_mask:		  flags for the page level allocator
3151  * @prot:		  protection mask for the allocated pages
3152  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3153  * @node:		  node to use for allocation or NUMA_NO_NODE
3154  * @caller:		  caller's return address
3155  *
3156  * Allocate enough pages to cover @size from the page level
3157  * allocator with @gfp_mask flags. Please note that the full set of gfp
3158  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3159  * supported.
3160  * Zone modifiers are not supported. From the reclaim modifiers
3161  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3162  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3163  * __GFP_RETRY_MAYFAIL are not supported).
3164  *
3165  * __GFP_NOWARN can be used to suppress failures messages.
3166  *
3167  * Map them into contiguous kernel virtual space, using a pagetable
3168  * protection of @prot.
3169  *
3170  * Return: the address of the area or %NULL on failure
3171  */
3172 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3173 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3174 			pgprot_t prot, unsigned long vm_flags, int node,
3175 			const void *caller)
3176 {
3177 	struct vm_struct *area;
3178 	void *ret;
3179 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3180 	unsigned long real_size = size;
3181 	unsigned long real_align = align;
3182 	unsigned int shift = PAGE_SHIFT;
3183 
3184 	if (WARN_ON_ONCE(!size))
3185 		return NULL;
3186 
3187 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3188 		warn_alloc(gfp_mask, NULL,
3189 			"vmalloc error: size %lu, exceeds total pages",
3190 			real_size);
3191 		return NULL;
3192 	}
3193 
3194 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3195 		unsigned long size_per_node;
3196 
3197 		/*
3198 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3199 		 * others like modules don't yet expect huge pages in
3200 		 * their allocations due to apply_to_page_range not
3201 		 * supporting them.
3202 		 */
3203 
3204 		size_per_node = size;
3205 		if (node == NUMA_NO_NODE)
3206 			size_per_node /= num_online_nodes();
3207 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3208 			shift = PMD_SHIFT;
3209 		else
3210 			shift = arch_vmap_pte_supported_shift(size_per_node);
3211 
3212 		align = max(real_align, 1UL << shift);
3213 		size = ALIGN(real_size, 1UL << shift);
3214 	}
3215 
3216 again:
3217 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3218 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3219 				  gfp_mask, caller);
3220 	if (!area) {
3221 		bool nofail = gfp_mask & __GFP_NOFAIL;
3222 		warn_alloc(gfp_mask, NULL,
3223 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3224 			real_size, (nofail) ? ". Retrying." : "");
3225 		if (nofail) {
3226 			schedule_timeout_uninterruptible(1);
3227 			goto again;
3228 		}
3229 		goto fail;
3230 	}
3231 
3232 	/*
3233 	 * Prepare arguments for __vmalloc_area_node() and
3234 	 * kasan_unpoison_vmalloc().
3235 	 */
3236 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3237 		if (kasan_hw_tags_enabled()) {
3238 			/*
3239 			 * Modify protection bits to allow tagging.
3240 			 * This must be done before mapping.
3241 			 */
3242 			prot = arch_vmap_pgprot_tagged(prot);
3243 
3244 			/*
3245 			 * Skip page_alloc poisoning and zeroing for physical
3246 			 * pages backing VM_ALLOC mapping. Memory is instead
3247 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3248 			 */
3249 			gfp_mask |= __GFP_SKIP_KASAN | __GFP_SKIP_ZERO;
3250 		}
3251 
3252 		/* Take note that the mapping is PAGE_KERNEL. */
3253 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3254 	}
3255 
3256 	/* Allocate physical pages and map them into vmalloc space. */
3257 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3258 	if (!ret)
3259 		goto fail;
3260 
3261 	/*
3262 	 * Mark the pages as accessible, now that they are mapped.
3263 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3264 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3265 	 * to make sure that memory is initialized under the same conditions.
3266 	 * Tag-based KASAN modes only assign tags to normal non-executable
3267 	 * allocations, see __kasan_unpoison_vmalloc().
3268 	 */
3269 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3270 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3271 	    (gfp_mask & __GFP_SKIP_ZERO))
3272 		kasan_flags |= KASAN_VMALLOC_INIT;
3273 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3274 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3275 
3276 	/*
3277 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3278 	 * flag. It means that vm_struct is not fully initialized.
3279 	 * Now, it is fully initialized, so remove this flag here.
3280 	 */
3281 	clear_vm_uninitialized_flag(area);
3282 
3283 	size = PAGE_ALIGN(size);
3284 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3285 		kmemleak_vmalloc(area, size, gfp_mask);
3286 
3287 	return area->addr;
3288 
3289 fail:
3290 	if (shift > PAGE_SHIFT) {
3291 		shift = PAGE_SHIFT;
3292 		align = real_align;
3293 		size = real_size;
3294 		goto again;
3295 	}
3296 
3297 	return NULL;
3298 }
3299 
3300 /**
3301  * __vmalloc_node - allocate virtually contiguous memory
3302  * @size:	    allocation size
3303  * @align:	    desired alignment
3304  * @gfp_mask:	    flags for the page level allocator
3305  * @node:	    node to use for allocation or NUMA_NO_NODE
3306  * @caller:	    caller's return address
3307  *
3308  * Allocate enough pages to cover @size from the page level allocator with
3309  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3310  *
3311  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3312  * and __GFP_NOFAIL are not supported
3313  *
3314  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3315  * with mm people.
3316  *
3317  * Return: pointer to the allocated memory or %NULL on error
3318  */
3319 void *__vmalloc_node(unsigned long size, unsigned long align,
3320 			    gfp_t gfp_mask, int node, const void *caller)
3321 {
3322 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3323 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3324 }
3325 /*
3326  * This is only for performance analysis of vmalloc and stress purpose.
3327  * It is required by vmalloc test module, therefore do not use it other
3328  * than that.
3329  */
3330 #ifdef CONFIG_TEST_VMALLOC_MODULE
3331 EXPORT_SYMBOL_GPL(__vmalloc_node);
3332 #endif
3333 
3334 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3335 {
3336 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3337 				__builtin_return_address(0));
3338 }
3339 EXPORT_SYMBOL(__vmalloc);
3340 
3341 /**
3342  * vmalloc - allocate virtually contiguous memory
3343  * @size:    allocation size
3344  *
3345  * Allocate enough pages to cover @size from the page level
3346  * allocator and map them into contiguous kernel virtual space.
3347  *
3348  * For tight control over page level allocator and protection flags
3349  * use __vmalloc() instead.
3350  *
3351  * Return: pointer to the allocated memory or %NULL on error
3352  */
3353 void *vmalloc(unsigned long size)
3354 {
3355 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3356 				__builtin_return_address(0));
3357 }
3358 EXPORT_SYMBOL(vmalloc);
3359 
3360 /**
3361  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3362  * @size:      allocation size
3363  * @gfp_mask:  flags for the page level allocator
3364  *
3365  * Allocate enough pages to cover @size from the page level
3366  * allocator and map them into contiguous kernel virtual space.
3367  * If @size is greater than or equal to PMD_SIZE, allow using
3368  * huge pages for the memory
3369  *
3370  * Return: pointer to the allocated memory or %NULL on error
3371  */
3372 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3373 {
3374 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3375 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3376 				    NUMA_NO_NODE, __builtin_return_address(0));
3377 }
3378 EXPORT_SYMBOL_GPL(vmalloc_huge);
3379 
3380 /**
3381  * vzalloc - allocate virtually contiguous memory with zero fill
3382  * @size:    allocation size
3383  *
3384  * Allocate enough pages to cover @size from the page level
3385  * allocator and map them into contiguous kernel virtual space.
3386  * The memory allocated is set to zero.
3387  *
3388  * For tight control over page level allocator and protection flags
3389  * use __vmalloc() instead.
3390  *
3391  * Return: pointer to the allocated memory or %NULL on error
3392  */
3393 void *vzalloc(unsigned long size)
3394 {
3395 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3396 				__builtin_return_address(0));
3397 }
3398 EXPORT_SYMBOL(vzalloc);
3399 
3400 /**
3401  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3402  * @size: allocation size
3403  *
3404  * The resulting memory area is zeroed so it can be mapped to userspace
3405  * without leaking data.
3406  *
3407  * Return: pointer to the allocated memory or %NULL on error
3408  */
3409 void *vmalloc_user(unsigned long size)
3410 {
3411 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3412 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3413 				    VM_USERMAP, NUMA_NO_NODE,
3414 				    __builtin_return_address(0));
3415 }
3416 EXPORT_SYMBOL(vmalloc_user);
3417 
3418 /**
3419  * vmalloc_node - allocate memory on a specific node
3420  * @size:	  allocation size
3421  * @node:	  numa node
3422  *
3423  * Allocate enough pages to cover @size from the page level
3424  * allocator and map them into contiguous kernel virtual space.
3425  *
3426  * For tight control over page level allocator and protection flags
3427  * use __vmalloc() instead.
3428  *
3429  * Return: pointer to the allocated memory or %NULL on error
3430  */
3431 void *vmalloc_node(unsigned long size, int node)
3432 {
3433 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3434 			__builtin_return_address(0));
3435 }
3436 EXPORT_SYMBOL(vmalloc_node);
3437 
3438 /**
3439  * vzalloc_node - allocate memory on a specific node with zero fill
3440  * @size:	allocation size
3441  * @node:	numa node
3442  *
3443  * Allocate enough pages to cover @size from the page level
3444  * allocator and map them into contiguous kernel virtual space.
3445  * The memory allocated is set to zero.
3446  *
3447  * Return: pointer to the allocated memory or %NULL on error
3448  */
3449 void *vzalloc_node(unsigned long size, int node)
3450 {
3451 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3452 				__builtin_return_address(0));
3453 }
3454 EXPORT_SYMBOL(vzalloc_node);
3455 
3456 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3457 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3458 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3459 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3460 #else
3461 /*
3462  * 64b systems should always have either DMA or DMA32 zones. For others
3463  * GFP_DMA32 should do the right thing and use the normal zone.
3464  */
3465 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3466 #endif
3467 
3468 /**
3469  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3470  * @size:	allocation size
3471  *
3472  * Allocate enough 32bit PA addressable pages to cover @size from the
3473  * page level allocator and map them into contiguous kernel virtual space.
3474  *
3475  * Return: pointer to the allocated memory or %NULL on error
3476  */
3477 void *vmalloc_32(unsigned long size)
3478 {
3479 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3480 			__builtin_return_address(0));
3481 }
3482 EXPORT_SYMBOL(vmalloc_32);
3483 
3484 /**
3485  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3486  * @size:	     allocation size
3487  *
3488  * The resulting memory area is 32bit addressable and zeroed so it can be
3489  * mapped to userspace without leaking data.
3490  *
3491  * Return: pointer to the allocated memory or %NULL on error
3492  */
3493 void *vmalloc_32_user(unsigned long size)
3494 {
3495 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3496 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3497 				    VM_USERMAP, NUMA_NO_NODE,
3498 				    __builtin_return_address(0));
3499 }
3500 EXPORT_SYMBOL(vmalloc_32_user);
3501 
3502 /*
3503  * Atomically zero bytes in the iterator.
3504  *
3505  * Returns the number of zeroed bytes.
3506  */
3507 static size_t zero_iter(struct iov_iter *iter, size_t count)
3508 {
3509 	size_t remains = count;
3510 
3511 	while (remains > 0) {
3512 		size_t num, copied;
3513 
3514 		num = remains < PAGE_SIZE ? remains : PAGE_SIZE;
3515 		copied = copy_page_to_iter_nofault(ZERO_PAGE(0), 0, num, iter);
3516 		remains -= copied;
3517 
3518 		if (copied < num)
3519 			break;
3520 	}
3521 
3522 	return count - remains;
3523 }
3524 
3525 /*
3526  * small helper routine, copy contents to iter from addr.
3527  * If the page is not present, fill zero.
3528  *
3529  * Returns the number of copied bytes.
3530  */
3531 static size_t aligned_vread_iter(struct iov_iter *iter,
3532 				 const char *addr, size_t count)
3533 {
3534 	size_t remains = count;
3535 	struct page *page;
3536 
3537 	while (remains > 0) {
3538 		unsigned long offset, length;
3539 		size_t copied = 0;
3540 
3541 		offset = offset_in_page(addr);
3542 		length = PAGE_SIZE - offset;
3543 		if (length > remains)
3544 			length = remains;
3545 		page = vmalloc_to_page(addr);
3546 		/*
3547 		 * To do safe access to this _mapped_ area, we need lock. But
3548 		 * adding lock here means that we need to add overhead of
3549 		 * vmalloc()/vfree() calls for this _debug_ interface, rarely
3550 		 * used. Instead of that, we'll use an local mapping via
3551 		 * copy_page_to_iter_nofault() and accept a small overhead in
3552 		 * this access function.
3553 		 */
3554 		if (page)
3555 			copied = copy_page_to_iter_nofault(page, offset,
3556 							   length, iter);
3557 		else
3558 			copied = zero_iter(iter, length);
3559 
3560 		addr += copied;
3561 		remains -= copied;
3562 
3563 		if (copied != length)
3564 			break;
3565 	}
3566 
3567 	return count - remains;
3568 }
3569 
3570 /*
3571  * Read from a vm_map_ram region of memory.
3572  *
3573  * Returns the number of copied bytes.
3574  */
3575 static size_t vmap_ram_vread_iter(struct iov_iter *iter, const char *addr,
3576 				  size_t count, unsigned long flags)
3577 {
3578 	char *start;
3579 	struct vmap_block *vb;
3580 	struct xarray *xa;
3581 	unsigned long offset;
3582 	unsigned int rs, re;
3583 	size_t remains, n;
3584 
3585 	/*
3586 	 * If it's area created by vm_map_ram() interface directly, but
3587 	 * not further subdividing and delegating management to vmap_block,
3588 	 * handle it here.
3589 	 */
3590 	if (!(flags & VMAP_BLOCK))
3591 		return aligned_vread_iter(iter, addr, count);
3592 
3593 	remains = count;
3594 
3595 	/*
3596 	 * Area is split into regions and tracked with vmap_block, read out
3597 	 * each region and zero fill the hole between regions.
3598 	 */
3599 	xa = addr_to_vb_xa((unsigned long) addr);
3600 	vb = xa_load(xa, addr_to_vb_idx((unsigned long)addr));
3601 	if (!vb)
3602 		goto finished_zero;
3603 
3604 	spin_lock(&vb->lock);
3605 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3606 		spin_unlock(&vb->lock);
3607 		goto finished_zero;
3608 	}
3609 
3610 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3611 		size_t copied;
3612 
3613 		if (remains == 0)
3614 			goto finished;
3615 
3616 		start = vmap_block_vaddr(vb->va->va_start, rs);
3617 
3618 		if (addr < start) {
3619 			size_t to_zero = min_t(size_t, start - addr, remains);
3620 			size_t zeroed = zero_iter(iter, to_zero);
3621 
3622 			addr += zeroed;
3623 			remains -= zeroed;
3624 
3625 			if (remains == 0 || zeroed != to_zero)
3626 				goto finished;
3627 		}
3628 
3629 		/*it could start reading from the middle of used region*/
3630 		offset = offset_in_page(addr);
3631 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3632 		if (n > remains)
3633 			n = remains;
3634 
3635 		copied = aligned_vread_iter(iter, start + offset, n);
3636 
3637 		addr += copied;
3638 		remains -= copied;
3639 
3640 		if (copied != n)
3641 			goto finished;
3642 	}
3643 
3644 	spin_unlock(&vb->lock);
3645 
3646 finished_zero:
3647 	/* zero-fill the left dirty or free regions */
3648 	return count - remains + zero_iter(iter, remains);
3649 finished:
3650 	/* We couldn't copy/zero everything */
3651 	spin_unlock(&vb->lock);
3652 	return count - remains;
3653 }
3654 
3655 /**
3656  * vread_iter() - read vmalloc area in a safe way to an iterator.
3657  * @iter:         the iterator to which data should be written.
3658  * @addr:         vm address.
3659  * @count:        number of bytes to be read.
3660  *
3661  * This function checks that addr is a valid vmalloc'ed area, and
3662  * copy data from that area to a given buffer. If the given memory range
3663  * of [addr...addr+count) includes some valid address, data is copied to
3664  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3665  * IOREMAP area is treated as memory hole and no copy is done.
3666  *
3667  * If [addr...addr+count) doesn't includes any intersects with alive
3668  * vm_struct area, returns 0. @buf should be kernel's buffer.
3669  *
3670  * Note: In usual ops, vread() is never necessary because the caller
3671  * should know vmalloc() area is valid and can use memcpy().
3672  * This is for routines which have to access vmalloc area without
3673  * any information, as /proc/kcore.
3674  *
3675  * Return: number of bytes for which addr and buf should be increased
3676  * (same number as @count) or %0 if [addr...addr+count) doesn't
3677  * include any intersection with valid vmalloc area
3678  */
3679 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
3680 {
3681 	struct vmap_area *va;
3682 	struct vm_struct *vm;
3683 	char *vaddr;
3684 	size_t n, size, flags, remains;
3685 
3686 	addr = kasan_reset_tag(addr);
3687 
3688 	/* Don't allow overflow */
3689 	if ((unsigned long) addr + count < count)
3690 		count = -(unsigned long) addr;
3691 
3692 	remains = count;
3693 
3694 	spin_lock(&vmap_area_lock);
3695 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3696 	if (!va)
3697 		goto finished_zero;
3698 
3699 	/* no intersects with alive vmap_area */
3700 	if ((unsigned long)addr + remains <= va->va_start)
3701 		goto finished_zero;
3702 
3703 	list_for_each_entry_from(va, &vmap_area_list, list) {
3704 		size_t copied;
3705 
3706 		if (remains == 0)
3707 			goto finished;
3708 
3709 		vm = va->vm;
3710 		flags = va->flags & VMAP_FLAGS_MASK;
3711 		/*
3712 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3713 		 * be set together with VMAP_RAM.
3714 		 */
3715 		WARN_ON(flags == VMAP_BLOCK);
3716 
3717 		if (!vm && !flags)
3718 			continue;
3719 
3720 		if (vm && (vm->flags & VM_UNINITIALIZED))
3721 			continue;
3722 
3723 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3724 		smp_rmb();
3725 
3726 		vaddr = (char *) va->va_start;
3727 		size = vm ? get_vm_area_size(vm) : va_size(va);
3728 
3729 		if (addr >= vaddr + size)
3730 			continue;
3731 
3732 		if (addr < vaddr) {
3733 			size_t to_zero = min_t(size_t, vaddr - addr, remains);
3734 			size_t zeroed = zero_iter(iter, to_zero);
3735 
3736 			addr += zeroed;
3737 			remains -= zeroed;
3738 
3739 			if (remains == 0 || zeroed != to_zero)
3740 				goto finished;
3741 		}
3742 
3743 		n = vaddr + size - addr;
3744 		if (n > remains)
3745 			n = remains;
3746 
3747 		if (flags & VMAP_RAM)
3748 			copied = vmap_ram_vread_iter(iter, addr, n, flags);
3749 		else if (!(vm->flags & VM_IOREMAP))
3750 			copied = aligned_vread_iter(iter, addr, n);
3751 		else /* IOREMAP area is treated as memory hole */
3752 			copied = zero_iter(iter, n);
3753 
3754 		addr += copied;
3755 		remains -= copied;
3756 
3757 		if (copied != n)
3758 			goto finished;
3759 	}
3760 
3761 finished_zero:
3762 	spin_unlock(&vmap_area_lock);
3763 	/* zero-fill memory holes */
3764 	return count - remains + zero_iter(iter, remains);
3765 finished:
3766 	/* Nothing remains, or We couldn't copy/zero everything. */
3767 	spin_unlock(&vmap_area_lock);
3768 
3769 	return count - remains;
3770 }
3771 
3772 /**
3773  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3774  * @vma:		vma to cover
3775  * @uaddr:		target user address to start at
3776  * @kaddr:		virtual address of vmalloc kernel memory
3777  * @pgoff:		offset from @kaddr to start at
3778  * @size:		size of map area
3779  *
3780  * Returns:	0 for success, -Exxx on failure
3781  *
3782  * This function checks that @kaddr is a valid vmalloc'ed area,
3783  * and that it is big enough to cover the range starting at
3784  * @uaddr in @vma. Will return failure if that criteria isn't
3785  * met.
3786  *
3787  * Similar to remap_pfn_range() (see mm/memory.c)
3788  */
3789 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3790 				void *kaddr, unsigned long pgoff,
3791 				unsigned long size)
3792 {
3793 	struct vm_struct *area;
3794 	unsigned long off;
3795 	unsigned long end_index;
3796 
3797 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3798 		return -EINVAL;
3799 
3800 	size = PAGE_ALIGN(size);
3801 
3802 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3803 		return -EINVAL;
3804 
3805 	area = find_vm_area(kaddr);
3806 	if (!area)
3807 		return -EINVAL;
3808 
3809 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3810 		return -EINVAL;
3811 
3812 	if (check_add_overflow(size, off, &end_index) ||
3813 	    end_index > get_vm_area_size(area))
3814 		return -EINVAL;
3815 	kaddr += off;
3816 
3817 	do {
3818 		struct page *page = vmalloc_to_page(kaddr);
3819 		int ret;
3820 
3821 		ret = vm_insert_page(vma, uaddr, page);
3822 		if (ret)
3823 			return ret;
3824 
3825 		uaddr += PAGE_SIZE;
3826 		kaddr += PAGE_SIZE;
3827 		size -= PAGE_SIZE;
3828 	} while (size > 0);
3829 
3830 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3831 
3832 	return 0;
3833 }
3834 
3835 /**
3836  * remap_vmalloc_range - map vmalloc pages to userspace
3837  * @vma:		vma to cover (map full range of vma)
3838  * @addr:		vmalloc memory
3839  * @pgoff:		number of pages into addr before first page to map
3840  *
3841  * Returns:	0 for success, -Exxx on failure
3842  *
3843  * This function checks that addr is a valid vmalloc'ed area, and
3844  * that it is big enough to cover the vma. Will return failure if
3845  * that criteria isn't met.
3846  *
3847  * Similar to remap_pfn_range() (see mm/memory.c)
3848  */
3849 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3850 						unsigned long pgoff)
3851 {
3852 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3853 					   addr, pgoff,
3854 					   vma->vm_end - vma->vm_start);
3855 }
3856 EXPORT_SYMBOL(remap_vmalloc_range);
3857 
3858 void free_vm_area(struct vm_struct *area)
3859 {
3860 	struct vm_struct *ret;
3861 	ret = remove_vm_area(area->addr);
3862 	BUG_ON(ret != area);
3863 	kfree(area);
3864 }
3865 EXPORT_SYMBOL_GPL(free_vm_area);
3866 
3867 #ifdef CONFIG_SMP
3868 static struct vmap_area *node_to_va(struct rb_node *n)
3869 {
3870 	return rb_entry_safe(n, struct vmap_area, rb_node);
3871 }
3872 
3873 /**
3874  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3875  * @addr: target address
3876  *
3877  * Returns: vmap_area if it is found. If there is no such area
3878  *   the first highest(reverse order) vmap_area is returned
3879  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3880  *   if there are no any areas before @addr.
3881  */
3882 static struct vmap_area *
3883 pvm_find_va_enclose_addr(unsigned long addr)
3884 {
3885 	struct vmap_area *va, *tmp;
3886 	struct rb_node *n;
3887 
3888 	n = free_vmap_area_root.rb_node;
3889 	va = NULL;
3890 
3891 	while (n) {
3892 		tmp = rb_entry(n, struct vmap_area, rb_node);
3893 		if (tmp->va_start <= addr) {
3894 			va = tmp;
3895 			if (tmp->va_end >= addr)
3896 				break;
3897 
3898 			n = n->rb_right;
3899 		} else {
3900 			n = n->rb_left;
3901 		}
3902 	}
3903 
3904 	return va;
3905 }
3906 
3907 /**
3908  * pvm_determine_end_from_reverse - find the highest aligned address
3909  * of free block below VMALLOC_END
3910  * @va:
3911  *   in - the VA we start the search(reverse order);
3912  *   out - the VA with the highest aligned end address.
3913  * @align: alignment for required highest address
3914  *
3915  * Returns: determined end address within vmap_area
3916  */
3917 static unsigned long
3918 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3919 {
3920 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3921 	unsigned long addr;
3922 
3923 	if (likely(*va)) {
3924 		list_for_each_entry_from_reverse((*va),
3925 				&free_vmap_area_list, list) {
3926 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3927 			if ((*va)->va_start < addr)
3928 				return addr;
3929 		}
3930 	}
3931 
3932 	return 0;
3933 }
3934 
3935 /**
3936  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3937  * @offsets: array containing offset of each area
3938  * @sizes: array containing size of each area
3939  * @nr_vms: the number of areas to allocate
3940  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3941  *
3942  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3943  *	    vm_structs on success, %NULL on failure
3944  *
3945  * Percpu allocator wants to use congruent vm areas so that it can
3946  * maintain the offsets among percpu areas.  This function allocates
3947  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3948  * be scattered pretty far, distance between two areas easily going up
3949  * to gigabytes.  To avoid interacting with regular vmallocs, these
3950  * areas are allocated from top.
3951  *
3952  * Despite its complicated look, this allocator is rather simple. It
3953  * does everything top-down and scans free blocks from the end looking
3954  * for matching base. While scanning, if any of the areas do not fit the
3955  * base address is pulled down to fit the area. Scanning is repeated till
3956  * all the areas fit and then all necessary data structures are inserted
3957  * and the result is returned.
3958  */
3959 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3960 				     const size_t *sizes, int nr_vms,
3961 				     size_t align)
3962 {
3963 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3964 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3965 	struct vmap_area **vas, *va;
3966 	struct vm_struct **vms;
3967 	int area, area2, last_area, term_area;
3968 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3969 	bool purged = false;
3970 
3971 	/* verify parameters and allocate data structures */
3972 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3973 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3974 		start = offsets[area];
3975 		end = start + sizes[area];
3976 
3977 		/* is everything aligned properly? */
3978 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3979 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3980 
3981 		/* detect the area with the highest address */
3982 		if (start > offsets[last_area])
3983 			last_area = area;
3984 
3985 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3986 			unsigned long start2 = offsets[area2];
3987 			unsigned long end2 = start2 + sizes[area2];
3988 
3989 			BUG_ON(start2 < end && start < end2);
3990 		}
3991 	}
3992 	last_end = offsets[last_area] + sizes[last_area];
3993 
3994 	if (vmalloc_end - vmalloc_start < last_end) {
3995 		WARN_ON(true);
3996 		return NULL;
3997 	}
3998 
3999 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
4000 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
4001 	if (!vas || !vms)
4002 		goto err_free2;
4003 
4004 	for (area = 0; area < nr_vms; area++) {
4005 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
4006 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
4007 		if (!vas[area] || !vms[area])
4008 			goto err_free;
4009 	}
4010 retry:
4011 	spin_lock(&free_vmap_area_lock);
4012 
4013 	/* start scanning - we scan from the top, begin with the last area */
4014 	area = term_area = last_area;
4015 	start = offsets[area];
4016 	end = start + sizes[area];
4017 
4018 	va = pvm_find_va_enclose_addr(vmalloc_end);
4019 	base = pvm_determine_end_from_reverse(&va, align) - end;
4020 
4021 	while (true) {
4022 		/*
4023 		 * base might have underflowed, add last_end before
4024 		 * comparing.
4025 		 */
4026 		if (base + last_end < vmalloc_start + last_end)
4027 			goto overflow;
4028 
4029 		/*
4030 		 * Fitting base has not been found.
4031 		 */
4032 		if (va == NULL)
4033 			goto overflow;
4034 
4035 		/*
4036 		 * If required width exceeds current VA block, move
4037 		 * base downwards and then recheck.
4038 		 */
4039 		if (base + end > va->va_end) {
4040 			base = pvm_determine_end_from_reverse(&va, align) - end;
4041 			term_area = area;
4042 			continue;
4043 		}
4044 
4045 		/*
4046 		 * If this VA does not fit, move base downwards and recheck.
4047 		 */
4048 		if (base + start < va->va_start) {
4049 			va = node_to_va(rb_prev(&va->rb_node));
4050 			base = pvm_determine_end_from_reverse(&va, align) - end;
4051 			term_area = area;
4052 			continue;
4053 		}
4054 
4055 		/*
4056 		 * This area fits, move on to the previous one.  If
4057 		 * the previous one is the terminal one, we're done.
4058 		 */
4059 		area = (area + nr_vms - 1) % nr_vms;
4060 		if (area == term_area)
4061 			break;
4062 
4063 		start = offsets[area];
4064 		end = start + sizes[area];
4065 		va = pvm_find_va_enclose_addr(base + end);
4066 	}
4067 
4068 	/* we've found a fitting base, insert all va's */
4069 	for (area = 0; area < nr_vms; area++) {
4070 		int ret;
4071 
4072 		start = base + offsets[area];
4073 		size = sizes[area];
4074 
4075 		va = pvm_find_va_enclose_addr(start);
4076 		if (WARN_ON_ONCE(va == NULL))
4077 			/* It is a BUG(), but trigger recovery instead. */
4078 			goto recovery;
4079 
4080 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
4081 					    &free_vmap_area_list,
4082 					    va, start, size);
4083 		if (WARN_ON_ONCE(unlikely(ret)))
4084 			/* It is a BUG(), but trigger recovery instead. */
4085 			goto recovery;
4086 
4087 		/* Allocated area. */
4088 		va = vas[area];
4089 		va->va_start = start;
4090 		va->va_end = start + size;
4091 	}
4092 
4093 	spin_unlock(&free_vmap_area_lock);
4094 
4095 	/* populate the kasan shadow space */
4096 	for (area = 0; area < nr_vms; area++) {
4097 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
4098 			goto err_free_shadow;
4099 	}
4100 
4101 	/* insert all vm's */
4102 	spin_lock(&vmap_area_lock);
4103 	for (area = 0; area < nr_vms; area++) {
4104 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
4105 
4106 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
4107 				 pcpu_get_vm_areas);
4108 	}
4109 	spin_unlock(&vmap_area_lock);
4110 
4111 	/*
4112 	 * Mark allocated areas as accessible. Do it now as a best-effort
4113 	 * approach, as they can be mapped outside of vmalloc code.
4114 	 * With hardware tag-based KASAN, marking is skipped for
4115 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4116 	 */
4117 	for (area = 0; area < nr_vms; area++)
4118 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4119 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4120 
4121 	kfree(vas);
4122 	return vms;
4123 
4124 recovery:
4125 	/*
4126 	 * Remove previously allocated areas. There is no
4127 	 * need in removing these areas from the busy tree,
4128 	 * because they are inserted only on the final step
4129 	 * and when pcpu_get_vm_areas() is success.
4130 	 */
4131 	while (area--) {
4132 		orig_start = vas[area]->va_start;
4133 		orig_end = vas[area]->va_end;
4134 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4135 				&free_vmap_area_list);
4136 		if (va)
4137 			kasan_release_vmalloc(orig_start, orig_end,
4138 				va->va_start, va->va_end);
4139 		vas[area] = NULL;
4140 	}
4141 
4142 overflow:
4143 	spin_unlock(&free_vmap_area_lock);
4144 	if (!purged) {
4145 		purge_vmap_area_lazy();
4146 		purged = true;
4147 
4148 		/* Before "retry", check if we recover. */
4149 		for (area = 0; area < nr_vms; area++) {
4150 			if (vas[area])
4151 				continue;
4152 
4153 			vas[area] = kmem_cache_zalloc(
4154 				vmap_area_cachep, GFP_KERNEL);
4155 			if (!vas[area])
4156 				goto err_free;
4157 		}
4158 
4159 		goto retry;
4160 	}
4161 
4162 err_free:
4163 	for (area = 0; area < nr_vms; area++) {
4164 		if (vas[area])
4165 			kmem_cache_free(vmap_area_cachep, vas[area]);
4166 
4167 		kfree(vms[area]);
4168 	}
4169 err_free2:
4170 	kfree(vas);
4171 	kfree(vms);
4172 	return NULL;
4173 
4174 err_free_shadow:
4175 	spin_lock(&free_vmap_area_lock);
4176 	/*
4177 	 * We release all the vmalloc shadows, even the ones for regions that
4178 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4179 	 * being able to tolerate this case.
4180 	 */
4181 	for (area = 0; area < nr_vms; area++) {
4182 		orig_start = vas[area]->va_start;
4183 		orig_end = vas[area]->va_end;
4184 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4185 				&free_vmap_area_list);
4186 		if (va)
4187 			kasan_release_vmalloc(orig_start, orig_end,
4188 				va->va_start, va->va_end);
4189 		vas[area] = NULL;
4190 		kfree(vms[area]);
4191 	}
4192 	spin_unlock(&free_vmap_area_lock);
4193 	kfree(vas);
4194 	kfree(vms);
4195 	return NULL;
4196 }
4197 
4198 /**
4199  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4200  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4201  * @nr_vms: the number of allocated areas
4202  *
4203  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4204  */
4205 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4206 {
4207 	int i;
4208 
4209 	for (i = 0; i < nr_vms; i++)
4210 		free_vm_area(vms[i]);
4211 	kfree(vms);
4212 }
4213 #endif	/* CONFIG_SMP */
4214 
4215 #ifdef CONFIG_PRINTK
4216 bool vmalloc_dump_obj(void *object)
4217 {
4218 	struct vm_struct *vm;
4219 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4220 
4221 	vm = find_vm_area(objp);
4222 	if (!vm)
4223 		return false;
4224 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4225 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4226 	return true;
4227 }
4228 #endif
4229 
4230 #ifdef CONFIG_PROC_FS
4231 static void *s_start(struct seq_file *m, loff_t *pos)
4232 	__acquires(&vmap_purge_lock)
4233 	__acquires(&vmap_area_lock)
4234 {
4235 	mutex_lock(&vmap_purge_lock);
4236 	spin_lock(&vmap_area_lock);
4237 
4238 	return seq_list_start(&vmap_area_list, *pos);
4239 }
4240 
4241 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4242 {
4243 	return seq_list_next(p, &vmap_area_list, pos);
4244 }
4245 
4246 static void s_stop(struct seq_file *m, void *p)
4247 	__releases(&vmap_area_lock)
4248 	__releases(&vmap_purge_lock)
4249 {
4250 	spin_unlock(&vmap_area_lock);
4251 	mutex_unlock(&vmap_purge_lock);
4252 }
4253 
4254 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4255 {
4256 	if (IS_ENABLED(CONFIG_NUMA)) {
4257 		unsigned int nr, *counters = m->private;
4258 		unsigned int step = 1U << vm_area_page_order(v);
4259 
4260 		if (!counters)
4261 			return;
4262 
4263 		if (v->flags & VM_UNINITIALIZED)
4264 			return;
4265 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4266 		smp_rmb();
4267 
4268 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4269 
4270 		for (nr = 0; nr < v->nr_pages; nr += step)
4271 			counters[page_to_nid(v->pages[nr])] += step;
4272 		for_each_node_state(nr, N_HIGH_MEMORY)
4273 			if (counters[nr])
4274 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4275 	}
4276 }
4277 
4278 static void show_purge_info(struct seq_file *m)
4279 {
4280 	struct vmap_area *va;
4281 
4282 	spin_lock(&purge_vmap_area_lock);
4283 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4284 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4285 			(void *)va->va_start, (void *)va->va_end,
4286 			va->va_end - va->va_start);
4287 	}
4288 	spin_unlock(&purge_vmap_area_lock);
4289 }
4290 
4291 static int s_show(struct seq_file *m, void *p)
4292 {
4293 	struct vmap_area *va;
4294 	struct vm_struct *v;
4295 
4296 	va = list_entry(p, struct vmap_area, list);
4297 
4298 	if (!va->vm) {
4299 		if (va->flags & VMAP_RAM)
4300 			seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4301 				(void *)va->va_start, (void *)va->va_end,
4302 				va->va_end - va->va_start);
4303 
4304 		goto final;
4305 	}
4306 
4307 	v = va->vm;
4308 
4309 	seq_printf(m, "0x%pK-0x%pK %7ld",
4310 		v->addr, v->addr + v->size, v->size);
4311 
4312 	if (v->caller)
4313 		seq_printf(m, " %pS", v->caller);
4314 
4315 	if (v->nr_pages)
4316 		seq_printf(m, " pages=%d", v->nr_pages);
4317 
4318 	if (v->phys_addr)
4319 		seq_printf(m, " phys=%pa", &v->phys_addr);
4320 
4321 	if (v->flags & VM_IOREMAP)
4322 		seq_puts(m, " ioremap");
4323 
4324 	if (v->flags & VM_ALLOC)
4325 		seq_puts(m, " vmalloc");
4326 
4327 	if (v->flags & VM_MAP)
4328 		seq_puts(m, " vmap");
4329 
4330 	if (v->flags & VM_USERMAP)
4331 		seq_puts(m, " user");
4332 
4333 	if (v->flags & VM_DMA_COHERENT)
4334 		seq_puts(m, " dma-coherent");
4335 
4336 	if (is_vmalloc_addr(v->pages))
4337 		seq_puts(m, " vpages");
4338 
4339 	show_numa_info(m, v);
4340 	seq_putc(m, '\n');
4341 
4342 	/*
4343 	 * As a final step, dump "unpurged" areas.
4344 	 */
4345 final:
4346 	if (list_is_last(&va->list, &vmap_area_list))
4347 		show_purge_info(m);
4348 
4349 	return 0;
4350 }
4351 
4352 static const struct seq_operations vmalloc_op = {
4353 	.start = s_start,
4354 	.next = s_next,
4355 	.stop = s_stop,
4356 	.show = s_show,
4357 };
4358 
4359 static int __init proc_vmalloc_init(void)
4360 {
4361 	if (IS_ENABLED(CONFIG_NUMA))
4362 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4363 				&vmalloc_op,
4364 				nr_node_ids * sizeof(unsigned int), NULL);
4365 	else
4366 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4367 	return 0;
4368 }
4369 module_init(proc_vmalloc_init);
4370 
4371 #endif
4372 
4373 void __init vmalloc_init(void)
4374 {
4375 	struct vmap_area *va;
4376 	struct vm_struct *tmp;
4377 	int i;
4378 
4379 	/*
4380 	 * Create the cache for vmap_area objects.
4381 	 */
4382 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4383 
4384 	for_each_possible_cpu(i) {
4385 		struct vmap_block_queue *vbq;
4386 		struct vfree_deferred *p;
4387 
4388 		vbq = &per_cpu(vmap_block_queue, i);
4389 		spin_lock_init(&vbq->lock);
4390 		INIT_LIST_HEAD(&vbq->free);
4391 		p = &per_cpu(vfree_deferred, i);
4392 		init_llist_head(&p->list);
4393 		INIT_WORK(&p->wq, delayed_vfree_work);
4394 		xa_init(&vbq->vmap_blocks);
4395 	}
4396 
4397 	/* Import existing vmlist entries. */
4398 	for (tmp = vmlist; tmp; tmp = tmp->next) {
4399 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4400 		if (WARN_ON_ONCE(!va))
4401 			continue;
4402 
4403 		va->va_start = (unsigned long)tmp->addr;
4404 		va->va_end = va->va_start + tmp->size;
4405 		va->vm = tmp;
4406 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4407 	}
4408 
4409 	/*
4410 	 * Now we can initialize a free vmap space.
4411 	 */
4412 	vmap_init_free_space();
4413 	vmap_initialized = true;
4414 }
4415