1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/slab.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/proc_fs.h> 19 #include <linux/seq_file.h> 20 #include <linux/debugobjects.h> 21 #include <linux/kallsyms.h> 22 #include <linux/list.h> 23 #include <linux/rbtree.h> 24 #include <linux/radix-tree.h> 25 #include <linux/rcupdate.h> 26 27 #include <asm/atomic.h> 28 #include <asm/uaccess.h> 29 #include <asm/tlbflush.h> 30 31 32 /*** Page table manipulation functions ***/ 33 34 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 35 { 36 pte_t *pte; 37 38 pte = pte_offset_kernel(pmd, addr); 39 do { 40 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 41 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 42 } while (pte++, addr += PAGE_SIZE, addr != end); 43 } 44 45 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 46 { 47 pmd_t *pmd; 48 unsigned long next; 49 50 pmd = pmd_offset(pud, addr); 51 do { 52 next = pmd_addr_end(addr, end); 53 if (pmd_none_or_clear_bad(pmd)) 54 continue; 55 vunmap_pte_range(pmd, addr, next); 56 } while (pmd++, addr = next, addr != end); 57 } 58 59 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 60 { 61 pud_t *pud; 62 unsigned long next; 63 64 pud = pud_offset(pgd, addr); 65 do { 66 next = pud_addr_end(addr, end); 67 if (pud_none_or_clear_bad(pud)) 68 continue; 69 vunmap_pmd_range(pud, addr, next); 70 } while (pud++, addr = next, addr != end); 71 } 72 73 static void vunmap_page_range(unsigned long addr, unsigned long end) 74 { 75 pgd_t *pgd; 76 unsigned long next; 77 78 BUG_ON(addr >= end); 79 pgd = pgd_offset_k(addr); 80 flush_cache_vunmap(addr, end); 81 do { 82 next = pgd_addr_end(addr, end); 83 if (pgd_none_or_clear_bad(pgd)) 84 continue; 85 vunmap_pud_range(pgd, addr, next); 86 } while (pgd++, addr = next, addr != end); 87 } 88 89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 90 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 91 { 92 pte_t *pte; 93 94 /* 95 * nr is a running index into the array which helps higher level 96 * callers keep track of where we're up to. 97 */ 98 99 pte = pte_alloc_kernel(pmd, addr); 100 if (!pte) 101 return -ENOMEM; 102 do { 103 struct page *page = pages[*nr]; 104 105 if (WARN_ON(!pte_none(*pte))) 106 return -EBUSY; 107 if (WARN_ON(!page)) 108 return -ENOMEM; 109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 110 (*nr)++; 111 } while (pte++, addr += PAGE_SIZE, addr != end); 112 return 0; 113 } 114 115 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 116 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 117 { 118 pmd_t *pmd; 119 unsigned long next; 120 121 pmd = pmd_alloc(&init_mm, pud, addr); 122 if (!pmd) 123 return -ENOMEM; 124 do { 125 next = pmd_addr_end(addr, end); 126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 127 return -ENOMEM; 128 } while (pmd++, addr = next, addr != end); 129 return 0; 130 } 131 132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 133 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 134 { 135 pud_t *pud; 136 unsigned long next; 137 138 pud = pud_alloc(&init_mm, pgd, addr); 139 if (!pud) 140 return -ENOMEM; 141 do { 142 next = pud_addr_end(addr, end); 143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 144 return -ENOMEM; 145 } while (pud++, addr = next, addr != end); 146 return 0; 147 } 148 149 /* 150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 151 * will have pfns corresponding to the "pages" array. 152 * 153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 154 */ 155 static int vmap_page_range(unsigned long addr, unsigned long end, 156 pgprot_t prot, struct page **pages) 157 { 158 pgd_t *pgd; 159 unsigned long next; 160 int err = 0; 161 int nr = 0; 162 163 BUG_ON(addr >= end); 164 pgd = pgd_offset_k(addr); 165 do { 166 next = pgd_addr_end(addr, end); 167 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 168 if (err) 169 break; 170 } while (pgd++, addr = next, addr != end); 171 flush_cache_vmap(addr, end); 172 173 if (unlikely(err)) 174 return err; 175 return nr; 176 } 177 178 static inline int is_vmalloc_or_module_addr(const void *x) 179 { 180 /* 181 * x86-64 and sparc64 put modules in a special place, 182 * and fall back on vmalloc() if that fails. Others 183 * just put it in the vmalloc space. 184 */ 185 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 186 unsigned long addr = (unsigned long)x; 187 if (addr >= MODULES_VADDR && addr < MODULES_END) 188 return 1; 189 #endif 190 return is_vmalloc_addr(x); 191 } 192 193 /* 194 * Walk a vmap address to the struct page it maps. 195 */ 196 struct page *vmalloc_to_page(const void *vmalloc_addr) 197 { 198 unsigned long addr = (unsigned long) vmalloc_addr; 199 struct page *page = NULL; 200 pgd_t *pgd = pgd_offset_k(addr); 201 202 /* 203 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 204 * architectures that do not vmalloc module space 205 */ 206 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 207 208 if (!pgd_none(*pgd)) { 209 pud_t *pud = pud_offset(pgd, addr); 210 if (!pud_none(*pud)) { 211 pmd_t *pmd = pmd_offset(pud, addr); 212 if (!pmd_none(*pmd)) { 213 pte_t *ptep, pte; 214 215 ptep = pte_offset_map(pmd, addr); 216 pte = *ptep; 217 if (pte_present(pte)) 218 page = pte_page(pte); 219 pte_unmap(ptep); 220 } 221 } 222 } 223 return page; 224 } 225 EXPORT_SYMBOL(vmalloc_to_page); 226 227 /* 228 * Map a vmalloc()-space virtual address to the physical page frame number. 229 */ 230 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 231 { 232 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 233 } 234 EXPORT_SYMBOL(vmalloc_to_pfn); 235 236 237 /*** Global kva allocator ***/ 238 239 #define VM_LAZY_FREE 0x01 240 #define VM_LAZY_FREEING 0x02 241 #define VM_VM_AREA 0x04 242 243 struct vmap_area { 244 unsigned long va_start; 245 unsigned long va_end; 246 unsigned long flags; 247 struct rb_node rb_node; /* address sorted rbtree */ 248 struct list_head list; /* address sorted list */ 249 struct list_head purge_list; /* "lazy purge" list */ 250 void *private; 251 struct rcu_head rcu_head; 252 }; 253 254 static DEFINE_SPINLOCK(vmap_area_lock); 255 static struct rb_root vmap_area_root = RB_ROOT; 256 static LIST_HEAD(vmap_area_list); 257 258 static struct vmap_area *__find_vmap_area(unsigned long addr) 259 { 260 struct rb_node *n = vmap_area_root.rb_node; 261 262 while (n) { 263 struct vmap_area *va; 264 265 va = rb_entry(n, struct vmap_area, rb_node); 266 if (addr < va->va_start) 267 n = n->rb_left; 268 else if (addr > va->va_start) 269 n = n->rb_right; 270 else 271 return va; 272 } 273 274 return NULL; 275 } 276 277 static void __insert_vmap_area(struct vmap_area *va) 278 { 279 struct rb_node **p = &vmap_area_root.rb_node; 280 struct rb_node *parent = NULL; 281 struct rb_node *tmp; 282 283 while (*p) { 284 struct vmap_area *tmp; 285 286 parent = *p; 287 tmp = rb_entry(parent, struct vmap_area, rb_node); 288 if (va->va_start < tmp->va_end) 289 p = &(*p)->rb_left; 290 else if (va->va_end > tmp->va_start) 291 p = &(*p)->rb_right; 292 else 293 BUG(); 294 } 295 296 rb_link_node(&va->rb_node, parent, p); 297 rb_insert_color(&va->rb_node, &vmap_area_root); 298 299 /* address-sort this list so it is usable like the vmlist */ 300 tmp = rb_prev(&va->rb_node); 301 if (tmp) { 302 struct vmap_area *prev; 303 prev = rb_entry(tmp, struct vmap_area, rb_node); 304 list_add_rcu(&va->list, &prev->list); 305 } else 306 list_add_rcu(&va->list, &vmap_area_list); 307 } 308 309 static void purge_vmap_area_lazy(void); 310 311 /* 312 * Allocate a region of KVA of the specified size and alignment, within the 313 * vstart and vend. 314 */ 315 static struct vmap_area *alloc_vmap_area(unsigned long size, 316 unsigned long align, 317 unsigned long vstart, unsigned long vend, 318 int node, gfp_t gfp_mask) 319 { 320 struct vmap_area *va; 321 struct rb_node *n; 322 unsigned long addr; 323 int purged = 0; 324 325 BUG_ON(size & ~PAGE_MASK); 326 327 addr = ALIGN(vstart, align); 328 329 va = kmalloc_node(sizeof(struct vmap_area), 330 gfp_mask & GFP_RECLAIM_MASK, node); 331 if (unlikely(!va)) 332 return ERR_PTR(-ENOMEM); 333 334 retry: 335 spin_lock(&vmap_area_lock); 336 /* XXX: could have a last_hole cache */ 337 n = vmap_area_root.rb_node; 338 if (n) { 339 struct vmap_area *first = NULL; 340 341 do { 342 struct vmap_area *tmp; 343 tmp = rb_entry(n, struct vmap_area, rb_node); 344 if (tmp->va_end >= addr) { 345 if (!first && tmp->va_start < addr + size) 346 first = tmp; 347 n = n->rb_left; 348 } else { 349 first = tmp; 350 n = n->rb_right; 351 } 352 } while (n); 353 354 if (!first) 355 goto found; 356 357 if (first->va_end < addr) { 358 n = rb_next(&first->rb_node); 359 if (n) 360 first = rb_entry(n, struct vmap_area, rb_node); 361 else 362 goto found; 363 } 364 365 while (addr + size >= first->va_start && addr + size <= vend) { 366 addr = ALIGN(first->va_end + PAGE_SIZE, align); 367 368 n = rb_next(&first->rb_node); 369 if (n) 370 first = rb_entry(n, struct vmap_area, rb_node); 371 else 372 goto found; 373 } 374 } 375 found: 376 if (addr + size > vend) { 377 spin_unlock(&vmap_area_lock); 378 if (!purged) { 379 purge_vmap_area_lazy(); 380 purged = 1; 381 goto retry; 382 } 383 if (printk_ratelimit()) 384 printk(KERN_WARNING "vmap allocation failed: " 385 "use vmalloc=<size> to increase size.\n"); 386 return ERR_PTR(-EBUSY); 387 } 388 389 BUG_ON(addr & (align-1)); 390 391 va->va_start = addr; 392 va->va_end = addr + size; 393 va->flags = 0; 394 __insert_vmap_area(va); 395 spin_unlock(&vmap_area_lock); 396 397 return va; 398 } 399 400 static void rcu_free_va(struct rcu_head *head) 401 { 402 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); 403 404 kfree(va); 405 } 406 407 static void __free_vmap_area(struct vmap_area *va) 408 { 409 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 410 rb_erase(&va->rb_node, &vmap_area_root); 411 RB_CLEAR_NODE(&va->rb_node); 412 list_del_rcu(&va->list); 413 414 call_rcu(&va->rcu_head, rcu_free_va); 415 } 416 417 /* 418 * Free a region of KVA allocated by alloc_vmap_area 419 */ 420 static void free_vmap_area(struct vmap_area *va) 421 { 422 spin_lock(&vmap_area_lock); 423 __free_vmap_area(va); 424 spin_unlock(&vmap_area_lock); 425 } 426 427 /* 428 * Clear the pagetable entries of a given vmap_area 429 */ 430 static void unmap_vmap_area(struct vmap_area *va) 431 { 432 vunmap_page_range(va->va_start, va->va_end); 433 } 434 435 /* 436 * lazy_max_pages is the maximum amount of virtual address space we gather up 437 * before attempting to purge with a TLB flush. 438 * 439 * There is a tradeoff here: a larger number will cover more kernel page tables 440 * and take slightly longer to purge, but it will linearly reduce the number of 441 * global TLB flushes that must be performed. It would seem natural to scale 442 * this number up linearly with the number of CPUs (because vmapping activity 443 * could also scale linearly with the number of CPUs), however it is likely 444 * that in practice, workloads might be constrained in other ways that mean 445 * vmap activity will not scale linearly with CPUs. Also, I want to be 446 * conservative and not introduce a big latency on huge systems, so go with 447 * a less aggressive log scale. It will still be an improvement over the old 448 * code, and it will be simple to change the scale factor if we find that it 449 * becomes a problem on bigger systems. 450 */ 451 static unsigned long lazy_max_pages(void) 452 { 453 unsigned int log; 454 455 log = fls(num_online_cpus()); 456 457 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 458 } 459 460 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 461 462 /* 463 * Purges all lazily-freed vmap areas. 464 * 465 * If sync is 0 then don't purge if there is already a purge in progress. 466 * If force_flush is 1, then flush kernel TLBs between *start and *end even 467 * if we found no lazy vmap areas to unmap (callers can use this to optimise 468 * their own TLB flushing). 469 * Returns with *start = min(*start, lowest purged address) 470 * *end = max(*end, highest purged address) 471 */ 472 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 473 int sync, int force_flush) 474 { 475 static DEFINE_SPINLOCK(purge_lock); 476 LIST_HEAD(valist); 477 struct vmap_area *va; 478 int nr = 0; 479 480 /* 481 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 482 * should not expect such behaviour. This just simplifies locking for 483 * the case that isn't actually used at the moment anyway. 484 */ 485 if (!sync && !force_flush) { 486 if (!spin_trylock(&purge_lock)) 487 return; 488 } else 489 spin_lock(&purge_lock); 490 491 rcu_read_lock(); 492 list_for_each_entry_rcu(va, &vmap_area_list, list) { 493 if (va->flags & VM_LAZY_FREE) { 494 if (va->va_start < *start) 495 *start = va->va_start; 496 if (va->va_end > *end) 497 *end = va->va_end; 498 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 499 unmap_vmap_area(va); 500 list_add_tail(&va->purge_list, &valist); 501 va->flags |= VM_LAZY_FREEING; 502 va->flags &= ~VM_LAZY_FREE; 503 } 504 } 505 rcu_read_unlock(); 506 507 if (nr) { 508 BUG_ON(nr > atomic_read(&vmap_lazy_nr)); 509 atomic_sub(nr, &vmap_lazy_nr); 510 } 511 512 if (nr || force_flush) 513 flush_tlb_kernel_range(*start, *end); 514 515 if (nr) { 516 spin_lock(&vmap_area_lock); 517 list_for_each_entry(va, &valist, purge_list) 518 __free_vmap_area(va); 519 spin_unlock(&vmap_area_lock); 520 } 521 spin_unlock(&purge_lock); 522 } 523 524 /* 525 * Kick off a purge of the outstanding lazy areas. 526 */ 527 static void purge_vmap_area_lazy(void) 528 { 529 unsigned long start = ULONG_MAX, end = 0; 530 531 __purge_vmap_area_lazy(&start, &end, 0, 0); 532 } 533 534 /* 535 * Free and unmap a vmap area 536 */ 537 static void free_unmap_vmap_area(struct vmap_area *va) 538 { 539 va->flags |= VM_LAZY_FREE; 540 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 541 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 542 purge_vmap_area_lazy(); 543 } 544 545 static struct vmap_area *find_vmap_area(unsigned long addr) 546 { 547 struct vmap_area *va; 548 549 spin_lock(&vmap_area_lock); 550 va = __find_vmap_area(addr); 551 spin_unlock(&vmap_area_lock); 552 553 return va; 554 } 555 556 static void free_unmap_vmap_area_addr(unsigned long addr) 557 { 558 struct vmap_area *va; 559 560 va = find_vmap_area(addr); 561 BUG_ON(!va); 562 free_unmap_vmap_area(va); 563 } 564 565 566 /*** Per cpu kva allocator ***/ 567 568 /* 569 * vmap space is limited especially on 32 bit architectures. Ensure there is 570 * room for at least 16 percpu vmap blocks per CPU. 571 */ 572 /* 573 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 574 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 575 * instead (we just need a rough idea) 576 */ 577 #if BITS_PER_LONG == 32 578 #define VMALLOC_SPACE (128UL*1024*1024) 579 #else 580 #define VMALLOC_SPACE (128UL*1024*1024*1024) 581 #endif 582 583 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 584 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 585 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 586 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 587 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 588 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 589 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 590 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 591 VMALLOC_PAGES / NR_CPUS / 16)) 592 593 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 594 595 struct vmap_block_queue { 596 spinlock_t lock; 597 struct list_head free; 598 struct list_head dirty; 599 unsigned int nr_dirty; 600 }; 601 602 struct vmap_block { 603 spinlock_t lock; 604 struct vmap_area *va; 605 struct vmap_block_queue *vbq; 606 unsigned long free, dirty; 607 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); 608 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 609 union { 610 struct { 611 struct list_head free_list; 612 struct list_head dirty_list; 613 }; 614 struct rcu_head rcu_head; 615 }; 616 }; 617 618 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 619 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 620 621 /* 622 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 623 * in the free path. Could get rid of this if we change the API to return a 624 * "cookie" from alloc, to be passed to free. But no big deal yet. 625 */ 626 static DEFINE_SPINLOCK(vmap_block_tree_lock); 627 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 628 629 /* 630 * We should probably have a fallback mechanism to allocate virtual memory 631 * out of partially filled vmap blocks. However vmap block sizing should be 632 * fairly reasonable according to the vmalloc size, so it shouldn't be a 633 * big problem. 634 */ 635 636 static unsigned long addr_to_vb_idx(unsigned long addr) 637 { 638 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 639 addr /= VMAP_BLOCK_SIZE; 640 return addr; 641 } 642 643 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 644 { 645 struct vmap_block_queue *vbq; 646 struct vmap_block *vb; 647 struct vmap_area *va; 648 unsigned long vb_idx; 649 int node, err; 650 651 node = numa_node_id(); 652 653 vb = kmalloc_node(sizeof(struct vmap_block), 654 gfp_mask & GFP_RECLAIM_MASK, node); 655 if (unlikely(!vb)) 656 return ERR_PTR(-ENOMEM); 657 658 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 659 VMALLOC_START, VMALLOC_END, 660 node, gfp_mask); 661 if (unlikely(IS_ERR(va))) { 662 kfree(vb); 663 return ERR_PTR(PTR_ERR(va)); 664 } 665 666 err = radix_tree_preload(gfp_mask); 667 if (unlikely(err)) { 668 kfree(vb); 669 free_vmap_area(va); 670 return ERR_PTR(err); 671 } 672 673 spin_lock_init(&vb->lock); 674 vb->va = va; 675 vb->free = VMAP_BBMAP_BITS; 676 vb->dirty = 0; 677 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); 678 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 679 INIT_LIST_HEAD(&vb->free_list); 680 INIT_LIST_HEAD(&vb->dirty_list); 681 682 vb_idx = addr_to_vb_idx(va->va_start); 683 spin_lock(&vmap_block_tree_lock); 684 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 685 spin_unlock(&vmap_block_tree_lock); 686 BUG_ON(err); 687 radix_tree_preload_end(); 688 689 vbq = &get_cpu_var(vmap_block_queue); 690 vb->vbq = vbq; 691 spin_lock(&vbq->lock); 692 list_add(&vb->free_list, &vbq->free); 693 spin_unlock(&vbq->lock); 694 put_cpu_var(vmap_cpu_blocks); 695 696 return vb; 697 } 698 699 static void rcu_free_vb(struct rcu_head *head) 700 { 701 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); 702 703 kfree(vb); 704 } 705 706 static void free_vmap_block(struct vmap_block *vb) 707 { 708 struct vmap_block *tmp; 709 unsigned long vb_idx; 710 711 spin_lock(&vb->vbq->lock); 712 if (!list_empty(&vb->free_list)) 713 list_del(&vb->free_list); 714 if (!list_empty(&vb->dirty_list)) 715 list_del(&vb->dirty_list); 716 spin_unlock(&vb->vbq->lock); 717 718 vb_idx = addr_to_vb_idx(vb->va->va_start); 719 spin_lock(&vmap_block_tree_lock); 720 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 721 spin_unlock(&vmap_block_tree_lock); 722 BUG_ON(tmp != vb); 723 724 free_unmap_vmap_area(vb->va); 725 call_rcu(&vb->rcu_head, rcu_free_vb); 726 } 727 728 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 729 { 730 struct vmap_block_queue *vbq; 731 struct vmap_block *vb; 732 unsigned long addr = 0; 733 unsigned int order; 734 735 BUG_ON(size & ~PAGE_MASK); 736 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 737 order = get_order(size); 738 739 again: 740 rcu_read_lock(); 741 vbq = &get_cpu_var(vmap_block_queue); 742 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 743 int i; 744 745 spin_lock(&vb->lock); 746 i = bitmap_find_free_region(vb->alloc_map, 747 VMAP_BBMAP_BITS, order); 748 749 if (i >= 0) { 750 addr = vb->va->va_start + (i << PAGE_SHIFT); 751 BUG_ON(addr_to_vb_idx(addr) != 752 addr_to_vb_idx(vb->va->va_start)); 753 vb->free -= 1UL << order; 754 if (vb->free == 0) { 755 spin_lock(&vbq->lock); 756 list_del_init(&vb->free_list); 757 spin_unlock(&vbq->lock); 758 } 759 spin_unlock(&vb->lock); 760 break; 761 } 762 spin_unlock(&vb->lock); 763 } 764 put_cpu_var(vmap_cpu_blocks); 765 rcu_read_unlock(); 766 767 if (!addr) { 768 vb = new_vmap_block(gfp_mask); 769 if (IS_ERR(vb)) 770 return vb; 771 goto again; 772 } 773 774 return (void *)addr; 775 } 776 777 static void vb_free(const void *addr, unsigned long size) 778 { 779 unsigned long offset; 780 unsigned long vb_idx; 781 unsigned int order; 782 struct vmap_block *vb; 783 784 BUG_ON(size & ~PAGE_MASK); 785 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 786 order = get_order(size); 787 788 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 789 790 vb_idx = addr_to_vb_idx((unsigned long)addr); 791 rcu_read_lock(); 792 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 793 rcu_read_unlock(); 794 BUG_ON(!vb); 795 796 spin_lock(&vb->lock); 797 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); 798 if (!vb->dirty) { 799 spin_lock(&vb->vbq->lock); 800 list_add(&vb->dirty_list, &vb->vbq->dirty); 801 spin_unlock(&vb->vbq->lock); 802 } 803 vb->dirty += 1UL << order; 804 if (vb->dirty == VMAP_BBMAP_BITS) { 805 BUG_ON(vb->free || !list_empty(&vb->free_list)); 806 spin_unlock(&vb->lock); 807 free_vmap_block(vb); 808 } else 809 spin_unlock(&vb->lock); 810 } 811 812 /** 813 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 814 * 815 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 816 * to amortize TLB flushing overheads. What this means is that any page you 817 * have now, may, in a former life, have been mapped into kernel virtual 818 * address by the vmap layer and so there might be some CPUs with TLB entries 819 * still referencing that page (additional to the regular 1:1 kernel mapping). 820 * 821 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 822 * be sure that none of the pages we have control over will have any aliases 823 * from the vmap layer. 824 */ 825 void vm_unmap_aliases(void) 826 { 827 unsigned long start = ULONG_MAX, end = 0; 828 int cpu; 829 int flush = 0; 830 831 for_each_possible_cpu(cpu) { 832 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 833 struct vmap_block *vb; 834 835 rcu_read_lock(); 836 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 837 int i; 838 839 spin_lock(&vb->lock); 840 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 841 while (i < VMAP_BBMAP_BITS) { 842 unsigned long s, e; 843 int j; 844 j = find_next_zero_bit(vb->dirty_map, 845 VMAP_BBMAP_BITS, i); 846 847 s = vb->va->va_start + (i << PAGE_SHIFT); 848 e = vb->va->va_start + (j << PAGE_SHIFT); 849 vunmap_page_range(s, e); 850 flush = 1; 851 852 if (s < start) 853 start = s; 854 if (e > end) 855 end = e; 856 857 i = j; 858 i = find_next_bit(vb->dirty_map, 859 VMAP_BBMAP_BITS, i); 860 } 861 spin_unlock(&vb->lock); 862 } 863 rcu_read_unlock(); 864 } 865 866 __purge_vmap_area_lazy(&start, &end, 1, flush); 867 } 868 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 869 870 /** 871 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 872 * @mem: the pointer returned by vm_map_ram 873 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 874 */ 875 void vm_unmap_ram(const void *mem, unsigned int count) 876 { 877 unsigned long size = count << PAGE_SHIFT; 878 unsigned long addr = (unsigned long)mem; 879 880 BUG_ON(!addr); 881 BUG_ON(addr < VMALLOC_START); 882 BUG_ON(addr > VMALLOC_END); 883 BUG_ON(addr & (PAGE_SIZE-1)); 884 885 debug_check_no_locks_freed(mem, size); 886 887 if (likely(count <= VMAP_MAX_ALLOC)) 888 vb_free(mem, size); 889 else 890 free_unmap_vmap_area_addr(addr); 891 } 892 EXPORT_SYMBOL(vm_unmap_ram); 893 894 /** 895 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 896 * @pages: an array of pointers to the pages to be mapped 897 * @count: number of pages 898 * @node: prefer to allocate data structures on this node 899 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 900 * 901 * Returns: a pointer to the address that has been mapped, or %NULL on failure 902 */ 903 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 904 { 905 unsigned long size = count << PAGE_SHIFT; 906 unsigned long addr; 907 void *mem; 908 909 if (likely(count <= VMAP_MAX_ALLOC)) { 910 mem = vb_alloc(size, GFP_KERNEL); 911 if (IS_ERR(mem)) 912 return NULL; 913 addr = (unsigned long)mem; 914 } else { 915 struct vmap_area *va; 916 va = alloc_vmap_area(size, PAGE_SIZE, 917 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 918 if (IS_ERR(va)) 919 return NULL; 920 921 addr = va->va_start; 922 mem = (void *)addr; 923 } 924 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 925 vm_unmap_ram(mem, count); 926 return NULL; 927 } 928 return mem; 929 } 930 EXPORT_SYMBOL(vm_map_ram); 931 932 void __init vmalloc_init(void) 933 { 934 int i; 935 936 for_each_possible_cpu(i) { 937 struct vmap_block_queue *vbq; 938 939 vbq = &per_cpu(vmap_block_queue, i); 940 spin_lock_init(&vbq->lock); 941 INIT_LIST_HEAD(&vbq->free); 942 INIT_LIST_HEAD(&vbq->dirty); 943 vbq->nr_dirty = 0; 944 } 945 } 946 947 void unmap_kernel_range(unsigned long addr, unsigned long size) 948 { 949 unsigned long end = addr + size; 950 vunmap_page_range(addr, end); 951 flush_tlb_kernel_range(addr, end); 952 } 953 954 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 955 { 956 unsigned long addr = (unsigned long)area->addr; 957 unsigned long end = addr + area->size - PAGE_SIZE; 958 int err; 959 960 err = vmap_page_range(addr, end, prot, *pages); 961 if (err > 0) { 962 *pages += err; 963 err = 0; 964 } 965 966 return err; 967 } 968 EXPORT_SYMBOL_GPL(map_vm_area); 969 970 /*** Old vmalloc interfaces ***/ 971 DEFINE_RWLOCK(vmlist_lock); 972 struct vm_struct *vmlist; 973 974 static struct vm_struct *__get_vm_area_node(unsigned long size, 975 unsigned long flags, unsigned long start, unsigned long end, 976 int node, gfp_t gfp_mask, void *caller) 977 { 978 static struct vmap_area *va; 979 struct vm_struct *area; 980 struct vm_struct *tmp, **p; 981 unsigned long align = 1; 982 983 BUG_ON(in_interrupt()); 984 if (flags & VM_IOREMAP) { 985 int bit = fls(size); 986 987 if (bit > IOREMAP_MAX_ORDER) 988 bit = IOREMAP_MAX_ORDER; 989 else if (bit < PAGE_SHIFT) 990 bit = PAGE_SHIFT; 991 992 align = 1ul << bit; 993 } 994 995 size = PAGE_ALIGN(size); 996 if (unlikely(!size)) 997 return NULL; 998 999 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1000 if (unlikely(!area)) 1001 return NULL; 1002 1003 /* 1004 * We always allocate a guard page. 1005 */ 1006 size += PAGE_SIZE; 1007 1008 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1009 if (IS_ERR(va)) { 1010 kfree(area); 1011 return NULL; 1012 } 1013 1014 area->flags = flags; 1015 area->addr = (void *)va->va_start; 1016 area->size = size; 1017 area->pages = NULL; 1018 area->nr_pages = 0; 1019 area->phys_addr = 0; 1020 area->caller = caller; 1021 va->private = area; 1022 va->flags |= VM_VM_AREA; 1023 1024 write_lock(&vmlist_lock); 1025 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1026 if (tmp->addr >= area->addr) 1027 break; 1028 } 1029 area->next = *p; 1030 *p = area; 1031 write_unlock(&vmlist_lock); 1032 1033 return area; 1034 } 1035 1036 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1037 unsigned long start, unsigned long end) 1038 { 1039 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, 1040 __builtin_return_address(0)); 1041 } 1042 EXPORT_SYMBOL_GPL(__get_vm_area); 1043 1044 /** 1045 * get_vm_area - reserve a contiguous kernel virtual area 1046 * @size: size of the area 1047 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1048 * 1049 * Search an area of @size in the kernel virtual mapping area, 1050 * and reserved it for out purposes. Returns the area descriptor 1051 * on success or %NULL on failure. 1052 */ 1053 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1054 { 1055 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1056 -1, GFP_KERNEL, __builtin_return_address(0)); 1057 } 1058 1059 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1060 void *caller) 1061 { 1062 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, 1063 -1, GFP_KERNEL, caller); 1064 } 1065 1066 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, 1067 int node, gfp_t gfp_mask) 1068 { 1069 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, 1070 gfp_mask, __builtin_return_address(0)); 1071 } 1072 1073 static struct vm_struct *find_vm_area(const void *addr) 1074 { 1075 struct vmap_area *va; 1076 1077 va = find_vmap_area((unsigned long)addr); 1078 if (va && va->flags & VM_VM_AREA) 1079 return va->private; 1080 1081 return NULL; 1082 } 1083 1084 /** 1085 * remove_vm_area - find and remove a continuous kernel virtual area 1086 * @addr: base address 1087 * 1088 * Search for the kernel VM area starting at @addr, and remove it. 1089 * This function returns the found VM area, but using it is NOT safe 1090 * on SMP machines, except for its size or flags. 1091 */ 1092 struct vm_struct *remove_vm_area(const void *addr) 1093 { 1094 struct vmap_area *va; 1095 1096 va = find_vmap_area((unsigned long)addr); 1097 if (va && va->flags & VM_VM_AREA) { 1098 struct vm_struct *vm = va->private; 1099 struct vm_struct *tmp, **p; 1100 free_unmap_vmap_area(va); 1101 vm->size -= PAGE_SIZE; 1102 1103 write_lock(&vmlist_lock); 1104 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) 1105 ; 1106 *p = tmp->next; 1107 write_unlock(&vmlist_lock); 1108 1109 return vm; 1110 } 1111 return NULL; 1112 } 1113 1114 static void __vunmap(const void *addr, int deallocate_pages) 1115 { 1116 struct vm_struct *area; 1117 1118 if (!addr) 1119 return; 1120 1121 if ((PAGE_SIZE-1) & (unsigned long)addr) { 1122 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 1123 return; 1124 } 1125 1126 area = remove_vm_area(addr); 1127 if (unlikely(!area)) { 1128 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1129 addr); 1130 return; 1131 } 1132 1133 debug_check_no_locks_freed(addr, area->size); 1134 debug_check_no_obj_freed(addr, area->size); 1135 1136 if (deallocate_pages) { 1137 int i; 1138 1139 for (i = 0; i < area->nr_pages; i++) { 1140 struct page *page = area->pages[i]; 1141 1142 BUG_ON(!page); 1143 __free_page(page); 1144 } 1145 1146 if (area->flags & VM_VPAGES) 1147 vfree(area->pages); 1148 else 1149 kfree(area->pages); 1150 } 1151 1152 kfree(area); 1153 return; 1154 } 1155 1156 /** 1157 * vfree - release memory allocated by vmalloc() 1158 * @addr: memory base address 1159 * 1160 * Free the virtually continuous memory area starting at @addr, as 1161 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1162 * NULL, no operation is performed. 1163 * 1164 * Must not be called in interrupt context. 1165 */ 1166 void vfree(const void *addr) 1167 { 1168 BUG_ON(in_interrupt()); 1169 __vunmap(addr, 1); 1170 } 1171 EXPORT_SYMBOL(vfree); 1172 1173 /** 1174 * vunmap - release virtual mapping obtained by vmap() 1175 * @addr: memory base address 1176 * 1177 * Free the virtually contiguous memory area starting at @addr, 1178 * which was created from the page array passed to vmap(). 1179 * 1180 * Must not be called in interrupt context. 1181 */ 1182 void vunmap(const void *addr) 1183 { 1184 BUG_ON(in_interrupt()); 1185 __vunmap(addr, 0); 1186 } 1187 EXPORT_SYMBOL(vunmap); 1188 1189 /** 1190 * vmap - map an array of pages into virtually contiguous space 1191 * @pages: array of page pointers 1192 * @count: number of pages to map 1193 * @flags: vm_area->flags 1194 * @prot: page protection for the mapping 1195 * 1196 * Maps @count pages from @pages into contiguous kernel virtual 1197 * space. 1198 */ 1199 void *vmap(struct page **pages, unsigned int count, 1200 unsigned long flags, pgprot_t prot) 1201 { 1202 struct vm_struct *area; 1203 1204 if (count > num_physpages) 1205 return NULL; 1206 1207 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1208 __builtin_return_address(0)); 1209 if (!area) 1210 return NULL; 1211 1212 if (map_vm_area(area, prot, &pages)) { 1213 vunmap(area->addr); 1214 return NULL; 1215 } 1216 1217 return area->addr; 1218 } 1219 EXPORT_SYMBOL(vmap); 1220 1221 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1222 int node, void *caller); 1223 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1224 pgprot_t prot, int node, void *caller) 1225 { 1226 struct page **pages; 1227 unsigned int nr_pages, array_size, i; 1228 1229 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 1230 array_size = (nr_pages * sizeof(struct page *)); 1231 1232 area->nr_pages = nr_pages; 1233 /* Please note that the recursion is strictly bounded. */ 1234 if (array_size > PAGE_SIZE) { 1235 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, 1236 PAGE_KERNEL, node, caller); 1237 area->flags |= VM_VPAGES; 1238 } else { 1239 pages = kmalloc_node(array_size, 1240 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, 1241 node); 1242 } 1243 area->pages = pages; 1244 area->caller = caller; 1245 if (!area->pages) { 1246 remove_vm_area(area->addr); 1247 kfree(area); 1248 return NULL; 1249 } 1250 1251 for (i = 0; i < area->nr_pages; i++) { 1252 struct page *page; 1253 1254 if (node < 0) 1255 page = alloc_page(gfp_mask); 1256 else 1257 page = alloc_pages_node(node, gfp_mask, 0); 1258 1259 if (unlikely(!page)) { 1260 /* Successfully allocated i pages, free them in __vunmap() */ 1261 area->nr_pages = i; 1262 goto fail; 1263 } 1264 area->pages[i] = page; 1265 } 1266 1267 if (map_vm_area(area, prot, &pages)) 1268 goto fail; 1269 return area->addr; 1270 1271 fail: 1272 vfree(area->addr); 1273 return NULL; 1274 } 1275 1276 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 1277 { 1278 return __vmalloc_area_node(area, gfp_mask, prot, -1, 1279 __builtin_return_address(0)); 1280 } 1281 1282 /** 1283 * __vmalloc_node - allocate virtually contiguous memory 1284 * @size: allocation size 1285 * @gfp_mask: flags for the page level allocator 1286 * @prot: protection mask for the allocated pages 1287 * @node: node to use for allocation or -1 1288 * @caller: caller's return address 1289 * 1290 * Allocate enough pages to cover @size from the page level 1291 * allocator with @gfp_mask flags. Map them into contiguous 1292 * kernel virtual space, using a pagetable protection of @prot. 1293 */ 1294 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 1295 int node, void *caller) 1296 { 1297 struct vm_struct *area; 1298 1299 size = PAGE_ALIGN(size); 1300 if (!size || (size >> PAGE_SHIFT) > num_physpages) 1301 return NULL; 1302 1303 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, 1304 node, gfp_mask, caller); 1305 1306 if (!area) 1307 return NULL; 1308 1309 return __vmalloc_area_node(area, gfp_mask, prot, node, caller); 1310 } 1311 1312 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1313 { 1314 return __vmalloc_node(size, gfp_mask, prot, -1, 1315 __builtin_return_address(0)); 1316 } 1317 EXPORT_SYMBOL(__vmalloc); 1318 1319 /** 1320 * vmalloc - allocate virtually contiguous memory 1321 * @size: allocation size 1322 * Allocate enough pages to cover @size from the page level 1323 * allocator and map them into contiguous kernel virtual space. 1324 * 1325 * For tight control over page level allocator and protection flags 1326 * use __vmalloc() instead. 1327 */ 1328 void *vmalloc(unsigned long size) 1329 { 1330 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1331 -1, __builtin_return_address(0)); 1332 } 1333 EXPORT_SYMBOL(vmalloc); 1334 1335 /** 1336 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1337 * @size: allocation size 1338 * 1339 * The resulting memory area is zeroed so it can be mapped to userspace 1340 * without leaking data. 1341 */ 1342 void *vmalloc_user(unsigned long size) 1343 { 1344 struct vm_struct *area; 1345 void *ret; 1346 1347 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 1348 if (ret) { 1349 area = find_vm_area(ret); 1350 area->flags |= VM_USERMAP; 1351 } 1352 return ret; 1353 } 1354 EXPORT_SYMBOL(vmalloc_user); 1355 1356 /** 1357 * vmalloc_node - allocate memory on a specific node 1358 * @size: allocation size 1359 * @node: numa node 1360 * 1361 * Allocate enough pages to cover @size from the page level 1362 * allocator and map them into contiguous kernel virtual space. 1363 * 1364 * For tight control over page level allocator and protection flags 1365 * use __vmalloc() instead. 1366 */ 1367 void *vmalloc_node(unsigned long size, int node) 1368 { 1369 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1370 node, __builtin_return_address(0)); 1371 } 1372 EXPORT_SYMBOL(vmalloc_node); 1373 1374 #ifndef PAGE_KERNEL_EXEC 1375 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1376 #endif 1377 1378 /** 1379 * vmalloc_exec - allocate virtually contiguous, executable memory 1380 * @size: allocation size 1381 * 1382 * Kernel-internal function to allocate enough pages to cover @size 1383 * the page level allocator and map them into contiguous and 1384 * executable kernel virtual space. 1385 * 1386 * For tight control over page level allocator and protection flags 1387 * use __vmalloc() instead. 1388 */ 1389 1390 void *vmalloc_exec(unsigned long size) 1391 { 1392 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 1393 } 1394 1395 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1396 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1397 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1398 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1399 #else 1400 #define GFP_VMALLOC32 GFP_KERNEL 1401 #endif 1402 1403 /** 1404 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1405 * @size: allocation size 1406 * 1407 * Allocate enough 32bit PA addressable pages to cover @size from the 1408 * page level allocator and map them into contiguous kernel virtual space. 1409 */ 1410 void *vmalloc_32(unsigned long size) 1411 { 1412 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL); 1413 } 1414 EXPORT_SYMBOL(vmalloc_32); 1415 1416 /** 1417 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1418 * @size: allocation size 1419 * 1420 * The resulting memory area is 32bit addressable and zeroed so it can be 1421 * mapped to userspace without leaking data. 1422 */ 1423 void *vmalloc_32_user(unsigned long size) 1424 { 1425 struct vm_struct *area; 1426 void *ret; 1427 1428 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL); 1429 if (ret) { 1430 area = find_vm_area(ret); 1431 area->flags |= VM_USERMAP; 1432 } 1433 return ret; 1434 } 1435 EXPORT_SYMBOL(vmalloc_32_user); 1436 1437 long vread(char *buf, char *addr, unsigned long count) 1438 { 1439 struct vm_struct *tmp; 1440 char *vaddr, *buf_start = buf; 1441 unsigned long n; 1442 1443 /* Don't allow overflow */ 1444 if ((unsigned long) addr + count < count) 1445 count = -(unsigned long) addr; 1446 1447 read_lock(&vmlist_lock); 1448 for (tmp = vmlist; tmp; tmp = tmp->next) { 1449 vaddr = (char *) tmp->addr; 1450 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1451 continue; 1452 while (addr < vaddr) { 1453 if (count == 0) 1454 goto finished; 1455 *buf = '\0'; 1456 buf++; 1457 addr++; 1458 count--; 1459 } 1460 n = vaddr + tmp->size - PAGE_SIZE - addr; 1461 do { 1462 if (count == 0) 1463 goto finished; 1464 *buf = *addr; 1465 buf++; 1466 addr++; 1467 count--; 1468 } while (--n > 0); 1469 } 1470 finished: 1471 read_unlock(&vmlist_lock); 1472 return buf - buf_start; 1473 } 1474 1475 long vwrite(char *buf, char *addr, unsigned long count) 1476 { 1477 struct vm_struct *tmp; 1478 char *vaddr, *buf_start = buf; 1479 unsigned long n; 1480 1481 /* Don't allow overflow */ 1482 if ((unsigned long) addr + count < count) 1483 count = -(unsigned long) addr; 1484 1485 read_lock(&vmlist_lock); 1486 for (tmp = vmlist; tmp; tmp = tmp->next) { 1487 vaddr = (char *) tmp->addr; 1488 if (addr >= vaddr + tmp->size - PAGE_SIZE) 1489 continue; 1490 while (addr < vaddr) { 1491 if (count == 0) 1492 goto finished; 1493 buf++; 1494 addr++; 1495 count--; 1496 } 1497 n = vaddr + tmp->size - PAGE_SIZE - addr; 1498 do { 1499 if (count == 0) 1500 goto finished; 1501 *addr = *buf; 1502 buf++; 1503 addr++; 1504 count--; 1505 } while (--n > 0); 1506 } 1507 finished: 1508 read_unlock(&vmlist_lock); 1509 return buf - buf_start; 1510 } 1511 1512 /** 1513 * remap_vmalloc_range - map vmalloc pages to userspace 1514 * @vma: vma to cover (map full range of vma) 1515 * @addr: vmalloc memory 1516 * @pgoff: number of pages into addr before first page to map 1517 * 1518 * Returns: 0 for success, -Exxx on failure 1519 * 1520 * This function checks that addr is a valid vmalloc'ed area, and 1521 * that it is big enough to cover the vma. Will return failure if 1522 * that criteria isn't met. 1523 * 1524 * Similar to remap_pfn_range() (see mm/memory.c) 1525 */ 1526 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 1527 unsigned long pgoff) 1528 { 1529 struct vm_struct *area; 1530 unsigned long uaddr = vma->vm_start; 1531 unsigned long usize = vma->vm_end - vma->vm_start; 1532 1533 if ((PAGE_SIZE-1) & (unsigned long)addr) 1534 return -EINVAL; 1535 1536 area = find_vm_area(addr); 1537 if (!area) 1538 return -EINVAL; 1539 1540 if (!(area->flags & VM_USERMAP)) 1541 return -EINVAL; 1542 1543 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 1544 return -EINVAL; 1545 1546 addr += pgoff << PAGE_SHIFT; 1547 do { 1548 struct page *page = vmalloc_to_page(addr); 1549 int ret; 1550 1551 ret = vm_insert_page(vma, uaddr, page); 1552 if (ret) 1553 return ret; 1554 1555 uaddr += PAGE_SIZE; 1556 addr += PAGE_SIZE; 1557 usize -= PAGE_SIZE; 1558 } while (usize > 0); 1559 1560 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 1561 vma->vm_flags |= VM_RESERVED; 1562 1563 return 0; 1564 } 1565 EXPORT_SYMBOL(remap_vmalloc_range); 1566 1567 /* 1568 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 1569 * have one. 1570 */ 1571 void __attribute__((weak)) vmalloc_sync_all(void) 1572 { 1573 } 1574 1575 1576 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 1577 { 1578 /* apply_to_page_range() does all the hard work. */ 1579 return 0; 1580 } 1581 1582 /** 1583 * alloc_vm_area - allocate a range of kernel address space 1584 * @size: size of the area 1585 * 1586 * Returns: NULL on failure, vm_struct on success 1587 * 1588 * This function reserves a range of kernel address space, and 1589 * allocates pagetables to map that range. No actual mappings 1590 * are created. If the kernel address space is not shared 1591 * between processes, it syncs the pagetable across all 1592 * processes. 1593 */ 1594 struct vm_struct *alloc_vm_area(size_t size) 1595 { 1596 struct vm_struct *area; 1597 1598 area = get_vm_area_caller(size, VM_IOREMAP, 1599 __builtin_return_address(0)); 1600 if (area == NULL) 1601 return NULL; 1602 1603 /* 1604 * This ensures that page tables are constructed for this region 1605 * of kernel virtual address space and mapped into init_mm. 1606 */ 1607 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 1608 area->size, f, NULL)) { 1609 free_vm_area(area); 1610 return NULL; 1611 } 1612 1613 /* Make sure the pagetables are constructed in process kernel 1614 mappings */ 1615 vmalloc_sync_all(); 1616 1617 return area; 1618 } 1619 EXPORT_SYMBOL_GPL(alloc_vm_area); 1620 1621 void free_vm_area(struct vm_struct *area) 1622 { 1623 struct vm_struct *ret; 1624 ret = remove_vm_area(area->addr); 1625 BUG_ON(ret != area); 1626 kfree(area); 1627 } 1628 EXPORT_SYMBOL_GPL(free_vm_area); 1629 1630 1631 #ifdef CONFIG_PROC_FS 1632 static void *s_start(struct seq_file *m, loff_t *pos) 1633 { 1634 loff_t n = *pos; 1635 struct vm_struct *v; 1636 1637 read_lock(&vmlist_lock); 1638 v = vmlist; 1639 while (n > 0 && v) { 1640 n--; 1641 v = v->next; 1642 } 1643 if (!n) 1644 return v; 1645 1646 return NULL; 1647 1648 } 1649 1650 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 1651 { 1652 struct vm_struct *v = p; 1653 1654 ++*pos; 1655 return v->next; 1656 } 1657 1658 static void s_stop(struct seq_file *m, void *p) 1659 { 1660 read_unlock(&vmlist_lock); 1661 } 1662 1663 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 1664 { 1665 if (NUMA_BUILD) { 1666 unsigned int nr, *counters = m->private; 1667 1668 if (!counters) 1669 return; 1670 1671 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 1672 1673 for (nr = 0; nr < v->nr_pages; nr++) 1674 counters[page_to_nid(v->pages[nr])]++; 1675 1676 for_each_node_state(nr, N_HIGH_MEMORY) 1677 if (counters[nr]) 1678 seq_printf(m, " N%u=%u", nr, counters[nr]); 1679 } 1680 } 1681 1682 static int s_show(struct seq_file *m, void *p) 1683 { 1684 struct vm_struct *v = p; 1685 1686 seq_printf(m, "0x%p-0x%p %7ld", 1687 v->addr, v->addr + v->size, v->size); 1688 1689 if (v->caller) { 1690 char buff[2 * KSYM_NAME_LEN]; 1691 1692 seq_putc(m, ' '); 1693 sprint_symbol(buff, (unsigned long)v->caller); 1694 seq_puts(m, buff); 1695 } 1696 1697 if (v->nr_pages) 1698 seq_printf(m, " pages=%d", v->nr_pages); 1699 1700 if (v->phys_addr) 1701 seq_printf(m, " phys=%lx", v->phys_addr); 1702 1703 if (v->flags & VM_IOREMAP) 1704 seq_printf(m, " ioremap"); 1705 1706 if (v->flags & VM_ALLOC) 1707 seq_printf(m, " vmalloc"); 1708 1709 if (v->flags & VM_MAP) 1710 seq_printf(m, " vmap"); 1711 1712 if (v->flags & VM_USERMAP) 1713 seq_printf(m, " user"); 1714 1715 if (v->flags & VM_VPAGES) 1716 seq_printf(m, " vpages"); 1717 1718 show_numa_info(m, v); 1719 seq_putc(m, '\n'); 1720 return 0; 1721 } 1722 1723 static const struct seq_operations vmalloc_op = { 1724 .start = s_start, 1725 .next = s_next, 1726 .stop = s_stop, 1727 .show = s_show, 1728 }; 1729 1730 static int vmalloc_open(struct inode *inode, struct file *file) 1731 { 1732 unsigned int *ptr = NULL; 1733 int ret; 1734 1735 if (NUMA_BUILD) 1736 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); 1737 ret = seq_open(file, &vmalloc_op); 1738 if (!ret) { 1739 struct seq_file *m = file->private_data; 1740 m->private = ptr; 1741 } else 1742 kfree(ptr); 1743 return ret; 1744 } 1745 1746 static const struct file_operations proc_vmalloc_operations = { 1747 .open = vmalloc_open, 1748 .read = seq_read, 1749 .llseek = seq_lseek, 1750 .release = seq_release_private, 1751 }; 1752 1753 static int __init proc_vmalloc_init(void) 1754 { 1755 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 1756 return 0; 1757 } 1758 module_init(proc_vmalloc_init); 1759 #endif 1760 1761