xref: /openbmc/linux/mm/vmalloc.c (revision 2f164822)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/vmalloc.h>
48 
49 #include "internal.h"
50 #include "pgalloc-track.h"
51 
52 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
53 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
54 
55 static int __init set_nohugeiomap(char *str)
56 {
57 	ioremap_max_page_shift = PAGE_SHIFT;
58 	return 0;
59 }
60 early_param("nohugeiomap", set_nohugeiomap);
61 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
62 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
63 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
64 
65 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
66 static bool __ro_after_init vmap_allow_huge = true;
67 
68 static int __init set_nohugevmalloc(char *str)
69 {
70 	vmap_allow_huge = false;
71 	return 0;
72 }
73 early_param("nohugevmalloc", set_nohugevmalloc);
74 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
75 static const bool vmap_allow_huge = false;
76 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
77 
78 bool is_vmalloc_addr(const void *x)
79 {
80 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
81 
82 	return addr >= VMALLOC_START && addr < VMALLOC_END;
83 }
84 EXPORT_SYMBOL(is_vmalloc_addr);
85 
86 struct vfree_deferred {
87 	struct llist_head list;
88 	struct work_struct wq;
89 };
90 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
91 
92 /*** Page table manipulation functions ***/
93 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
94 			phys_addr_t phys_addr, pgprot_t prot,
95 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
96 {
97 	pte_t *pte;
98 	u64 pfn;
99 	unsigned long size = PAGE_SIZE;
100 
101 	pfn = phys_addr >> PAGE_SHIFT;
102 	pte = pte_alloc_kernel_track(pmd, addr, mask);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		BUG_ON(!pte_none(*pte));
107 
108 #ifdef CONFIG_HUGETLB_PAGE
109 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
110 		if (size != PAGE_SIZE) {
111 			pte_t entry = pfn_pte(pfn, prot);
112 
113 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
114 			set_huge_pte_at(&init_mm, addr, pte, entry);
115 			pfn += PFN_DOWN(size);
116 			continue;
117 		}
118 #endif
119 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
120 		pfn++;
121 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
122 	*mask |= PGTBL_PTE_MODIFIED;
123 	return 0;
124 }
125 
126 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
127 			phys_addr_t phys_addr, pgprot_t prot,
128 			unsigned int max_page_shift)
129 {
130 	if (max_page_shift < PMD_SHIFT)
131 		return 0;
132 
133 	if (!arch_vmap_pmd_supported(prot))
134 		return 0;
135 
136 	if ((end - addr) != PMD_SIZE)
137 		return 0;
138 
139 	if (!IS_ALIGNED(addr, PMD_SIZE))
140 		return 0;
141 
142 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
143 		return 0;
144 
145 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
146 		return 0;
147 
148 	return pmd_set_huge(pmd, phys_addr, prot);
149 }
150 
151 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
152 			phys_addr_t phys_addr, pgprot_t prot,
153 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
154 {
155 	pmd_t *pmd;
156 	unsigned long next;
157 
158 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
159 	if (!pmd)
160 		return -ENOMEM;
161 	do {
162 		next = pmd_addr_end(addr, end);
163 
164 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
165 					max_page_shift)) {
166 			*mask |= PGTBL_PMD_MODIFIED;
167 			continue;
168 		}
169 
170 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
171 			return -ENOMEM;
172 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
173 	return 0;
174 }
175 
176 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
177 			phys_addr_t phys_addr, pgprot_t prot,
178 			unsigned int max_page_shift)
179 {
180 	if (max_page_shift < PUD_SHIFT)
181 		return 0;
182 
183 	if (!arch_vmap_pud_supported(prot))
184 		return 0;
185 
186 	if ((end - addr) != PUD_SIZE)
187 		return 0;
188 
189 	if (!IS_ALIGNED(addr, PUD_SIZE))
190 		return 0;
191 
192 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
193 		return 0;
194 
195 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
196 		return 0;
197 
198 	return pud_set_huge(pud, phys_addr, prot);
199 }
200 
201 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
202 			phys_addr_t phys_addr, pgprot_t prot,
203 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
204 {
205 	pud_t *pud;
206 	unsigned long next;
207 
208 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
209 	if (!pud)
210 		return -ENOMEM;
211 	do {
212 		next = pud_addr_end(addr, end);
213 
214 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
215 					max_page_shift)) {
216 			*mask |= PGTBL_PUD_MODIFIED;
217 			continue;
218 		}
219 
220 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
221 					max_page_shift, mask))
222 			return -ENOMEM;
223 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
224 	return 0;
225 }
226 
227 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
228 			phys_addr_t phys_addr, pgprot_t prot,
229 			unsigned int max_page_shift)
230 {
231 	if (max_page_shift < P4D_SHIFT)
232 		return 0;
233 
234 	if (!arch_vmap_p4d_supported(prot))
235 		return 0;
236 
237 	if ((end - addr) != P4D_SIZE)
238 		return 0;
239 
240 	if (!IS_ALIGNED(addr, P4D_SIZE))
241 		return 0;
242 
243 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
244 		return 0;
245 
246 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
247 		return 0;
248 
249 	return p4d_set_huge(p4d, phys_addr, prot);
250 }
251 
252 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
253 			phys_addr_t phys_addr, pgprot_t prot,
254 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
255 {
256 	p4d_t *p4d;
257 	unsigned long next;
258 
259 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
260 	if (!p4d)
261 		return -ENOMEM;
262 	do {
263 		next = p4d_addr_end(addr, end);
264 
265 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
266 					max_page_shift)) {
267 			*mask |= PGTBL_P4D_MODIFIED;
268 			continue;
269 		}
270 
271 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
272 					max_page_shift, mask))
273 			return -ENOMEM;
274 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
275 	return 0;
276 }
277 
278 static int vmap_range_noflush(unsigned long addr, unsigned long end,
279 			phys_addr_t phys_addr, pgprot_t prot,
280 			unsigned int max_page_shift)
281 {
282 	pgd_t *pgd;
283 	unsigned long start;
284 	unsigned long next;
285 	int err;
286 	pgtbl_mod_mask mask = 0;
287 
288 	might_sleep();
289 	BUG_ON(addr >= end);
290 
291 	start = addr;
292 	pgd = pgd_offset_k(addr);
293 	do {
294 		next = pgd_addr_end(addr, end);
295 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
296 					max_page_shift, &mask);
297 		if (err)
298 			break;
299 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
300 
301 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
302 		arch_sync_kernel_mappings(start, end);
303 
304 	return err;
305 }
306 
307 int ioremap_page_range(unsigned long addr, unsigned long end,
308 		phys_addr_t phys_addr, pgprot_t prot)
309 {
310 	int err;
311 
312 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
313 				 ioremap_max_page_shift);
314 	flush_cache_vmap(addr, end);
315 	if (!err)
316 		err = kmsan_ioremap_page_range(addr, end, phys_addr, prot,
317 					       ioremap_max_page_shift);
318 	return err;
319 }
320 
321 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
322 			     pgtbl_mod_mask *mask)
323 {
324 	pte_t *pte;
325 
326 	pte = pte_offset_kernel(pmd, addr);
327 	do {
328 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
329 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
330 	} while (pte++, addr += PAGE_SIZE, addr != end);
331 	*mask |= PGTBL_PTE_MODIFIED;
332 }
333 
334 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
335 			     pgtbl_mod_mask *mask)
336 {
337 	pmd_t *pmd;
338 	unsigned long next;
339 	int cleared;
340 
341 	pmd = pmd_offset(pud, addr);
342 	do {
343 		next = pmd_addr_end(addr, end);
344 
345 		cleared = pmd_clear_huge(pmd);
346 		if (cleared || pmd_bad(*pmd))
347 			*mask |= PGTBL_PMD_MODIFIED;
348 
349 		if (cleared)
350 			continue;
351 		if (pmd_none_or_clear_bad(pmd))
352 			continue;
353 		vunmap_pte_range(pmd, addr, next, mask);
354 
355 		cond_resched();
356 	} while (pmd++, addr = next, addr != end);
357 }
358 
359 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
360 			     pgtbl_mod_mask *mask)
361 {
362 	pud_t *pud;
363 	unsigned long next;
364 	int cleared;
365 
366 	pud = pud_offset(p4d, addr);
367 	do {
368 		next = pud_addr_end(addr, end);
369 
370 		cleared = pud_clear_huge(pud);
371 		if (cleared || pud_bad(*pud))
372 			*mask |= PGTBL_PUD_MODIFIED;
373 
374 		if (cleared)
375 			continue;
376 		if (pud_none_or_clear_bad(pud))
377 			continue;
378 		vunmap_pmd_range(pud, addr, next, mask);
379 	} while (pud++, addr = next, addr != end);
380 }
381 
382 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
383 			     pgtbl_mod_mask *mask)
384 {
385 	p4d_t *p4d;
386 	unsigned long next;
387 
388 	p4d = p4d_offset(pgd, addr);
389 	do {
390 		next = p4d_addr_end(addr, end);
391 
392 		p4d_clear_huge(p4d);
393 		if (p4d_bad(*p4d))
394 			*mask |= PGTBL_P4D_MODIFIED;
395 
396 		if (p4d_none_or_clear_bad(p4d))
397 			continue;
398 		vunmap_pud_range(p4d, addr, next, mask);
399 	} while (p4d++, addr = next, addr != end);
400 }
401 
402 /*
403  * vunmap_range_noflush is similar to vunmap_range, but does not
404  * flush caches or TLBs.
405  *
406  * The caller is responsible for calling flush_cache_vmap() before calling
407  * this function, and flush_tlb_kernel_range after it has returned
408  * successfully (and before the addresses are expected to cause a page fault
409  * or be re-mapped for something else, if TLB flushes are being delayed or
410  * coalesced).
411  *
412  * This is an internal function only. Do not use outside mm/.
413  */
414 void __vunmap_range_noflush(unsigned long start, unsigned long end)
415 {
416 	unsigned long next;
417 	pgd_t *pgd;
418 	unsigned long addr = start;
419 	pgtbl_mod_mask mask = 0;
420 
421 	BUG_ON(addr >= end);
422 	pgd = pgd_offset_k(addr);
423 	do {
424 		next = pgd_addr_end(addr, end);
425 		if (pgd_bad(*pgd))
426 			mask |= PGTBL_PGD_MODIFIED;
427 		if (pgd_none_or_clear_bad(pgd))
428 			continue;
429 		vunmap_p4d_range(pgd, addr, next, &mask);
430 	} while (pgd++, addr = next, addr != end);
431 
432 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
433 		arch_sync_kernel_mappings(start, end);
434 }
435 
436 void vunmap_range_noflush(unsigned long start, unsigned long end)
437 {
438 	kmsan_vunmap_range_noflush(start, end);
439 	__vunmap_range_noflush(start, end);
440 }
441 
442 /**
443  * vunmap_range - unmap kernel virtual addresses
444  * @addr: start of the VM area to unmap
445  * @end: end of the VM area to unmap (non-inclusive)
446  *
447  * Clears any present PTEs in the virtual address range, flushes TLBs and
448  * caches. Any subsequent access to the address before it has been re-mapped
449  * is a kernel bug.
450  */
451 void vunmap_range(unsigned long addr, unsigned long end)
452 {
453 	flush_cache_vunmap(addr, end);
454 	vunmap_range_noflush(addr, end);
455 	flush_tlb_kernel_range(addr, end);
456 }
457 
458 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
459 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
460 		pgtbl_mod_mask *mask)
461 {
462 	pte_t *pte;
463 
464 	/*
465 	 * nr is a running index into the array which helps higher level
466 	 * callers keep track of where we're up to.
467 	 */
468 
469 	pte = pte_alloc_kernel_track(pmd, addr, mask);
470 	if (!pte)
471 		return -ENOMEM;
472 	do {
473 		struct page *page = pages[*nr];
474 
475 		if (WARN_ON(!pte_none(*pte)))
476 			return -EBUSY;
477 		if (WARN_ON(!page))
478 			return -ENOMEM;
479 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
480 			return -EINVAL;
481 
482 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
483 		(*nr)++;
484 	} while (pte++, addr += PAGE_SIZE, addr != end);
485 	*mask |= PGTBL_PTE_MODIFIED;
486 	return 0;
487 }
488 
489 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
490 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
491 		pgtbl_mod_mask *mask)
492 {
493 	pmd_t *pmd;
494 	unsigned long next;
495 
496 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
497 	if (!pmd)
498 		return -ENOMEM;
499 	do {
500 		next = pmd_addr_end(addr, end);
501 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
502 			return -ENOMEM;
503 	} while (pmd++, addr = next, addr != end);
504 	return 0;
505 }
506 
507 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
508 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
509 		pgtbl_mod_mask *mask)
510 {
511 	pud_t *pud;
512 	unsigned long next;
513 
514 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
515 	if (!pud)
516 		return -ENOMEM;
517 	do {
518 		next = pud_addr_end(addr, end);
519 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
520 			return -ENOMEM;
521 	} while (pud++, addr = next, addr != end);
522 	return 0;
523 }
524 
525 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
526 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
527 		pgtbl_mod_mask *mask)
528 {
529 	p4d_t *p4d;
530 	unsigned long next;
531 
532 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
533 	if (!p4d)
534 		return -ENOMEM;
535 	do {
536 		next = p4d_addr_end(addr, end);
537 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
538 			return -ENOMEM;
539 	} while (p4d++, addr = next, addr != end);
540 	return 0;
541 }
542 
543 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
544 		pgprot_t prot, struct page **pages)
545 {
546 	unsigned long start = addr;
547 	pgd_t *pgd;
548 	unsigned long next;
549 	int err = 0;
550 	int nr = 0;
551 	pgtbl_mod_mask mask = 0;
552 
553 	BUG_ON(addr >= end);
554 	pgd = pgd_offset_k(addr);
555 	do {
556 		next = pgd_addr_end(addr, end);
557 		if (pgd_bad(*pgd))
558 			mask |= PGTBL_PGD_MODIFIED;
559 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
560 		if (err)
561 			return err;
562 	} while (pgd++, addr = next, addr != end);
563 
564 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
565 		arch_sync_kernel_mappings(start, end);
566 
567 	return 0;
568 }
569 
570 /*
571  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
572  * flush caches.
573  *
574  * The caller is responsible for calling flush_cache_vmap() after this
575  * function returns successfully and before the addresses are accessed.
576  *
577  * This is an internal function only. Do not use outside mm/.
578  */
579 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
580 		pgprot_t prot, struct page **pages, unsigned int page_shift)
581 {
582 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
583 
584 	WARN_ON(page_shift < PAGE_SHIFT);
585 
586 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
587 			page_shift == PAGE_SHIFT)
588 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
589 
590 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
591 		int err;
592 
593 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
594 					page_to_phys(pages[i]), prot,
595 					page_shift);
596 		if (err)
597 			return err;
598 
599 		addr += 1UL << page_shift;
600 	}
601 
602 	return 0;
603 }
604 
605 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
606 		pgprot_t prot, struct page **pages, unsigned int page_shift)
607 {
608 	int ret = kmsan_vmap_pages_range_noflush(addr, end, prot, pages,
609 						 page_shift);
610 
611 	if (ret)
612 		return ret;
613 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
614 }
615 
616 /**
617  * vmap_pages_range - map pages to a kernel virtual address
618  * @addr: start of the VM area to map
619  * @end: end of the VM area to map (non-inclusive)
620  * @prot: page protection flags to use
621  * @pages: pages to map (always PAGE_SIZE pages)
622  * @page_shift: maximum shift that the pages may be mapped with, @pages must
623  * be aligned and contiguous up to at least this shift.
624  *
625  * RETURNS:
626  * 0 on success, -errno on failure.
627  */
628 static int vmap_pages_range(unsigned long addr, unsigned long end,
629 		pgprot_t prot, struct page **pages, unsigned int page_shift)
630 {
631 	int err;
632 
633 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
634 	flush_cache_vmap(addr, end);
635 	return err;
636 }
637 
638 int is_vmalloc_or_module_addr(const void *x)
639 {
640 	/*
641 	 * ARM, x86-64 and sparc64 put modules in a special place,
642 	 * and fall back on vmalloc() if that fails. Others
643 	 * just put it in the vmalloc space.
644 	 */
645 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
646 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
647 	if (addr >= MODULES_VADDR && addr < MODULES_END)
648 		return 1;
649 #endif
650 	return is_vmalloc_addr(x);
651 }
652 EXPORT_SYMBOL_GPL(is_vmalloc_or_module_addr);
653 
654 /*
655  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
656  * return the tail page that corresponds to the base page address, which
657  * matches small vmap mappings.
658  */
659 struct page *vmalloc_to_page(const void *vmalloc_addr)
660 {
661 	unsigned long addr = (unsigned long) vmalloc_addr;
662 	struct page *page = NULL;
663 	pgd_t *pgd = pgd_offset_k(addr);
664 	p4d_t *p4d;
665 	pud_t *pud;
666 	pmd_t *pmd;
667 	pte_t *ptep, pte;
668 
669 	/*
670 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
671 	 * architectures that do not vmalloc module space
672 	 */
673 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
674 
675 	if (pgd_none(*pgd))
676 		return NULL;
677 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
678 		return NULL; /* XXX: no allowance for huge pgd */
679 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
680 		return NULL;
681 
682 	p4d = p4d_offset(pgd, addr);
683 	if (p4d_none(*p4d))
684 		return NULL;
685 	if (p4d_leaf(*p4d))
686 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
687 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
688 		return NULL;
689 
690 	pud = pud_offset(p4d, addr);
691 	if (pud_none(*pud))
692 		return NULL;
693 	if (pud_leaf(*pud))
694 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
695 	if (WARN_ON_ONCE(pud_bad(*pud)))
696 		return NULL;
697 
698 	pmd = pmd_offset(pud, addr);
699 	if (pmd_none(*pmd))
700 		return NULL;
701 	if (pmd_leaf(*pmd))
702 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
703 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
704 		return NULL;
705 
706 	ptep = pte_offset_map(pmd, addr);
707 	pte = *ptep;
708 	if (pte_present(pte))
709 		page = pte_page(pte);
710 	pte_unmap(ptep);
711 
712 	return page;
713 }
714 EXPORT_SYMBOL(vmalloc_to_page);
715 
716 /*
717  * Map a vmalloc()-space virtual address to the physical page frame number.
718  */
719 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
720 {
721 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
722 }
723 EXPORT_SYMBOL(vmalloc_to_pfn);
724 
725 
726 /*** Global kva allocator ***/
727 
728 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
729 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
730 
731 
732 static DEFINE_SPINLOCK(vmap_area_lock);
733 static DEFINE_SPINLOCK(free_vmap_area_lock);
734 /* Export for kexec only */
735 LIST_HEAD(vmap_area_list);
736 static struct rb_root vmap_area_root = RB_ROOT;
737 static bool vmap_initialized __read_mostly;
738 
739 static struct rb_root purge_vmap_area_root = RB_ROOT;
740 static LIST_HEAD(purge_vmap_area_list);
741 static DEFINE_SPINLOCK(purge_vmap_area_lock);
742 
743 /*
744  * This kmem_cache is used for vmap_area objects. Instead of
745  * allocating from slab we reuse an object from this cache to
746  * make things faster. Especially in "no edge" splitting of
747  * free block.
748  */
749 static struct kmem_cache *vmap_area_cachep;
750 
751 /*
752  * This linked list is used in pair with free_vmap_area_root.
753  * It gives O(1) access to prev/next to perform fast coalescing.
754  */
755 static LIST_HEAD(free_vmap_area_list);
756 
757 /*
758  * This augment red-black tree represents the free vmap space.
759  * All vmap_area objects in this tree are sorted by va->va_start
760  * address. It is used for allocation and merging when a vmap
761  * object is released.
762  *
763  * Each vmap_area node contains a maximum available free block
764  * of its sub-tree, right or left. Therefore it is possible to
765  * find a lowest match of free area.
766  */
767 static struct rb_root free_vmap_area_root = RB_ROOT;
768 
769 /*
770  * Preload a CPU with one object for "no edge" split case. The
771  * aim is to get rid of allocations from the atomic context, thus
772  * to use more permissive allocation masks.
773  */
774 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
775 
776 static __always_inline unsigned long
777 va_size(struct vmap_area *va)
778 {
779 	return (va->va_end - va->va_start);
780 }
781 
782 static __always_inline unsigned long
783 get_subtree_max_size(struct rb_node *node)
784 {
785 	struct vmap_area *va;
786 
787 	va = rb_entry_safe(node, struct vmap_area, rb_node);
788 	return va ? va->subtree_max_size : 0;
789 }
790 
791 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
792 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
793 
794 static void purge_vmap_area_lazy(void);
795 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
796 static void drain_vmap_area_work(struct work_struct *work);
797 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
798 
799 static atomic_long_t nr_vmalloc_pages;
800 
801 unsigned long vmalloc_nr_pages(void)
802 {
803 	return atomic_long_read(&nr_vmalloc_pages);
804 }
805 
806 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
807 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
808 {
809 	struct vmap_area *va = NULL;
810 	struct rb_node *n = vmap_area_root.rb_node;
811 
812 	addr = (unsigned long)kasan_reset_tag((void *)addr);
813 
814 	while (n) {
815 		struct vmap_area *tmp;
816 
817 		tmp = rb_entry(n, struct vmap_area, rb_node);
818 		if (tmp->va_end > addr) {
819 			va = tmp;
820 			if (tmp->va_start <= addr)
821 				break;
822 
823 			n = n->rb_left;
824 		} else
825 			n = n->rb_right;
826 	}
827 
828 	return va;
829 }
830 
831 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
832 {
833 	struct rb_node *n = root->rb_node;
834 
835 	addr = (unsigned long)kasan_reset_tag((void *)addr);
836 
837 	while (n) {
838 		struct vmap_area *va;
839 
840 		va = rb_entry(n, struct vmap_area, rb_node);
841 		if (addr < va->va_start)
842 			n = n->rb_left;
843 		else if (addr >= va->va_end)
844 			n = n->rb_right;
845 		else
846 			return va;
847 	}
848 
849 	return NULL;
850 }
851 
852 /*
853  * This function returns back addresses of parent node
854  * and its left or right link for further processing.
855  *
856  * Otherwise NULL is returned. In that case all further
857  * steps regarding inserting of conflicting overlap range
858  * have to be declined and actually considered as a bug.
859  */
860 static __always_inline struct rb_node **
861 find_va_links(struct vmap_area *va,
862 	struct rb_root *root, struct rb_node *from,
863 	struct rb_node **parent)
864 {
865 	struct vmap_area *tmp_va;
866 	struct rb_node **link;
867 
868 	if (root) {
869 		link = &root->rb_node;
870 		if (unlikely(!*link)) {
871 			*parent = NULL;
872 			return link;
873 		}
874 	} else {
875 		link = &from;
876 	}
877 
878 	/*
879 	 * Go to the bottom of the tree. When we hit the last point
880 	 * we end up with parent rb_node and correct direction, i name
881 	 * it link, where the new va->rb_node will be attached to.
882 	 */
883 	do {
884 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
885 
886 		/*
887 		 * During the traversal we also do some sanity check.
888 		 * Trigger the BUG() if there are sides(left/right)
889 		 * or full overlaps.
890 		 */
891 		if (va->va_end <= tmp_va->va_start)
892 			link = &(*link)->rb_left;
893 		else if (va->va_start >= tmp_va->va_end)
894 			link = &(*link)->rb_right;
895 		else {
896 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
897 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
898 
899 			return NULL;
900 		}
901 	} while (*link);
902 
903 	*parent = &tmp_va->rb_node;
904 	return link;
905 }
906 
907 static __always_inline struct list_head *
908 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
909 {
910 	struct list_head *list;
911 
912 	if (unlikely(!parent))
913 		/*
914 		 * The red-black tree where we try to find VA neighbors
915 		 * before merging or inserting is empty, i.e. it means
916 		 * there is no free vmap space. Normally it does not
917 		 * happen but we handle this case anyway.
918 		 */
919 		return NULL;
920 
921 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
922 	return (&parent->rb_right == link ? list->next : list);
923 }
924 
925 static __always_inline void
926 __link_va(struct vmap_area *va, struct rb_root *root,
927 	struct rb_node *parent, struct rb_node **link,
928 	struct list_head *head, bool augment)
929 {
930 	/*
931 	 * VA is still not in the list, but we can
932 	 * identify its future previous list_head node.
933 	 */
934 	if (likely(parent)) {
935 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
936 		if (&parent->rb_right != link)
937 			head = head->prev;
938 	}
939 
940 	/* Insert to the rb-tree */
941 	rb_link_node(&va->rb_node, parent, link);
942 	if (augment) {
943 		/*
944 		 * Some explanation here. Just perform simple insertion
945 		 * to the tree. We do not set va->subtree_max_size to
946 		 * its current size before calling rb_insert_augmented().
947 		 * It is because we populate the tree from the bottom
948 		 * to parent levels when the node _is_ in the tree.
949 		 *
950 		 * Therefore we set subtree_max_size to zero after insertion,
951 		 * to let __augment_tree_propagate_from() puts everything to
952 		 * the correct order later on.
953 		 */
954 		rb_insert_augmented(&va->rb_node,
955 			root, &free_vmap_area_rb_augment_cb);
956 		va->subtree_max_size = 0;
957 	} else {
958 		rb_insert_color(&va->rb_node, root);
959 	}
960 
961 	/* Address-sort this list */
962 	list_add(&va->list, head);
963 }
964 
965 static __always_inline void
966 link_va(struct vmap_area *va, struct rb_root *root,
967 	struct rb_node *parent, struct rb_node **link,
968 	struct list_head *head)
969 {
970 	__link_va(va, root, parent, link, head, false);
971 }
972 
973 static __always_inline void
974 link_va_augment(struct vmap_area *va, struct rb_root *root,
975 	struct rb_node *parent, struct rb_node **link,
976 	struct list_head *head)
977 {
978 	__link_va(va, root, parent, link, head, true);
979 }
980 
981 static __always_inline void
982 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
983 {
984 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
985 		return;
986 
987 	if (augment)
988 		rb_erase_augmented(&va->rb_node,
989 			root, &free_vmap_area_rb_augment_cb);
990 	else
991 		rb_erase(&va->rb_node, root);
992 
993 	list_del_init(&va->list);
994 	RB_CLEAR_NODE(&va->rb_node);
995 }
996 
997 static __always_inline void
998 unlink_va(struct vmap_area *va, struct rb_root *root)
999 {
1000 	__unlink_va(va, root, false);
1001 }
1002 
1003 static __always_inline void
1004 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1005 {
1006 	__unlink_va(va, root, true);
1007 }
1008 
1009 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1010 /*
1011  * Gets called when remove the node and rotate.
1012  */
1013 static __always_inline unsigned long
1014 compute_subtree_max_size(struct vmap_area *va)
1015 {
1016 	return max3(va_size(va),
1017 		get_subtree_max_size(va->rb_node.rb_left),
1018 		get_subtree_max_size(va->rb_node.rb_right));
1019 }
1020 
1021 static void
1022 augment_tree_propagate_check(void)
1023 {
1024 	struct vmap_area *va;
1025 	unsigned long computed_size;
1026 
1027 	list_for_each_entry(va, &free_vmap_area_list, list) {
1028 		computed_size = compute_subtree_max_size(va);
1029 		if (computed_size != va->subtree_max_size)
1030 			pr_emerg("tree is corrupted: %lu, %lu\n",
1031 				va_size(va), va->subtree_max_size);
1032 	}
1033 }
1034 #endif
1035 
1036 /*
1037  * This function populates subtree_max_size from bottom to upper
1038  * levels starting from VA point. The propagation must be done
1039  * when VA size is modified by changing its va_start/va_end. Or
1040  * in case of newly inserting of VA to the tree.
1041  *
1042  * It means that __augment_tree_propagate_from() must be called:
1043  * - After VA has been inserted to the tree(free path);
1044  * - After VA has been shrunk(allocation path);
1045  * - After VA has been increased(merging path).
1046  *
1047  * Please note that, it does not mean that upper parent nodes
1048  * and their subtree_max_size are recalculated all the time up
1049  * to the root node.
1050  *
1051  *       4--8
1052  *        /\
1053  *       /  \
1054  *      /    \
1055  *    2--2  8--8
1056  *
1057  * For example if we modify the node 4, shrinking it to 2, then
1058  * no any modification is required. If we shrink the node 2 to 1
1059  * its subtree_max_size is updated only, and set to 1. If we shrink
1060  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1061  * node becomes 4--6.
1062  */
1063 static __always_inline void
1064 augment_tree_propagate_from(struct vmap_area *va)
1065 {
1066 	/*
1067 	 * Populate the tree from bottom towards the root until
1068 	 * the calculated maximum available size of checked node
1069 	 * is equal to its current one.
1070 	 */
1071 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1072 
1073 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1074 	augment_tree_propagate_check();
1075 #endif
1076 }
1077 
1078 static void
1079 insert_vmap_area(struct vmap_area *va,
1080 	struct rb_root *root, struct list_head *head)
1081 {
1082 	struct rb_node **link;
1083 	struct rb_node *parent;
1084 
1085 	link = find_va_links(va, root, NULL, &parent);
1086 	if (link)
1087 		link_va(va, root, parent, link, head);
1088 }
1089 
1090 static void
1091 insert_vmap_area_augment(struct vmap_area *va,
1092 	struct rb_node *from, struct rb_root *root,
1093 	struct list_head *head)
1094 {
1095 	struct rb_node **link;
1096 	struct rb_node *parent;
1097 
1098 	if (from)
1099 		link = find_va_links(va, NULL, from, &parent);
1100 	else
1101 		link = find_va_links(va, root, NULL, &parent);
1102 
1103 	if (link) {
1104 		link_va_augment(va, root, parent, link, head);
1105 		augment_tree_propagate_from(va);
1106 	}
1107 }
1108 
1109 /*
1110  * Merge de-allocated chunk of VA memory with previous
1111  * and next free blocks. If coalesce is not done a new
1112  * free area is inserted. If VA has been merged, it is
1113  * freed.
1114  *
1115  * Please note, it can return NULL in case of overlap
1116  * ranges, followed by WARN() report. Despite it is a
1117  * buggy behaviour, a system can be alive and keep
1118  * ongoing.
1119  */
1120 static __always_inline struct vmap_area *
1121 __merge_or_add_vmap_area(struct vmap_area *va,
1122 	struct rb_root *root, struct list_head *head, bool augment)
1123 {
1124 	struct vmap_area *sibling;
1125 	struct list_head *next;
1126 	struct rb_node **link;
1127 	struct rb_node *parent;
1128 	bool merged = false;
1129 
1130 	/*
1131 	 * Find a place in the tree where VA potentially will be
1132 	 * inserted, unless it is merged with its sibling/siblings.
1133 	 */
1134 	link = find_va_links(va, root, NULL, &parent);
1135 	if (!link)
1136 		return NULL;
1137 
1138 	/*
1139 	 * Get next node of VA to check if merging can be done.
1140 	 */
1141 	next = get_va_next_sibling(parent, link);
1142 	if (unlikely(next == NULL))
1143 		goto insert;
1144 
1145 	/*
1146 	 * start            end
1147 	 * |                |
1148 	 * |<------VA------>|<-----Next----->|
1149 	 *                  |                |
1150 	 *                  start            end
1151 	 */
1152 	if (next != head) {
1153 		sibling = list_entry(next, struct vmap_area, list);
1154 		if (sibling->va_start == va->va_end) {
1155 			sibling->va_start = va->va_start;
1156 
1157 			/* Free vmap_area object. */
1158 			kmem_cache_free(vmap_area_cachep, va);
1159 
1160 			/* Point to the new merged area. */
1161 			va = sibling;
1162 			merged = true;
1163 		}
1164 	}
1165 
1166 	/*
1167 	 * start            end
1168 	 * |                |
1169 	 * |<-----Prev----->|<------VA------>|
1170 	 *                  |                |
1171 	 *                  start            end
1172 	 */
1173 	if (next->prev != head) {
1174 		sibling = list_entry(next->prev, struct vmap_area, list);
1175 		if (sibling->va_end == va->va_start) {
1176 			/*
1177 			 * If both neighbors are coalesced, it is important
1178 			 * to unlink the "next" node first, followed by merging
1179 			 * with "previous" one. Otherwise the tree might not be
1180 			 * fully populated if a sibling's augmented value is
1181 			 * "normalized" because of rotation operations.
1182 			 */
1183 			if (merged)
1184 				__unlink_va(va, root, augment);
1185 
1186 			sibling->va_end = va->va_end;
1187 
1188 			/* Free vmap_area object. */
1189 			kmem_cache_free(vmap_area_cachep, va);
1190 
1191 			/* Point to the new merged area. */
1192 			va = sibling;
1193 			merged = true;
1194 		}
1195 	}
1196 
1197 insert:
1198 	if (!merged)
1199 		__link_va(va, root, parent, link, head, augment);
1200 
1201 	return va;
1202 }
1203 
1204 static __always_inline struct vmap_area *
1205 merge_or_add_vmap_area(struct vmap_area *va,
1206 	struct rb_root *root, struct list_head *head)
1207 {
1208 	return __merge_or_add_vmap_area(va, root, head, false);
1209 }
1210 
1211 static __always_inline struct vmap_area *
1212 merge_or_add_vmap_area_augment(struct vmap_area *va,
1213 	struct rb_root *root, struct list_head *head)
1214 {
1215 	va = __merge_or_add_vmap_area(va, root, head, true);
1216 	if (va)
1217 		augment_tree_propagate_from(va);
1218 
1219 	return va;
1220 }
1221 
1222 static __always_inline bool
1223 is_within_this_va(struct vmap_area *va, unsigned long size,
1224 	unsigned long align, unsigned long vstart)
1225 {
1226 	unsigned long nva_start_addr;
1227 
1228 	if (va->va_start > vstart)
1229 		nva_start_addr = ALIGN(va->va_start, align);
1230 	else
1231 		nva_start_addr = ALIGN(vstart, align);
1232 
1233 	/* Can be overflowed due to big size or alignment. */
1234 	if (nva_start_addr + size < nva_start_addr ||
1235 			nva_start_addr < vstart)
1236 		return false;
1237 
1238 	return (nva_start_addr + size <= va->va_end);
1239 }
1240 
1241 /*
1242  * Find the first free block(lowest start address) in the tree,
1243  * that will accomplish the request corresponding to passing
1244  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1245  * a search length is adjusted to account for worst case alignment
1246  * overhead.
1247  */
1248 static __always_inline struct vmap_area *
1249 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1250 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1251 {
1252 	struct vmap_area *va;
1253 	struct rb_node *node;
1254 	unsigned long length;
1255 
1256 	/* Start from the root. */
1257 	node = root->rb_node;
1258 
1259 	/* Adjust the search size for alignment overhead. */
1260 	length = adjust_search_size ? size + align - 1 : size;
1261 
1262 	while (node) {
1263 		va = rb_entry(node, struct vmap_area, rb_node);
1264 
1265 		if (get_subtree_max_size(node->rb_left) >= length &&
1266 				vstart < va->va_start) {
1267 			node = node->rb_left;
1268 		} else {
1269 			if (is_within_this_va(va, size, align, vstart))
1270 				return va;
1271 
1272 			/*
1273 			 * Does not make sense to go deeper towards the right
1274 			 * sub-tree if it does not have a free block that is
1275 			 * equal or bigger to the requested search length.
1276 			 */
1277 			if (get_subtree_max_size(node->rb_right) >= length) {
1278 				node = node->rb_right;
1279 				continue;
1280 			}
1281 
1282 			/*
1283 			 * OK. We roll back and find the first right sub-tree,
1284 			 * that will satisfy the search criteria. It can happen
1285 			 * due to "vstart" restriction or an alignment overhead
1286 			 * that is bigger then PAGE_SIZE.
1287 			 */
1288 			while ((node = rb_parent(node))) {
1289 				va = rb_entry(node, struct vmap_area, rb_node);
1290 				if (is_within_this_va(va, size, align, vstart))
1291 					return va;
1292 
1293 				if (get_subtree_max_size(node->rb_right) >= length &&
1294 						vstart <= va->va_start) {
1295 					/*
1296 					 * Shift the vstart forward. Please note, we update it with
1297 					 * parent's start address adding "1" because we do not want
1298 					 * to enter same sub-tree after it has already been checked
1299 					 * and no suitable free block found there.
1300 					 */
1301 					vstart = va->va_start + 1;
1302 					node = node->rb_right;
1303 					break;
1304 				}
1305 			}
1306 		}
1307 	}
1308 
1309 	return NULL;
1310 }
1311 
1312 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1313 #include <linux/random.h>
1314 
1315 static struct vmap_area *
1316 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1317 	unsigned long align, unsigned long vstart)
1318 {
1319 	struct vmap_area *va;
1320 
1321 	list_for_each_entry(va, head, list) {
1322 		if (!is_within_this_va(va, size, align, vstart))
1323 			continue;
1324 
1325 		return va;
1326 	}
1327 
1328 	return NULL;
1329 }
1330 
1331 static void
1332 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1333 			     unsigned long size, unsigned long align)
1334 {
1335 	struct vmap_area *va_1, *va_2;
1336 	unsigned long vstart;
1337 	unsigned int rnd;
1338 
1339 	get_random_bytes(&rnd, sizeof(rnd));
1340 	vstart = VMALLOC_START + rnd;
1341 
1342 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1343 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1344 
1345 	if (va_1 != va_2)
1346 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1347 			va_1, va_2, vstart);
1348 }
1349 #endif
1350 
1351 enum fit_type {
1352 	NOTHING_FIT = 0,
1353 	FL_FIT_TYPE = 1,	/* full fit */
1354 	LE_FIT_TYPE = 2,	/* left edge fit */
1355 	RE_FIT_TYPE = 3,	/* right edge fit */
1356 	NE_FIT_TYPE = 4		/* no edge fit */
1357 };
1358 
1359 static __always_inline enum fit_type
1360 classify_va_fit_type(struct vmap_area *va,
1361 	unsigned long nva_start_addr, unsigned long size)
1362 {
1363 	enum fit_type type;
1364 
1365 	/* Check if it is within VA. */
1366 	if (nva_start_addr < va->va_start ||
1367 			nva_start_addr + size > va->va_end)
1368 		return NOTHING_FIT;
1369 
1370 	/* Now classify. */
1371 	if (va->va_start == nva_start_addr) {
1372 		if (va->va_end == nva_start_addr + size)
1373 			type = FL_FIT_TYPE;
1374 		else
1375 			type = LE_FIT_TYPE;
1376 	} else if (va->va_end == nva_start_addr + size) {
1377 		type = RE_FIT_TYPE;
1378 	} else {
1379 		type = NE_FIT_TYPE;
1380 	}
1381 
1382 	return type;
1383 }
1384 
1385 static __always_inline int
1386 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1387 		      struct vmap_area *va, unsigned long nva_start_addr,
1388 		      unsigned long size)
1389 {
1390 	struct vmap_area *lva = NULL;
1391 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1392 
1393 	if (type == FL_FIT_TYPE) {
1394 		/*
1395 		 * No need to split VA, it fully fits.
1396 		 *
1397 		 * |               |
1398 		 * V      NVA      V
1399 		 * |---------------|
1400 		 */
1401 		unlink_va_augment(va, root);
1402 		kmem_cache_free(vmap_area_cachep, va);
1403 	} else if (type == LE_FIT_TYPE) {
1404 		/*
1405 		 * Split left edge of fit VA.
1406 		 *
1407 		 * |       |
1408 		 * V  NVA  V   R
1409 		 * |-------|-------|
1410 		 */
1411 		va->va_start += size;
1412 	} else if (type == RE_FIT_TYPE) {
1413 		/*
1414 		 * Split right edge of fit VA.
1415 		 *
1416 		 *         |       |
1417 		 *     L   V  NVA  V
1418 		 * |-------|-------|
1419 		 */
1420 		va->va_end = nva_start_addr;
1421 	} else if (type == NE_FIT_TYPE) {
1422 		/*
1423 		 * Split no edge of fit VA.
1424 		 *
1425 		 *     |       |
1426 		 *   L V  NVA  V R
1427 		 * |---|-------|---|
1428 		 */
1429 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1430 		if (unlikely(!lva)) {
1431 			/*
1432 			 * For percpu allocator we do not do any pre-allocation
1433 			 * and leave it as it is. The reason is it most likely
1434 			 * never ends up with NE_FIT_TYPE splitting. In case of
1435 			 * percpu allocations offsets and sizes are aligned to
1436 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1437 			 * are its main fitting cases.
1438 			 *
1439 			 * There are a few exceptions though, as an example it is
1440 			 * a first allocation (early boot up) when we have "one"
1441 			 * big free space that has to be split.
1442 			 *
1443 			 * Also we can hit this path in case of regular "vmap"
1444 			 * allocations, if "this" current CPU was not preloaded.
1445 			 * See the comment in alloc_vmap_area() why. If so, then
1446 			 * GFP_NOWAIT is used instead to get an extra object for
1447 			 * split purpose. That is rare and most time does not
1448 			 * occur.
1449 			 *
1450 			 * What happens if an allocation gets failed. Basically,
1451 			 * an "overflow" path is triggered to purge lazily freed
1452 			 * areas to free some memory, then, the "retry" path is
1453 			 * triggered to repeat one more time. See more details
1454 			 * in alloc_vmap_area() function.
1455 			 */
1456 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1457 			if (!lva)
1458 				return -1;
1459 		}
1460 
1461 		/*
1462 		 * Build the remainder.
1463 		 */
1464 		lva->va_start = va->va_start;
1465 		lva->va_end = nva_start_addr;
1466 
1467 		/*
1468 		 * Shrink this VA to remaining size.
1469 		 */
1470 		va->va_start = nva_start_addr + size;
1471 	} else {
1472 		return -1;
1473 	}
1474 
1475 	if (type != FL_FIT_TYPE) {
1476 		augment_tree_propagate_from(va);
1477 
1478 		if (lva)	/* type == NE_FIT_TYPE */
1479 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1480 	}
1481 
1482 	return 0;
1483 }
1484 
1485 /*
1486  * Returns a start address of the newly allocated area, if success.
1487  * Otherwise a vend is returned that indicates failure.
1488  */
1489 static __always_inline unsigned long
1490 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1491 	unsigned long size, unsigned long align,
1492 	unsigned long vstart, unsigned long vend)
1493 {
1494 	bool adjust_search_size = true;
1495 	unsigned long nva_start_addr;
1496 	struct vmap_area *va;
1497 	int ret;
1498 
1499 	/*
1500 	 * Do not adjust when:
1501 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1502 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1503 	 *      aligned anyway;
1504 	 *   b) a short range where a requested size corresponds to exactly
1505 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1506 	 *      With adjusted search length an allocation would not succeed.
1507 	 */
1508 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1509 		adjust_search_size = false;
1510 
1511 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1512 	if (unlikely(!va))
1513 		return vend;
1514 
1515 	if (va->va_start > vstart)
1516 		nva_start_addr = ALIGN(va->va_start, align);
1517 	else
1518 		nva_start_addr = ALIGN(vstart, align);
1519 
1520 	/* Check the "vend" restriction. */
1521 	if (nva_start_addr + size > vend)
1522 		return vend;
1523 
1524 	/* Update the free vmap_area. */
1525 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1526 	if (WARN_ON_ONCE(ret))
1527 		return vend;
1528 
1529 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1530 	find_vmap_lowest_match_check(root, head, size, align);
1531 #endif
1532 
1533 	return nva_start_addr;
1534 }
1535 
1536 /*
1537  * Free a region of KVA allocated by alloc_vmap_area
1538  */
1539 static void free_vmap_area(struct vmap_area *va)
1540 {
1541 	/*
1542 	 * Remove from the busy tree/list.
1543 	 */
1544 	spin_lock(&vmap_area_lock);
1545 	unlink_va(va, &vmap_area_root);
1546 	spin_unlock(&vmap_area_lock);
1547 
1548 	/*
1549 	 * Insert/Merge it back to the free tree/list.
1550 	 */
1551 	spin_lock(&free_vmap_area_lock);
1552 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1553 	spin_unlock(&free_vmap_area_lock);
1554 }
1555 
1556 static inline void
1557 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1558 {
1559 	struct vmap_area *va = NULL;
1560 
1561 	/*
1562 	 * Preload this CPU with one extra vmap_area object. It is used
1563 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1564 	 * a CPU that does an allocation is preloaded.
1565 	 *
1566 	 * We do it in non-atomic context, thus it allows us to use more
1567 	 * permissive allocation masks to be more stable under low memory
1568 	 * condition and high memory pressure.
1569 	 */
1570 	if (!this_cpu_read(ne_fit_preload_node))
1571 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1572 
1573 	spin_lock(lock);
1574 
1575 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1576 		kmem_cache_free(vmap_area_cachep, va);
1577 }
1578 
1579 /*
1580  * Allocate a region of KVA of the specified size and alignment, within the
1581  * vstart and vend.
1582  */
1583 static struct vmap_area *alloc_vmap_area(unsigned long size,
1584 				unsigned long align,
1585 				unsigned long vstart, unsigned long vend,
1586 				int node, gfp_t gfp_mask,
1587 				unsigned long va_flags)
1588 {
1589 	struct vmap_area *va;
1590 	unsigned long freed;
1591 	unsigned long addr;
1592 	int purged = 0;
1593 	int ret;
1594 
1595 	if (unlikely(!size || offset_in_page(size) || !is_power_of_2(align)))
1596 		return ERR_PTR(-EINVAL);
1597 
1598 	if (unlikely(!vmap_initialized))
1599 		return ERR_PTR(-EBUSY);
1600 
1601 	might_sleep();
1602 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1603 
1604 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1605 	if (unlikely(!va))
1606 		return ERR_PTR(-ENOMEM);
1607 
1608 	/*
1609 	 * Only scan the relevant parts containing pointers to other objects
1610 	 * to avoid false negatives.
1611 	 */
1612 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1613 
1614 retry:
1615 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1616 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1617 		size, align, vstart, vend);
1618 	spin_unlock(&free_vmap_area_lock);
1619 
1620 	trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
1621 
1622 	/*
1623 	 * If an allocation fails, the "vend" address is
1624 	 * returned. Therefore trigger the overflow path.
1625 	 */
1626 	if (unlikely(addr == vend))
1627 		goto overflow;
1628 
1629 	va->va_start = addr;
1630 	va->va_end = addr + size;
1631 	va->vm = NULL;
1632 	va->flags = va_flags;
1633 
1634 	spin_lock(&vmap_area_lock);
1635 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1636 	spin_unlock(&vmap_area_lock);
1637 
1638 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1639 	BUG_ON(va->va_start < vstart);
1640 	BUG_ON(va->va_end > vend);
1641 
1642 	ret = kasan_populate_vmalloc(addr, size);
1643 	if (ret) {
1644 		free_vmap_area(va);
1645 		return ERR_PTR(ret);
1646 	}
1647 
1648 	return va;
1649 
1650 overflow:
1651 	if (!purged) {
1652 		purge_vmap_area_lazy();
1653 		purged = 1;
1654 		goto retry;
1655 	}
1656 
1657 	freed = 0;
1658 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1659 
1660 	if (freed > 0) {
1661 		purged = 0;
1662 		goto retry;
1663 	}
1664 
1665 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1666 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1667 			size);
1668 
1669 	kmem_cache_free(vmap_area_cachep, va);
1670 	return ERR_PTR(-EBUSY);
1671 }
1672 
1673 int register_vmap_purge_notifier(struct notifier_block *nb)
1674 {
1675 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1676 }
1677 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1678 
1679 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1680 {
1681 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1682 }
1683 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1684 
1685 /*
1686  * lazy_max_pages is the maximum amount of virtual address space we gather up
1687  * before attempting to purge with a TLB flush.
1688  *
1689  * There is a tradeoff here: a larger number will cover more kernel page tables
1690  * and take slightly longer to purge, but it will linearly reduce the number of
1691  * global TLB flushes that must be performed. It would seem natural to scale
1692  * this number up linearly with the number of CPUs (because vmapping activity
1693  * could also scale linearly with the number of CPUs), however it is likely
1694  * that in practice, workloads might be constrained in other ways that mean
1695  * vmap activity will not scale linearly with CPUs. Also, I want to be
1696  * conservative and not introduce a big latency on huge systems, so go with
1697  * a less aggressive log scale. It will still be an improvement over the old
1698  * code, and it will be simple to change the scale factor if we find that it
1699  * becomes a problem on bigger systems.
1700  */
1701 static unsigned long lazy_max_pages(void)
1702 {
1703 	unsigned int log;
1704 
1705 	log = fls(num_online_cpus());
1706 
1707 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1708 }
1709 
1710 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1711 
1712 /*
1713  * Serialize vmap purging.  There is no actual critical section protected
1714  * by this lock, but we want to avoid concurrent calls for performance
1715  * reasons and to make the pcpu_get_vm_areas more deterministic.
1716  */
1717 static DEFINE_MUTEX(vmap_purge_lock);
1718 
1719 /* for per-CPU blocks */
1720 static void purge_fragmented_blocks_allcpus(void);
1721 
1722 /*
1723  * Purges all lazily-freed vmap areas.
1724  */
1725 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1726 {
1727 	unsigned long resched_threshold;
1728 	unsigned int num_purged_areas = 0;
1729 	struct list_head local_purge_list;
1730 	struct vmap_area *va, *n_va;
1731 
1732 	lockdep_assert_held(&vmap_purge_lock);
1733 
1734 	spin_lock(&purge_vmap_area_lock);
1735 	purge_vmap_area_root = RB_ROOT;
1736 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1737 	spin_unlock(&purge_vmap_area_lock);
1738 
1739 	if (unlikely(list_empty(&local_purge_list)))
1740 		goto out;
1741 
1742 	start = min(start,
1743 		list_first_entry(&local_purge_list,
1744 			struct vmap_area, list)->va_start);
1745 
1746 	end = max(end,
1747 		list_last_entry(&local_purge_list,
1748 			struct vmap_area, list)->va_end);
1749 
1750 	flush_tlb_kernel_range(start, end);
1751 	resched_threshold = lazy_max_pages() << 1;
1752 
1753 	spin_lock(&free_vmap_area_lock);
1754 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1755 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1756 		unsigned long orig_start = va->va_start;
1757 		unsigned long orig_end = va->va_end;
1758 
1759 		/*
1760 		 * Finally insert or merge lazily-freed area. It is
1761 		 * detached and there is no need to "unlink" it from
1762 		 * anything.
1763 		 */
1764 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1765 				&free_vmap_area_list);
1766 
1767 		if (!va)
1768 			continue;
1769 
1770 		if (is_vmalloc_or_module_addr((void *)orig_start))
1771 			kasan_release_vmalloc(orig_start, orig_end,
1772 					      va->va_start, va->va_end);
1773 
1774 		atomic_long_sub(nr, &vmap_lazy_nr);
1775 		num_purged_areas++;
1776 
1777 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1778 			cond_resched_lock(&free_vmap_area_lock);
1779 	}
1780 	spin_unlock(&free_vmap_area_lock);
1781 
1782 out:
1783 	trace_purge_vmap_area_lazy(start, end, num_purged_areas);
1784 	return num_purged_areas > 0;
1785 }
1786 
1787 /*
1788  * Kick off a purge of the outstanding lazy areas.
1789  */
1790 static void purge_vmap_area_lazy(void)
1791 {
1792 	mutex_lock(&vmap_purge_lock);
1793 	purge_fragmented_blocks_allcpus();
1794 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1795 	mutex_unlock(&vmap_purge_lock);
1796 }
1797 
1798 static void drain_vmap_area_work(struct work_struct *work)
1799 {
1800 	unsigned long nr_lazy;
1801 
1802 	do {
1803 		mutex_lock(&vmap_purge_lock);
1804 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1805 		mutex_unlock(&vmap_purge_lock);
1806 
1807 		/* Recheck if further work is required. */
1808 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1809 	} while (nr_lazy > lazy_max_pages());
1810 }
1811 
1812 /*
1813  * Free a vmap area, caller ensuring that the area has been unmapped,
1814  * unlinked and flush_cache_vunmap had been called for the correct
1815  * range previously.
1816  */
1817 static void free_vmap_area_noflush(struct vmap_area *va)
1818 {
1819 	unsigned long nr_lazy_max = lazy_max_pages();
1820 	unsigned long va_start = va->va_start;
1821 	unsigned long nr_lazy;
1822 
1823 	if (WARN_ON_ONCE(!list_empty(&va->list)))
1824 		return;
1825 
1826 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1827 				PAGE_SHIFT, &vmap_lazy_nr);
1828 
1829 	/*
1830 	 * Merge or place it to the purge tree/list.
1831 	 */
1832 	spin_lock(&purge_vmap_area_lock);
1833 	merge_or_add_vmap_area(va,
1834 		&purge_vmap_area_root, &purge_vmap_area_list);
1835 	spin_unlock(&purge_vmap_area_lock);
1836 
1837 	trace_free_vmap_area_noflush(va_start, nr_lazy, nr_lazy_max);
1838 
1839 	/* After this point, we may free va at any time */
1840 	if (unlikely(nr_lazy > nr_lazy_max))
1841 		schedule_work(&drain_vmap_work);
1842 }
1843 
1844 /*
1845  * Free and unmap a vmap area
1846  */
1847 static void free_unmap_vmap_area(struct vmap_area *va)
1848 {
1849 	flush_cache_vunmap(va->va_start, va->va_end);
1850 	vunmap_range_noflush(va->va_start, va->va_end);
1851 	if (debug_pagealloc_enabled_static())
1852 		flush_tlb_kernel_range(va->va_start, va->va_end);
1853 
1854 	free_vmap_area_noflush(va);
1855 }
1856 
1857 struct vmap_area *find_vmap_area(unsigned long addr)
1858 {
1859 	struct vmap_area *va;
1860 
1861 	spin_lock(&vmap_area_lock);
1862 	va = __find_vmap_area(addr, &vmap_area_root);
1863 	spin_unlock(&vmap_area_lock);
1864 
1865 	return va;
1866 }
1867 
1868 static struct vmap_area *find_unlink_vmap_area(unsigned long addr)
1869 {
1870 	struct vmap_area *va;
1871 
1872 	spin_lock(&vmap_area_lock);
1873 	va = __find_vmap_area(addr, &vmap_area_root);
1874 	if (va)
1875 		unlink_va(va, &vmap_area_root);
1876 	spin_unlock(&vmap_area_lock);
1877 
1878 	return va;
1879 }
1880 
1881 /*** Per cpu kva allocator ***/
1882 
1883 /*
1884  * vmap space is limited especially on 32 bit architectures. Ensure there is
1885  * room for at least 16 percpu vmap blocks per CPU.
1886  */
1887 /*
1888  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1889  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1890  * instead (we just need a rough idea)
1891  */
1892 #if BITS_PER_LONG == 32
1893 #define VMALLOC_SPACE		(128UL*1024*1024)
1894 #else
1895 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1896 #endif
1897 
1898 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1899 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1900 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1901 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1902 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1903 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1904 #define VMAP_BBMAP_BITS		\
1905 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1906 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1907 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1908 
1909 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1910 
1911 #define VMAP_RAM		0x1 /* indicates vm_map_ram area*/
1912 #define VMAP_BLOCK		0x2 /* mark out the vmap_block sub-type*/
1913 #define VMAP_FLAGS_MASK		0x3
1914 
1915 struct vmap_block_queue {
1916 	spinlock_t lock;
1917 	struct list_head free;
1918 };
1919 
1920 struct vmap_block {
1921 	spinlock_t lock;
1922 	struct vmap_area *va;
1923 	unsigned long free, dirty;
1924 	DECLARE_BITMAP(used_map, VMAP_BBMAP_BITS);
1925 	unsigned long dirty_min, dirty_max; /*< dirty range */
1926 	struct list_head free_list;
1927 	struct rcu_head rcu_head;
1928 	struct list_head purge;
1929 };
1930 
1931 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1932 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1933 
1934 /*
1935  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1936  * in the free path. Could get rid of this if we change the API to return a
1937  * "cookie" from alloc, to be passed to free. But no big deal yet.
1938  */
1939 static DEFINE_XARRAY(vmap_blocks);
1940 
1941 /*
1942  * We should probably have a fallback mechanism to allocate virtual memory
1943  * out of partially filled vmap blocks. However vmap block sizing should be
1944  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1945  * big problem.
1946  */
1947 
1948 static unsigned long addr_to_vb_idx(unsigned long addr)
1949 {
1950 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1951 	addr /= VMAP_BLOCK_SIZE;
1952 	return addr;
1953 }
1954 
1955 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1956 {
1957 	unsigned long addr;
1958 
1959 	addr = va_start + (pages_off << PAGE_SHIFT);
1960 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1961 	return (void *)addr;
1962 }
1963 
1964 /**
1965  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1966  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1967  * @order:    how many 2^order pages should be occupied in newly allocated block
1968  * @gfp_mask: flags for the page level allocator
1969  *
1970  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1971  */
1972 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1973 {
1974 	struct vmap_block_queue *vbq;
1975 	struct vmap_block *vb;
1976 	struct vmap_area *va;
1977 	unsigned long vb_idx;
1978 	int node, err;
1979 	void *vaddr;
1980 
1981 	node = numa_node_id();
1982 
1983 	vb = kmalloc_node(sizeof(struct vmap_block),
1984 			gfp_mask & GFP_RECLAIM_MASK, node);
1985 	if (unlikely(!vb))
1986 		return ERR_PTR(-ENOMEM);
1987 
1988 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1989 					VMALLOC_START, VMALLOC_END,
1990 					node, gfp_mask,
1991 					VMAP_RAM|VMAP_BLOCK);
1992 	if (IS_ERR(va)) {
1993 		kfree(vb);
1994 		return ERR_CAST(va);
1995 	}
1996 
1997 	vaddr = vmap_block_vaddr(va->va_start, 0);
1998 	spin_lock_init(&vb->lock);
1999 	vb->va = va;
2000 	/* At least something should be left free */
2001 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
2002 	bitmap_zero(vb->used_map, VMAP_BBMAP_BITS);
2003 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
2004 	vb->dirty = 0;
2005 	vb->dirty_min = VMAP_BBMAP_BITS;
2006 	vb->dirty_max = 0;
2007 	bitmap_set(vb->used_map, 0, (1UL << order));
2008 	INIT_LIST_HEAD(&vb->free_list);
2009 
2010 	vb_idx = addr_to_vb_idx(va->va_start);
2011 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
2012 	if (err) {
2013 		kfree(vb);
2014 		free_vmap_area(va);
2015 		return ERR_PTR(err);
2016 	}
2017 
2018 	vbq = raw_cpu_ptr(&vmap_block_queue);
2019 	spin_lock(&vbq->lock);
2020 	list_add_tail_rcu(&vb->free_list, &vbq->free);
2021 	spin_unlock(&vbq->lock);
2022 
2023 	return vaddr;
2024 }
2025 
2026 static void free_vmap_block(struct vmap_block *vb)
2027 {
2028 	struct vmap_block *tmp;
2029 
2030 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
2031 	BUG_ON(tmp != vb);
2032 
2033 	spin_lock(&vmap_area_lock);
2034 	unlink_va(vb->va, &vmap_area_root);
2035 	spin_unlock(&vmap_area_lock);
2036 
2037 	free_vmap_area_noflush(vb->va);
2038 	kfree_rcu(vb, rcu_head);
2039 }
2040 
2041 static void purge_fragmented_blocks(int cpu)
2042 {
2043 	LIST_HEAD(purge);
2044 	struct vmap_block *vb;
2045 	struct vmap_block *n_vb;
2046 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2047 
2048 	rcu_read_lock();
2049 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2050 
2051 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2052 			continue;
2053 
2054 		spin_lock(&vb->lock);
2055 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2056 			vb->free = 0; /* prevent further allocs after releasing lock */
2057 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2058 			vb->dirty_min = 0;
2059 			vb->dirty_max = VMAP_BBMAP_BITS;
2060 			spin_lock(&vbq->lock);
2061 			list_del_rcu(&vb->free_list);
2062 			spin_unlock(&vbq->lock);
2063 			spin_unlock(&vb->lock);
2064 			list_add_tail(&vb->purge, &purge);
2065 		} else
2066 			spin_unlock(&vb->lock);
2067 	}
2068 	rcu_read_unlock();
2069 
2070 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2071 		list_del(&vb->purge);
2072 		free_vmap_block(vb);
2073 	}
2074 }
2075 
2076 static void purge_fragmented_blocks_allcpus(void)
2077 {
2078 	int cpu;
2079 
2080 	for_each_possible_cpu(cpu)
2081 		purge_fragmented_blocks(cpu);
2082 }
2083 
2084 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2085 {
2086 	struct vmap_block_queue *vbq;
2087 	struct vmap_block *vb;
2088 	void *vaddr = NULL;
2089 	unsigned int order;
2090 
2091 	BUG_ON(offset_in_page(size));
2092 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2093 	if (WARN_ON(size == 0)) {
2094 		/*
2095 		 * Allocating 0 bytes isn't what caller wants since
2096 		 * get_order(0) returns funny result. Just warn and terminate
2097 		 * early.
2098 		 */
2099 		return NULL;
2100 	}
2101 	order = get_order(size);
2102 
2103 	rcu_read_lock();
2104 	vbq = raw_cpu_ptr(&vmap_block_queue);
2105 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2106 		unsigned long pages_off;
2107 
2108 		spin_lock(&vb->lock);
2109 		if (vb->free < (1UL << order)) {
2110 			spin_unlock(&vb->lock);
2111 			continue;
2112 		}
2113 
2114 		pages_off = VMAP_BBMAP_BITS - vb->free;
2115 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2116 		vb->free -= 1UL << order;
2117 		bitmap_set(vb->used_map, pages_off, (1UL << order));
2118 		if (vb->free == 0) {
2119 			spin_lock(&vbq->lock);
2120 			list_del_rcu(&vb->free_list);
2121 			spin_unlock(&vbq->lock);
2122 		}
2123 
2124 		spin_unlock(&vb->lock);
2125 		break;
2126 	}
2127 
2128 	rcu_read_unlock();
2129 
2130 	/* Allocate new block if nothing was found */
2131 	if (!vaddr)
2132 		vaddr = new_vmap_block(order, gfp_mask);
2133 
2134 	return vaddr;
2135 }
2136 
2137 static void vb_free(unsigned long addr, unsigned long size)
2138 {
2139 	unsigned long offset;
2140 	unsigned int order;
2141 	struct vmap_block *vb;
2142 
2143 	BUG_ON(offset_in_page(size));
2144 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2145 
2146 	flush_cache_vunmap(addr, addr + size);
2147 
2148 	order = get_order(size);
2149 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2150 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2151 	spin_lock(&vb->lock);
2152 	bitmap_clear(vb->used_map, offset, (1UL << order));
2153 	spin_unlock(&vb->lock);
2154 
2155 	vunmap_range_noflush(addr, addr + size);
2156 
2157 	if (debug_pagealloc_enabled_static())
2158 		flush_tlb_kernel_range(addr, addr + size);
2159 
2160 	spin_lock(&vb->lock);
2161 
2162 	/* Expand dirty range */
2163 	vb->dirty_min = min(vb->dirty_min, offset);
2164 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2165 
2166 	vb->dirty += 1UL << order;
2167 	if (vb->dirty == VMAP_BBMAP_BITS) {
2168 		BUG_ON(vb->free);
2169 		spin_unlock(&vb->lock);
2170 		free_vmap_block(vb);
2171 	} else
2172 		spin_unlock(&vb->lock);
2173 }
2174 
2175 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2176 {
2177 	int cpu;
2178 
2179 	if (unlikely(!vmap_initialized))
2180 		return;
2181 
2182 	might_sleep();
2183 
2184 	for_each_possible_cpu(cpu) {
2185 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2186 		struct vmap_block *vb;
2187 
2188 		rcu_read_lock();
2189 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2190 			spin_lock(&vb->lock);
2191 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2192 				unsigned long va_start = vb->va->va_start;
2193 				unsigned long s, e;
2194 
2195 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2196 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2197 
2198 				start = min(s, start);
2199 				end   = max(e, end);
2200 
2201 				flush = 1;
2202 			}
2203 			spin_unlock(&vb->lock);
2204 		}
2205 		rcu_read_unlock();
2206 	}
2207 
2208 	mutex_lock(&vmap_purge_lock);
2209 	purge_fragmented_blocks_allcpus();
2210 	if (!__purge_vmap_area_lazy(start, end) && flush)
2211 		flush_tlb_kernel_range(start, end);
2212 	mutex_unlock(&vmap_purge_lock);
2213 }
2214 
2215 /**
2216  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2217  *
2218  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2219  * to amortize TLB flushing overheads. What this means is that any page you
2220  * have now, may, in a former life, have been mapped into kernel virtual
2221  * address by the vmap layer and so there might be some CPUs with TLB entries
2222  * still referencing that page (additional to the regular 1:1 kernel mapping).
2223  *
2224  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2225  * be sure that none of the pages we have control over will have any aliases
2226  * from the vmap layer.
2227  */
2228 void vm_unmap_aliases(void)
2229 {
2230 	unsigned long start = ULONG_MAX, end = 0;
2231 	int flush = 0;
2232 
2233 	_vm_unmap_aliases(start, end, flush);
2234 }
2235 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2236 
2237 /**
2238  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2239  * @mem: the pointer returned by vm_map_ram
2240  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2241  */
2242 void vm_unmap_ram(const void *mem, unsigned int count)
2243 {
2244 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2245 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2246 	struct vmap_area *va;
2247 
2248 	might_sleep();
2249 	BUG_ON(!addr);
2250 	BUG_ON(addr < VMALLOC_START);
2251 	BUG_ON(addr > VMALLOC_END);
2252 	BUG_ON(!PAGE_ALIGNED(addr));
2253 
2254 	kasan_poison_vmalloc(mem, size);
2255 
2256 	if (likely(count <= VMAP_MAX_ALLOC)) {
2257 		debug_check_no_locks_freed(mem, size);
2258 		vb_free(addr, size);
2259 		return;
2260 	}
2261 
2262 	va = find_unlink_vmap_area(addr);
2263 	if (WARN_ON_ONCE(!va))
2264 		return;
2265 
2266 	debug_check_no_locks_freed((void *)va->va_start,
2267 				    (va->va_end - va->va_start));
2268 	free_unmap_vmap_area(va);
2269 }
2270 EXPORT_SYMBOL(vm_unmap_ram);
2271 
2272 /**
2273  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2274  * @pages: an array of pointers to the pages to be mapped
2275  * @count: number of pages
2276  * @node: prefer to allocate data structures on this node
2277  *
2278  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2279  * faster than vmap so it's good.  But if you mix long-life and short-life
2280  * objects with vm_map_ram(), it could consume lots of address space through
2281  * fragmentation (especially on a 32bit machine).  You could see failures in
2282  * the end.  Please use this function for short-lived objects.
2283  *
2284  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2285  */
2286 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2287 {
2288 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2289 	unsigned long addr;
2290 	void *mem;
2291 
2292 	if (likely(count <= VMAP_MAX_ALLOC)) {
2293 		mem = vb_alloc(size, GFP_KERNEL);
2294 		if (IS_ERR(mem))
2295 			return NULL;
2296 		addr = (unsigned long)mem;
2297 	} else {
2298 		struct vmap_area *va;
2299 		va = alloc_vmap_area(size, PAGE_SIZE,
2300 				VMALLOC_START, VMALLOC_END,
2301 				node, GFP_KERNEL, VMAP_RAM);
2302 		if (IS_ERR(va))
2303 			return NULL;
2304 
2305 		addr = va->va_start;
2306 		mem = (void *)addr;
2307 	}
2308 
2309 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2310 				pages, PAGE_SHIFT) < 0) {
2311 		vm_unmap_ram(mem, count);
2312 		return NULL;
2313 	}
2314 
2315 	/*
2316 	 * Mark the pages as accessible, now that they are mapped.
2317 	 * With hardware tag-based KASAN, marking is skipped for
2318 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2319 	 */
2320 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2321 
2322 	return mem;
2323 }
2324 EXPORT_SYMBOL(vm_map_ram);
2325 
2326 static struct vm_struct *vmlist __initdata;
2327 
2328 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2329 {
2330 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2331 	return vm->page_order;
2332 #else
2333 	return 0;
2334 #endif
2335 }
2336 
2337 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2338 {
2339 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2340 	vm->page_order = order;
2341 #else
2342 	BUG_ON(order != 0);
2343 #endif
2344 }
2345 
2346 /**
2347  * vm_area_add_early - add vmap area early during boot
2348  * @vm: vm_struct to add
2349  *
2350  * This function is used to add fixed kernel vm area to vmlist before
2351  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2352  * should contain proper values and the other fields should be zero.
2353  *
2354  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2355  */
2356 void __init vm_area_add_early(struct vm_struct *vm)
2357 {
2358 	struct vm_struct *tmp, **p;
2359 
2360 	BUG_ON(vmap_initialized);
2361 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2362 		if (tmp->addr >= vm->addr) {
2363 			BUG_ON(tmp->addr < vm->addr + vm->size);
2364 			break;
2365 		} else
2366 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2367 	}
2368 	vm->next = *p;
2369 	*p = vm;
2370 }
2371 
2372 /**
2373  * vm_area_register_early - register vmap area early during boot
2374  * @vm: vm_struct to register
2375  * @align: requested alignment
2376  *
2377  * This function is used to register kernel vm area before
2378  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2379  * proper values on entry and other fields should be zero.  On return,
2380  * vm->addr contains the allocated address.
2381  *
2382  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2383  */
2384 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2385 {
2386 	unsigned long addr = ALIGN(VMALLOC_START, align);
2387 	struct vm_struct *cur, **p;
2388 
2389 	BUG_ON(vmap_initialized);
2390 
2391 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2392 		if ((unsigned long)cur->addr - addr >= vm->size)
2393 			break;
2394 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2395 	}
2396 
2397 	BUG_ON(addr > VMALLOC_END - vm->size);
2398 	vm->addr = (void *)addr;
2399 	vm->next = *p;
2400 	*p = vm;
2401 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2402 }
2403 
2404 static void vmap_init_free_space(void)
2405 {
2406 	unsigned long vmap_start = 1;
2407 	const unsigned long vmap_end = ULONG_MAX;
2408 	struct vmap_area *busy, *free;
2409 
2410 	/*
2411 	 *     B     F     B     B     B     F
2412 	 * -|-----|.....|-----|-----|-----|.....|-
2413 	 *  |           The KVA space           |
2414 	 *  |<--------------------------------->|
2415 	 */
2416 	list_for_each_entry(busy, &vmap_area_list, list) {
2417 		if (busy->va_start - vmap_start > 0) {
2418 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2419 			if (!WARN_ON_ONCE(!free)) {
2420 				free->va_start = vmap_start;
2421 				free->va_end = busy->va_start;
2422 
2423 				insert_vmap_area_augment(free, NULL,
2424 					&free_vmap_area_root,
2425 						&free_vmap_area_list);
2426 			}
2427 		}
2428 
2429 		vmap_start = busy->va_end;
2430 	}
2431 
2432 	if (vmap_end - vmap_start > 0) {
2433 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2434 		if (!WARN_ON_ONCE(!free)) {
2435 			free->va_start = vmap_start;
2436 			free->va_end = vmap_end;
2437 
2438 			insert_vmap_area_augment(free, NULL,
2439 				&free_vmap_area_root,
2440 					&free_vmap_area_list);
2441 		}
2442 	}
2443 }
2444 
2445 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2446 	struct vmap_area *va, unsigned long flags, const void *caller)
2447 {
2448 	vm->flags = flags;
2449 	vm->addr = (void *)va->va_start;
2450 	vm->size = va->va_end - va->va_start;
2451 	vm->caller = caller;
2452 	va->vm = vm;
2453 }
2454 
2455 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2456 			      unsigned long flags, const void *caller)
2457 {
2458 	spin_lock(&vmap_area_lock);
2459 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2460 	spin_unlock(&vmap_area_lock);
2461 }
2462 
2463 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2464 {
2465 	/*
2466 	 * Before removing VM_UNINITIALIZED,
2467 	 * we should make sure that vm has proper values.
2468 	 * Pair with smp_rmb() in show_numa_info().
2469 	 */
2470 	smp_wmb();
2471 	vm->flags &= ~VM_UNINITIALIZED;
2472 }
2473 
2474 static struct vm_struct *__get_vm_area_node(unsigned long size,
2475 		unsigned long align, unsigned long shift, unsigned long flags,
2476 		unsigned long start, unsigned long end, int node,
2477 		gfp_t gfp_mask, const void *caller)
2478 {
2479 	struct vmap_area *va;
2480 	struct vm_struct *area;
2481 	unsigned long requested_size = size;
2482 
2483 	BUG_ON(in_interrupt());
2484 	size = ALIGN(size, 1ul << shift);
2485 	if (unlikely(!size))
2486 		return NULL;
2487 
2488 	if (flags & VM_IOREMAP)
2489 		align = 1ul << clamp_t(int, get_count_order_long(size),
2490 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2491 
2492 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2493 	if (unlikely(!area))
2494 		return NULL;
2495 
2496 	if (!(flags & VM_NO_GUARD))
2497 		size += PAGE_SIZE;
2498 
2499 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask, 0);
2500 	if (IS_ERR(va)) {
2501 		kfree(area);
2502 		return NULL;
2503 	}
2504 
2505 	setup_vmalloc_vm(area, va, flags, caller);
2506 
2507 	/*
2508 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2509 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2510 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2511 	 * getting mapped in __vmalloc_node_range().
2512 	 * With hardware tag-based KASAN, marking is skipped for
2513 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2514 	 */
2515 	if (!(flags & VM_ALLOC))
2516 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2517 						    KASAN_VMALLOC_PROT_NORMAL);
2518 
2519 	return area;
2520 }
2521 
2522 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2523 				       unsigned long start, unsigned long end,
2524 				       const void *caller)
2525 {
2526 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2527 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2528 }
2529 
2530 /**
2531  * get_vm_area - reserve a contiguous kernel virtual area
2532  * @size:	 size of the area
2533  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2534  *
2535  * Search an area of @size in the kernel virtual mapping area,
2536  * and reserved it for out purposes.  Returns the area descriptor
2537  * on success or %NULL on failure.
2538  *
2539  * Return: the area descriptor on success or %NULL on failure.
2540  */
2541 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2542 {
2543 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2544 				  VMALLOC_START, VMALLOC_END,
2545 				  NUMA_NO_NODE, GFP_KERNEL,
2546 				  __builtin_return_address(0));
2547 }
2548 
2549 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2550 				const void *caller)
2551 {
2552 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2553 				  VMALLOC_START, VMALLOC_END,
2554 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2555 }
2556 
2557 /**
2558  * find_vm_area - find a continuous kernel virtual area
2559  * @addr:	  base address
2560  *
2561  * Search for the kernel VM area starting at @addr, and return it.
2562  * It is up to the caller to do all required locking to keep the returned
2563  * pointer valid.
2564  *
2565  * Return: the area descriptor on success or %NULL on failure.
2566  */
2567 struct vm_struct *find_vm_area(const void *addr)
2568 {
2569 	struct vmap_area *va;
2570 
2571 	va = find_vmap_area((unsigned long)addr);
2572 	if (!va)
2573 		return NULL;
2574 
2575 	return va->vm;
2576 }
2577 
2578 /**
2579  * remove_vm_area - find and remove a continuous kernel virtual area
2580  * @addr:	    base address
2581  *
2582  * Search for the kernel VM area starting at @addr, and remove it.
2583  * This function returns the found VM area, but using it is NOT safe
2584  * on SMP machines, except for its size or flags.
2585  *
2586  * Return: the area descriptor on success or %NULL on failure.
2587  */
2588 struct vm_struct *remove_vm_area(const void *addr)
2589 {
2590 	struct vmap_area *va;
2591 	struct vm_struct *vm;
2592 
2593 	might_sleep();
2594 
2595 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2596 			addr))
2597 		return NULL;
2598 
2599 	va = find_unlink_vmap_area((unsigned long)addr);
2600 	if (!va || !va->vm)
2601 		return NULL;
2602 	vm = va->vm;
2603 
2604 	debug_check_no_locks_freed(vm->addr, get_vm_area_size(vm));
2605 	debug_check_no_obj_freed(vm->addr, get_vm_area_size(vm));
2606 	kasan_free_module_shadow(vm);
2607 	kasan_poison_vmalloc(vm->addr, get_vm_area_size(vm));
2608 
2609 	free_unmap_vmap_area(va);
2610 	return vm;
2611 }
2612 
2613 static inline void set_area_direct_map(const struct vm_struct *area,
2614 				       int (*set_direct_map)(struct page *page))
2615 {
2616 	int i;
2617 
2618 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2619 	for (i = 0; i < area->nr_pages; i++)
2620 		if (page_address(area->pages[i]))
2621 			set_direct_map(area->pages[i]);
2622 }
2623 
2624 /*
2625  * Flush the vm mapping and reset the direct map.
2626  */
2627 static void vm_reset_perms(struct vm_struct *area)
2628 {
2629 	unsigned long start = ULONG_MAX, end = 0;
2630 	unsigned int page_order = vm_area_page_order(area);
2631 	int flush_dmap = 0;
2632 	int i;
2633 
2634 	/*
2635 	 * Find the start and end range of the direct mappings to make sure that
2636 	 * the vm_unmap_aliases() flush includes the direct map.
2637 	 */
2638 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2639 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2640 
2641 		if (addr) {
2642 			unsigned long page_size;
2643 
2644 			page_size = PAGE_SIZE << page_order;
2645 			start = min(addr, start);
2646 			end = max(addr + page_size, end);
2647 			flush_dmap = 1;
2648 		}
2649 	}
2650 
2651 	/*
2652 	 * Set direct map to something invalid so that it won't be cached if
2653 	 * there are any accesses after the TLB flush, then flush the TLB and
2654 	 * reset the direct map permissions to the default.
2655 	 */
2656 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2657 	_vm_unmap_aliases(start, end, flush_dmap);
2658 	set_area_direct_map(area, set_direct_map_default_noflush);
2659 }
2660 
2661 static void delayed_vfree_work(struct work_struct *w)
2662 {
2663 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
2664 	struct llist_node *t, *llnode;
2665 
2666 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
2667 		vfree(llnode);
2668 }
2669 
2670 /**
2671  * vfree_atomic - release memory allocated by vmalloc()
2672  * @addr:	  memory base address
2673  *
2674  * This one is just like vfree() but can be called in any atomic context
2675  * except NMIs.
2676  */
2677 void vfree_atomic(const void *addr)
2678 {
2679 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2680 
2681 	BUG_ON(in_nmi());
2682 	kmemleak_free(addr);
2683 
2684 	/*
2685 	 * Use raw_cpu_ptr() because this can be called from preemptible
2686 	 * context. Preemption is absolutely fine here, because the llist_add()
2687 	 * implementation is lockless, so it works even if we are adding to
2688 	 * another cpu's list. schedule_work() should be fine with this too.
2689 	 */
2690 	if (addr && llist_add((struct llist_node *)addr, &p->list))
2691 		schedule_work(&p->wq);
2692 }
2693 
2694 /**
2695  * vfree - Release memory allocated by vmalloc()
2696  * @addr:  Memory base address
2697  *
2698  * Free the virtually continuous memory area starting at @addr, as obtained
2699  * from one of the vmalloc() family of APIs.  This will usually also free the
2700  * physical memory underlying the virtual allocation, but that memory is
2701  * reference counted, so it will not be freed until the last user goes away.
2702  *
2703  * If @addr is NULL, no operation is performed.
2704  *
2705  * Context:
2706  * May sleep if called *not* from interrupt context.
2707  * Must not be called in NMI context (strictly speaking, it could be
2708  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2709  * conventions for vfree() arch-dependent would be a really bad idea).
2710  */
2711 void vfree(const void *addr)
2712 {
2713 	struct vm_struct *vm;
2714 	int i;
2715 
2716 	if (unlikely(in_interrupt())) {
2717 		vfree_atomic(addr);
2718 		return;
2719 	}
2720 
2721 	BUG_ON(in_nmi());
2722 	kmemleak_free(addr);
2723 	might_sleep();
2724 
2725 	if (!addr)
2726 		return;
2727 
2728 	vm = remove_vm_area(addr);
2729 	if (unlikely(!vm)) {
2730 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2731 				addr);
2732 		return;
2733 	}
2734 
2735 	if (unlikely(vm->flags & VM_FLUSH_RESET_PERMS))
2736 		vm_reset_perms(vm);
2737 	for (i = 0; i < vm->nr_pages; i++) {
2738 		struct page *page = vm->pages[i];
2739 
2740 		BUG_ON(!page);
2741 		mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2742 		/*
2743 		 * High-order allocs for huge vmallocs are split, so
2744 		 * can be freed as an array of order-0 allocations
2745 		 */
2746 		__free_pages(page, 0);
2747 		cond_resched();
2748 	}
2749 	atomic_long_sub(vm->nr_pages, &nr_vmalloc_pages);
2750 	kvfree(vm->pages);
2751 	kfree(vm);
2752 }
2753 EXPORT_SYMBOL(vfree);
2754 
2755 /**
2756  * vunmap - release virtual mapping obtained by vmap()
2757  * @addr:   memory base address
2758  *
2759  * Free the virtually contiguous memory area starting at @addr,
2760  * which was created from the page array passed to vmap().
2761  *
2762  * Must not be called in interrupt context.
2763  */
2764 void vunmap(const void *addr)
2765 {
2766 	struct vm_struct *vm;
2767 
2768 	BUG_ON(in_interrupt());
2769 	might_sleep();
2770 
2771 	if (!addr)
2772 		return;
2773 	vm = remove_vm_area(addr);
2774 	if (unlikely(!vm)) {
2775 		WARN(1, KERN_ERR "Trying to vunmap() nonexistent vm area (%p)\n",
2776 				addr);
2777 		return;
2778 	}
2779 	kfree(vm);
2780 }
2781 EXPORT_SYMBOL(vunmap);
2782 
2783 /**
2784  * vmap - map an array of pages into virtually contiguous space
2785  * @pages: array of page pointers
2786  * @count: number of pages to map
2787  * @flags: vm_area->flags
2788  * @prot: page protection for the mapping
2789  *
2790  * Maps @count pages from @pages into contiguous kernel virtual space.
2791  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2792  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2793  * are transferred from the caller to vmap(), and will be freed / dropped when
2794  * vfree() is called on the return value.
2795  *
2796  * Return: the address of the area or %NULL on failure
2797  */
2798 void *vmap(struct page **pages, unsigned int count,
2799 	   unsigned long flags, pgprot_t prot)
2800 {
2801 	struct vm_struct *area;
2802 	unsigned long addr;
2803 	unsigned long size;		/* In bytes */
2804 
2805 	might_sleep();
2806 
2807 	if (WARN_ON_ONCE(flags & VM_FLUSH_RESET_PERMS))
2808 		return NULL;
2809 
2810 	/*
2811 	 * Your top guard is someone else's bottom guard. Not having a top
2812 	 * guard compromises someone else's mappings too.
2813 	 */
2814 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2815 		flags &= ~VM_NO_GUARD;
2816 
2817 	if (count > totalram_pages())
2818 		return NULL;
2819 
2820 	size = (unsigned long)count << PAGE_SHIFT;
2821 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2822 	if (!area)
2823 		return NULL;
2824 
2825 	addr = (unsigned long)area->addr;
2826 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2827 				pages, PAGE_SHIFT) < 0) {
2828 		vunmap(area->addr);
2829 		return NULL;
2830 	}
2831 
2832 	if (flags & VM_MAP_PUT_PAGES) {
2833 		area->pages = pages;
2834 		area->nr_pages = count;
2835 	}
2836 	return area->addr;
2837 }
2838 EXPORT_SYMBOL(vmap);
2839 
2840 #ifdef CONFIG_VMAP_PFN
2841 struct vmap_pfn_data {
2842 	unsigned long	*pfns;
2843 	pgprot_t	prot;
2844 	unsigned int	idx;
2845 };
2846 
2847 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2848 {
2849 	struct vmap_pfn_data *data = private;
2850 
2851 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2852 		return -EINVAL;
2853 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2854 	return 0;
2855 }
2856 
2857 /**
2858  * vmap_pfn - map an array of PFNs into virtually contiguous space
2859  * @pfns: array of PFNs
2860  * @count: number of pages to map
2861  * @prot: page protection for the mapping
2862  *
2863  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2864  * the start address of the mapping.
2865  */
2866 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2867 {
2868 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2869 	struct vm_struct *area;
2870 
2871 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2872 			__builtin_return_address(0));
2873 	if (!area)
2874 		return NULL;
2875 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2876 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2877 		free_vm_area(area);
2878 		return NULL;
2879 	}
2880 	return area->addr;
2881 }
2882 EXPORT_SYMBOL_GPL(vmap_pfn);
2883 #endif /* CONFIG_VMAP_PFN */
2884 
2885 static inline unsigned int
2886 vm_area_alloc_pages(gfp_t gfp, int nid,
2887 		unsigned int order, unsigned int nr_pages, struct page **pages)
2888 {
2889 	unsigned int nr_allocated = 0;
2890 	gfp_t alloc_gfp = gfp;
2891 	bool nofail = false;
2892 	struct page *page;
2893 	int i;
2894 
2895 	/*
2896 	 * For order-0 pages we make use of bulk allocator, if
2897 	 * the page array is partly or not at all populated due
2898 	 * to fails, fallback to a single page allocator that is
2899 	 * more permissive.
2900 	 */
2901 	if (!order) {
2902 		/* bulk allocator doesn't support nofail req. officially */
2903 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2904 
2905 		while (nr_allocated < nr_pages) {
2906 			unsigned int nr, nr_pages_request;
2907 
2908 			/*
2909 			 * A maximum allowed request is hard-coded and is 100
2910 			 * pages per call. That is done in order to prevent a
2911 			 * long preemption off scenario in the bulk-allocator
2912 			 * so the range is [1:100].
2913 			 */
2914 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2915 
2916 			/* memory allocation should consider mempolicy, we can't
2917 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
2918 			 * otherwise memory may be allocated in only one node,
2919 			 * but mempolicy wants to alloc memory by interleaving.
2920 			 */
2921 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2922 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2923 							nr_pages_request,
2924 							pages + nr_allocated);
2925 
2926 			else
2927 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2928 							nr_pages_request,
2929 							pages + nr_allocated);
2930 
2931 			nr_allocated += nr;
2932 			cond_resched();
2933 
2934 			/*
2935 			 * If zero or pages were obtained partly,
2936 			 * fallback to a single page allocator.
2937 			 */
2938 			if (nr != nr_pages_request)
2939 				break;
2940 		}
2941 	} else if (gfp & __GFP_NOFAIL) {
2942 		/*
2943 		 * Higher order nofail allocations are really expensive and
2944 		 * potentially dangerous (pre-mature OOM, disruptive reclaim
2945 		 * and compaction etc.
2946 		 */
2947 		alloc_gfp &= ~__GFP_NOFAIL;
2948 		nofail = true;
2949 	}
2950 
2951 	/* High-order pages or fallback path if "bulk" fails. */
2952 	while (nr_allocated < nr_pages) {
2953 		if (fatal_signal_pending(current))
2954 			break;
2955 
2956 		if (nid == NUMA_NO_NODE)
2957 			page = alloc_pages(alloc_gfp, order);
2958 		else
2959 			page = alloc_pages_node(nid, alloc_gfp, order);
2960 		if (unlikely(!page)) {
2961 			if (!nofail)
2962 				break;
2963 
2964 			/* fall back to the zero order allocations */
2965 			alloc_gfp |= __GFP_NOFAIL;
2966 			order = 0;
2967 			continue;
2968 		}
2969 
2970 		/*
2971 		 * Higher order allocations must be able to be treated as
2972 		 * indepdenent small pages by callers (as they can with
2973 		 * small-page vmallocs). Some drivers do their own refcounting
2974 		 * on vmalloc_to_page() pages, some use page->mapping,
2975 		 * page->lru, etc.
2976 		 */
2977 		if (order)
2978 			split_page(page, order);
2979 
2980 		/*
2981 		 * Careful, we allocate and map page-order pages, but
2982 		 * tracking is done per PAGE_SIZE page so as to keep the
2983 		 * vm_struct APIs independent of the physical/mapped size.
2984 		 */
2985 		for (i = 0; i < (1U << order); i++)
2986 			pages[nr_allocated + i] = page + i;
2987 
2988 		cond_resched();
2989 		nr_allocated += 1U << order;
2990 	}
2991 
2992 	return nr_allocated;
2993 }
2994 
2995 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2996 				 pgprot_t prot, unsigned int page_shift,
2997 				 int node)
2998 {
2999 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3000 	bool nofail = gfp_mask & __GFP_NOFAIL;
3001 	unsigned long addr = (unsigned long)area->addr;
3002 	unsigned long size = get_vm_area_size(area);
3003 	unsigned long array_size;
3004 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3005 	unsigned int page_order;
3006 	unsigned int flags;
3007 	int ret;
3008 
3009 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3010 
3011 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3012 		gfp_mask |= __GFP_HIGHMEM;
3013 
3014 	/* Please note that the recursion is strictly bounded. */
3015 	if (array_size > PAGE_SIZE) {
3016 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3017 					area->caller);
3018 	} else {
3019 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3020 	}
3021 
3022 	if (!area->pages) {
3023 		warn_alloc(gfp_mask, NULL,
3024 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3025 			nr_small_pages * PAGE_SIZE, array_size);
3026 		free_vm_area(area);
3027 		return NULL;
3028 	}
3029 
3030 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3031 	page_order = vm_area_page_order(area);
3032 
3033 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3034 		node, page_order, nr_small_pages, area->pages);
3035 
3036 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3037 	if (gfp_mask & __GFP_ACCOUNT) {
3038 		int i;
3039 
3040 		for (i = 0; i < area->nr_pages; i++)
3041 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3042 	}
3043 
3044 	/*
3045 	 * If not enough pages were obtained to accomplish an
3046 	 * allocation request, free them via vfree() if any.
3047 	 */
3048 	if (area->nr_pages != nr_small_pages) {
3049 		/* vm_area_alloc_pages() can also fail due to a fatal signal */
3050 		if (!fatal_signal_pending(current))
3051 			warn_alloc(gfp_mask, NULL,
3052 				"vmalloc error: size %lu, page order %u, failed to allocate pages",
3053 				area->nr_pages * PAGE_SIZE, page_order);
3054 		goto fail;
3055 	}
3056 
3057 	/*
3058 	 * page tables allocations ignore external gfp mask, enforce it
3059 	 * by the scope API
3060 	 */
3061 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3062 		flags = memalloc_nofs_save();
3063 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3064 		flags = memalloc_noio_save();
3065 
3066 	do {
3067 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3068 			page_shift);
3069 		if (nofail && (ret < 0))
3070 			schedule_timeout_uninterruptible(1);
3071 	} while (nofail && (ret < 0));
3072 
3073 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3074 		memalloc_nofs_restore(flags);
3075 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3076 		memalloc_noio_restore(flags);
3077 
3078 	if (ret < 0) {
3079 		warn_alloc(gfp_mask, NULL,
3080 			"vmalloc error: size %lu, failed to map pages",
3081 			area->nr_pages * PAGE_SIZE);
3082 		goto fail;
3083 	}
3084 
3085 	return area->addr;
3086 
3087 fail:
3088 	vfree(area->addr);
3089 	return NULL;
3090 }
3091 
3092 /**
3093  * __vmalloc_node_range - allocate virtually contiguous memory
3094  * @size:		  allocation size
3095  * @align:		  desired alignment
3096  * @start:		  vm area range start
3097  * @end:		  vm area range end
3098  * @gfp_mask:		  flags for the page level allocator
3099  * @prot:		  protection mask for the allocated pages
3100  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3101  * @node:		  node to use for allocation or NUMA_NO_NODE
3102  * @caller:		  caller's return address
3103  *
3104  * Allocate enough pages to cover @size from the page level
3105  * allocator with @gfp_mask flags. Please note that the full set of gfp
3106  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3107  * supported.
3108  * Zone modifiers are not supported. From the reclaim modifiers
3109  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3110  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3111  * __GFP_RETRY_MAYFAIL are not supported).
3112  *
3113  * __GFP_NOWARN can be used to suppress failures messages.
3114  *
3115  * Map them into contiguous kernel virtual space, using a pagetable
3116  * protection of @prot.
3117  *
3118  * Return: the address of the area or %NULL on failure
3119  */
3120 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3121 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3122 			pgprot_t prot, unsigned long vm_flags, int node,
3123 			const void *caller)
3124 {
3125 	struct vm_struct *area;
3126 	void *ret;
3127 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3128 	unsigned long real_size = size;
3129 	unsigned long real_align = align;
3130 	unsigned int shift = PAGE_SHIFT;
3131 
3132 	if (WARN_ON_ONCE(!size))
3133 		return NULL;
3134 
3135 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3136 		warn_alloc(gfp_mask, NULL,
3137 			"vmalloc error: size %lu, exceeds total pages",
3138 			real_size);
3139 		return NULL;
3140 	}
3141 
3142 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3143 		unsigned long size_per_node;
3144 
3145 		/*
3146 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3147 		 * others like modules don't yet expect huge pages in
3148 		 * their allocations due to apply_to_page_range not
3149 		 * supporting them.
3150 		 */
3151 
3152 		size_per_node = size;
3153 		if (node == NUMA_NO_NODE)
3154 			size_per_node /= num_online_nodes();
3155 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3156 			shift = PMD_SHIFT;
3157 		else
3158 			shift = arch_vmap_pte_supported_shift(size_per_node);
3159 
3160 		align = max(real_align, 1UL << shift);
3161 		size = ALIGN(real_size, 1UL << shift);
3162 	}
3163 
3164 again:
3165 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3166 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3167 				  gfp_mask, caller);
3168 	if (!area) {
3169 		bool nofail = gfp_mask & __GFP_NOFAIL;
3170 		warn_alloc(gfp_mask, NULL,
3171 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3172 			real_size, (nofail) ? ". Retrying." : "");
3173 		if (nofail) {
3174 			schedule_timeout_uninterruptible(1);
3175 			goto again;
3176 		}
3177 		goto fail;
3178 	}
3179 
3180 	/*
3181 	 * Prepare arguments for __vmalloc_area_node() and
3182 	 * kasan_unpoison_vmalloc().
3183 	 */
3184 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3185 		if (kasan_hw_tags_enabled()) {
3186 			/*
3187 			 * Modify protection bits to allow tagging.
3188 			 * This must be done before mapping.
3189 			 */
3190 			prot = arch_vmap_pgprot_tagged(prot);
3191 
3192 			/*
3193 			 * Skip page_alloc poisoning and zeroing for physical
3194 			 * pages backing VM_ALLOC mapping. Memory is instead
3195 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3196 			 */
3197 			gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3198 		}
3199 
3200 		/* Take note that the mapping is PAGE_KERNEL. */
3201 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3202 	}
3203 
3204 	/* Allocate physical pages and map them into vmalloc space. */
3205 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3206 	if (!ret)
3207 		goto fail;
3208 
3209 	/*
3210 	 * Mark the pages as accessible, now that they are mapped.
3211 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3212 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3213 	 * to make sure that memory is initialized under the same conditions.
3214 	 * Tag-based KASAN modes only assign tags to normal non-executable
3215 	 * allocations, see __kasan_unpoison_vmalloc().
3216 	 */
3217 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3218 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3219 	    (gfp_mask & __GFP_SKIP_ZERO))
3220 		kasan_flags |= KASAN_VMALLOC_INIT;
3221 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3222 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3223 
3224 	/*
3225 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3226 	 * flag. It means that vm_struct is not fully initialized.
3227 	 * Now, it is fully initialized, so remove this flag here.
3228 	 */
3229 	clear_vm_uninitialized_flag(area);
3230 
3231 	size = PAGE_ALIGN(size);
3232 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3233 		kmemleak_vmalloc(area, size, gfp_mask);
3234 
3235 	return area->addr;
3236 
3237 fail:
3238 	if (shift > PAGE_SHIFT) {
3239 		shift = PAGE_SHIFT;
3240 		align = real_align;
3241 		size = real_size;
3242 		goto again;
3243 	}
3244 
3245 	return NULL;
3246 }
3247 
3248 /**
3249  * __vmalloc_node - allocate virtually contiguous memory
3250  * @size:	    allocation size
3251  * @align:	    desired alignment
3252  * @gfp_mask:	    flags for the page level allocator
3253  * @node:	    node to use for allocation or NUMA_NO_NODE
3254  * @caller:	    caller's return address
3255  *
3256  * Allocate enough pages to cover @size from the page level allocator with
3257  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3258  *
3259  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3260  * and __GFP_NOFAIL are not supported
3261  *
3262  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3263  * with mm people.
3264  *
3265  * Return: pointer to the allocated memory or %NULL on error
3266  */
3267 void *__vmalloc_node(unsigned long size, unsigned long align,
3268 			    gfp_t gfp_mask, int node, const void *caller)
3269 {
3270 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3271 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3272 }
3273 /*
3274  * This is only for performance analysis of vmalloc and stress purpose.
3275  * It is required by vmalloc test module, therefore do not use it other
3276  * than that.
3277  */
3278 #ifdef CONFIG_TEST_VMALLOC_MODULE
3279 EXPORT_SYMBOL_GPL(__vmalloc_node);
3280 #endif
3281 
3282 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3283 {
3284 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3285 				__builtin_return_address(0));
3286 }
3287 EXPORT_SYMBOL(__vmalloc);
3288 
3289 /**
3290  * vmalloc - allocate virtually contiguous memory
3291  * @size:    allocation size
3292  *
3293  * Allocate enough pages to cover @size from the page level
3294  * allocator and map them into contiguous kernel virtual space.
3295  *
3296  * For tight control over page level allocator and protection flags
3297  * use __vmalloc() instead.
3298  *
3299  * Return: pointer to the allocated memory or %NULL on error
3300  */
3301 void *vmalloc(unsigned long size)
3302 {
3303 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3304 				__builtin_return_address(0));
3305 }
3306 EXPORT_SYMBOL(vmalloc);
3307 
3308 /**
3309  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3310  * @size:      allocation size
3311  * @gfp_mask:  flags for the page level allocator
3312  *
3313  * Allocate enough pages to cover @size from the page level
3314  * allocator and map them into contiguous kernel virtual space.
3315  * If @size is greater than or equal to PMD_SIZE, allow using
3316  * huge pages for the memory
3317  *
3318  * Return: pointer to the allocated memory or %NULL on error
3319  */
3320 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3321 {
3322 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3323 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3324 				    NUMA_NO_NODE, __builtin_return_address(0));
3325 }
3326 EXPORT_SYMBOL_GPL(vmalloc_huge);
3327 
3328 /**
3329  * vzalloc - allocate virtually contiguous memory with zero fill
3330  * @size:    allocation size
3331  *
3332  * Allocate enough pages to cover @size from the page level
3333  * allocator and map them into contiguous kernel virtual space.
3334  * The memory allocated is set to zero.
3335  *
3336  * For tight control over page level allocator and protection flags
3337  * use __vmalloc() instead.
3338  *
3339  * Return: pointer to the allocated memory or %NULL on error
3340  */
3341 void *vzalloc(unsigned long size)
3342 {
3343 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3344 				__builtin_return_address(0));
3345 }
3346 EXPORT_SYMBOL(vzalloc);
3347 
3348 /**
3349  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3350  * @size: allocation size
3351  *
3352  * The resulting memory area is zeroed so it can be mapped to userspace
3353  * without leaking data.
3354  *
3355  * Return: pointer to the allocated memory or %NULL on error
3356  */
3357 void *vmalloc_user(unsigned long size)
3358 {
3359 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3360 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3361 				    VM_USERMAP, NUMA_NO_NODE,
3362 				    __builtin_return_address(0));
3363 }
3364 EXPORT_SYMBOL(vmalloc_user);
3365 
3366 /**
3367  * vmalloc_node - allocate memory on a specific node
3368  * @size:	  allocation size
3369  * @node:	  numa node
3370  *
3371  * Allocate enough pages to cover @size from the page level
3372  * allocator and map them into contiguous kernel virtual space.
3373  *
3374  * For tight control over page level allocator and protection flags
3375  * use __vmalloc() instead.
3376  *
3377  * Return: pointer to the allocated memory or %NULL on error
3378  */
3379 void *vmalloc_node(unsigned long size, int node)
3380 {
3381 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3382 			__builtin_return_address(0));
3383 }
3384 EXPORT_SYMBOL(vmalloc_node);
3385 
3386 /**
3387  * vzalloc_node - allocate memory on a specific node with zero fill
3388  * @size:	allocation size
3389  * @node:	numa node
3390  *
3391  * Allocate enough pages to cover @size from the page level
3392  * allocator and map them into contiguous kernel virtual space.
3393  * The memory allocated is set to zero.
3394  *
3395  * Return: pointer to the allocated memory or %NULL on error
3396  */
3397 void *vzalloc_node(unsigned long size, int node)
3398 {
3399 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3400 				__builtin_return_address(0));
3401 }
3402 EXPORT_SYMBOL(vzalloc_node);
3403 
3404 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3405 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3406 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3407 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3408 #else
3409 /*
3410  * 64b systems should always have either DMA or DMA32 zones. For others
3411  * GFP_DMA32 should do the right thing and use the normal zone.
3412  */
3413 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3414 #endif
3415 
3416 /**
3417  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3418  * @size:	allocation size
3419  *
3420  * Allocate enough 32bit PA addressable pages to cover @size from the
3421  * page level allocator and map them into contiguous kernel virtual space.
3422  *
3423  * Return: pointer to the allocated memory or %NULL on error
3424  */
3425 void *vmalloc_32(unsigned long size)
3426 {
3427 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3428 			__builtin_return_address(0));
3429 }
3430 EXPORT_SYMBOL(vmalloc_32);
3431 
3432 /**
3433  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3434  * @size:	     allocation size
3435  *
3436  * The resulting memory area is 32bit addressable and zeroed so it can be
3437  * mapped to userspace without leaking data.
3438  *
3439  * Return: pointer to the allocated memory or %NULL on error
3440  */
3441 void *vmalloc_32_user(unsigned long size)
3442 {
3443 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3444 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3445 				    VM_USERMAP, NUMA_NO_NODE,
3446 				    __builtin_return_address(0));
3447 }
3448 EXPORT_SYMBOL(vmalloc_32_user);
3449 
3450 /*
3451  * small helper routine , copy contents to buf from addr.
3452  * If the page is not present, fill zero.
3453  */
3454 
3455 static int aligned_vread(char *buf, char *addr, unsigned long count)
3456 {
3457 	struct page *p;
3458 	int copied = 0;
3459 
3460 	while (count) {
3461 		unsigned long offset, length;
3462 
3463 		offset = offset_in_page(addr);
3464 		length = PAGE_SIZE - offset;
3465 		if (length > count)
3466 			length = count;
3467 		p = vmalloc_to_page(addr);
3468 		/*
3469 		 * To do safe access to this _mapped_ area, we need
3470 		 * lock. But adding lock here means that we need to add
3471 		 * overhead of vmalloc()/vfree() calls for this _debug_
3472 		 * interface, rarely used. Instead of that, we'll use
3473 		 * kmap() and get small overhead in this access function.
3474 		 */
3475 		if (p) {
3476 			/* We can expect USER0 is not used -- see vread() */
3477 			void *map = kmap_atomic(p);
3478 			memcpy(buf, map + offset, length);
3479 			kunmap_atomic(map);
3480 		} else
3481 			memset(buf, 0, length);
3482 
3483 		addr += length;
3484 		buf += length;
3485 		copied += length;
3486 		count -= length;
3487 	}
3488 	return copied;
3489 }
3490 
3491 static void vmap_ram_vread(char *buf, char *addr, int count, unsigned long flags)
3492 {
3493 	char *start;
3494 	struct vmap_block *vb;
3495 	unsigned long offset;
3496 	unsigned int rs, re, n;
3497 
3498 	/*
3499 	 * If it's area created by vm_map_ram() interface directly, but
3500 	 * not further subdividing and delegating management to vmap_block,
3501 	 * handle it here.
3502 	 */
3503 	if (!(flags & VMAP_BLOCK)) {
3504 		aligned_vread(buf, addr, count);
3505 		return;
3506 	}
3507 
3508 	/*
3509 	 * Area is split into regions and tracked with vmap_block, read out
3510 	 * each region and zero fill the hole between regions.
3511 	 */
3512 	vb = xa_load(&vmap_blocks, addr_to_vb_idx((unsigned long)addr));
3513 	if (!vb)
3514 		goto finished;
3515 
3516 	spin_lock(&vb->lock);
3517 	if (bitmap_empty(vb->used_map, VMAP_BBMAP_BITS)) {
3518 		spin_unlock(&vb->lock);
3519 		goto finished;
3520 	}
3521 	for_each_set_bitrange(rs, re, vb->used_map, VMAP_BBMAP_BITS) {
3522 		if (!count)
3523 			break;
3524 		start = vmap_block_vaddr(vb->va->va_start, rs);
3525 		while (addr < start) {
3526 			if (count == 0)
3527 				goto unlock;
3528 			*buf = '\0';
3529 			buf++;
3530 			addr++;
3531 			count--;
3532 		}
3533 		/*it could start reading from the middle of used region*/
3534 		offset = offset_in_page(addr);
3535 		n = ((re - rs + 1) << PAGE_SHIFT) - offset;
3536 		if (n > count)
3537 			n = count;
3538 		aligned_vread(buf, start+offset, n);
3539 
3540 		buf += n;
3541 		addr += n;
3542 		count -= n;
3543 	}
3544 unlock:
3545 	spin_unlock(&vb->lock);
3546 
3547 finished:
3548 	/* zero-fill the left dirty or free regions */
3549 	if (count)
3550 		memset(buf, 0, count);
3551 }
3552 
3553 /**
3554  * vread() - read vmalloc area in a safe way.
3555  * @buf:     buffer for reading data
3556  * @addr:    vm address.
3557  * @count:   number of bytes to be read.
3558  *
3559  * This function checks that addr is a valid vmalloc'ed area, and
3560  * copy data from that area to a given buffer. If the given memory range
3561  * of [addr...addr+count) includes some valid address, data is copied to
3562  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3563  * IOREMAP area is treated as memory hole and no copy is done.
3564  *
3565  * If [addr...addr+count) doesn't includes any intersects with alive
3566  * vm_struct area, returns 0. @buf should be kernel's buffer.
3567  *
3568  * Note: In usual ops, vread() is never necessary because the caller
3569  * should know vmalloc() area is valid and can use memcpy().
3570  * This is for routines which have to access vmalloc area without
3571  * any information, as /proc/kcore.
3572  *
3573  * Return: number of bytes for which addr and buf should be increased
3574  * (same number as @count) or %0 if [addr...addr+count) doesn't
3575  * include any intersection with valid vmalloc area
3576  */
3577 long vread(char *buf, char *addr, unsigned long count)
3578 {
3579 	struct vmap_area *va;
3580 	struct vm_struct *vm;
3581 	char *vaddr, *buf_start = buf;
3582 	unsigned long buflen = count;
3583 	unsigned long n, size, flags;
3584 
3585 	addr = kasan_reset_tag(addr);
3586 
3587 	/* Don't allow overflow */
3588 	if ((unsigned long) addr + count < count)
3589 		count = -(unsigned long) addr;
3590 
3591 	spin_lock(&vmap_area_lock);
3592 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3593 	if (!va)
3594 		goto finished;
3595 
3596 	/* no intersects with alive vmap_area */
3597 	if ((unsigned long)addr + count <= va->va_start)
3598 		goto finished;
3599 
3600 	list_for_each_entry_from(va, &vmap_area_list, list) {
3601 		if (!count)
3602 			break;
3603 
3604 		vm = va->vm;
3605 		flags = va->flags & VMAP_FLAGS_MASK;
3606 		/*
3607 		 * VMAP_BLOCK indicates a sub-type of vm_map_ram area, need
3608 		 * be set together with VMAP_RAM.
3609 		 */
3610 		WARN_ON(flags == VMAP_BLOCK);
3611 
3612 		if (!vm && !flags)
3613 			continue;
3614 
3615 		if (vm && (vm->flags & VM_UNINITIALIZED))
3616 			continue;
3617 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3618 		smp_rmb();
3619 
3620 		vaddr = (char *) va->va_start;
3621 		size = vm ? get_vm_area_size(vm) : va_size(va);
3622 
3623 		if (addr >= vaddr + size)
3624 			continue;
3625 		while (addr < vaddr) {
3626 			if (count == 0)
3627 				goto finished;
3628 			*buf = '\0';
3629 			buf++;
3630 			addr++;
3631 			count--;
3632 		}
3633 		n = vaddr + size - addr;
3634 		if (n > count)
3635 			n = count;
3636 
3637 		if (flags & VMAP_RAM)
3638 			vmap_ram_vread(buf, addr, n, flags);
3639 		else if (!(vm->flags & VM_IOREMAP))
3640 			aligned_vread(buf, addr, n);
3641 		else /* IOREMAP area is treated as memory hole */
3642 			memset(buf, 0, n);
3643 		buf += n;
3644 		addr += n;
3645 		count -= n;
3646 	}
3647 finished:
3648 	spin_unlock(&vmap_area_lock);
3649 
3650 	if (buf == buf_start)
3651 		return 0;
3652 	/* zero-fill memory holes */
3653 	if (buf != buf_start + buflen)
3654 		memset(buf, 0, buflen - (buf - buf_start));
3655 
3656 	return buflen;
3657 }
3658 
3659 /**
3660  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3661  * @vma:		vma to cover
3662  * @uaddr:		target user address to start at
3663  * @kaddr:		virtual address of vmalloc kernel memory
3664  * @pgoff:		offset from @kaddr to start at
3665  * @size:		size of map area
3666  *
3667  * Returns:	0 for success, -Exxx on failure
3668  *
3669  * This function checks that @kaddr is a valid vmalloc'ed area,
3670  * and that it is big enough to cover the range starting at
3671  * @uaddr in @vma. Will return failure if that criteria isn't
3672  * met.
3673  *
3674  * Similar to remap_pfn_range() (see mm/memory.c)
3675  */
3676 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3677 				void *kaddr, unsigned long pgoff,
3678 				unsigned long size)
3679 {
3680 	struct vm_struct *area;
3681 	unsigned long off;
3682 	unsigned long end_index;
3683 
3684 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3685 		return -EINVAL;
3686 
3687 	size = PAGE_ALIGN(size);
3688 
3689 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3690 		return -EINVAL;
3691 
3692 	area = find_vm_area(kaddr);
3693 	if (!area)
3694 		return -EINVAL;
3695 
3696 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3697 		return -EINVAL;
3698 
3699 	if (check_add_overflow(size, off, &end_index) ||
3700 	    end_index > get_vm_area_size(area))
3701 		return -EINVAL;
3702 	kaddr += off;
3703 
3704 	do {
3705 		struct page *page = vmalloc_to_page(kaddr);
3706 		int ret;
3707 
3708 		ret = vm_insert_page(vma, uaddr, page);
3709 		if (ret)
3710 			return ret;
3711 
3712 		uaddr += PAGE_SIZE;
3713 		kaddr += PAGE_SIZE;
3714 		size -= PAGE_SIZE;
3715 	} while (size > 0);
3716 
3717 	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP);
3718 
3719 	return 0;
3720 }
3721 
3722 /**
3723  * remap_vmalloc_range - map vmalloc pages to userspace
3724  * @vma:		vma to cover (map full range of vma)
3725  * @addr:		vmalloc memory
3726  * @pgoff:		number of pages into addr before first page to map
3727  *
3728  * Returns:	0 for success, -Exxx on failure
3729  *
3730  * This function checks that addr is a valid vmalloc'ed area, and
3731  * that it is big enough to cover the vma. Will return failure if
3732  * that criteria isn't met.
3733  *
3734  * Similar to remap_pfn_range() (see mm/memory.c)
3735  */
3736 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3737 						unsigned long pgoff)
3738 {
3739 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3740 					   addr, pgoff,
3741 					   vma->vm_end - vma->vm_start);
3742 }
3743 EXPORT_SYMBOL(remap_vmalloc_range);
3744 
3745 void free_vm_area(struct vm_struct *area)
3746 {
3747 	struct vm_struct *ret;
3748 	ret = remove_vm_area(area->addr);
3749 	BUG_ON(ret != area);
3750 	kfree(area);
3751 }
3752 EXPORT_SYMBOL_GPL(free_vm_area);
3753 
3754 #ifdef CONFIG_SMP
3755 static struct vmap_area *node_to_va(struct rb_node *n)
3756 {
3757 	return rb_entry_safe(n, struct vmap_area, rb_node);
3758 }
3759 
3760 /**
3761  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3762  * @addr: target address
3763  *
3764  * Returns: vmap_area if it is found. If there is no such area
3765  *   the first highest(reverse order) vmap_area is returned
3766  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3767  *   if there are no any areas before @addr.
3768  */
3769 static struct vmap_area *
3770 pvm_find_va_enclose_addr(unsigned long addr)
3771 {
3772 	struct vmap_area *va, *tmp;
3773 	struct rb_node *n;
3774 
3775 	n = free_vmap_area_root.rb_node;
3776 	va = NULL;
3777 
3778 	while (n) {
3779 		tmp = rb_entry(n, struct vmap_area, rb_node);
3780 		if (tmp->va_start <= addr) {
3781 			va = tmp;
3782 			if (tmp->va_end >= addr)
3783 				break;
3784 
3785 			n = n->rb_right;
3786 		} else {
3787 			n = n->rb_left;
3788 		}
3789 	}
3790 
3791 	return va;
3792 }
3793 
3794 /**
3795  * pvm_determine_end_from_reverse - find the highest aligned address
3796  * of free block below VMALLOC_END
3797  * @va:
3798  *   in - the VA we start the search(reverse order);
3799  *   out - the VA with the highest aligned end address.
3800  * @align: alignment for required highest address
3801  *
3802  * Returns: determined end address within vmap_area
3803  */
3804 static unsigned long
3805 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3806 {
3807 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3808 	unsigned long addr;
3809 
3810 	if (likely(*va)) {
3811 		list_for_each_entry_from_reverse((*va),
3812 				&free_vmap_area_list, list) {
3813 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3814 			if ((*va)->va_start < addr)
3815 				return addr;
3816 		}
3817 	}
3818 
3819 	return 0;
3820 }
3821 
3822 /**
3823  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3824  * @offsets: array containing offset of each area
3825  * @sizes: array containing size of each area
3826  * @nr_vms: the number of areas to allocate
3827  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3828  *
3829  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3830  *	    vm_structs on success, %NULL on failure
3831  *
3832  * Percpu allocator wants to use congruent vm areas so that it can
3833  * maintain the offsets among percpu areas.  This function allocates
3834  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3835  * be scattered pretty far, distance between two areas easily going up
3836  * to gigabytes.  To avoid interacting with regular vmallocs, these
3837  * areas are allocated from top.
3838  *
3839  * Despite its complicated look, this allocator is rather simple. It
3840  * does everything top-down and scans free blocks from the end looking
3841  * for matching base. While scanning, if any of the areas do not fit the
3842  * base address is pulled down to fit the area. Scanning is repeated till
3843  * all the areas fit and then all necessary data structures are inserted
3844  * and the result is returned.
3845  */
3846 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3847 				     const size_t *sizes, int nr_vms,
3848 				     size_t align)
3849 {
3850 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3851 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3852 	struct vmap_area **vas, *va;
3853 	struct vm_struct **vms;
3854 	int area, area2, last_area, term_area;
3855 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3856 	bool purged = false;
3857 
3858 	/* verify parameters and allocate data structures */
3859 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3860 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3861 		start = offsets[area];
3862 		end = start + sizes[area];
3863 
3864 		/* is everything aligned properly? */
3865 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3866 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3867 
3868 		/* detect the area with the highest address */
3869 		if (start > offsets[last_area])
3870 			last_area = area;
3871 
3872 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3873 			unsigned long start2 = offsets[area2];
3874 			unsigned long end2 = start2 + sizes[area2];
3875 
3876 			BUG_ON(start2 < end && start < end2);
3877 		}
3878 	}
3879 	last_end = offsets[last_area] + sizes[last_area];
3880 
3881 	if (vmalloc_end - vmalloc_start < last_end) {
3882 		WARN_ON(true);
3883 		return NULL;
3884 	}
3885 
3886 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3887 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3888 	if (!vas || !vms)
3889 		goto err_free2;
3890 
3891 	for (area = 0; area < nr_vms; area++) {
3892 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3893 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3894 		if (!vas[area] || !vms[area])
3895 			goto err_free;
3896 	}
3897 retry:
3898 	spin_lock(&free_vmap_area_lock);
3899 
3900 	/* start scanning - we scan from the top, begin with the last area */
3901 	area = term_area = last_area;
3902 	start = offsets[area];
3903 	end = start + sizes[area];
3904 
3905 	va = pvm_find_va_enclose_addr(vmalloc_end);
3906 	base = pvm_determine_end_from_reverse(&va, align) - end;
3907 
3908 	while (true) {
3909 		/*
3910 		 * base might have underflowed, add last_end before
3911 		 * comparing.
3912 		 */
3913 		if (base + last_end < vmalloc_start + last_end)
3914 			goto overflow;
3915 
3916 		/*
3917 		 * Fitting base has not been found.
3918 		 */
3919 		if (va == NULL)
3920 			goto overflow;
3921 
3922 		/*
3923 		 * If required width exceeds current VA block, move
3924 		 * base downwards and then recheck.
3925 		 */
3926 		if (base + end > va->va_end) {
3927 			base = pvm_determine_end_from_reverse(&va, align) - end;
3928 			term_area = area;
3929 			continue;
3930 		}
3931 
3932 		/*
3933 		 * If this VA does not fit, move base downwards and recheck.
3934 		 */
3935 		if (base + start < va->va_start) {
3936 			va = node_to_va(rb_prev(&va->rb_node));
3937 			base = pvm_determine_end_from_reverse(&va, align) - end;
3938 			term_area = area;
3939 			continue;
3940 		}
3941 
3942 		/*
3943 		 * This area fits, move on to the previous one.  If
3944 		 * the previous one is the terminal one, we're done.
3945 		 */
3946 		area = (area + nr_vms - 1) % nr_vms;
3947 		if (area == term_area)
3948 			break;
3949 
3950 		start = offsets[area];
3951 		end = start + sizes[area];
3952 		va = pvm_find_va_enclose_addr(base + end);
3953 	}
3954 
3955 	/* we've found a fitting base, insert all va's */
3956 	for (area = 0; area < nr_vms; area++) {
3957 		int ret;
3958 
3959 		start = base + offsets[area];
3960 		size = sizes[area];
3961 
3962 		va = pvm_find_va_enclose_addr(start);
3963 		if (WARN_ON_ONCE(va == NULL))
3964 			/* It is a BUG(), but trigger recovery instead. */
3965 			goto recovery;
3966 
3967 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
3968 					    &free_vmap_area_list,
3969 					    va, start, size);
3970 		if (WARN_ON_ONCE(unlikely(ret)))
3971 			/* It is a BUG(), but trigger recovery instead. */
3972 			goto recovery;
3973 
3974 		/* Allocated area. */
3975 		va = vas[area];
3976 		va->va_start = start;
3977 		va->va_end = start + size;
3978 	}
3979 
3980 	spin_unlock(&free_vmap_area_lock);
3981 
3982 	/* populate the kasan shadow space */
3983 	for (area = 0; area < nr_vms; area++) {
3984 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3985 			goto err_free_shadow;
3986 	}
3987 
3988 	/* insert all vm's */
3989 	spin_lock(&vmap_area_lock);
3990 	for (area = 0; area < nr_vms; area++) {
3991 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3992 
3993 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3994 				 pcpu_get_vm_areas);
3995 	}
3996 	spin_unlock(&vmap_area_lock);
3997 
3998 	/*
3999 	 * Mark allocated areas as accessible. Do it now as a best-effort
4000 	 * approach, as they can be mapped outside of vmalloc code.
4001 	 * With hardware tag-based KASAN, marking is skipped for
4002 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
4003 	 */
4004 	for (area = 0; area < nr_vms; area++)
4005 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
4006 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
4007 
4008 	kfree(vas);
4009 	return vms;
4010 
4011 recovery:
4012 	/*
4013 	 * Remove previously allocated areas. There is no
4014 	 * need in removing these areas from the busy tree,
4015 	 * because they are inserted only on the final step
4016 	 * and when pcpu_get_vm_areas() is success.
4017 	 */
4018 	while (area--) {
4019 		orig_start = vas[area]->va_start;
4020 		orig_end = vas[area]->va_end;
4021 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4022 				&free_vmap_area_list);
4023 		if (va)
4024 			kasan_release_vmalloc(orig_start, orig_end,
4025 				va->va_start, va->va_end);
4026 		vas[area] = NULL;
4027 	}
4028 
4029 overflow:
4030 	spin_unlock(&free_vmap_area_lock);
4031 	if (!purged) {
4032 		purge_vmap_area_lazy();
4033 		purged = true;
4034 
4035 		/* Before "retry", check if we recover. */
4036 		for (area = 0; area < nr_vms; area++) {
4037 			if (vas[area])
4038 				continue;
4039 
4040 			vas[area] = kmem_cache_zalloc(
4041 				vmap_area_cachep, GFP_KERNEL);
4042 			if (!vas[area])
4043 				goto err_free;
4044 		}
4045 
4046 		goto retry;
4047 	}
4048 
4049 err_free:
4050 	for (area = 0; area < nr_vms; area++) {
4051 		if (vas[area])
4052 			kmem_cache_free(vmap_area_cachep, vas[area]);
4053 
4054 		kfree(vms[area]);
4055 	}
4056 err_free2:
4057 	kfree(vas);
4058 	kfree(vms);
4059 	return NULL;
4060 
4061 err_free_shadow:
4062 	spin_lock(&free_vmap_area_lock);
4063 	/*
4064 	 * We release all the vmalloc shadows, even the ones for regions that
4065 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
4066 	 * being able to tolerate this case.
4067 	 */
4068 	for (area = 0; area < nr_vms; area++) {
4069 		orig_start = vas[area]->va_start;
4070 		orig_end = vas[area]->va_end;
4071 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4072 				&free_vmap_area_list);
4073 		if (va)
4074 			kasan_release_vmalloc(orig_start, orig_end,
4075 				va->va_start, va->va_end);
4076 		vas[area] = NULL;
4077 		kfree(vms[area]);
4078 	}
4079 	spin_unlock(&free_vmap_area_lock);
4080 	kfree(vas);
4081 	kfree(vms);
4082 	return NULL;
4083 }
4084 
4085 /**
4086  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4087  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4088  * @nr_vms: the number of allocated areas
4089  *
4090  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4091  */
4092 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4093 {
4094 	int i;
4095 
4096 	for (i = 0; i < nr_vms; i++)
4097 		free_vm_area(vms[i]);
4098 	kfree(vms);
4099 }
4100 #endif	/* CONFIG_SMP */
4101 
4102 #ifdef CONFIG_PRINTK
4103 bool vmalloc_dump_obj(void *object)
4104 {
4105 	struct vm_struct *vm;
4106 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4107 
4108 	vm = find_vm_area(objp);
4109 	if (!vm)
4110 		return false;
4111 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4112 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4113 	return true;
4114 }
4115 #endif
4116 
4117 #ifdef CONFIG_PROC_FS
4118 static void *s_start(struct seq_file *m, loff_t *pos)
4119 	__acquires(&vmap_purge_lock)
4120 	__acquires(&vmap_area_lock)
4121 {
4122 	mutex_lock(&vmap_purge_lock);
4123 	spin_lock(&vmap_area_lock);
4124 
4125 	return seq_list_start(&vmap_area_list, *pos);
4126 }
4127 
4128 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4129 {
4130 	return seq_list_next(p, &vmap_area_list, pos);
4131 }
4132 
4133 static void s_stop(struct seq_file *m, void *p)
4134 	__releases(&vmap_area_lock)
4135 	__releases(&vmap_purge_lock)
4136 {
4137 	spin_unlock(&vmap_area_lock);
4138 	mutex_unlock(&vmap_purge_lock);
4139 }
4140 
4141 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4142 {
4143 	if (IS_ENABLED(CONFIG_NUMA)) {
4144 		unsigned int nr, *counters = m->private;
4145 		unsigned int step = 1U << vm_area_page_order(v);
4146 
4147 		if (!counters)
4148 			return;
4149 
4150 		if (v->flags & VM_UNINITIALIZED)
4151 			return;
4152 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4153 		smp_rmb();
4154 
4155 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4156 
4157 		for (nr = 0; nr < v->nr_pages; nr += step)
4158 			counters[page_to_nid(v->pages[nr])] += step;
4159 		for_each_node_state(nr, N_HIGH_MEMORY)
4160 			if (counters[nr])
4161 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4162 	}
4163 }
4164 
4165 static void show_purge_info(struct seq_file *m)
4166 {
4167 	struct vmap_area *va;
4168 
4169 	spin_lock(&purge_vmap_area_lock);
4170 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4171 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4172 			(void *)va->va_start, (void *)va->va_end,
4173 			va->va_end - va->va_start);
4174 	}
4175 	spin_unlock(&purge_vmap_area_lock);
4176 }
4177 
4178 static int s_show(struct seq_file *m, void *p)
4179 {
4180 	struct vmap_area *va;
4181 	struct vm_struct *v;
4182 
4183 	va = list_entry(p, struct vmap_area, list);
4184 
4185 	if (!va->vm) {
4186 		if (va->flags & VMAP_RAM)
4187 			seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4188 				(void *)va->va_start, (void *)va->va_end,
4189 				va->va_end - va->va_start);
4190 
4191 		goto final;
4192 	}
4193 
4194 	v = va->vm;
4195 
4196 	seq_printf(m, "0x%pK-0x%pK %7ld",
4197 		v->addr, v->addr + v->size, v->size);
4198 
4199 	if (v->caller)
4200 		seq_printf(m, " %pS", v->caller);
4201 
4202 	if (v->nr_pages)
4203 		seq_printf(m, " pages=%d", v->nr_pages);
4204 
4205 	if (v->phys_addr)
4206 		seq_printf(m, " phys=%pa", &v->phys_addr);
4207 
4208 	if (v->flags & VM_IOREMAP)
4209 		seq_puts(m, " ioremap");
4210 
4211 	if (v->flags & VM_ALLOC)
4212 		seq_puts(m, " vmalloc");
4213 
4214 	if (v->flags & VM_MAP)
4215 		seq_puts(m, " vmap");
4216 
4217 	if (v->flags & VM_USERMAP)
4218 		seq_puts(m, " user");
4219 
4220 	if (v->flags & VM_DMA_COHERENT)
4221 		seq_puts(m, " dma-coherent");
4222 
4223 	if (is_vmalloc_addr(v->pages))
4224 		seq_puts(m, " vpages");
4225 
4226 	show_numa_info(m, v);
4227 	seq_putc(m, '\n');
4228 
4229 	/*
4230 	 * As a final step, dump "unpurged" areas.
4231 	 */
4232 final:
4233 	if (list_is_last(&va->list, &vmap_area_list))
4234 		show_purge_info(m);
4235 
4236 	return 0;
4237 }
4238 
4239 static const struct seq_operations vmalloc_op = {
4240 	.start = s_start,
4241 	.next = s_next,
4242 	.stop = s_stop,
4243 	.show = s_show,
4244 };
4245 
4246 static int __init proc_vmalloc_init(void)
4247 {
4248 	if (IS_ENABLED(CONFIG_NUMA))
4249 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4250 				&vmalloc_op,
4251 				nr_node_ids * sizeof(unsigned int), NULL);
4252 	else
4253 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4254 	return 0;
4255 }
4256 module_init(proc_vmalloc_init);
4257 
4258 #endif
4259 
4260 void __init vmalloc_init(void)
4261 {
4262 	struct vmap_area *va;
4263 	struct vm_struct *tmp;
4264 	int i;
4265 
4266 	/*
4267 	 * Create the cache for vmap_area objects.
4268 	 */
4269 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
4270 
4271 	for_each_possible_cpu(i) {
4272 		struct vmap_block_queue *vbq;
4273 		struct vfree_deferred *p;
4274 
4275 		vbq = &per_cpu(vmap_block_queue, i);
4276 		spin_lock_init(&vbq->lock);
4277 		INIT_LIST_HEAD(&vbq->free);
4278 		p = &per_cpu(vfree_deferred, i);
4279 		init_llist_head(&p->list);
4280 		INIT_WORK(&p->wq, delayed_vfree_work);
4281 	}
4282 
4283 	/* Import existing vmlist entries. */
4284 	for (tmp = vmlist; tmp; tmp = tmp->next) {
4285 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
4286 		if (WARN_ON_ONCE(!va))
4287 			continue;
4288 
4289 		va->va_start = (unsigned long)tmp->addr;
4290 		va->va_end = va->va_start + tmp->size;
4291 		va->vm = tmp;
4292 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
4293 	}
4294 
4295 	/*
4296 	 * Now we can initialize a free vmap space.
4297 	 */
4298 	vmap_init_free_space();
4299 	vmap_initialized = true;
4300 }
4301