1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/radix-tree.h> 28 #include <linux/rcupdate.h> 29 #include <linux/pfn.h> 30 #include <linux/kmemleak.h> 31 #include <linux/atomic.h> 32 #include <linux/compiler.h> 33 #include <linux/llist.h> 34 #include <linux/bitops.h> 35 36 #include <linux/uaccess.h> 37 #include <asm/tlbflush.h> 38 #include <asm/shmparam.h> 39 40 #include "internal.h" 41 42 struct vfree_deferred { 43 struct llist_head list; 44 struct work_struct wq; 45 }; 46 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 47 48 static void __vunmap(const void *, int); 49 50 static void free_work(struct work_struct *w) 51 { 52 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 53 struct llist_node *t, *llnode; 54 55 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 56 __vunmap((void *)llnode, 1); 57 } 58 59 /*** Page table manipulation functions ***/ 60 61 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 62 { 63 pte_t *pte; 64 65 pte = pte_offset_kernel(pmd, addr); 66 do { 67 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 68 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 69 } while (pte++, addr += PAGE_SIZE, addr != end); 70 } 71 72 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 73 { 74 pmd_t *pmd; 75 unsigned long next; 76 77 pmd = pmd_offset(pud, addr); 78 do { 79 next = pmd_addr_end(addr, end); 80 if (pmd_clear_huge(pmd)) 81 continue; 82 if (pmd_none_or_clear_bad(pmd)) 83 continue; 84 vunmap_pte_range(pmd, addr, next); 85 } while (pmd++, addr = next, addr != end); 86 } 87 88 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end) 89 { 90 pud_t *pud; 91 unsigned long next; 92 93 pud = pud_offset(p4d, addr); 94 do { 95 next = pud_addr_end(addr, end); 96 if (pud_clear_huge(pud)) 97 continue; 98 if (pud_none_or_clear_bad(pud)) 99 continue; 100 vunmap_pmd_range(pud, addr, next); 101 } while (pud++, addr = next, addr != end); 102 } 103 104 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end) 105 { 106 p4d_t *p4d; 107 unsigned long next; 108 109 p4d = p4d_offset(pgd, addr); 110 do { 111 next = p4d_addr_end(addr, end); 112 if (p4d_clear_huge(p4d)) 113 continue; 114 if (p4d_none_or_clear_bad(p4d)) 115 continue; 116 vunmap_pud_range(p4d, addr, next); 117 } while (p4d++, addr = next, addr != end); 118 } 119 120 static void vunmap_page_range(unsigned long addr, unsigned long end) 121 { 122 pgd_t *pgd; 123 unsigned long next; 124 125 BUG_ON(addr >= end); 126 pgd = pgd_offset_k(addr); 127 do { 128 next = pgd_addr_end(addr, end); 129 if (pgd_none_or_clear_bad(pgd)) 130 continue; 131 vunmap_p4d_range(pgd, addr, next); 132 } while (pgd++, addr = next, addr != end); 133 } 134 135 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 136 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 137 { 138 pte_t *pte; 139 140 /* 141 * nr is a running index into the array which helps higher level 142 * callers keep track of where we're up to. 143 */ 144 145 pte = pte_alloc_kernel(pmd, addr); 146 if (!pte) 147 return -ENOMEM; 148 do { 149 struct page *page = pages[*nr]; 150 151 if (WARN_ON(!pte_none(*pte))) 152 return -EBUSY; 153 if (WARN_ON(!page)) 154 return -ENOMEM; 155 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 156 (*nr)++; 157 } while (pte++, addr += PAGE_SIZE, addr != end); 158 return 0; 159 } 160 161 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 162 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 163 { 164 pmd_t *pmd; 165 unsigned long next; 166 167 pmd = pmd_alloc(&init_mm, pud, addr); 168 if (!pmd) 169 return -ENOMEM; 170 do { 171 next = pmd_addr_end(addr, end); 172 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 173 return -ENOMEM; 174 } while (pmd++, addr = next, addr != end); 175 return 0; 176 } 177 178 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, 179 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 180 { 181 pud_t *pud; 182 unsigned long next; 183 184 pud = pud_alloc(&init_mm, p4d, addr); 185 if (!pud) 186 return -ENOMEM; 187 do { 188 next = pud_addr_end(addr, end); 189 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 190 return -ENOMEM; 191 } while (pud++, addr = next, addr != end); 192 return 0; 193 } 194 195 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, 196 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 197 { 198 p4d_t *p4d; 199 unsigned long next; 200 201 p4d = p4d_alloc(&init_mm, pgd, addr); 202 if (!p4d) 203 return -ENOMEM; 204 do { 205 next = p4d_addr_end(addr, end); 206 if (vmap_pud_range(p4d, addr, next, prot, pages, nr)) 207 return -ENOMEM; 208 } while (p4d++, addr = next, addr != end); 209 return 0; 210 } 211 212 /* 213 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 214 * will have pfns corresponding to the "pages" array. 215 * 216 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 217 */ 218 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 219 pgprot_t prot, struct page **pages) 220 { 221 pgd_t *pgd; 222 unsigned long next; 223 unsigned long addr = start; 224 int err = 0; 225 int nr = 0; 226 227 BUG_ON(addr >= end); 228 pgd = pgd_offset_k(addr); 229 do { 230 next = pgd_addr_end(addr, end); 231 err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr); 232 if (err) 233 return err; 234 } while (pgd++, addr = next, addr != end); 235 236 return nr; 237 } 238 239 static int vmap_page_range(unsigned long start, unsigned long end, 240 pgprot_t prot, struct page **pages) 241 { 242 int ret; 243 244 ret = vmap_page_range_noflush(start, end, prot, pages); 245 flush_cache_vmap(start, end); 246 return ret; 247 } 248 249 int is_vmalloc_or_module_addr(const void *x) 250 { 251 /* 252 * ARM, x86-64 and sparc64 put modules in a special place, 253 * and fall back on vmalloc() if that fails. Others 254 * just put it in the vmalloc space. 255 */ 256 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 257 unsigned long addr = (unsigned long)x; 258 if (addr >= MODULES_VADDR && addr < MODULES_END) 259 return 1; 260 #endif 261 return is_vmalloc_addr(x); 262 } 263 264 /* 265 * Walk a vmap address to the struct page it maps. 266 */ 267 struct page *vmalloc_to_page(const void *vmalloc_addr) 268 { 269 unsigned long addr = (unsigned long) vmalloc_addr; 270 struct page *page = NULL; 271 pgd_t *pgd = pgd_offset_k(addr); 272 p4d_t *p4d; 273 pud_t *pud; 274 pmd_t *pmd; 275 pte_t *ptep, pte; 276 277 /* 278 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 279 * architectures that do not vmalloc module space 280 */ 281 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 282 283 if (pgd_none(*pgd)) 284 return NULL; 285 p4d = p4d_offset(pgd, addr); 286 if (p4d_none(*p4d)) 287 return NULL; 288 pud = pud_offset(p4d, addr); 289 290 /* 291 * Don't dereference bad PUD or PMD (below) entries. This will also 292 * identify huge mappings, which we may encounter on architectures 293 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be 294 * identified as vmalloc addresses by is_vmalloc_addr(), but are 295 * not [unambiguously] associated with a struct page, so there is 296 * no correct value to return for them. 297 */ 298 WARN_ON_ONCE(pud_bad(*pud)); 299 if (pud_none(*pud) || pud_bad(*pud)) 300 return NULL; 301 pmd = pmd_offset(pud, addr); 302 WARN_ON_ONCE(pmd_bad(*pmd)); 303 if (pmd_none(*pmd) || pmd_bad(*pmd)) 304 return NULL; 305 306 ptep = pte_offset_map(pmd, addr); 307 pte = *ptep; 308 if (pte_present(pte)) 309 page = pte_page(pte); 310 pte_unmap(ptep); 311 return page; 312 } 313 EXPORT_SYMBOL(vmalloc_to_page); 314 315 /* 316 * Map a vmalloc()-space virtual address to the physical page frame number. 317 */ 318 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 319 { 320 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 321 } 322 EXPORT_SYMBOL(vmalloc_to_pfn); 323 324 325 /*** Global kva allocator ***/ 326 327 #define VM_LAZY_FREE 0x02 328 #define VM_VM_AREA 0x04 329 330 static DEFINE_SPINLOCK(vmap_area_lock); 331 /* Export for kexec only */ 332 LIST_HEAD(vmap_area_list); 333 static LLIST_HEAD(vmap_purge_list); 334 static struct rb_root vmap_area_root = RB_ROOT; 335 336 /* The vmap cache globals are protected by vmap_area_lock */ 337 static struct rb_node *free_vmap_cache; 338 static unsigned long cached_hole_size; 339 static unsigned long cached_vstart; 340 static unsigned long cached_align; 341 342 static unsigned long vmap_area_pcpu_hole; 343 344 static struct vmap_area *__find_vmap_area(unsigned long addr) 345 { 346 struct rb_node *n = vmap_area_root.rb_node; 347 348 while (n) { 349 struct vmap_area *va; 350 351 va = rb_entry(n, struct vmap_area, rb_node); 352 if (addr < va->va_start) 353 n = n->rb_left; 354 else if (addr >= va->va_end) 355 n = n->rb_right; 356 else 357 return va; 358 } 359 360 return NULL; 361 } 362 363 static void __insert_vmap_area(struct vmap_area *va) 364 { 365 struct rb_node **p = &vmap_area_root.rb_node; 366 struct rb_node *parent = NULL; 367 struct rb_node *tmp; 368 369 while (*p) { 370 struct vmap_area *tmp_va; 371 372 parent = *p; 373 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 374 if (va->va_start < tmp_va->va_end) 375 p = &(*p)->rb_left; 376 else if (va->va_end > tmp_va->va_start) 377 p = &(*p)->rb_right; 378 else 379 BUG(); 380 } 381 382 rb_link_node(&va->rb_node, parent, p); 383 rb_insert_color(&va->rb_node, &vmap_area_root); 384 385 /* address-sort this list */ 386 tmp = rb_prev(&va->rb_node); 387 if (tmp) { 388 struct vmap_area *prev; 389 prev = rb_entry(tmp, struct vmap_area, rb_node); 390 list_add_rcu(&va->list, &prev->list); 391 } else 392 list_add_rcu(&va->list, &vmap_area_list); 393 } 394 395 static void purge_vmap_area_lazy(void); 396 397 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 398 399 /* 400 * Allocate a region of KVA of the specified size and alignment, within the 401 * vstart and vend. 402 */ 403 static struct vmap_area *alloc_vmap_area(unsigned long size, 404 unsigned long align, 405 unsigned long vstart, unsigned long vend, 406 int node, gfp_t gfp_mask) 407 { 408 struct vmap_area *va; 409 struct rb_node *n; 410 unsigned long addr; 411 int purged = 0; 412 struct vmap_area *first; 413 414 BUG_ON(!size); 415 BUG_ON(offset_in_page(size)); 416 BUG_ON(!is_power_of_2(align)); 417 418 might_sleep(); 419 420 va = kmalloc_node(sizeof(struct vmap_area), 421 gfp_mask & GFP_RECLAIM_MASK, node); 422 if (unlikely(!va)) 423 return ERR_PTR(-ENOMEM); 424 425 /* 426 * Only scan the relevant parts containing pointers to other objects 427 * to avoid false negatives. 428 */ 429 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 430 431 retry: 432 spin_lock(&vmap_area_lock); 433 /* 434 * Invalidate cache if we have more permissive parameters. 435 * cached_hole_size notes the largest hole noticed _below_ 436 * the vmap_area cached in free_vmap_cache: if size fits 437 * into that hole, we want to scan from vstart to reuse 438 * the hole instead of allocating above free_vmap_cache. 439 * Note that __free_vmap_area may update free_vmap_cache 440 * without updating cached_hole_size or cached_align. 441 */ 442 if (!free_vmap_cache || 443 size < cached_hole_size || 444 vstart < cached_vstart || 445 align < cached_align) { 446 nocache: 447 cached_hole_size = 0; 448 free_vmap_cache = NULL; 449 } 450 /* record if we encounter less permissive parameters */ 451 cached_vstart = vstart; 452 cached_align = align; 453 454 /* find starting point for our search */ 455 if (free_vmap_cache) { 456 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 457 addr = ALIGN(first->va_end, align); 458 if (addr < vstart) 459 goto nocache; 460 if (addr + size < addr) 461 goto overflow; 462 463 } else { 464 addr = ALIGN(vstart, align); 465 if (addr + size < addr) 466 goto overflow; 467 468 n = vmap_area_root.rb_node; 469 first = NULL; 470 471 while (n) { 472 struct vmap_area *tmp; 473 tmp = rb_entry(n, struct vmap_area, rb_node); 474 if (tmp->va_end >= addr) { 475 first = tmp; 476 if (tmp->va_start <= addr) 477 break; 478 n = n->rb_left; 479 } else 480 n = n->rb_right; 481 } 482 483 if (!first) 484 goto found; 485 } 486 487 /* from the starting point, walk areas until a suitable hole is found */ 488 while (addr + size > first->va_start && addr + size <= vend) { 489 if (addr + cached_hole_size < first->va_start) 490 cached_hole_size = first->va_start - addr; 491 addr = ALIGN(first->va_end, align); 492 if (addr + size < addr) 493 goto overflow; 494 495 if (list_is_last(&first->list, &vmap_area_list)) 496 goto found; 497 498 first = list_next_entry(first, list); 499 } 500 501 found: 502 /* 503 * Check also calculated address against the vstart, 504 * because it can be 0 because of big align request. 505 */ 506 if (addr + size > vend || addr < vstart) 507 goto overflow; 508 509 va->va_start = addr; 510 va->va_end = addr + size; 511 va->flags = 0; 512 __insert_vmap_area(va); 513 free_vmap_cache = &va->rb_node; 514 spin_unlock(&vmap_area_lock); 515 516 BUG_ON(!IS_ALIGNED(va->va_start, align)); 517 BUG_ON(va->va_start < vstart); 518 BUG_ON(va->va_end > vend); 519 520 return va; 521 522 overflow: 523 spin_unlock(&vmap_area_lock); 524 if (!purged) { 525 purge_vmap_area_lazy(); 526 purged = 1; 527 goto retry; 528 } 529 530 if (gfpflags_allow_blocking(gfp_mask)) { 531 unsigned long freed = 0; 532 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 533 if (freed > 0) { 534 purged = 0; 535 goto retry; 536 } 537 } 538 539 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 540 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 541 size); 542 kfree(va); 543 return ERR_PTR(-EBUSY); 544 } 545 546 int register_vmap_purge_notifier(struct notifier_block *nb) 547 { 548 return blocking_notifier_chain_register(&vmap_notify_list, nb); 549 } 550 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 551 552 int unregister_vmap_purge_notifier(struct notifier_block *nb) 553 { 554 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 555 } 556 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 557 558 static void __free_vmap_area(struct vmap_area *va) 559 { 560 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 561 562 if (free_vmap_cache) { 563 if (va->va_end < cached_vstart) { 564 free_vmap_cache = NULL; 565 } else { 566 struct vmap_area *cache; 567 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 568 if (va->va_start <= cache->va_start) { 569 free_vmap_cache = rb_prev(&va->rb_node); 570 /* 571 * We don't try to update cached_hole_size or 572 * cached_align, but it won't go very wrong. 573 */ 574 } 575 } 576 } 577 rb_erase(&va->rb_node, &vmap_area_root); 578 RB_CLEAR_NODE(&va->rb_node); 579 list_del_rcu(&va->list); 580 581 /* 582 * Track the highest possible candidate for pcpu area 583 * allocation. Areas outside of vmalloc area can be returned 584 * here too, consider only end addresses which fall inside 585 * vmalloc area proper. 586 */ 587 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 588 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 589 590 kfree_rcu(va, rcu_head); 591 } 592 593 /* 594 * Free a region of KVA allocated by alloc_vmap_area 595 */ 596 static void free_vmap_area(struct vmap_area *va) 597 { 598 spin_lock(&vmap_area_lock); 599 __free_vmap_area(va); 600 spin_unlock(&vmap_area_lock); 601 } 602 603 /* 604 * Clear the pagetable entries of a given vmap_area 605 */ 606 static void unmap_vmap_area(struct vmap_area *va) 607 { 608 vunmap_page_range(va->va_start, va->va_end); 609 } 610 611 /* 612 * lazy_max_pages is the maximum amount of virtual address space we gather up 613 * before attempting to purge with a TLB flush. 614 * 615 * There is a tradeoff here: a larger number will cover more kernel page tables 616 * and take slightly longer to purge, but it will linearly reduce the number of 617 * global TLB flushes that must be performed. It would seem natural to scale 618 * this number up linearly with the number of CPUs (because vmapping activity 619 * could also scale linearly with the number of CPUs), however it is likely 620 * that in practice, workloads might be constrained in other ways that mean 621 * vmap activity will not scale linearly with CPUs. Also, I want to be 622 * conservative and not introduce a big latency on huge systems, so go with 623 * a less aggressive log scale. It will still be an improvement over the old 624 * code, and it will be simple to change the scale factor if we find that it 625 * becomes a problem on bigger systems. 626 */ 627 static unsigned long lazy_max_pages(void) 628 { 629 unsigned int log; 630 631 log = fls(num_online_cpus()); 632 633 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 634 } 635 636 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 637 638 /* 639 * Serialize vmap purging. There is no actual criticial section protected 640 * by this look, but we want to avoid concurrent calls for performance 641 * reasons and to make the pcpu_get_vm_areas more deterministic. 642 */ 643 static DEFINE_MUTEX(vmap_purge_lock); 644 645 /* for per-CPU blocks */ 646 static void purge_fragmented_blocks_allcpus(void); 647 648 /* 649 * called before a call to iounmap() if the caller wants vm_area_struct's 650 * immediately freed. 651 */ 652 void set_iounmap_nonlazy(void) 653 { 654 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 655 } 656 657 /* 658 * Purges all lazily-freed vmap areas. 659 */ 660 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 661 { 662 unsigned long resched_threshold; 663 struct llist_node *valist; 664 struct vmap_area *va; 665 struct vmap_area *n_va; 666 667 lockdep_assert_held(&vmap_purge_lock); 668 669 valist = llist_del_all(&vmap_purge_list); 670 if (unlikely(valist == NULL)) 671 return false; 672 673 /* 674 * TODO: to calculate a flush range without looping. 675 * The list can be up to lazy_max_pages() elements. 676 */ 677 llist_for_each_entry(va, valist, purge_list) { 678 if (va->va_start < start) 679 start = va->va_start; 680 if (va->va_end > end) 681 end = va->va_end; 682 } 683 684 flush_tlb_kernel_range(start, end); 685 resched_threshold = lazy_max_pages() << 1; 686 687 spin_lock(&vmap_area_lock); 688 llist_for_each_entry_safe(va, n_va, valist, purge_list) { 689 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 690 691 __free_vmap_area(va); 692 atomic_long_sub(nr, &vmap_lazy_nr); 693 694 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 695 cond_resched_lock(&vmap_area_lock); 696 } 697 spin_unlock(&vmap_area_lock); 698 return true; 699 } 700 701 /* 702 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 703 * is already purging. 704 */ 705 static void try_purge_vmap_area_lazy(void) 706 { 707 if (mutex_trylock(&vmap_purge_lock)) { 708 __purge_vmap_area_lazy(ULONG_MAX, 0); 709 mutex_unlock(&vmap_purge_lock); 710 } 711 } 712 713 /* 714 * Kick off a purge of the outstanding lazy areas. 715 */ 716 static void purge_vmap_area_lazy(void) 717 { 718 mutex_lock(&vmap_purge_lock); 719 purge_fragmented_blocks_allcpus(); 720 __purge_vmap_area_lazy(ULONG_MAX, 0); 721 mutex_unlock(&vmap_purge_lock); 722 } 723 724 /* 725 * Free a vmap area, caller ensuring that the area has been unmapped 726 * and flush_cache_vunmap had been called for the correct range 727 * previously. 728 */ 729 static void free_vmap_area_noflush(struct vmap_area *va) 730 { 731 unsigned long nr_lazy; 732 733 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 734 PAGE_SHIFT, &vmap_lazy_nr); 735 736 /* After this point, we may free va at any time */ 737 llist_add(&va->purge_list, &vmap_purge_list); 738 739 if (unlikely(nr_lazy > lazy_max_pages())) 740 try_purge_vmap_area_lazy(); 741 } 742 743 /* 744 * Free and unmap a vmap area 745 */ 746 static void free_unmap_vmap_area(struct vmap_area *va) 747 { 748 flush_cache_vunmap(va->va_start, va->va_end); 749 unmap_vmap_area(va); 750 if (debug_pagealloc_enabled()) 751 flush_tlb_kernel_range(va->va_start, va->va_end); 752 753 free_vmap_area_noflush(va); 754 } 755 756 static struct vmap_area *find_vmap_area(unsigned long addr) 757 { 758 struct vmap_area *va; 759 760 spin_lock(&vmap_area_lock); 761 va = __find_vmap_area(addr); 762 spin_unlock(&vmap_area_lock); 763 764 return va; 765 } 766 767 /*** Per cpu kva allocator ***/ 768 769 /* 770 * vmap space is limited especially on 32 bit architectures. Ensure there is 771 * room for at least 16 percpu vmap blocks per CPU. 772 */ 773 /* 774 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 775 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 776 * instead (we just need a rough idea) 777 */ 778 #if BITS_PER_LONG == 32 779 #define VMALLOC_SPACE (128UL*1024*1024) 780 #else 781 #define VMALLOC_SPACE (128UL*1024*1024*1024) 782 #endif 783 784 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 785 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 786 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 787 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 788 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 789 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 790 #define VMAP_BBMAP_BITS \ 791 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 792 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 793 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 794 795 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 796 797 static bool vmap_initialized __read_mostly = false; 798 799 struct vmap_block_queue { 800 spinlock_t lock; 801 struct list_head free; 802 }; 803 804 struct vmap_block { 805 spinlock_t lock; 806 struct vmap_area *va; 807 unsigned long free, dirty; 808 unsigned long dirty_min, dirty_max; /*< dirty range */ 809 struct list_head free_list; 810 struct rcu_head rcu_head; 811 struct list_head purge; 812 }; 813 814 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 815 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 816 817 /* 818 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 819 * in the free path. Could get rid of this if we change the API to return a 820 * "cookie" from alloc, to be passed to free. But no big deal yet. 821 */ 822 static DEFINE_SPINLOCK(vmap_block_tree_lock); 823 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 824 825 /* 826 * We should probably have a fallback mechanism to allocate virtual memory 827 * out of partially filled vmap blocks. However vmap block sizing should be 828 * fairly reasonable according to the vmalloc size, so it shouldn't be a 829 * big problem. 830 */ 831 832 static unsigned long addr_to_vb_idx(unsigned long addr) 833 { 834 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 835 addr /= VMAP_BLOCK_SIZE; 836 return addr; 837 } 838 839 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 840 { 841 unsigned long addr; 842 843 addr = va_start + (pages_off << PAGE_SHIFT); 844 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 845 return (void *)addr; 846 } 847 848 /** 849 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 850 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 851 * @order: how many 2^order pages should be occupied in newly allocated block 852 * @gfp_mask: flags for the page level allocator 853 * 854 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 855 */ 856 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 857 { 858 struct vmap_block_queue *vbq; 859 struct vmap_block *vb; 860 struct vmap_area *va; 861 unsigned long vb_idx; 862 int node, err; 863 void *vaddr; 864 865 node = numa_node_id(); 866 867 vb = kmalloc_node(sizeof(struct vmap_block), 868 gfp_mask & GFP_RECLAIM_MASK, node); 869 if (unlikely(!vb)) 870 return ERR_PTR(-ENOMEM); 871 872 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 873 VMALLOC_START, VMALLOC_END, 874 node, gfp_mask); 875 if (IS_ERR(va)) { 876 kfree(vb); 877 return ERR_CAST(va); 878 } 879 880 err = radix_tree_preload(gfp_mask); 881 if (unlikely(err)) { 882 kfree(vb); 883 free_vmap_area(va); 884 return ERR_PTR(err); 885 } 886 887 vaddr = vmap_block_vaddr(va->va_start, 0); 888 spin_lock_init(&vb->lock); 889 vb->va = va; 890 /* At least something should be left free */ 891 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 892 vb->free = VMAP_BBMAP_BITS - (1UL << order); 893 vb->dirty = 0; 894 vb->dirty_min = VMAP_BBMAP_BITS; 895 vb->dirty_max = 0; 896 INIT_LIST_HEAD(&vb->free_list); 897 898 vb_idx = addr_to_vb_idx(va->va_start); 899 spin_lock(&vmap_block_tree_lock); 900 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 901 spin_unlock(&vmap_block_tree_lock); 902 BUG_ON(err); 903 radix_tree_preload_end(); 904 905 vbq = &get_cpu_var(vmap_block_queue); 906 spin_lock(&vbq->lock); 907 list_add_tail_rcu(&vb->free_list, &vbq->free); 908 spin_unlock(&vbq->lock); 909 put_cpu_var(vmap_block_queue); 910 911 return vaddr; 912 } 913 914 static void free_vmap_block(struct vmap_block *vb) 915 { 916 struct vmap_block *tmp; 917 unsigned long vb_idx; 918 919 vb_idx = addr_to_vb_idx(vb->va->va_start); 920 spin_lock(&vmap_block_tree_lock); 921 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 922 spin_unlock(&vmap_block_tree_lock); 923 BUG_ON(tmp != vb); 924 925 free_vmap_area_noflush(vb->va); 926 kfree_rcu(vb, rcu_head); 927 } 928 929 static void purge_fragmented_blocks(int cpu) 930 { 931 LIST_HEAD(purge); 932 struct vmap_block *vb; 933 struct vmap_block *n_vb; 934 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 935 936 rcu_read_lock(); 937 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 938 939 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 940 continue; 941 942 spin_lock(&vb->lock); 943 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 944 vb->free = 0; /* prevent further allocs after releasing lock */ 945 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 946 vb->dirty_min = 0; 947 vb->dirty_max = VMAP_BBMAP_BITS; 948 spin_lock(&vbq->lock); 949 list_del_rcu(&vb->free_list); 950 spin_unlock(&vbq->lock); 951 spin_unlock(&vb->lock); 952 list_add_tail(&vb->purge, &purge); 953 } else 954 spin_unlock(&vb->lock); 955 } 956 rcu_read_unlock(); 957 958 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 959 list_del(&vb->purge); 960 free_vmap_block(vb); 961 } 962 } 963 964 static void purge_fragmented_blocks_allcpus(void) 965 { 966 int cpu; 967 968 for_each_possible_cpu(cpu) 969 purge_fragmented_blocks(cpu); 970 } 971 972 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 973 { 974 struct vmap_block_queue *vbq; 975 struct vmap_block *vb; 976 void *vaddr = NULL; 977 unsigned int order; 978 979 BUG_ON(offset_in_page(size)); 980 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 981 if (WARN_ON(size == 0)) { 982 /* 983 * Allocating 0 bytes isn't what caller wants since 984 * get_order(0) returns funny result. Just warn and terminate 985 * early. 986 */ 987 return NULL; 988 } 989 order = get_order(size); 990 991 rcu_read_lock(); 992 vbq = &get_cpu_var(vmap_block_queue); 993 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 994 unsigned long pages_off; 995 996 spin_lock(&vb->lock); 997 if (vb->free < (1UL << order)) { 998 spin_unlock(&vb->lock); 999 continue; 1000 } 1001 1002 pages_off = VMAP_BBMAP_BITS - vb->free; 1003 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1004 vb->free -= 1UL << order; 1005 if (vb->free == 0) { 1006 spin_lock(&vbq->lock); 1007 list_del_rcu(&vb->free_list); 1008 spin_unlock(&vbq->lock); 1009 } 1010 1011 spin_unlock(&vb->lock); 1012 break; 1013 } 1014 1015 put_cpu_var(vmap_block_queue); 1016 rcu_read_unlock(); 1017 1018 /* Allocate new block if nothing was found */ 1019 if (!vaddr) 1020 vaddr = new_vmap_block(order, gfp_mask); 1021 1022 return vaddr; 1023 } 1024 1025 static void vb_free(const void *addr, unsigned long size) 1026 { 1027 unsigned long offset; 1028 unsigned long vb_idx; 1029 unsigned int order; 1030 struct vmap_block *vb; 1031 1032 BUG_ON(offset_in_page(size)); 1033 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1034 1035 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1036 1037 order = get_order(size); 1038 1039 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1040 offset >>= PAGE_SHIFT; 1041 1042 vb_idx = addr_to_vb_idx((unsigned long)addr); 1043 rcu_read_lock(); 1044 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1045 rcu_read_unlock(); 1046 BUG_ON(!vb); 1047 1048 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1049 1050 if (debug_pagealloc_enabled()) 1051 flush_tlb_kernel_range((unsigned long)addr, 1052 (unsigned long)addr + size); 1053 1054 spin_lock(&vb->lock); 1055 1056 /* Expand dirty range */ 1057 vb->dirty_min = min(vb->dirty_min, offset); 1058 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1059 1060 vb->dirty += 1UL << order; 1061 if (vb->dirty == VMAP_BBMAP_BITS) { 1062 BUG_ON(vb->free); 1063 spin_unlock(&vb->lock); 1064 free_vmap_block(vb); 1065 } else 1066 spin_unlock(&vb->lock); 1067 } 1068 1069 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 1070 { 1071 int cpu; 1072 1073 if (unlikely(!vmap_initialized)) 1074 return; 1075 1076 might_sleep(); 1077 1078 for_each_possible_cpu(cpu) { 1079 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1080 struct vmap_block *vb; 1081 1082 rcu_read_lock(); 1083 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1084 spin_lock(&vb->lock); 1085 if (vb->dirty) { 1086 unsigned long va_start = vb->va->va_start; 1087 unsigned long s, e; 1088 1089 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1090 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1091 1092 start = min(s, start); 1093 end = max(e, end); 1094 1095 flush = 1; 1096 } 1097 spin_unlock(&vb->lock); 1098 } 1099 rcu_read_unlock(); 1100 } 1101 1102 mutex_lock(&vmap_purge_lock); 1103 purge_fragmented_blocks_allcpus(); 1104 if (!__purge_vmap_area_lazy(start, end) && flush) 1105 flush_tlb_kernel_range(start, end); 1106 mutex_unlock(&vmap_purge_lock); 1107 } 1108 1109 /** 1110 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1111 * 1112 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1113 * to amortize TLB flushing overheads. What this means is that any page you 1114 * have now, may, in a former life, have been mapped into kernel virtual 1115 * address by the vmap layer and so there might be some CPUs with TLB entries 1116 * still referencing that page (additional to the regular 1:1 kernel mapping). 1117 * 1118 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1119 * be sure that none of the pages we have control over will have any aliases 1120 * from the vmap layer. 1121 */ 1122 void vm_unmap_aliases(void) 1123 { 1124 unsigned long start = ULONG_MAX, end = 0; 1125 int flush = 0; 1126 1127 _vm_unmap_aliases(start, end, flush); 1128 } 1129 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1130 1131 /** 1132 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1133 * @mem: the pointer returned by vm_map_ram 1134 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1135 */ 1136 void vm_unmap_ram(const void *mem, unsigned int count) 1137 { 1138 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1139 unsigned long addr = (unsigned long)mem; 1140 struct vmap_area *va; 1141 1142 might_sleep(); 1143 BUG_ON(!addr); 1144 BUG_ON(addr < VMALLOC_START); 1145 BUG_ON(addr > VMALLOC_END); 1146 BUG_ON(!PAGE_ALIGNED(addr)); 1147 1148 if (likely(count <= VMAP_MAX_ALLOC)) { 1149 debug_check_no_locks_freed(mem, size); 1150 vb_free(mem, size); 1151 return; 1152 } 1153 1154 va = find_vmap_area(addr); 1155 BUG_ON(!va); 1156 debug_check_no_locks_freed((void *)va->va_start, 1157 (va->va_end - va->va_start)); 1158 free_unmap_vmap_area(va); 1159 } 1160 EXPORT_SYMBOL(vm_unmap_ram); 1161 1162 /** 1163 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1164 * @pages: an array of pointers to the pages to be mapped 1165 * @count: number of pages 1166 * @node: prefer to allocate data structures on this node 1167 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1168 * 1169 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1170 * faster than vmap so it's good. But if you mix long-life and short-life 1171 * objects with vm_map_ram(), it could consume lots of address space through 1172 * fragmentation (especially on a 32bit machine). You could see failures in 1173 * the end. Please use this function for short-lived objects. 1174 * 1175 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1176 */ 1177 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1178 { 1179 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1180 unsigned long addr; 1181 void *mem; 1182 1183 if (likely(count <= VMAP_MAX_ALLOC)) { 1184 mem = vb_alloc(size, GFP_KERNEL); 1185 if (IS_ERR(mem)) 1186 return NULL; 1187 addr = (unsigned long)mem; 1188 } else { 1189 struct vmap_area *va; 1190 va = alloc_vmap_area(size, PAGE_SIZE, 1191 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1192 if (IS_ERR(va)) 1193 return NULL; 1194 1195 addr = va->va_start; 1196 mem = (void *)addr; 1197 } 1198 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1199 vm_unmap_ram(mem, count); 1200 return NULL; 1201 } 1202 return mem; 1203 } 1204 EXPORT_SYMBOL(vm_map_ram); 1205 1206 static struct vm_struct *vmlist __initdata; 1207 1208 /** 1209 * vm_area_add_early - add vmap area early during boot 1210 * @vm: vm_struct to add 1211 * 1212 * This function is used to add fixed kernel vm area to vmlist before 1213 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1214 * should contain proper values and the other fields should be zero. 1215 * 1216 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1217 */ 1218 void __init vm_area_add_early(struct vm_struct *vm) 1219 { 1220 struct vm_struct *tmp, **p; 1221 1222 BUG_ON(vmap_initialized); 1223 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1224 if (tmp->addr >= vm->addr) { 1225 BUG_ON(tmp->addr < vm->addr + vm->size); 1226 break; 1227 } else 1228 BUG_ON(tmp->addr + tmp->size > vm->addr); 1229 } 1230 vm->next = *p; 1231 *p = vm; 1232 } 1233 1234 /** 1235 * vm_area_register_early - register vmap area early during boot 1236 * @vm: vm_struct to register 1237 * @align: requested alignment 1238 * 1239 * This function is used to register kernel vm area before 1240 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1241 * proper values on entry and other fields should be zero. On return, 1242 * vm->addr contains the allocated address. 1243 * 1244 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1245 */ 1246 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1247 { 1248 static size_t vm_init_off __initdata; 1249 unsigned long addr; 1250 1251 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1252 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1253 1254 vm->addr = (void *)addr; 1255 1256 vm_area_add_early(vm); 1257 } 1258 1259 void __init vmalloc_init(void) 1260 { 1261 struct vmap_area *va; 1262 struct vm_struct *tmp; 1263 int i; 1264 1265 for_each_possible_cpu(i) { 1266 struct vmap_block_queue *vbq; 1267 struct vfree_deferred *p; 1268 1269 vbq = &per_cpu(vmap_block_queue, i); 1270 spin_lock_init(&vbq->lock); 1271 INIT_LIST_HEAD(&vbq->free); 1272 p = &per_cpu(vfree_deferred, i); 1273 init_llist_head(&p->list); 1274 INIT_WORK(&p->wq, free_work); 1275 } 1276 1277 /* Import existing vmlist entries. */ 1278 for (tmp = vmlist; tmp; tmp = tmp->next) { 1279 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1280 va->flags = VM_VM_AREA; 1281 va->va_start = (unsigned long)tmp->addr; 1282 va->va_end = va->va_start + tmp->size; 1283 va->vm = tmp; 1284 __insert_vmap_area(va); 1285 } 1286 1287 vmap_area_pcpu_hole = VMALLOC_END; 1288 1289 vmap_initialized = true; 1290 } 1291 1292 /** 1293 * map_kernel_range_noflush - map kernel VM area with the specified pages 1294 * @addr: start of the VM area to map 1295 * @size: size of the VM area to map 1296 * @prot: page protection flags to use 1297 * @pages: pages to map 1298 * 1299 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1300 * specify should have been allocated using get_vm_area() and its 1301 * friends. 1302 * 1303 * NOTE: 1304 * This function does NOT do any cache flushing. The caller is 1305 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1306 * before calling this function. 1307 * 1308 * RETURNS: 1309 * The number of pages mapped on success, -errno on failure. 1310 */ 1311 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1312 pgprot_t prot, struct page **pages) 1313 { 1314 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1315 } 1316 1317 /** 1318 * unmap_kernel_range_noflush - unmap kernel VM area 1319 * @addr: start of the VM area to unmap 1320 * @size: size of the VM area to unmap 1321 * 1322 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1323 * specify should have been allocated using get_vm_area() and its 1324 * friends. 1325 * 1326 * NOTE: 1327 * This function does NOT do any cache flushing. The caller is 1328 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1329 * before calling this function and flush_tlb_kernel_range() after. 1330 */ 1331 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1332 { 1333 vunmap_page_range(addr, addr + size); 1334 } 1335 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1336 1337 /** 1338 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1339 * @addr: start of the VM area to unmap 1340 * @size: size of the VM area to unmap 1341 * 1342 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1343 * the unmapping and tlb after. 1344 */ 1345 void unmap_kernel_range(unsigned long addr, unsigned long size) 1346 { 1347 unsigned long end = addr + size; 1348 1349 flush_cache_vunmap(addr, end); 1350 vunmap_page_range(addr, end); 1351 flush_tlb_kernel_range(addr, end); 1352 } 1353 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1354 1355 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1356 { 1357 unsigned long addr = (unsigned long)area->addr; 1358 unsigned long end = addr + get_vm_area_size(area); 1359 int err; 1360 1361 err = vmap_page_range(addr, end, prot, pages); 1362 1363 return err > 0 ? 0 : err; 1364 } 1365 EXPORT_SYMBOL_GPL(map_vm_area); 1366 1367 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1368 unsigned long flags, const void *caller) 1369 { 1370 spin_lock(&vmap_area_lock); 1371 vm->flags = flags; 1372 vm->addr = (void *)va->va_start; 1373 vm->size = va->va_end - va->va_start; 1374 vm->caller = caller; 1375 va->vm = vm; 1376 va->flags |= VM_VM_AREA; 1377 spin_unlock(&vmap_area_lock); 1378 } 1379 1380 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1381 { 1382 /* 1383 * Before removing VM_UNINITIALIZED, 1384 * we should make sure that vm has proper values. 1385 * Pair with smp_rmb() in show_numa_info(). 1386 */ 1387 smp_wmb(); 1388 vm->flags &= ~VM_UNINITIALIZED; 1389 } 1390 1391 static struct vm_struct *__get_vm_area_node(unsigned long size, 1392 unsigned long align, unsigned long flags, unsigned long start, 1393 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1394 { 1395 struct vmap_area *va; 1396 struct vm_struct *area; 1397 1398 BUG_ON(in_interrupt()); 1399 size = PAGE_ALIGN(size); 1400 if (unlikely(!size)) 1401 return NULL; 1402 1403 if (flags & VM_IOREMAP) 1404 align = 1ul << clamp_t(int, get_count_order_long(size), 1405 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1406 1407 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1408 if (unlikely(!area)) 1409 return NULL; 1410 1411 if (!(flags & VM_NO_GUARD)) 1412 size += PAGE_SIZE; 1413 1414 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1415 if (IS_ERR(va)) { 1416 kfree(area); 1417 return NULL; 1418 } 1419 1420 setup_vmalloc_vm(area, va, flags, caller); 1421 1422 return area; 1423 } 1424 1425 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1426 unsigned long start, unsigned long end) 1427 { 1428 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1429 GFP_KERNEL, __builtin_return_address(0)); 1430 } 1431 EXPORT_SYMBOL_GPL(__get_vm_area); 1432 1433 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1434 unsigned long start, unsigned long end, 1435 const void *caller) 1436 { 1437 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1438 GFP_KERNEL, caller); 1439 } 1440 1441 /** 1442 * get_vm_area - reserve a contiguous kernel virtual area 1443 * @size: size of the area 1444 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1445 * 1446 * Search an area of @size in the kernel virtual mapping area, 1447 * and reserved it for out purposes. Returns the area descriptor 1448 * on success or %NULL on failure. 1449 * 1450 * Return: the area descriptor on success or %NULL on failure. 1451 */ 1452 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1453 { 1454 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1455 NUMA_NO_NODE, GFP_KERNEL, 1456 __builtin_return_address(0)); 1457 } 1458 1459 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1460 const void *caller) 1461 { 1462 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1463 NUMA_NO_NODE, GFP_KERNEL, caller); 1464 } 1465 1466 /** 1467 * find_vm_area - find a continuous kernel virtual area 1468 * @addr: base address 1469 * 1470 * Search for the kernel VM area starting at @addr, and return it. 1471 * It is up to the caller to do all required locking to keep the returned 1472 * pointer valid. 1473 * 1474 * Return: pointer to the found area or %NULL on faulure 1475 */ 1476 struct vm_struct *find_vm_area(const void *addr) 1477 { 1478 struct vmap_area *va; 1479 1480 va = find_vmap_area((unsigned long)addr); 1481 if (va && va->flags & VM_VM_AREA) 1482 return va->vm; 1483 1484 return NULL; 1485 } 1486 1487 /** 1488 * remove_vm_area - find and remove a continuous kernel virtual area 1489 * @addr: base address 1490 * 1491 * Search for the kernel VM area starting at @addr, and remove it. 1492 * This function returns the found VM area, but using it is NOT safe 1493 * on SMP machines, except for its size or flags. 1494 * 1495 * Return: pointer to the found area or %NULL on faulure 1496 */ 1497 struct vm_struct *remove_vm_area(const void *addr) 1498 { 1499 struct vmap_area *va; 1500 1501 might_sleep(); 1502 1503 va = find_vmap_area((unsigned long)addr); 1504 if (va && va->flags & VM_VM_AREA) { 1505 struct vm_struct *vm = va->vm; 1506 1507 spin_lock(&vmap_area_lock); 1508 va->vm = NULL; 1509 va->flags &= ~VM_VM_AREA; 1510 va->flags |= VM_LAZY_FREE; 1511 spin_unlock(&vmap_area_lock); 1512 1513 kasan_free_shadow(vm); 1514 free_unmap_vmap_area(va); 1515 1516 return vm; 1517 } 1518 return NULL; 1519 } 1520 1521 static inline void set_area_direct_map(const struct vm_struct *area, 1522 int (*set_direct_map)(struct page *page)) 1523 { 1524 int i; 1525 1526 for (i = 0; i < area->nr_pages; i++) 1527 if (page_address(area->pages[i])) 1528 set_direct_map(area->pages[i]); 1529 } 1530 1531 /* Handle removing and resetting vm mappings related to the vm_struct. */ 1532 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 1533 { 1534 unsigned long addr = (unsigned long)area->addr; 1535 unsigned long start = ULONG_MAX, end = 0; 1536 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 1537 int i; 1538 1539 /* 1540 * The below block can be removed when all architectures that have 1541 * direct map permissions also have set_direct_map_() implementations. 1542 * This is concerned with resetting the direct map any an vm alias with 1543 * execute permissions, without leaving a RW+X window. 1544 */ 1545 if (flush_reset && !IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) { 1546 set_memory_nx(addr, area->nr_pages); 1547 set_memory_rw(addr, area->nr_pages); 1548 } 1549 1550 remove_vm_area(area->addr); 1551 1552 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 1553 if (!flush_reset) 1554 return; 1555 1556 /* 1557 * If not deallocating pages, just do the flush of the VM area and 1558 * return. 1559 */ 1560 if (!deallocate_pages) { 1561 vm_unmap_aliases(); 1562 return; 1563 } 1564 1565 /* 1566 * If execution gets here, flush the vm mapping and reset the direct 1567 * map. Find the start and end range of the direct mappings to make sure 1568 * the vm_unmap_aliases() flush includes the direct map. 1569 */ 1570 for (i = 0; i < area->nr_pages; i++) { 1571 if (page_address(area->pages[i])) { 1572 start = min(addr, start); 1573 end = max(addr, end); 1574 } 1575 } 1576 1577 /* 1578 * Set direct map to something invalid so that it won't be cached if 1579 * there are any accesses after the TLB flush, then flush the TLB and 1580 * reset the direct map permissions to the default. 1581 */ 1582 set_area_direct_map(area, set_direct_map_invalid_noflush); 1583 _vm_unmap_aliases(start, end, 1); 1584 set_area_direct_map(area, set_direct_map_default_noflush); 1585 } 1586 1587 static void __vunmap(const void *addr, int deallocate_pages) 1588 { 1589 struct vm_struct *area; 1590 1591 if (!addr) 1592 return; 1593 1594 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1595 addr)) 1596 return; 1597 1598 area = find_vm_area(addr); 1599 if (unlikely(!area)) { 1600 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1601 addr); 1602 return; 1603 } 1604 1605 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 1606 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 1607 1608 vm_remove_mappings(area, deallocate_pages); 1609 1610 if (deallocate_pages) { 1611 int i; 1612 1613 for (i = 0; i < area->nr_pages; i++) { 1614 struct page *page = area->pages[i]; 1615 1616 BUG_ON(!page); 1617 __free_pages(page, 0); 1618 } 1619 1620 kvfree(area->pages); 1621 } 1622 1623 kfree(area); 1624 return; 1625 } 1626 1627 static inline void __vfree_deferred(const void *addr) 1628 { 1629 /* 1630 * Use raw_cpu_ptr() because this can be called from preemptible 1631 * context. Preemption is absolutely fine here, because the llist_add() 1632 * implementation is lockless, so it works even if we are adding to 1633 * nother cpu's list. schedule_work() should be fine with this too. 1634 */ 1635 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 1636 1637 if (llist_add((struct llist_node *)addr, &p->list)) 1638 schedule_work(&p->wq); 1639 } 1640 1641 /** 1642 * vfree_atomic - release memory allocated by vmalloc() 1643 * @addr: memory base address 1644 * 1645 * This one is just like vfree() but can be called in any atomic context 1646 * except NMIs. 1647 */ 1648 void vfree_atomic(const void *addr) 1649 { 1650 BUG_ON(in_nmi()); 1651 1652 kmemleak_free(addr); 1653 1654 if (!addr) 1655 return; 1656 __vfree_deferred(addr); 1657 } 1658 1659 static void __vfree(const void *addr) 1660 { 1661 if (unlikely(in_interrupt())) 1662 __vfree_deferred(addr); 1663 else 1664 __vunmap(addr, 1); 1665 } 1666 1667 /** 1668 * vfree - release memory allocated by vmalloc() 1669 * @addr: memory base address 1670 * 1671 * Free the virtually continuous memory area starting at @addr, as 1672 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1673 * NULL, no operation is performed. 1674 * 1675 * Must not be called in NMI context (strictly speaking, only if we don't 1676 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1677 * conventions for vfree() arch-depenedent would be a really bad idea) 1678 * 1679 * May sleep if called *not* from interrupt context. 1680 * 1681 * NOTE: assumes that the object at @addr has a size >= sizeof(llist_node) 1682 */ 1683 void vfree(const void *addr) 1684 { 1685 BUG_ON(in_nmi()); 1686 1687 kmemleak_free(addr); 1688 1689 might_sleep_if(!in_interrupt()); 1690 1691 if (!addr) 1692 return; 1693 1694 __vfree(addr); 1695 } 1696 EXPORT_SYMBOL(vfree); 1697 1698 /** 1699 * vunmap - release virtual mapping obtained by vmap() 1700 * @addr: memory base address 1701 * 1702 * Free the virtually contiguous memory area starting at @addr, 1703 * which was created from the page array passed to vmap(). 1704 * 1705 * Must not be called in interrupt context. 1706 */ 1707 void vunmap(const void *addr) 1708 { 1709 BUG_ON(in_interrupt()); 1710 might_sleep(); 1711 if (addr) 1712 __vunmap(addr, 0); 1713 } 1714 EXPORT_SYMBOL(vunmap); 1715 1716 /** 1717 * vmap - map an array of pages into virtually contiguous space 1718 * @pages: array of page pointers 1719 * @count: number of pages to map 1720 * @flags: vm_area->flags 1721 * @prot: page protection for the mapping 1722 * 1723 * Maps @count pages from @pages into contiguous kernel virtual 1724 * space. 1725 * 1726 * Return: the address of the area or %NULL on failure 1727 */ 1728 void *vmap(struct page **pages, unsigned int count, 1729 unsigned long flags, pgprot_t prot) 1730 { 1731 struct vm_struct *area; 1732 unsigned long size; /* In bytes */ 1733 1734 might_sleep(); 1735 1736 if (count > totalram_pages()) 1737 return NULL; 1738 1739 size = (unsigned long)count << PAGE_SHIFT; 1740 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 1741 if (!area) 1742 return NULL; 1743 1744 if (map_vm_area(area, prot, pages)) { 1745 vunmap(area->addr); 1746 return NULL; 1747 } 1748 1749 return area->addr; 1750 } 1751 EXPORT_SYMBOL(vmap); 1752 1753 static void *__vmalloc_node(unsigned long size, unsigned long align, 1754 gfp_t gfp_mask, pgprot_t prot, 1755 int node, const void *caller); 1756 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1757 pgprot_t prot, int node) 1758 { 1759 struct page **pages; 1760 unsigned int nr_pages, array_size, i; 1761 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1762 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1763 const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ? 1764 0 : 1765 __GFP_HIGHMEM; 1766 1767 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1768 array_size = (nr_pages * sizeof(struct page *)); 1769 1770 area->nr_pages = nr_pages; 1771 /* Please note that the recursion is strictly bounded. */ 1772 if (array_size > PAGE_SIZE) { 1773 pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask, 1774 PAGE_KERNEL, node, area->caller); 1775 } else { 1776 pages = kmalloc_node(array_size, nested_gfp, node); 1777 } 1778 area->pages = pages; 1779 if (!area->pages) { 1780 remove_vm_area(area->addr); 1781 kfree(area); 1782 return NULL; 1783 } 1784 1785 for (i = 0; i < area->nr_pages; i++) { 1786 struct page *page; 1787 1788 if (node == NUMA_NO_NODE) 1789 page = alloc_page(alloc_mask|highmem_mask); 1790 else 1791 page = alloc_pages_node(node, alloc_mask|highmem_mask, 0); 1792 1793 if (unlikely(!page)) { 1794 /* Successfully allocated i pages, free them in __vunmap() */ 1795 area->nr_pages = i; 1796 goto fail; 1797 } 1798 area->pages[i] = page; 1799 if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) 1800 cond_resched(); 1801 } 1802 1803 if (map_vm_area(area, prot, pages)) 1804 goto fail; 1805 return area->addr; 1806 1807 fail: 1808 warn_alloc(gfp_mask, NULL, 1809 "vmalloc: allocation failure, allocated %ld of %ld bytes", 1810 (area->nr_pages*PAGE_SIZE), area->size); 1811 __vfree(area->addr); 1812 return NULL; 1813 } 1814 1815 /** 1816 * __vmalloc_node_range - allocate virtually contiguous memory 1817 * @size: allocation size 1818 * @align: desired alignment 1819 * @start: vm area range start 1820 * @end: vm area range end 1821 * @gfp_mask: flags for the page level allocator 1822 * @prot: protection mask for the allocated pages 1823 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1824 * @node: node to use for allocation or NUMA_NO_NODE 1825 * @caller: caller's return address 1826 * 1827 * Allocate enough pages to cover @size from the page level 1828 * allocator with @gfp_mask flags. Map them into contiguous 1829 * kernel virtual space, using a pagetable protection of @prot. 1830 * 1831 * Return: the address of the area or %NULL on failure 1832 */ 1833 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1834 unsigned long start, unsigned long end, gfp_t gfp_mask, 1835 pgprot_t prot, unsigned long vm_flags, int node, 1836 const void *caller) 1837 { 1838 struct vm_struct *area; 1839 void *addr; 1840 unsigned long real_size = size; 1841 1842 size = PAGE_ALIGN(size); 1843 if (!size || (size >> PAGE_SHIFT) > totalram_pages()) 1844 goto fail; 1845 1846 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1847 vm_flags, start, end, node, gfp_mask, caller); 1848 if (!area) 1849 goto fail; 1850 1851 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1852 if (!addr) 1853 return NULL; 1854 1855 /* 1856 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1857 * flag. It means that vm_struct is not fully initialized. 1858 * Now, it is fully initialized, so remove this flag here. 1859 */ 1860 clear_vm_uninitialized_flag(area); 1861 1862 kmemleak_vmalloc(area, size, gfp_mask); 1863 1864 return addr; 1865 1866 fail: 1867 warn_alloc(gfp_mask, NULL, 1868 "vmalloc: allocation failure: %lu bytes", real_size); 1869 return NULL; 1870 } 1871 1872 /* 1873 * This is only for performance analysis of vmalloc and stress purpose. 1874 * It is required by vmalloc test module, therefore do not use it other 1875 * than that. 1876 */ 1877 #ifdef CONFIG_TEST_VMALLOC_MODULE 1878 EXPORT_SYMBOL_GPL(__vmalloc_node_range); 1879 #endif 1880 1881 /** 1882 * __vmalloc_node - allocate virtually contiguous memory 1883 * @size: allocation size 1884 * @align: desired alignment 1885 * @gfp_mask: flags for the page level allocator 1886 * @prot: protection mask for the allocated pages 1887 * @node: node to use for allocation or NUMA_NO_NODE 1888 * @caller: caller's return address 1889 * 1890 * Allocate enough pages to cover @size from the page level 1891 * allocator with @gfp_mask flags. Map them into contiguous 1892 * kernel virtual space, using a pagetable protection of @prot. 1893 * 1894 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 1895 * and __GFP_NOFAIL are not supported 1896 * 1897 * Any use of gfp flags outside of GFP_KERNEL should be consulted 1898 * with mm people. 1899 * 1900 * Return: pointer to the allocated memory or %NULL on error 1901 */ 1902 static void *__vmalloc_node(unsigned long size, unsigned long align, 1903 gfp_t gfp_mask, pgprot_t prot, 1904 int node, const void *caller) 1905 { 1906 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1907 gfp_mask, prot, 0, node, caller); 1908 } 1909 1910 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1911 { 1912 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1913 __builtin_return_address(0)); 1914 } 1915 EXPORT_SYMBOL(__vmalloc); 1916 1917 static inline void *__vmalloc_node_flags(unsigned long size, 1918 int node, gfp_t flags) 1919 { 1920 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1921 node, __builtin_return_address(0)); 1922 } 1923 1924 1925 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags, 1926 void *caller) 1927 { 1928 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller); 1929 } 1930 1931 /** 1932 * vmalloc - allocate virtually contiguous memory 1933 * @size: allocation size 1934 * 1935 * Allocate enough pages to cover @size from the page level 1936 * allocator and map them into contiguous kernel virtual space. 1937 * 1938 * For tight control over page level allocator and protection flags 1939 * use __vmalloc() instead. 1940 * 1941 * Return: pointer to the allocated memory or %NULL on error 1942 */ 1943 void *vmalloc(unsigned long size) 1944 { 1945 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1946 GFP_KERNEL); 1947 } 1948 EXPORT_SYMBOL(vmalloc); 1949 1950 /** 1951 * vzalloc - allocate virtually contiguous memory with zero fill 1952 * @size: allocation size 1953 * 1954 * Allocate enough pages to cover @size from the page level 1955 * allocator and map them into contiguous kernel virtual space. 1956 * The memory allocated is set to zero. 1957 * 1958 * For tight control over page level allocator and protection flags 1959 * use __vmalloc() instead. 1960 * 1961 * Return: pointer to the allocated memory or %NULL on error 1962 */ 1963 void *vzalloc(unsigned long size) 1964 { 1965 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1966 GFP_KERNEL | __GFP_ZERO); 1967 } 1968 EXPORT_SYMBOL(vzalloc); 1969 1970 /** 1971 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1972 * @size: allocation size 1973 * 1974 * The resulting memory area is zeroed so it can be mapped to userspace 1975 * without leaking data. 1976 * 1977 * Return: pointer to the allocated memory or %NULL on error 1978 */ 1979 void *vmalloc_user(unsigned long size) 1980 { 1981 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 1982 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 1983 VM_USERMAP, NUMA_NO_NODE, 1984 __builtin_return_address(0)); 1985 } 1986 EXPORT_SYMBOL(vmalloc_user); 1987 1988 /** 1989 * vmalloc_node - allocate memory on a specific node 1990 * @size: allocation size 1991 * @node: numa node 1992 * 1993 * Allocate enough pages to cover @size from the page level 1994 * allocator and map them into contiguous kernel virtual space. 1995 * 1996 * For tight control over page level allocator and protection flags 1997 * use __vmalloc() instead. 1998 * 1999 * Return: pointer to the allocated memory or %NULL on error 2000 */ 2001 void *vmalloc_node(unsigned long size, int node) 2002 { 2003 return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL, 2004 node, __builtin_return_address(0)); 2005 } 2006 EXPORT_SYMBOL(vmalloc_node); 2007 2008 /** 2009 * vzalloc_node - allocate memory on a specific node with zero fill 2010 * @size: allocation size 2011 * @node: numa node 2012 * 2013 * Allocate enough pages to cover @size from the page level 2014 * allocator and map them into contiguous kernel virtual space. 2015 * The memory allocated is set to zero. 2016 * 2017 * For tight control over page level allocator and protection flags 2018 * use __vmalloc_node() instead. 2019 * 2020 * Return: pointer to the allocated memory or %NULL on error 2021 */ 2022 void *vzalloc_node(unsigned long size, int node) 2023 { 2024 return __vmalloc_node_flags(size, node, 2025 GFP_KERNEL | __GFP_ZERO); 2026 } 2027 EXPORT_SYMBOL(vzalloc_node); 2028 2029 /** 2030 * vmalloc_exec - allocate virtually contiguous, executable memory 2031 * @size: allocation size 2032 * 2033 * Kernel-internal function to allocate enough pages to cover @size 2034 * the page level allocator and map them into contiguous and 2035 * executable kernel virtual space. 2036 * 2037 * For tight control over page level allocator and protection flags 2038 * use __vmalloc() instead. 2039 * 2040 * Return: pointer to the allocated memory or %NULL on error 2041 */ 2042 void *vmalloc_exec(unsigned long size) 2043 { 2044 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 2045 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 2046 NUMA_NO_NODE, __builtin_return_address(0)); 2047 } 2048 2049 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 2050 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 2051 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 2052 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 2053 #else 2054 /* 2055 * 64b systems should always have either DMA or DMA32 zones. For others 2056 * GFP_DMA32 should do the right thing and use the normal zone. 2057 */ 2058 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 2059 #endif 2060 2061 /** 2062 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 2063 * @size: allocation size 2064 * 2065 * Allocate enough 32bit PA addressable pages to cover @size from the 2066 * page level allocator and map them into contiguous kernel virtual space. 2067 * 2068 * Return: pointer to the allocated memory or %NULL on error 2069 */ 2070 void *vmalloc_32(unsigned long size) 2071 { 2072 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 2073 NUMA_NO_NODE, __builtin_return_address(0)); 2074 } 2075 EXPORT_SYMBOL(vmalloc_32); 2076 2077 /** 2078 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 2079 * @size: allocation size 2080 * 2081 * The resulting memory area is 32bit addressable and zeroed so it can be 2082 * mapped to userspace without leaking data. 2083 * 2084 * Return: pointer to the allocated memory or %NULL on error 2085 */ 2086 void *vmalloc_32_user(unsigned long size) 2087 { 2088 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 2089 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 2090 VM_USERMAP, NUMA_NO_NODE, 2091 __builtin_return_address(0)); 2092 } 2093 EXPORT_SYMBOL(vmalloc_32_user); 2094 2095 /* 2096 * small helper routine , copy contents to buf from addr. 2097 * If the page is not present, fill zero. 2098 */ 2099 2100 static int aligned_vread(char *buf, char *addr, unsigned long count) 2101 { 2102 struct page *p; 2103 int copied = 0; 2104 2105 while (count) { 2106 unsigned long offset, length; 2107 2108 offset = offset_in_page(addr); 2109 length = PAGE_SIZE - offset; 2110 if (length > count) 2111 length = count; 2112 p = vmalloc_to_page(addr); 2113 /* 2114 * To do safe access to this _mapped_ area, we need 2115 * lock. But adding lock here means that we need to add 2116 * overhead of vmalloc()/vfree() calles for this _debug_ 2117 * interface, rarely used. Instead of that, we'll use 2118 * kmap() and get small overhead in this access function. 2119 */ 2120 if (p) { 2121 /* 2122 * we can expect USER0 is not used (see vread/vwrite's 2123 * function description) 2124 */ 2125 void *map = kmap_atomic(p); 2126 memcpy(buf, map + offset, length); 2127 kunmap_atomic(map); 2128 } else 2129 memset(buf, 0, length); 2130 2131 addr += length; 2132 buf += length; 2133 copied += length; 2134 count -= length; 2135 } 2136 return copied; 2137 } 2138 2139 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 2140 { 2141 struct page *p; 2142 int copied = 0; 2143 2144 while (count) { 2145 unsigned long offset, length; 2146 2147 offset = offset_in_page(addr); 2148 length = PAGE_SIZE - offset; 2149 if (length > count) 2150 length = count; 2151 p = vmalloc_to_page(addr); 2152 /* 2153 * To do safe access to this _mapped_ area, we need 2154 * lock. But adding lock here means that we need to add 2155 * overhead of vmalloc()/vfree() calles for this _debug_ 2156 * interface, rarely used. Instead of that, we'll use 2157 * kmap() and get small overhead in this access function. 2158 */ 2159 if (p) { 2160 /* 2161 * we can expect USER0 is not used (see vread/vwrite's 2162 * function description) 2163 */ 2164 void *map = kmap_atomic(p); 2165 memcpy(map + offset, buf, length); 2166 kunmap_atomic(map); 2167 } 2168 addr += length; 2169 buf += length; 2170 copied += length; 2171 count -= length; 2172 } 2173 return copied; 2174 } 2175 2176 /** 2177 * vread() - read vmalloc area in a safe way. 2178 * @buf: buffer for reading data 2179 * @addr: vm address. 2180 * @count: number of bytes to be read. 2181 * 2182 * This function checks that addr is a valid vmalloc'ed area, and 2183 * copy data from that area to a given buffer. If the given memory range 2184 * of [addr...addr+count) includes some valid address, data is copied to 2185 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2186 * IOREMAP area is treated as memory hole and no copy is done. 2187 * 2188 * If [addr...addr+count) doesn't includes any intersects with alive 2189 * vm_struct area, returns 0. @buf should be kernel's buffer. 2190 * 2191 * Note: In usual ops, vread() is never necessary because the caller 2192 * should know vmalloc() area is valid and can use memcpy(). 2193 * This is for routines which have to access vmalloc area without 2194 * any informaion, as /dev/kmem. 2195 * 2196 * Return: number of bytes for which addr and buf should be increased 2197 * (same number as @count) or %0 if [addr...addr+count) doesn't 2198 * include any intersection with valid vmalloc area 2199 */ 2200 long vread(char *buf, char *addr, unsigned long count) 2201 { 2202 struct vmap_area *va; 2203 struct vm_struct *vm; 2204 char *vaddr, *buf_start = buf; 2205 unsigned long buflen = count; 2206 unsigned long n; 2207 2208 /* Don't allow overflow */ 2209 if ((unsigned long) addr + count < count) 2210 count = -(unsigned long) addr; 2211 2212 spin_lock(&vmap_area_lock); 2213 list_for_each_entry(va, &vmap_area_list, list) { 2214 if (!count) 2215 break; 2216 2217 if (!(va->flags & VM_VM_AREA)) 2218 continue; 2219 2220 vm = va->vm; 2221 vaddr = (char *) vm->addr; 2222 if (addr >= vaddr + get_vm_area_size(vm)) 2223 continue; 2224 while (addr < vaddr) { 2225 if (count == 0) 2226 goto finished; 2227 *buf = '\0'; 2228 buf++; 2229 addr++; 2230 count--; 2231 } 2232 n = vaddr + get_vm_area_size(vm) - addr; 2233 if (n > count) 2234 n = count; 2235 if (!(vm->flags & VM_IOREMAP)) 2236 aligned_vread(buf, addr, n); 2237 else /* IOREMAP area is treated as memory hole */ 2238 memset(buf, 0, n); 2239 buf += n; 2240 addr += n; 2241 count -= n; 2242 } 2243 finished: 2244 spin_unlock(&vmap_area_lock); 2245 2246 if (buf == buf_start) 2247 return 0; 2248 /* zero-fill memory holes */ 2249 if (buf != buf_start + buflen) 2250 memset(buf, 0, buflen - (buf - buf_start)); 2251 2252 return buflen; 2253 } 2254 2255 /** 2256 * vwrite() - write vmalloc area in a safe way. 2257 * @buf: buffer for source data 2258 * @addr: vm address. 2259 * @count: number of bytes to be read. 2260 * 2261 * This function checks that addr is a valid vmalloc'ed area, and 2262 * copy data from a buffer to the given addr. If specified range of 2263 * [addr...addr+count) includes some valid address, data is copied from 2264 * proper area of @buf. If there are memory holes, no copy to hole. 2265 * IOREMAP area is treated as memory hole and no copy is done. 2266 * 2267 * If [addr...addr+count) doesn't includes any intersects with alive 2268 * vm_struct area, returns 0. @buf should be kernel's buffer. 2269 * 2270 * Note: In usual ops, vwrite() is never necessary because the caller 2271 * should know vmalloc() area is valid and can use memcpy(). 2272 * This is for routines which have to access vmalloc area without 2273 * any informaion, as /dev/kmem. 2274 * 2275 * Return: number of bytes for which addr and buf should be 2276 * increased (same number as @count) or %0 if [addr...addr+count) 2277 * doesn't include any intersection with valid vmalloc area 2278 */ 2279 long vwrite(char *buf, char *addr, unsigned long count) 2280 { 2281 struct vmap_area *va; 2282 struct vm_struct *vm; 2283 char *vaddr; 2284 unsigned long n, buflen; 2285 int copied = 0; 2286 2287 /* Don't allow overflow */ 2288 if ((unsigned long) addr + count < count) 2289 count = -(unsigned long) addr; 2290 buflen = count; 2291 2292 spin_lock(&vmap_area_lock); 2293 list_for_each_entry(va, &vmap_area_list, list) { 2294 if (!count) 2295 break; 2296 2297 if (!(va->flags & VM_VM_AREA)) 2298 continue; 2299 2300 vm = va->vm; 2301 vaddr = (char *) vm->addr; 2302 if (addr >= vaddr + get_vm_area_size(vm)) 2303 continue; 2304 while (addr < vaddr) { 2305 if (count == 0) 2306 goto finished; 2307 buf++; 2308 addr++; 2309 count--; 2310 } 2311 n = vaddr + get_vm_area_size(vm) - addr; 2312 if (n > count) 2313 n = count; 2314 if (!(vm->flags & VM_IOREMAP)) { 2315 aligned_vwrite(buf, addr, n); 2316 copied++; 2317 } 2318 buf += n; 2319 addr += n; 2320 count -= n; 2321 } 2322 finished: 2323 spin_unlock(&vmap_area_lock); 2324 if (!copied) 2325 return 0; 2326 return buflen; 2327 } 2328 2329 /** 2330 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2331 * @vma: vma to cover 2332 * @uaddr: target user address to start at 2333 * @kaddr: virtual address of vmalloc kernel memory 2334 * @size: size of map area 2335 * 2336 * Returns: 0 for success, -Exxx on failure 2337 * 2338 * This function checks that @kaddr is a valid vmalloc'ed area, 2339 * and that it is big enough to cover the range starting at 2340 * @uaddr in @vma. Will return failure if that criteria isn't 2341 * met. 2342 * 2343 * Similar to remap_pfn_range() (see mm/memory.c) 2344 */ 2345 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2346 void *kaddr, unsigned long size) 2347 { 2348 struct vm_struct *area; 2349 2350 size = PAGE_ALIGN(size); 2351 2352 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2353 return -EINVAL; 2354 2355 area = find_vm_area(kaddr); 2356 if (!area) 2357 return -EINVAL; 2358 2359 if (!(area->flags & VM_USERMAP)) 2360 return -EINVAL; 2361 2362 if (kaddr + size > area->addr + get_vm_area_size(area)) 2363 return -EINVAL; 2364 2365 do { 2366 struct page *page = vmalloc_to_page(kaddr); 2367 int ret; 2368 2369 ret = vm_insert_page(vma, uaddr, page); 2370 if (ret) 2371 return ret; 2372 2373 uaddr += PAGE_SIZE; 2374 kaddr += PAGE_SIZE; 2375 size -= PAGE_SIZE; 2376 } while (size > 0); 2377 2378 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2379 2380 return 0; 2381 } 2382 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2383 2384 /** 2385 * remap_vmalloc_range - map vmalloc pages to userspace 2386 * @vma: vma to cover (map full range of vma) 2387 * @addr: vmalloc memory 2388 * @pgoff: number of pages into addr before first page to map 2389 * 2390 * Returns: 0 for success, -Exxx on failure 2391 * 2392 * This function checks that addr is a valid vmalloc'ed area, and 2393 * that it is big enough to cover the vma. Will return failure if 2394 * that criteria isn't met. 2395 * 2396 * Similar to remap_pfn_range() (see mm/memory.c) 2397 */ 2398 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2399 unsigned long pgoff) 2400 { 2401 return remap_vmalloc_range_partial(vma, vma->vm_start, 2402 addr + (pgoff << PAGE_SHIFT), 2403 vma->vm_end - vma->vm_start); 2404 } 2405 EXPORT_SYMBOL(remap_vmalloc_range); 2406 2407 /* 2408 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2409 * have one. 2410 */ 2411 void __weak vmalloc_sync_all(void) 2412 { 2413 } 2414 2415 2416 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2417 { 2418 pte_t ***p = data; 2419 2420 if (p) { 2421 *(*p) = pte; 2422 (*p)++; 2423 } 2424 return 0; 2425 } 2426 2427 /** 2428 * alloc_vm_area - allocate a range of kernel address space 2429 * @size: size of the area 2430 * @ptes: returns the PTEs for the address space 2431 * 2432 * Returns: NULL on failure, vm_struct on success 2433 * 2434 * This function reserves a range of kernel address space, and 2435 * allocates pagetables to map that range. No actual mappings 2436 * are created. 2437 * 2438 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2439 * allocated for the VM area are returned. 2440 */ 2441 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2442 { 2443 struct vm_struct *area; 2444 2445 area = get_vm_area_caller(size, VM_IOREMAP, 2446 __builtin_return_address(0)); 2447 if (area == NULL) 2448 return NULL; 2449 2450 /* 2451 * This ensures that page tables are constructed for this region 2452 * of kernel virtual address space and mapped into init_mm. 2453 */ 2454 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2455 size, f, ptes ? &ptes : NULL)) { 2456 free_vm_area(area); 2457 return NULL; 2458 } 2459 2460 return area; 2461 } 2462 EXPORT_SYMBOL_GPL(alloc_vm_area); 2463 2464 void free_vm_area(struct vm_struct *area) 2465 { 2466 struct vm_struct *ret; 2467 ret = remove_vm_area(area->addr); 2468 BUG_ON(ret != area); 2469 kfree(area); 2470 } 2471 EXPORT_SYMBOL_GPL(free_vm_area); 2472 2473 #ifdef CONFIG_SMP 2474 static struct vmap_area *node_to_va(struct rb_node *n) 2475 { 2476 return rb_entry_safe(n, struct vmap_area, rb_node); 2477 } 2478 2479 /** 2480 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2481 * @end: target address 2482 * @pnext: out arg for the next vmap_area 2483 * @pprev: out arg for the previous vmap_area 2484 * 2485 * Returns: %true if either or both of next and prev are found, 2486 * %false if no vmap_area exists 2487 * 2488 * Find vmap_areas end addresses of which enclose @end. ie. if not 2489 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2490 */ 2491 static bool pvm_find_next_prev(unsigned long end, 2492 struct vmap_area **pnext, 2493 struct vmap_area **pprev) 2494 { 2495 struct rb_node *n = vmap_area_root.rb_node; 2496 struct vmap_area *va = NULL; 2497 2498 while (n) { 2499 va = rb_entry(n, struct vmap_area, rb_node); 2500 if (end < va->va_end) 2501 n = n->rb_left; 2502 else if (end > va->va_end) 2503 n = n->rb_right; 2504 else 2505 break; 2506 } 2507 2508 if (!va) 2509 return false; 2510 2511 if (va->va_end > end) { 2512 *pnext = va; 2513 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2514 } else { 2515 *pprev = va; 2516 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2517 } 2518 return true; 2519 } 2520 2521 /** 2522 * pvm_determine_end - find the highest aligned address between two vmap_areas 2523 * @pnext: in/out arg for the next vmap_area 2524 * @pprev: in/out arg for the previous vmap_area 2525 * @align: alignment 2526 * 2527 * Returns: determined end address 2528 * 2529 * Find the highest aligned address between *@pnext and *@pprev below 2530 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2531 * down address is between the end addresses of the two vmap_areas. 2532 * 2533 * Please note that the address returned by this function may fall 2534 * inside *@pnext vmap_area. The caller is responsible for checking 2535 * that. 2536 */ 2537 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2538 struct vmap_area **pprev, 2539 unsigned long align) 2540 { 2541 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2542 unsigned long addr; 2543 2544 if (*pnext) 2545 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2546 else 2547 addr = vmalloc_end; 2548 2549 while (*pprev && (*pprev)->va_end > addr) { 2550 *pnext = *pprev; 2551 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2552 } 2553 2554 return addr; 2555 } 2556 2557 /** 2558 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2559 * @offsets: array containing offset of each area 2560 * @sizes: array containing size of each area 2561 * @nr_vms: the number of areas to allocate 2562 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2563 * 2564 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2565 * vm_structs on success, %NULL on failure 2566 * 2567 * Percpu allocator wants to use congruent vm areas so that it can 2568 * maintain the offsets among percpu areas. This function allocates 2569 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2570 * be scattered pretty far, distance between two areas easily going up 2571 * to gigabytes. To avoid interacting with regular vmallocs, these 2572 * areas are allocated from top. 2573 * 2574 * Despite its complicated look, this allocator is rather simple. It 2575 * does everything top-down and scans areas from the end looking for 2576 * matching slot. While scanning, if any of the areas overlaps with 2577 * existing vmap_area, the base address is pulled down to fit the 2578 * area. Scanning is repeated till all the areas fit and then all 2579 * necessary data structures are inserted and the result is returned. 2580 */ 2581 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2582 const size_t *sizes, int nr_vms, 2583 size_t align) 2584 { 2585 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2586 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2587 struct vmap_area **vas, *prev, *next; 2588 struct vm_struct **vms; 2589 int area, area2, last_area, term_area; 2590 unsigned long base, start, end, last_end; 2591 bool purged = false; 2592 2593 /* verify parameters and allocate data structures */ 2594 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2595 for (last_area = 0, area = 0; area < nr_vms; area++) { 2596 start = offsets[area]; 2597 end = start + sizes[area]; 2598 2599 /* is everything aligned properly? */ 2600 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2601 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2602 2603 /* detect the area with the highest address */ 2604 if (start > offsets[last_area]) 2605 last_area = area; 2606 2607 for (area2 = area + 1; area2 < nr_vms; area2++) { 2608 unsigned long start2 = offsets[area2]; 2609 unsigned long end2 = start2 + sizes[area2]; 2610 2611 BUG_ON(start2 < end && start < end2); 2612 } 2613 } 2614 last_end = offsets[last_area] + sizes[last_area]; 2615 2616 if (vmalloc_end - vmalloc_start < last_end) { 2617 WARN_ON(true); 2618 return NULL; 2619 } 2620 2621 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2622 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2623 if (!vas || !vms) 2624 goto err_free2; 2625 2626 for (area = 0; area < nr_vms; area++) { 2627 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2628 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2629 if (!vas[area] || !vms[area]) 2630 goto err_free; 2631 } 2632 retry: 2633 spin_lock(&vmap_area_lock); 2634 2635 /* start scanning - we scan from the top, begin with the last area */ 2636 area = term_area = last_area; 2637 start = offsets[area]; 2638 end = start + sizes[area]; 2639 2640 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2641 base = vmalloc_end - last_end; 2642 goto found; 2643 } 2644 base = pvm_determine_end(&next, &prev, align) - end; 2645 2646 while (true) { 2647 BUG_ON(next && next->va_end <= base + end); 2648 BUG_ON(prev && prev->va_end > base + end); 2649 2650 /* 2651 * base might have underflowed, add last_end before 2652 * comparing. 2653 */ 2654 if (base + last_end < vmalloc_start + last_end) { 2655 spin_unlock(&vmap_area_lock); 2656 if (!purged) { 2657 purge_vmap_area_lazy(); 2658 purged = true; 2659 goto retry; 2660 } 2661 goto err_free; 2662 } 2663 2664 /* 2665 * If next overlaps, move base downwards so that it's 2666 * right below next and then recheck. 2667 */ 2668 if (next && next->va_start < base + end) { 2669 base = pvm_determine_end(&next, &prev, align) - end; 2670 term_area = area; 2671 continue; 2672 } 2673 2674 /* 2675 * If prev overlaps, shift down next and prev and move 2676 * base so that it's right below new next and then 2677 * recheck. 2678 */ 2679 if (prev && prev->va_end > base + start) { 2680 next = prev; 2681 prev = node_to_va(rb_prev(&next->rb_node)); 2682 base = pvm_determine_end(&next, &prev, align) - end; 2683 term_area = area; 2684 continue; 2685 } 2686 2687 /* 2688 * This area fits, move on to the previous one. If 2689 * the previous one is the terminal one, we're done. 2690 */ 2691 area = (area + nr_vms - 1) % nr_vms; 2692 if (area == term_area) 2693 break; 2694 start = offsets[area]; 2695 end = start + sizes[area]; 2696 pvm_find_next_prev(base + end, &next, &prev); 2697 } 2698 found: 2699 /* we've found a fitting base, insert all va's */ 2700 for (area = 0; area < nr_vms; area++) { 2701 struct vmap_area *va = vas[area]; 2702 2703 va->va_start = base + offsets[area]; 2704 va->va_end = va->va_start + sizes[area]; 2705 __insert_vmap_area(va); 2706 } 2707 2708 vmap_area_pcpu_hole = base + offsets[last_area]; 2709 2710 spin_unlock(&vmap_area_lock); 2711 2712 /* insert all vm's */ 2713 for (area = 0; area < nr_vms; area++) 2714 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2715 pcpu_get_vm_areas); 2716 2717 kfree(vas); 2718 return vms; 2719 2720 err_free: 2721 for (area = 0; area < nr_vms; area++) { 2722 kfree(vas[area]); 2723 kfree(vms[area]); 2724 } 2725 err_free2: 2726 kfree(vas); 2727 kfree(vms); 2728 return NULL; 2729 } 2730 2731 /** 2732 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2733 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2734 * @nr_vms: the number of allocated areas 2735 * 2736 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2737 */ 2738 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2739 { 2740 int i; 2741 2742 for (i = 0; i < nr_vms; i++) 2743 free_vm_area(vms[i]); 2744 kfree(vms); 2745 } 2746 #endif /* CONFIG_SMP */ 2747 2748 #ifdef CONFIG_PROC_FS 2749 static void *s_start(struct seq_file *m, loff_t *pos) 2750 __acquires(&vmap_area_lock) 2751 { 2752 spin_lock(&vmap_area_lock); 2753 return seq_list_start(&vmap_area_list, *pos); 2754 } 2755 2756 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2757 { 2758 return seq_list_next(p, &vmap_area_list, pos); 2759 } 2760 2761 static void s_stop(struct seq_file *m, void *p) 2762 __releases(&vmap_area_lock) 2763 { 2764 spin_unlock(&vmap_area_lock); 2765 } 2766 2767 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2768 { 2769 if (IS_ENABLED(CONFIG_NUMA)) { 2770 unsigned int nr, *counters = m->private; 2771 2772 if (!counters) 2773 return; 2774 2775 if (v->flags & VM_UNINITIALIZED) 2776 return; 2777 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2778 smp_rmb(); 2779 2780 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2781 2782 for (nr = 0; nr < v->nr_pages; nr++) 2783 counters[page_to_nid(v->pages[nr])]++; 2784 2785 for_each_node_state(nr, N_HIGH_MEMORY) 2786 if (counters[nr]) 2787 seq_printf(m, " N%u=%u", nr, counters[nr]); 2788 } 2789 } 2790 2791 static int s_show(struct seq_file *m, void *p) 2792 { 2793 struct vmap_area *va; 2794 struct vm_struct *v; 2795 2796 va = list_entry(p, struct vmap_area, list); 2797 2798 /* 2799 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2800 * behalf of vmap area is being tear down or vm_map_ram allocation. 2801 */ 2802 if (!(va->flags & VM_VM_AREA)) { 2803 seq_printf(m, "0x%pK-0x%pK %7ld %s\n", 2804 (void *)va->va_start, (void *)va->va_end, 2805 va->va_end - va->va_start, 2806 va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram"); 2807 2808 return 0; 2809 } 2810 2811 v = va->vm; 2812 2813 seq_printf(m, "0x%pK-0x%pK %7ld", 2814 v->addr, v->addr + v->size, v->size); 2815 2816 if (v->caller) 2817 seq_printf(m, " %pS", v->caller); 2818 2819 if (v->nr_pages) 2820 seq_printf(m, " pages=%d", v->nr_pages); 2821 2822 if (v->phys_addr) 2823 seq_printf(m, " phys=%pa", &v->phys_addr); 2824 2825 if (v->flags & VM_IOREMAP) 2826 seq_puts(m, " ioremap"); 2827 2828 if (v->flags & VM_ALLOC) 2829 seq_puts(m, " vmalloc"); 2830 2831 if (v->flags & VM_MAP) 2832 seq_puts(m, " vmap"); 2833 2834 if (v->flags & VM_USERMAP) 2835 seq_puts(m, " user"); 2836 2837 if (is_vmalloc_addr(v->pages)) 2838 seq_puts(m, " vpages"); 2839 2840 show_numa_info(m, v); 2841 seq_putc(m, '\n'); 2842 return 0; 2843 } 2844 2845 static const struct seq_operations vmalloc_op = { 2846 .start = s_start, 2847 .next = s_next, 2848 .stop = s_stop, 2849 .show = s_show, 2850 }; 2851 2852 static int __init proc_vmalloc_init(void) 2853 { 2854 if (IS_ENABLED(CONFIG_NUMA)) 2855 proc_create_seq_private("vmallocinfo", 0400, NULL, 2856 &vmalloc_op, 2857 nr_node_ids * sizeof(unsigned int), NULL); 2858 else 2859 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 2860 return 0; 2861 } 2862 module_init(proc_vmalloc_init); 2863 2864 #endif 2865