1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/notifier.h> 25 #include <linux/rbtree.h> 26 #include <linux/radix-tree.h> 27 #include <linux/rcupdate.h> 28 #include <linux/pfn.h> 29 #include <linux/kmemleak.h> 30 #include <linux/atomic.h> 31 #include <linux/compiler.h> 32 #include <linux/llist.h> 33 #include <linux/bitops.h> 34 35 #include <asm/uaccess.h> 36 #include <asm/tlbflush.h> 37 #include <asm/shmparam.h> 38 39 #include "internal.h" 40 41 struct vfree_deferred { 42 struct llist_head list; 43 struct work_struct wq; 44 }; 45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 46 47 static void __vunmap(const void *, int); 48 49 static void free_work(struct work_struct *w) 50 { 51 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 52 struct llist_node *llnode = llist_del_all(&p->list); 53 while (llnode) { 54 void *p = llnode; 55 llnode = llist_next(llnode); 56 __vunmap(p, 1); 57 } 58 } 59 60 /*** Page table manipulation functions ***/ 61 62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 63 { 64 pte_t *pte; 65 66 pte = pte_offset_kernel(pmd, addr); 67 do { 68 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 69 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 70 } while (pte++, addr += PAGE_SIZE, addr != end); 71 } 72 73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 74 { 75 pmd_t *pmd; 76 unsigned long next; 77 78 pmd = pmd_offset(pud, addr); 79 do { 80 next = pmd_addr_end(addr, end); 81 if (pmd_clear_huge(pmd)) 82 continue; 83 if (pmd_none_or_clear_bad(pmd)) 84 continue; 85 vunmap_pte_range(pmd, addr, next); 86 } while (pmd++, addr = next, addr != end); 87 } 88 89 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 90 { 91 pud_t *pud; 92 unsigned long next; 93 94 pud = pud_offset(pgd, addr); 95 do { 96 next = pud_addr_end(addr, end); 97 if (pud_clear_huge(pud)) 98 continue; 99 if (pud_none_or_clear_bad(pud)) 100 continue; 101 vunmap_pmd_range(pud, addr, next); 102 } while (pud++, addr = next, addr != end); 103 } 104 105 static void vunmap_page_range(unsigned long addr, unsigned long end) 106 { 107 pgd_t *pgd; 108 unsigned long next; 109 110 BUG_ON(addr >= end); 111 pgd = pgd_offset_k(addr); 112 do { 113 next = pgd_addr_end(addr, end); 114 if (pgd_none_or_clear_bad(pgd)) 115 continue; 116 vunmap_pud_range(pgd, addr, next); 117 } while (pgd++, addr = next, addr != end); 118 } 119 120 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 121 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 122 { 123 pte_t *pte; 124 125 /* 126 * nr is a running index into the array which helps higher level 127 * callers keep track of where we're up to. 128 */ 129 130 pte = pte_alloc_kernel(pmd, addr); 131 if (!pte) 132 return -ENOMEM; 133 do { 134 struct page *page = pages[*nr]; 135 136 if (WARN_ON(!pte_none(*pte))) 137 return -EBUSY; 138 if (WARN_ON(!page)) 139 return -ENOMEM; 140 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 141 (*nr)++; 142 } while (pte++, addr += PAGE_SIZE, addr != end); 143 return 0; 144 } 145 146 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 147 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 148 { 149 pmd_t *pmd; 150 unsigned long next; 151 152 pmd = pmd_alloc(&init_mm, pud, addr); 153 if (!pmd) 154 return -ENOMEM; 155 do { 156 next = pmd_addr_end(addr, end); 157 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 158 return -ENOMEM; 159 } while (pmd++, addr = next, addr != end); 160 return 0; 161 } 162 163 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 164 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 165 { 166 pud_t *pud; 167 unsigned long next; 168 169 pud = pud_alloc(&init_mm, pgd, addr); 170 if (!pud) 171 return -ENOMEM; 172 do { 173 next = pud_addr_end(addr, end); 174 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 175 return -ENOMEM; 176 } while (pud++, addr = next, addr != end); 177 return 0; 178 } 179 180 /* 181 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 182 * will have pfns corresponding to the "pages" array. 183 * 184 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 185 */ 186 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 187 pgprot_t prot, struct page **pages) 188 { 189 pgd_t *pgd; 190 unsigned long next; 191 unsigned long addr = start; 192 int err = 0; 193 int nr = 0; 194 195 BUG_ON(addr >= end); 196 pgd = pgd_offset_k(addr); 197 do { 198 next = pgd_addr_end(addr, end); 199 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 200 if (err) 201 return err; 202 } while (pgd++, addr = next, addr != end); 203 204 return nr; 205 } 206 207 static int vmap_page_range(unsigned long start, unsigned long end, 208 pgprot_t prot, struct page **pages) 209 { 210 int ret; 211 212 ret = vmap_page_range_noflush(start, end, prot, pages); 213 flush_cache_vmap(start, end); 214 return ret; 215 } 216 217 int is_vmalloc_or_module_addr(const void *x) 218 { 219 /* 220 * ARM, x86-64 and sparc64 put modules in a special place, 221 * and fall back on vmalloc() if that fails. Others 222 * just put it in the vmalloc space. 223 */ 224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 225 unsigned long addr = (unsigned long)x; 226 if (addr >= MODULES_VADDR && addr < MODULES_END) 227 return 1; 228 #endif 229 return is_vmalloc_addr(x); 230 } 231 232 /* 233 * Walk a vmap address to the struct page it maps. 234 */ 235 struct page *vmalloc_to_page(const void *vmalloc_addr) 236 { 237 unsigned long addr = (unsigned long) vmalloc_addr; 238 struct page *page = NULL; 239 pgd_t *pgd = pgd_offset_k(addr); 240 241 /* 242 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 243 * architectures that do not vmalloc module space 244 */ 245 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 246 247 if (!pgd_none(*pgd)) { 248 pud_t *pud = pud_offset(pgd, addr); 249 if (!pud_none(*pud)) { 250 pmd_t *pmd = pmd_offset(pud, addr); 251 if (!pmd_none(*pmd)) { 252 pte_t *ptep, pte; 253 254 ptep = pte_offset_map(pmd, addr); 255 pte = *ptep; 256 if (pte_present(pte)) 257 page = pte_page(pte); 258 pte_unmap(ptep); 259 } 260 } 261 } 262 return page; 263 } 264 EXPORT_SYMBOL(vmalloc_to_page); 265 266 /* 267 * Map a vmalloc()-space virtual address to the physical page frame number. 268 */ 269 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 270 { 271 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 272 } 273 EXPORT_SYMBOL(vmalloc_to_pfn); 274 275 276 /*** Global kva allocator ***/ 277 278 #define VM_VM_AREA 0x04 279 280 static DEFINE_SPINLOCK(vmap_area_lock); 281 /* Export for kexec only */ 282 LIST_HEAD(vmap_area_list); 283 static LLIST_HEAD(vmap_purge_list); 284 static struct rb_root vmap_area_root = RB_ROOT; 285 286 /* The vmap cache globals are protected by vmap_area_lock */ 287 static struct rb_node *free_vmap_cache; 288 static unsigned long cached_hole_size; 289 static unsigned long cached_vstart; 290 static unsigned long cached_align; 291 292 static unsigned long vmap_area_pcpu_hole; 293 294 static struct vmap_area *__find_vmap_area(unsigned long addr) 295 { 296 struct rb_node *n = vmap_area_root.rb_node; 297 298 while (n) { 299 struct vmap_area *va; 300 301 va = rb_entry(n, struct vmap_area, rb_node); 302 if (addr < va->va_start) 303 n = n->rb_left; 304 else if (addr >= va->va_end) 305 n = n->rb_right; 306 else 307 return va; 308 } 309 310 return NULL; 311 } 312 313 static void __insert_vmap_area(struct vmap_area *va) 314 { 315 struct rb_node **p = &vmap_area_root.rb_node; 316 struct rb_node *parent = NULL; 317 struct rb_node *tmp; 318 319 while (*p) { 320 struct vmap_area *tmp_va; 321 322 parent = *p; 323 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 324 if (va->va_start < tmp_va->va_end) 325 p = &(*p)->rb_left; 326 else if (va->va_end > tmp_va->va_start) 327 p = &(*p)->rb_right; 328 else 329 BUG(); 330 } 331 332 rb_link_node(&va->rb_node, parent, p); 333 rb_insert_color(&va->rb_node, &vmap_area_root); 334 335 /* address-sort this list */ 336 tmp = rb_prev(&va->rb_node); 337 if (tmp) { 338 struct vmap_area *prev; 339 prev = rb_entry(tmp, struct vmap_area, rb_node); 340 list_add_rcu(&va->list, &prev->list); 341 } else 342 list_add_rcu(&va->list, &vmap_area_list); 343 } 344 345 static void purge_vmap_area_lazy(void); 346 347 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 348 349 /* 350 * Allocate a region of KVA of the specified size and alignment, within the 351 * vstart and vend. 352 */ 353 static struct vmap_area *alloc_vmap_area(unsigned long size, 354 unsigned long align, 355 unsigned long vstart, unsigned long vend, 356 int node, gfp_t gfp_mask) 357 { 358 struct vmap_area *va; 359 struct rb_node *n; 360 unsigned long addr; 361 int purged = 0; 362 struct vmap_area *first; 363 364 BUG_ON(!size); 365 BUG_ON(offset_in_page(size)); 366 BUG_ON(!is_power_of_2(align)); 367 368 might_sleep_if(gfpflags_allow_blocking(gfp_mask)); 369 370 va = kmalloc_node(sizeof(struct vmap_area), 371 gfp_mask & GFP_RECLAIM_MASK, node); 372 if (unlikely(!va)) 373 return ERR_PTR(-ENOMEM); 374 375 /* 376 * Only scan the relevant parts containing pointers to other objects 377 * to avoid false negatives. 378 */ 379 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 380 381 retry: 382 spin_lock(&vmap_area_lock); 383 /* 384 * Invalidate cache if we have more permissive parameters. 385 * cached_hole_size notes the largest hole noticed _below_ 386 * the vmap_area cached in free_vmap_cache: if size fits 387 * into that hole, we want to scan from vstart to reuse 388 * the hole instead of allocating above free_vmap_cache. 389 * Note that __free_vmap_area may update free_vmap_cache 390 * without updating cached_hole_size or cached_align. 391 */ 392 if (!free_vmap_cache || 393 size < cached_hole_size || 394 vstart < cached_vstart || 395 align < cached_align) { 396 nocache: 397 cached_hole_size = 0; 398 free_vmap_cache = NULL; 399 } 400 /* record if we encounter less permissive parameters */ 401 cached_vstart = vstart; 402 cached_align = align; 403 404 /* find starting point for our search */ 405 if (free_vmap_cache) { 406 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 407 addr = ALIGN(first->va_end, align); 408 if (addr < vstart) 409 goto nocache; 410 if (addr + size < addr) 411 goto overflow; 412 413 } else { 414 addr = ALIGN(vstart, align); 415 if (addr + size < addr) 416 goto overflow; 417 418 n = vmap_area_root.rb_node; 419 first = NULL; 420 421 while (n) { 422 struct vmap_area *tmp; 423 tmp = rb_entry(n, struct vmap_area, rb_node); 424 if (tmp->va_end >= addr) { 425 first = tmp; 426 if (tmp->va_start <= addr) 427 break; 428 n = n->rb_left; 429 } else 430 n = n->rb_right; 431 } 432 433 if (!first) 434 goto found; 435 } 436 437 /* from the starting point, walk areas until a suitable hole is found */ 438 while (addr + size > first->va_start && addr + size <= vend) { 439 if (addr + cached_hole_size < first->va_start) 440 cached_hole_size = first->va_start - addr; 441 addr = ALIGN(first->va_end, align); 442 if (addr + size < addr) 443 goto overflow; 444 445 if (list_is_last(&first->list, &vmap_area_list)) 446 goto found; 447 448 first = list_next_entry(first, list); 449 } 450 451 found: 452 if (addr + size > vend) 453 goto overflow; 454 455 va->va_start = addr; 456 va->va_end = addr + size; 457 va->flags = 0; 458 __insert_vmap_area(va); 459 free_vmap_cache = &va->rb_node; 460 spin_unlock(&vmap_area_lock); 461 462 BUG_ON(!IS_ALIGNED(va->va_start, align)); 463 BUG_ON(va->va_start < vstart); 464 BUG_ON(va->va_end > vend); 465 466 return va; 467 468 overflow: 469 spin_unlock(&vmap_area_lock); 470 if (!purged) { 471 purge_vmap_area_lazy(); 472 purged = 1; 473 goto retry; 474 } 475 476 if (gfpflags_allow_blocking(gfp_mask)) { 477 unsigned long freed = 0; 478 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 479 if (freed > 0) { 480 purged = 0; 481 goto retry; 482 } 483 } 484 485 if (printk_ratelimit()) 486 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 487 size); 488 kfree(va); 489 return ERR_PTR(-EBUSY); 490 } 491 492 int register_vmap_purge_notifier(struct notifier_block *nb) 493 { 494 return blocking_notifier_chain_register(&vmap_notify_list, nb); 495 } 496 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 497 498 int unregister_vmap_purge_notifier(struct notifier_block *nb) 499 { 500 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 501 } 502 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 503 504 static void __free_vmap_area(struct vmap_area *va) 505 { 506 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 507 508 if (free_vmap_cache) { 509 if (va->va_end < cached_vstart) { 510 free_vmap_cache = NULL; 511 } else { 512 struct vmap_area *cache; 513 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 514 if (va->va_start <= cache->va_start) { 515 free_vmap_cache = rb_prev(&va->rb_node); 516 /* 517 * We don't try to update cached_hole_size or 518 * cached_align, but it won't go very wrong. 519 */ 520 } 521 } 522 } 523 rb_erase(&va->rb_node, &vmap_area_root); 524 RB_CLEAR_NODE(&va->rb_node); 525 list_del_rcu(&va->list); 526 527 /* 528 * Track the highest possible candidate for pcpu area 529 * allocation. Areas outside of vmalloc area can be returned 530 * here too, consider only end addresses which fall inside 531 * vmalloc area proper. 532 */ 533 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 534 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 535 536 kfree_rcu(va, rcu_head); 537 } 538 539 /* 540 * Free a region of KVA allocated by alloc_vmap_area 541 */ 542 static void free_vmap_area(struct vmap_area *va) 543 { 544 spin_lock(&vmap_area_lock); 545 __free_vmap_area(va); 546 spin_unlock(&vmap_area_lock); 547 } 548 549 /* 550 * Clear the pagetable entries of a given vmap_area 551 */ 552 static void unmap_vmap_area(struct vmap_area *va) 553 { 554 vunmap_page_range(va->va_start, va->va_end); 555 } 556 557 static void vmap_debug_free_range(unsigned long start, unsigned long end) 558 { 559 /* 560 * Unmap page tables and force a TLB flush immediately if pagealloc 561 * debugging is enabled. This catches use after free bugs similarly to 562 * those in linear kernel virtual address space after a page has been 563 * freed. 564 * 565 * All the lazy freeing logic is still retained, in order to minimise 566 * intrusiveness of this debugging feature. 567 * 568 * This is going to be *slow* (linear kernel virtual address debugging 569 * doesn't do a broadcast TLB flush so it is a lot faster). 570 */ 571 if (debug_pagealloc_enabled()) { 572 vunmap_page_range(start, end); 573 flush_tlb_kernel_range(start, end); 574 } 575 } 576 577 /* 578 * lazy_max_pages is the maximum amount of virtual address space we gather up 579 * before attempting to purge with a TLB flush. 580 * 581 * There is a tradeoff here: a larger number will cover more kernel page tables 582 * and take slightly longer to purge, but it will linearly reduce the number of 583 * global TLB flushes that must be performed. It would seem natural to scale 584 * this number up linearly with the number of CPUs (because vmapping activity 585 * could also scale linearly with the number of CPUs), however it is likely 586 * that in practice, workloads might be constrained in other ways that mean 587 * vmap activity will not scale linearly with CPUs. Also, I want to be 588 * conservative and not introduce a big latency on huge systems, so go with 589 * a less aggressive log scale. It will still be an improvement over the old 590 * code, and it will be simple to change the scale factor if we find that it 591 * becomes a problem on bigger systems. 592 */ 593 static unsigned long lazy_max_pages(void) 594 { 595 unsigned int log; 596 597 log = fls(num_online_cpus()); 598 599 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 600 } 601 602 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 603 604 /* for per-CPU blocks */ 605 static void purge_fragmented_blocks_allcpus(void); 606 607 /* 608 * called before a call to iounmap() if the caller wants vm_area_struct's 609 * immediately freed. 610 */ 611 void set_iounmap_nonlazy(void) 612 { 613 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 614 } 615 616 /* 617 * Purges all lazily-freed vmap areas. 618 * 619 * If sync is 0 then don't purge if there is already a purge in progress. 620 * If force_flush is 1, then flush kernel TLBs between *start and *end even 621 * if we found no lazy vmap areas to unmap (callers can use this to optimise 622 * their own TLB flushing). 623 * Returns with *start = min(*start, lowest purged address) 624 * *end = max(*end, highest purged address) 625 */ 626 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 627 int sync, int force_flush) 628 { 629 static DEFINE_SPINLOCK(purge_lock); 630 struct llist_node *valist; 631 struct vmap_area *va; 632 struct vmap_area *n_va; 633 int nr = 0; 634 635 /* 636 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 637 * should not expect such behaviour. This just simplifies locking for 638 * the case that isn't actually used at the moment anyway. 639 */ 640 if (!sync && !force_flush) { 641 if (!spin_trylock(&purge_lock)) 642 return; 643 } else 644 spin_lock(&purge_lock); 645 646 if (sync) 647 purge_fragmented_blocks_allcpus(); 648 649 valist = llist_del_all(&vmap_purge_list); 650 llist_for_each_entry(va, valist, purge_list) { 651 if (va->va_start < *start) 652 *start = va->va_start; 653 if (va->va_end > *end) 654 *end = va->va_end; 655 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 656 } 657 658 if (nr) 659 atomic_sub(nr, &vmap_lazy_nr); 660 661 if (nr || force_flush) 662 flush_tlb_kernel_range(*start, *end); 663 664 if (nr) { 665 spin_lock(&vmap_area_lock); 666 llist_for_each_entry_safe(va, n_va, valist, purge_list) 667 __free_vmap_area(va); 668 spin_unlock(&vmap_area_lock); 669 } 670 spin_unlock(&purge_lock); 671 } 672 673 /* 674 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 675 * is already purging. 676 */ 677 static void try_purge_vmap_area_lazy(void) 678 { 679 unsigned long start = ULONG_MAX, end = 0; 680 681 __purge_vmap_area_lazy(&start, &end, 0, 0); 682 } 683 684 /* 685 * Kick off a purge of the outstanding lazy areas. 686 */ 687 static void purge_vmap_area_lazy(void) 688 { 689 unsigned long start = ULONG_MAX, end = 0; 690 691 __purge_vmap_area_lazy(&start, &end, 1, 0); 692 } 693 694 /* 695 * Free a vmap area, caller ensuring that the area has been unmapped 696 * and flush_cache_vunmap had been called for the correct range 697 * previously. 698 */ 699 static void free_vmap_area_noflush(struct vmap_area *va) 700 { 701 int nr_lazy; 702 703 nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT, 704 &vmap_lazy_nr); 705 706 /* After this point, we may free va at any time */ 707 llist_add(&va->purge_list, &vmap_purge_list); 708 709 if (unlikely(nr_lazy > lazy_max_pages())) 710 try_purge_vmap_area_lazy(); 711 } 712 713 /* 714 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 715 * called for the correct range previously. 716 */ 717 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 718 { 719 unmap_vmap_area(va); 720 free_vmap_area_noflush(va); 721 } 722 723 /* 724 * Free and unmap a vmap area 725 */ 726 static void free_unmap_vmap_area(struct vmap_area *va) 727 { 728 flush_cache_vunmap(va->va_start, va->va_end); 729 free_unmap_vmap_area_noflush(va); 730 } 731 732 static struct vmap_area *find_vmap_area(unsigned long addr) 733 { 734 struct vmap_area *va; 735 736 spin_lock(&vmap_area_lock); 737 va = __find_vmap_area(addr); 738 spin_unlock(&vmap_area_lock); 739 740 return va; 741 } 742 743 static void free_unmap_vmap_area_addr(unsigned long addr) 744 { 745 struct vmap_area *va; 746 747 va = find_vmap_area(addr); 748 BUG_ON(!va); 749 free_unmap_vmap_area(va); 750 } 751 752 753 /*** Per cpu kva allocator ***/ 754 755 /* 756 * vmap space is limited especially on 32 bit architectures. Ensure there is 757 * room for at least 16 percpu vmap blocks per CPU. 758 */ 759 /* 760 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 761 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 762 * instead (we just need a rough idea) 763 */ 764 #if BITS_PER_LONG == 32 765 #define VMALLOC_SPACE (128UL*1024*1024) 766 #else 767 #define VMALLOC_SPACE (128UL*1024*1024*1024) 768 #endif 769 770 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 771 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 772 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 773 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 774 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 775 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 776 #define VMAP_BBMAP_BITS \ 777 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 778 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 779 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 780 781 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 782 783 static bool vmap_initialized __read_mostly = false; 784 785 struct vmap_block_queue { 786 spinlock_t lock; 787 struct list_head free; 788 }; 789 790 struct vmap_block { 791 spinlock_t lock; 792 struct vmap_area *va; 793 unsigned long free, dirty; 794 unsigned long dirty_min, dirty_max; /*< dirty range */ 795 struct list_head free_list; 796 struct rcu_head rcu_head; 797 struct list_head purge; 798 }; 799 800 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 801 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 802 803 /* 804 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 805 * in the free path. Could get rid of this if we change the API to return a 806 * "cookie" from alloc, to be passed to free. But no big deal yet. 807 */ 808 static DEFINE_SPINLOCK(vmap_block_tree_lock); 809 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 810 811 /* 812 * We should probably have a fallback mechanism to allocate virtual memory 813 * out of partially filled vmap blocks. However vmap block sizing should be 814 * fairly reasonable according to the vmalloc size, so it shouldn't be a 815 * big problem. 816 */ 817 818 static unsigned long addr_to_vb_idx(unsigned long addr) 819 { 820 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 821 addr /= VMAP_BLOCK_SIZE; 822 return addr; 823 } 824 825 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 826 { 827 unsigned long addr; 828 829 addr = va_start + (pages_off << PAGE_SHIFT); 830 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 831 return (void *)addr; 832 } 833 834 /** 835 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 836 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 837 * @order: how many 2^order pages should be occupied in newly allocated block 838 * @gfp_mask: flags for the page level allocator 839 * 840 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno) 841 */ 842 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 843 { 844 struct vmap_block_queue *vbq; 845 struct vmap_block *vb; 846 struct vmap_area *va; 847 unsigned long vb_idx; 848 int node, err; 849 void *vaddr; 850 851 node = numa_node_id(); 852 853 vb = kmalloc_node(sizeof(struct vmap_block), 854 gfp_mask & GFP_RECLAIM_MASK, node); 855 if (unlikely(!vb)) 856 return ERR_PTR(-ENOMEM); 857 858 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 859 VMALLOC_START, VMALLOC_END, 860 node, gfp_mask); 861 if (IS_ERR(va)) { 862 kfree(vb); 863 return ERR_CAST(va); 864 } 865 866 err = radix_tree_preload(gfp_mask); 867 if (unlikely(err)) { 868 kfree(vb); 869 free_vmap_area(va); 870 return ERR_PTR(err); 871 } 872 873 vaddr = vmap_block_vaddr(va->va_start, 0); 874 spin_lock_init(&vb->lock); 875 vb->va = va; 876 /* At least something should be left free */ 877 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 878 vb->free = VMAP_BBMAP_BITS - (1UL << order); 879 vb->dirty = 0; 880 vb->dirty_min = VMAP_BBMAP_BITS; 881 vb->dirty_max = 0; 882 INIT_LIST_HEAD(&vb->free_list); 883 884 vb_idx = addr_to_vb_idx(va->va_start); 885 spin_lock(&vmap_block_tree_lock); 886 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 887 spin_unlock(&vmap_block_tree_lock); 888 BUG_ON(err); 889 radix_tree_preload_end(); 890 891 vbq = &get_cpu_var(vmap_block_queue); 892 spin_lock(&vbq->lock); 893 list_add_tail_rcu(&vb->free_list, &vbq->free); 894 spin_unlock(&vbq->lock); 895 put_cpu_var(vmap_block_queue); 896 897 return vaddr; 898 } 899 900 static void free_vmap_block(struct vmap_block *vb) 901 { 902 struct vmap_block *tmp; 903 unsigned long vb_idx; 904 905 vb_idx = addr_to_vb_idx(vb->va->va_start); 906 spin_lock(&vmap_block_tree_lock); 907 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 908 spin_unlock(&vmap_block_tree_lock); 909 BUG_ON(tmp != vb); 910 911 free_vmap_area_noflush(vb->va); 912 kfree_rcu(vb, rcu_head); 913 } 914 915 static void purge_fragmented_blocks(int cpu) 916 { 917 LIST_HEAD(purge); 918 struct vmap_block *vb; 919 struct vmap_block *n_vb; 920 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 921 922 rcu_read_lock(); 923 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 924 925 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 926 continue; 927 928 spin_lock(&vb->lock); 929 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 930 vb->free = 0; /* prevent further allocs after releasing lock */ 931 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 932 vb->dirty_min = 0; 933 vb->dirty_max = VMAP_BBMAP_BITS; 934 spin_lock(&vbq->lock); 935 list_del_rcu(&vb->free_list); 936 spin_unlock(&vbq->lock); 937 spin_unlock(&vb->lock); 938 list_add_tail(&vb->purge, &purge); 939 } else 940 spin_unlock(&vb->lock); 941 } 942 rcu_read_unlock(); 943 944 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 945 list_del(&vb->purge); 946 free_vmap_block(vb); 947 } 948 } 949 950 static void purge_fragmented_blocks_allcpus(void) 951 { 952 int cpu; 953 954 for_each_possible_cpu(cpu) 955 purge_fragmented_blocks(cpu); 956 } 957 958 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 959 { 960 struct vmap_block_queue *vbq; 961 struct vmap_block *vb; 962 void *vaddr = NULL; 963 unsigned int order; 964 965 BUG_ON(offset_in_page(size)); 966 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 967 if (WARN_ON(size == 0)) { 968 /* 969 * Allocating 0 bytes isn't what caller wants since 970 * get_order(0) returns funny result. Just warn and terminate 971 * early. 972 */ 973 return NULL; 974 } 975 order = get_order(size); 976 977 rcu_read_lock(); 978 vbq = &get_cpu_var(vmap_block_queue); 979 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 980 unsigned long pages_off; 981 982 spin_lock(&vb->lock); 983 if (vb->free < (1UL << order)) { 984 spin_unlock(&vb->lock); 985 continue; 986 } 987 988 pages_off = VMAP_BBMAP_BITS - vb->free; 989 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 990 vb->free -= 1UL << order; 991 if (vb->free == 0) { 992 spin_lock(&vbq->lock); 993 list_del_rcu(&vb->free_list); 994 spin_unlock(&vbq->lock); 995 } 996 997 spin_unlock(&vb->lock); 998 break; 999 } 1000 1001 put_cpu_var(vmap_block_queue); 1002 rcu_read_unlock(); 1003 1004 /* Allocate new block if nothing was found */ 1005 if (!vaddr) 1006 vaddr = new_vmap_block(order, gfp_mask); 1007 1008 return vaddr; 1009 } 1010 1011 static void vb_free(const void *addr, unsigned long size) 1012 { 1013 unsigned long offset; 1014 unsigned long vb_idx; 1015 unsigned int order; 1016 struct vmap_block *vb; 1017 1018 BUG_ON(offset_in_page(size)); 1019 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1020 1021 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 1022 1023 order = get_order(size); 1024 1025 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 1026 offset >>= PAGE_SHIFT; 1027 1028 vb_idx = addr_to_vb_idx((unsigned long)addr); 1029 rcu_read_lock(); 1030 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 1031 rcu_read_unlock(); 1032 BUG_ON(!vb); 1033 1034 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 1035 1036 spin_lock(&vb->lock); 1037 1038 /* Expand dirty range */ 1039 vb->dirty_min = min(vb->dirty_min, offset); 1040 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 1041 1042 vb->dirty += 1UL << order; 1043 if (vb->dirty == VMAP_BBMAP_BITS) { 1044 BUG_ON(vb->free); 1045 spin_unlock(&vb->lock); 1046 free_vmap_block(vb); 1047 } else 1048 spin_unlock(&vb->lock); 1049 } 1050 1051 /** 1052 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1053 * 1054 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1055 * to amortize TLB flushing overheads. What this means is that any page you 1056 * have now, may, in a former life, have been mapped into kernel virtual 1057 * address by the vmap layer and so there might be some CPUs with TLB entries 1058 * still referencing that page (additional to the regular 1:1 kernel mapping). 1059 * 1060 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1061 * be sure that none of the pages we have control over will have any aliases 1062 * from the vmap layer. 1063 */ 1064 void vm_unmap_aliases(void) 1065 { 1066 unsigned long start = ULONG_MAX, end = 0; 1067 int cpu; 1068 int flush = 0; 1069 1070 if (unlikely(!vmap_initialized)) 1071 return; 1072 1073 for_each_possible_cpu(cpu) { 1074 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1075 struct vmap_block *vb; 1076 1077 rcu_read_lock(); 1078 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1079 spin_lock(&vb->lock); 1080 if (vb->dirty) { 1081 unsigned long va_start = vb->va->va_start; 1082 unsigned long s, e; 1083 1084 s = va_start + (vb->dirty_min << PAGE_SHIFT); 1085 e = va_start + (vb->dirty_max << PAGE_SHIFT); 1086 1087 start = min(s, start); 1088 end = max(e, end); 1089 1090 flush = 1; 1091 } 1092 spin_unlock(&vb->lock); 1093 } 1094 rcu_read_unlock(); 1095 } 1096 1097 __purge_vmap_area_lazy(&start, &end, 1, flush); 1098 } 1099 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1100 1101 /** 1102 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1103 * @mem: the pointer returned by vm_map_ram 1104 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1105 */ 1106 void vm_unmap_ram(const void *mem, unsigned int count) 1107 { 1108 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1109 unsigned long addr = (unsigned long)mem; 1110 1111 BUG_ON(!addr); 1112 BUG_ON(addr < VMALLOC_START); 1113 BUG_ON(addr > VMALLOC_END); 1114 BUG_ON(!PAGE_ALIGNED(addr)); 1115 1116 debug_check_no_locks_freed(mem, size); 1117 vmap_debug_free_range(addr, addr+size); 1118 1119 if (likely(count <= VMAP_MAX_ALLOC)) 1120 vb_free(mem, size); 1121 else 1122 free_unmap_vmap_area_addr(addr); 1123 } 1124 EXPORT_SYMBOL(vm_unmap_ram); 1125 1126 /** 1127 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1128 * @pages: an array of pointers to the pages to be mapped 1129 * @count: number of pages 1130 * @node: prefer to allocate data structures on this node 1131 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1132 * 1133 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1134 * faster than vmap so it's good. But if you mix long-life and short-life 1135 * objects with vm_map_ram(), it could consume lots of address space through 1136 * fragmentation (especially on a 32bit machine). You could see failures in 1137 * the end. Please use this function for short-lived objects. 1138 * 1139 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1140 */ 1141 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1142 { 1143 unsigned long size = (unsigned long)count << PAGE_SHIFT; 1144 unsigned long addr; 1145 void *mem; 1146 1147 if (likely(count <= VMAP_MAX_ALLOC)) { 1148 mem = vb_alloc(size, GFP_KERNEL); 1149 if (IS_ERR(mem)) 1150 return NULL; 1151 addr = (unsigned long)mem; 1152 } else { 1153 struct vmap_area *va; 1154 va = alloc_vmap_area(size, PAGE_SIZE, 1155 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1156 if (IS_ERR(va)) 1157 return NULL; 1158 1159 addr = va->va_start; 1160 mem = (void *)addr; 1161 } 1162 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1163 vm_unmap_ram(mem, count); 1164 return NULL; 1165 } 1166 return mem; 1167 } 1168 EXPORT_SYMBOL(vm_map_ram); 1169 1170 static struct vm_struct *vmlist __initdata; 1171 /** 1172 * vm_area_add_early - add vmap area early during boot 1173 * @vm: vm_struct to add 1174 * 1175 * This function is used to add fixed kernel vm area to vmlist before 1176 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1177 * should contain proper values and the other fields should be zero. 1178 * 1179 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1180 */ 1181 void __init vm_area_add_early(struct vm_struct *vm) 1182 { 1183 struct vm_struct *tmp, **p; 1184 1185 BUG_ON(vmap_initialized); 1186 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1187 if (tmp->addr >= vm->addr) { 1188 BUG_ON(tmp->addr < vm->addr + vm->size); 1189 break; 1190 } else 1191 BUG_ON(tmp->addr + tmp->size > vm->addr); 1192 } 1193 vm->next = *p; 1194 *p = vm; 1195 } 1196 1197 /** 1198 * vm_area_register_early - register vmap area early during boot 1199 * @vm: vm_struct to register 1200 * @align: requested alignment 1201 * 1202 * This function is used to register kernel vm area before 1203 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1204 * proper values on entry and other fields should be zero. On return, 1205 * vm->addr contains the allocated address. 1206 * 1207 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1208 */ 1209 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1210 { 1211 static size_t vm_init_off __initdata; 1212 unsigned long addr; 1213 1214 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1215 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1216 1217 vm->addr = (void *)addr; 1218 1219 vm_area_add_early(vm); 1220 } 1221 1222 void __init vmalloc_init(void) 1223 { 1224 struct vmap_area *va; 1225 struct vm_struct *tmp; 1226 int i; 1227 1228 for_each_possible_cpu(i) { 1229 struct vmap_block_queue *vbq; 1230 struct vfree_deferred *p; 1231 1232 vbq = &per_cpu(vmap_block_queue, i); 1233 spin_lock_init(&vbq->lock); 1234 INIT_LIST_HEAD(&vbq->free); 1235 p = &per_cpu(vfree_deferred, i); 1236 init_llist_head(&p->list); 1237 INIT_WORK(&p->wq, free_work); 1238 } 1239 1240 /* Import existing vmlist entries. */ 1241 for (tmp = vmlist; tmp; tmp = tmp->next) { 1242 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1243 va->flags = VM_VM_AREA; 1244 va->va_start = (unsigned long)tmp->addr; 1245 va->va_end = va->va_start + tmp->size; 1246 va->vm = tmp; 1247 __insert_vmap_area(va); 1248 } 1249 1250 vmap_area_pcpu_hole = VMALLOC_END; 1251 1252 vmap_initialized = true; 1253 } 1254 1255 /** 1256 * map_kernel_range_noflush - map kernel VM area with the specified pages 1257 * @addr: start of the VM area to map 1258 * @size: size of the VM area to map 1259 * @prot: page protection flags to use 1260 * @pages: pages to map 1261 * 1262 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1263 * specify should have been allocated using get_vm_area() and its 1264 * friends. 1265 * 1266 * NOTE: 1267 * This function does NOT do any cache flushing. The caller is 1268 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1269 * before calling this function. 1270 * 1271 * RETURNS: 1272 * The number of pages mapped on success, -errno on failure. 1273 */ 1274 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1275 pgprot_t prot, struct page **pages) 1276 { 1277 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1278 } 1279 1280 /** 1281 * unmap_kernel_range_noflush - unmap kernel VM area 1282 * @addr: start of the VM area to unmap 1283 * @size: size of the VM area to unmap 1284 * 1285 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1286 * specify should have been allocated using get_vm_area() and its 1287 * friends. 1288 * 1289 * NOTE: 1290 * This function does NOT do any cache flushing. The caller is 1291 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1292 * before calling this function and flush_tlb_kernel_range() after. 1293 */ 1294 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1295 { 1296 vunmap_page_range(addr, addr + size); 1297 } 1298 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1299 1300 /** 1301 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1302 * @addr: start of the VM area to unmap 1303 * @size: size of the VM area to unmap 1304 * 1305 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1306 * the unmapping and tlb after. 1307 */ 1308 void unmap_kernel_range(unsigned long addr, unsigned long size) 1309 { 1310 unsigned long end = addr + size; 1311 1312 flush_cache_vunmap(addr, end); 1313 vunmap_page_range(addr, end); 1314 flush_tlb_kernel_range(addr, end); 1315 } 1316 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1317 1318 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1319 { 1320 unsigned long addr = (unsigned long)area->addr; 1321 unsigned long end = addr + get_vm_area_size(area); 1322 int err; 1323 1324 err = vmap_page_range(addr, end, prot, pages); 1325 1326 return err > 0 ? 0 : err; 1327 } 1328 EXPORT_SYMBOL_GPL(map_vm_area); 1329 1330 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1331 unsigned long flags, const void *caller) 1332 { 1333 spin_lock(&vmap_area_lock); 1334 vm->flags = flags; 1335 vm->addr = (void *)va->va_start; 1336 vm->size = va->va_end - va->va_start; 1337 vm->caller = caller; 1338 va->vm = vm; 1339 va->flags |= VM_VM_AREA; 1340 spin_unlock(&vmap_area_lock); 1341 } 1342 1343 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1344 { 1345 /* 1346 * Before removing VM_UNINITIALIZED, 1347 * we should make sure that vm has proper values. 1348 * Pair with smp_rmb() in show_numa_info(). 1349 */ 1350 smp_wmb(); 1351 vm->flags &= ~VM_UNINITIALIZED; 1352 } 1353 1354 static struct vm_struct *__get_vm_area_node(unsigned long size, 1355 unsigned long align, unsigned long flags, unsigned long start, 1356 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1357 { 1358 struct vmap_area *va; 1359 struct vm_struct *area; 1360 1361 BUG_ON(in_interrupt()); 1362 if (flags & VM_IOREMAP) 1363 align = 1ul << clamp_t(int, fls_long(size), 1364 PAGE_SHIFT, IOREMAP_MAX_ORDER); 1365 1366 size = PAGE_ALIGN(size); 1367 if (unlikely(!size)) 1368 return NULL; 1369 1370 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1371 if (unlikely(!area)) 1372 return NULL; 1373 1374 if (!(flags & VM_NO_GUARD)) 1375 size += PAGE_SIZE; 1376 1377 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1378 if (IS_ERR(va)) { 1379 kfree(area); 1380 return NULL; 1381 } 1382 1383 setup_vmalloc_vm(area, va, flags, caller); 1384 1385 return area; 1386 } 1387 1388 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1389 unsigned long start, unsigned long end) 1390 { 1391 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1392 GFP_KERNEL, __builtin_return_address(0)); 1393 } 1394 EXPORT_SYMBOL_GPL(__get_vm_area); 1395 1396 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1397 unsigned long start, unsigned long end, 1398 const void *caller) 1399 { 1400 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1401 GFP_KERNEL, caller); 1402 } 1403 1404 /** 1405 * get_vm_area - reserve a contiguous kernel virtual area 1406 * @size: size of the area 1407 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1408 * 1409 * Search an area of @size in the kernel virtual mapping area, 1410 * and reserved it for out purposes. Returns the area descriptor 1411 * on success or %NULL on failure. 1412 */ 1413 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1414 { 1415 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1416 NUMA_NO_NODE, GFP_KERNEL, 1417 __builtin_return_address(0)); 1418 } 1419 1420 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1421 const void *caller) 1422 { 1423 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1424 NUMA_NO_NODE, GFP_KERNEL, caller); 1425 } 1426 1427 /** 1428 * find_vm_area - find a continuous kernel virtual area 1429 * @addr: base address 1430 * 1431 * Search for the kernel VM area starting at @addr, and return it. 1432 * It is up to the caller to do all required locking to keep the returned 1433 * pointer valid. 1434 */ 1435 struct vm_struct *find_vm_area(const void *addr) 1436 { 1437 struct vmap_area *va; 1438 1439 va = find_vmap_area((unsigned long)addr); 1440 if (va && va->flags & VM_VM_AREA) 1441 return va->vm; 1442 1443 return NULL; 1444 } 1445 1446 /** 1447 * remove_vm_area - find and remove a continuous kernel virtual area 1448 * @addr: base address 1449 * 1450 * Search for the kernel VM area starting at @addr, and remove it. 1451 * This function returns the found VM area, but using it is NOT safe 1452 * on SMP machines, except for its size or flags. 1453 */ 1454 struct vm_struct *remove_vm_area(const void *addr) 1455 { 1456 struct vmap_area *va; 1457 1458 va = find_vmap_area((unsigned long)addr); 1459 if (va && va->flags & VM_VM_AREA) { 1460 struct vm_struct *vm = va->vm; 1461 1462 spin_lock(&vmap_area_lock); 1463 va->vm = NULL; 1464 va->flags &= ~VM_VM_AREA; 1465 spin_unlock(&vmap_area_lock); 1466 1467 vmap_debug_free_range(va->va_start, va->va_end); 1468 kasan_free_shadow(vm); 1469 free_unmap_vmap_area(va); 1470 1471 return vm; 1472 } 1473 return NULL; 1474 } 1475 1476 static void __vunmap(const void *addr, int deallocate_pages) 1477 { 1478 struct vm_struct *area; 1479 1480 if (!addr) 1481 return; 1482 1483 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1484 addr)) 1485 return; 1486 1487 area = remove_vm_area(addr); 1488 if (unlikely(!area)) { 1489 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1490 addr); 1491 return; 1492 } 1493 1494 debug_check_no_locks_freed(addr, get_vm_area_size(area)); 1495 debug_check_no_obj_freed(addr, get_vm_area_size(area)); 1496 1497 if (deallocate_pages) { 1498 int i; 1499 1500 for (i = 0; i < area->nr_pages; i++) { 1501 struct page *page = area->pages[i]; 1502 1503 BUG_ON(!page); 1504 __free_pages(page, 0); 1505 } 1506 1507 kvfree(area->pages); 1508 } 1509 1510 kfree(area); 1511 return; 1512 } 1513 1514 /** 1515 * vfree - release memory allocated by vmalloc() 1516 * @addr: memory base address 1517 * 1518 * Free the virtually continuous memory area starting at @addr, as 1519 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1520 * NULL, no operation is performed. 1521 * 1522 * Must not be called in NMI context (strictly speaking, only if we don't 1523 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1524 * conventions for vfree() arch-depenedent would be a really bad idea) 1525 * 1526 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) 1527 */ 1528 void vfree(const void *addr) 1529 { 1530 BUG_ON(in_nmi()); 1531 1532 kmemleak_free(addr); 1533 1534 if (!addr) 1535 return; 1536 if (unlikely(in_interrupt())) { 1537 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred); 1538 if (llist_add((struct llist_node *)addr, &p->list)) 1539 schedule_work(&p->wq); 1540 } else 1541 __vunmap(addr, 1); 1542 } 1543 EXPORT_SYMBOL(vfree); 1544 1545 /** 1546 * vunmap - release virtual mapping obtained by vmap() 1547 * @addr: memory base address 1548 * 1549 * Free the virtually contiguous memory area starting at @addr, 1550 * which was created from the page array passed to vmap(). 1551 * 1552 * Must not be called in interrupt context. 1553 */ 1554 void vunmap(const void *addr) 1555 { 1556 BUG_ON(in_interrupt()); 1557 might_sleep(); 1558 if (addr) 1559 __vunmap(addr, 0); 1560 } 1561 EXPORT_SYMBOL(vunmap); 1562 1563 /** 1564 * vmap - map an array of pages into virtually contiguous space 1565 * @pages: array of page pointers 1566 * @count: number of pages to map 1567 * @flags: vm_area->flags 1568 * @prot: page protection for the mapping 1569 * 1570 * Maps @count pages from @pages into contiguous kernel virtual 1571 * space. 1572 */ 1573 void *vmap(struct page **pages, unsigned int count, 1574 unsigned long flags, pgprot_t prot) 1575 { 1576 struct vm_struct *area; 1577 unsigned long size; /* In bytes */ 1578 1579 might_sleep(); 1580 1581 if (count > totalram_pages) 1582 return NULL; 1583 1584 size = (unsigned long)count << PAGE_SHIFT; 1585 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 1586 if (!area) 1587 return NULL; 1588 1589 if (map_vm_area(area, prot, pages)) { 1590 vunmap(area->addr); 1591 return NULL; 1592 } 1593 1594 return area->addr; 1595 } 1596 EXPORT_SYMBOL(vmap); 1597 1598 static void *__vmalloc_node(unsigned long size, unsigned long align, 1599 gfp_t gfp_mask, pgprot_t prot, 1600 int node, const void *caller); 1601 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1602 pgprot_t prot, int node) 1603 { 1604 const int order = 0; 1605 struct page **pages; 1606 unsigned int nr_pages, array_size, i; 1607 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1608 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1609 1610 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1611 array_size = (nr_pages * sizeof(struct page *)); 1612 1613 area->nr_pages = nr_pages; 1614 /* Please note that the recursion is strictly bounded. */ 1615 if (array_size > PAGE_SIZE) { 1616 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1617 PAGE_KERNEL, node, area->caller); 1618 } else { 1619 pages = kmalloc_node(array_size, nested_gfp, node); 1620 } 1621 area->pages = pages; 1622 if (!area->pages) { 1623 remove_vm_area(area->addr); 1624 kfree(area); 1625 return NULL; 1626 } 1627 1628 for (i = 0; i < area->nr_pages; i++) { 1629 struct page *page; 1630 1631 if (node == NUMA_NO_NODE) 1632 page = alloc_pages(alloc_mask, order); 1633 else 1634 page = alloc_pages_node(node, alloc_mask, order); 1635 1636 if (unlikely(!page)) { 1637 /* Successfully allocated i pages, free them in __vunmap() */ 1638 area->nr_pages = i; 1639 goto fail; 1640 } 1641 area->pages[i] = page; 1642 if (gfpflags_allow_blocking(gfp_mask)) 1643 cond_resched(); 1644 } 1645 1646 if (map_vm_area(area, prot, pages)) 1647 goto fail; 1648 return area->addr; 1649 1650 fail: 1651 warn_alloc_failed(gfp_mask, order, 1652 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1653 (area->nr_pages*PAGE_SIZE), area->size); 1654 vfree(area->addr); 1655 return NULL; 1656 } 1657 1658 /** 1659 * __vmalloc_node_range - allocate virtually contiguous memory 1660 * @size: allocation size 1661 * @align: desired alignment 1662 * @start: vm area range start 1663 * @end: vm area range end 1664 * @gfp_mask: flags for the page level allocator 1665 * @prot: protection mask for the allocated pages 1666 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1667 * @node: node to use for allocation or NUMA_NO_NODE 1668 * @caller: caller's return address 1669 * 1670 * Allocate enough pages to cover @size from the page level 1671 * allocator with @gfp_mask flags. Map them into contiguous 1672 * kernel virtual space, using a pagetable protection of @prot. 1673 */ 1674 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1675 unsigned long start, unsigned long end, gfp_t gfp_mask, 1676 pgprot_t prot, unsigned long vm_flags, int node, 1677 const void *caller) 1678 { 1679 struct vm_struct *area; 1680 void *addr; 1681 unsigned long real_size = size; 1682 1683 size = PAGE_ALIGN(size); 1684 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1685 goto fail; 1686 1687 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1688 vm_flags, start, end, node, gfp_mask, caller); 1689 if (!area) 1690 goto fail; 1691 1692 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1693 if (!addr) 1694 return NULL; 1695 1696 /* 1697 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1698 * flag. It means that vm_struct is not fully initialized. 1699 * Now, it is fully initialized, so remove this flag here. 1700 */ 1701 clear_vm_uninitialized_flag(area); 1702 1703 /* 1704 * A ref_count = 2 is needed because vm_struct allocated in 1705 * __get_vm_area_node() contains a reference to the virtual address of 1706 * the vmalloc'ed block. 1707 */ 1708 kmemleak_alloc(addr, real_size, 2, gfp_mask); 1709 1710 return addr; 1711 1712 fail: 1713 warn_alloc_failed(gfp_mask, 0, 1714 "vmalloc: allocation failure: %lu bytes\n", 1715 real_size); 1716 return NULL; 1717 } 1718 1719 /** 1720 * __vmalloc_node - allocate virtually contiguous memory 1721 * @size: allocation size 1722 * @align: desired alignment 1723 * @gfp_mask: flags for the page level allocator 1724 * @prot: protection mask for the allocated pages 1725 * @node: node to use for allocation or NUMA_NO_NODE 1726 * @caller: caller's return address 1727 * 1728 * Allocate enough pages to cover @size from the page level 1729 * allocator with @gfp_mask flags. Map them into contiguous 1730 * kernel virtual space, using a pagetable protection of @prot. 1731 */ 1732 static void *__vmalloc_node(unsigned long size, unsigned long align, 1733 gfp_t gfp_mask, pgprot_t prot, 1734 int node, const void *caller) 1735 { 1736 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1737 gfp_mask, prot, 0, node, caller); 1738 } 1739 1740 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1741 { 1742 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1743 __builtin_return_address(0)); 1744 } 1745 EXPORT_SYMBOL(__vmalloc); 1746 1747 static inline void *__vmalloc_node_flags(unsigned long size, 1748 int node, gfp_t flags) 1749 { 1750 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1751 node, __builtin_return_address(0)); 1752 } 1753 1754 /** 1755 * vmalloc - allocate virtually contiguous memory 1756 * @size: allocation size 1757 * Allocate enough pages to cover @size from the page level 1758 * allocator and map them into contiguous kernel virtual space. 1759 * 1760 * For tight control over page level allocator and protection flags 1761 * use __vmalloc() instead. 1762 */ 1763 void *vmalloc(unsigned long size) 1764 { 1765 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1766 GFP_KERNEL | __GFP_HIGHMEM); 1767 } 1768 EXPORT_SYMBOL(vmalloc); 1769 1770 /** 1771 * vzalloc - allocate virtually contiguous memory with zero fill 1772 * @size: allocation size 1773 * Allocate enough pages to cover @size from the page level 1774 * allocator and map them into contiguous kernel virtual space. 1775 * The memory allocated is set to zero. 1776 * 1777 * For tight control over page level allocator and protection flags 1778 * use __vmalloc() instead. 1779 */ 1780 void *vzalloc(unsigned long size) 1781 { 1782 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1783 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1784 } 1785 EXPORT_SYMBOL(vzalloc); 1786 1787 /** 1788 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1789 * @size: allocation size 1790 * 1791 * The resulting memory area is zeroed so it can be mapped to userspace 1792 * without leaking data. 1793 */ 1794 void *vmalloc_user(unsigned long size) 1795 { 1796 struct vm_struct *area; 1797 void *ret; 1798 1799 ret = __vmalloc_node(size, SHMLBA, 1800 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1801 PAGE_KERNEL, NUMA_NO_NODE, 1802 __builtin_return_address(0)); 1803 if (ret) { 1804 area = find_vm_area(ret); 1805 area->flags |= VM_USERMAP; 1806 } 1807 return ret; 1808 } 1809 EXPORT_SYMBOL(vmalloc_user); 1810 1811 /** 1812 * vmalloc_node - allocate memory on a specific node 1813 * @size: allocation size 1814 * @node: numa node 1815 * 1816 * Allocate enough pages to cover @size from the page level 1817 * allocator and map them into contiguous kernel virtual space. 1818 * 1819 * For tight control over page level allocator and protection flags 1820 * use __vmalloc() instead. 1821 */ 1822 void *vmalloc_node(unsigned long size, int node) 1823 { 1824 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1825 node, __builtin_return_address(0)); 1826 } 1827 EXPORT_SYMBOL(vmalloc_node); 1828 1829 /** 1830 * vzalloc_node - allocate memory on a specific node with zero fill 1831 * @size: allocation size 1832 * @node: numa node 1833 * 1834 * Allocate enough pages to cover @size from the page level 1835 * allocator and map them into contiguous kernel virtual space. 1836 * The memory allocated is set to zero. 1837 * 1838 * For tight control over page level allocator and protection flags 1839 * use __vmalloc_node() instead. 1840 */ 1841 void *vzalloc_node(unsigned long size, int node) 1842 { 1843 return __vmalloc_node_flags(size, node, 1844 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1845 } 1846 EXPORT_SYMBOL(vzalloc_node); 1847 1848 #ifndef PAGE_KERNEL_EXEC 1849 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1850 #endif 1851 1852 /** 1853 * vmalloc_exec - allocate virtually contiguous, executable memory 1854 * @size: allocation size 1855 * 1856 * Kernel-internal function to allocate enough pages to cover @size 1857 * the page level allocator and map them into contiguous and 1858 * executable kernel virtual space. 1859 * 1860 * For tight control over page level allocator and protection flags 1861 * use __vmalloc() instead. 1862 */ 1863 1864 void *vmalloc_exec(unsigned long size) 1865 { 1866 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1867 NUMA_NO_NODE, __builtin_return_address(0)); 1868 } 1869 1870 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1871 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1872 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1873 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1874 #else 1875 #define GFP_VMALLOC32 GFP_KERNEL 1876 #endif 1877 1878 /** 1879 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1880 * @size: allocation size 1881 * 1882 * Allocate enough 32bit PA addressable pages to cover @size from the 1883 * page level allocator and map them into contiguous kernel virtual space. 1884 */ 1885 void *vmalloc_32(unsigned long size) 1886 { 1887 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1888 NUMA_NO_NODE, __builtin_return_address(0)); 1889 } 1890 EXPORT_SYMBOL(vmalloc_32); 1891 1892 /** 1893 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1894 * @size: allocation size 1895 * 1896 * The resulting memory area is 32bit addressable and zeroed so it can be 1897 * mapped to userspace without leaking data. 1898 */ 1899 void *vmalloc_32_user(unsigned long size) 1900 { 1901 struct vm_struct *area; 1902 void *ret; 1903 1904 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1905 NUMA_NO_NODE, __builtin_return_address(0)); 1906 if (ret) { 1907 area = find_vm_area(ret); 1908 area->flags |= VM_USERMAP; 1909 } 1910 return ret; 1911 } 1912 EXPORT_SYMBOL(vmalloc_32_user); 1913 1914 /* 1915 * small helper routine , copy contents to buf from addr. 1916 * If the page is not present, fill zero. 1917 */ 1918 1919 static int aligned_vread(char *buf, char *addr, unsigned long count) 1920 { 1921 struct page *p; 1922 int copied = 0; 1923 1924 while (count) { 1925 unsigned long offset, length; 1926 1927 offset = offset_in_page(addr); 1928 length = PAGE_SIZE - offset; 1929 if (length > count) 1930 length = count; 1931 p = vmalloc_to_page(addr); 1932 /* 1933 * To do safe access to this _mapped_ area, we need 1934 * lock. But adding lock here means that we need to add 1935 * overhead of vmalloc()/vfree() calles for this _debug_ 1936 * interface, rarely used. Instead of that, we'll use 1937 * kmap() and get small overhead in this access function. 1938 */ 1939 if (p) { 1940 /* 1941 * we can expect USER0 is not used (see vread/vwrite's 1942 * function description) 1943 */ 1944 void *map = kmap_atomic(p); 1945 memcpy(buf, map + offset, length); 1946 kunmap_atomic(map); 1947 } else 1948 memset(buf, 0, length); 1949 1950 addr += length; 1951 buf += length; 1952 copied += length; 1953 count -= length; 1954 } 1955 return copied; 1956 } 1957 1958 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1959 { 1960 struct page *p; 1961 int copied = 0; 1962 1963 while (count) { 1964 unsigned long offset, length; 1965 1966 offset = offset_in_page(addr); 1967 length = PAGE_SIZE - offset; 1968 if (length > count) 1969 length = count; 1970 p = vmalloc_to_page(addr); 1971 /* 1972 * To do safe access to this _mapped_ area, we need 1973 * lock. But adding lock here means that we need to add 1974 * overhead of vmalloc()/vfree() calles for this _debug_ 1975 * interface, rarely used. Instead of that, we'll use 1976 * kmap() and get small overhead in this access function. 1977 */ 1978 if (p) { 1979 /* 1980 * we can expect USER0 is not used (see vread/vwrite's 1981 * function description) 1982 */ 1983 void *map = kmap_atomic(p); 1984 memcpy(map + offset, buf, length); 1985 kunmap_atomic(map); 1986 } 1987 addr += length; 1988 buf += length; 1989 copied += length; 1990 count -= length; 1991 } 1992 return copied; 1993 } 1994 1995 /** 1996 * vread() - read vmalloc area in a safe way. 1997 * @buf: buffer for reading data 1998 * @addr: vm address. 1999 * @count: number of bytes to be read. 2000 * 2001 * Returns # of bytes which addr and buf should be increased. 2002 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 2003 * includes any intersect with alive vmalloc area. 2004 * 2005 * This function checks that addr is a valid vmalloc'ed area, and 2006 * copy data from that area to a given buffer. If the given memory range 2007 * of [addr...addr+count) includes some valid address, data is copied to 2008 * proper area of @buf. If there are memory holes, they'll be zero-filled. 2009 * IOREMAP area is treated as memory hole and no copy is done. 2010 * 2011 * If [addr...addr+count) doesn't includes any intersects with alive 2012 * vm_struct area, returns 0. @buf should be kernel's buffer. 2013 * 2014 * Note: In usual ops, vread() is never necessary because the caller 2015 * should know vmalloc() area is valid and can use memcpy(). 2016 * This is for routines which have to access vmalloc area without 2017 * any informaion, as /dev/kmem. 2018 * 2019 */ 2020 2021 long vread(char *buf, char *addr, unsigned long count) 2022 { 2023 struct vmap_area *va; 2024 struct vm_struct *vm; 2025 char *vaddr, *buf_start = buf; 2026 unsigned long buflen = count; 2027 unsigned long n; 2028 2029 /* Don't allow overflow */ 2030 if ((unsigned long) addr + count < count) 2031 count = -(unsigned long) addr; 2032 2033 spin_lock(&vmap_area_lock); 2034 list_for_each_entry(va, &vmap_area_list, list) { 2035 if (!count) 2036 break; 2037 2038 if (!(va->flags & VM_VM_AREA)) 2039 continue; 2040 2041 vm = va->vm; 2042 vaddr = (char *) vm->addr; 2043 if (addr >= vaddr + get_vm_area_size(vm)) 2044 continue; 2045 while (addr < vaddr) { 2046 if (count == 0) 2047 goto finished; 2048 *buf = '\0'; 2049 buf++; 2050 addr++; 2051 count--; 2052 } 2053 n = vaddr + get_vm_area_size(vm) - addr; 2054 if (n > count) 2055 n = count; 2056 if (!(vm->flags & VM_IOREMAP)) 2057 aligned_vread(buf, addr, n); 2058 else /* IOREMAP area is treated as memory hole */ 2059 memset(buf, 0, n); 2060 buf += n; 2061 addr += n; 2062 count -= n; 2063 } 2064 finished: 2065 spin_unlock(&vmap_area_lock); 2066 2067 if (buf == buf_start) 2068 return 0; 2069 /* zero-fill memory holes */ 2070 if (buf != buf_start + buflen) 2071 memset(buf, 0, buflen - (buf - buf_start)); 2072 2073 return buflen; 2074 } 2075 2076 /** 2077 * vwrite() - write vmalloc area in a safe way. 2078 * @buf: buffer for source data 2079 * @addr: vm address. 2080 * @count: number of bytes to be read. 2081 * 2082 * Returns # of bytes which addr and buf should be incresed. 2083 * (same number to @count). 2084 * If [addr...addr+count) doesn't includes any intersect with valid 2085 * vmalloc area, returns 0. 2086 * 2087 * This function checks that addr is a valid vmalloc'ed area, and 2088 * copy data from a buffer to the given addr. If specified range of 2089 * [addr...addr+count) includes some valid address, data is copied from 2090 * proper area of @buf. If there are memory holes, no copy to hole. 2091 * IOREMAP area is treated as memory hole and no copy is done. 2092 * 2093 * If [addr...addr+count) doesn't includes any intersects with alive 2094 * vm_struct area, returns 0. @buf should be kernel's buffer. 2095 * 2096 * Note: In usual ops, vwrite() is never necessary because the caller 2097 * should know vmalloc() area is valid and can use memcpy(). 2098 * This is for routines which have to access vmalloc area without 2099 * any informaion, as /dev/kmem. 2100 */ 2101 2102 long vwrite(char *buf, char *addr, unsigned long count) 2103 { 2104 struct vmap_area *va; 2105 struct vm_struct *vm; 2106 char *vaddr; 2107 unsigned long n, buflen; 2108 int copied = 0; 2109 2110 /* Don't allow overflow */ 2111 if ((unsigned long) addr + count < count) 2112 count = -(unsigned long) addr; 2113 buflen = count; 2114 2115 spin_lock(&vmap_area_lock); 2116 list_for_each_entry(va, &vmap_area_list, list) { 2117 if (!count) 2118 break; 2119 2120 if (!(va->flags & VM_VM_AREA)) 2121 continue; 2122 2123 vm = va->vm; 2124 vaddr = (char *) vm->addr; 2125 if (addr >= vaddr + get_vm_area_size(vm)) 2126 continue; 2127 while (addr < vaddr) { 2128 if (count == 0) 2129 goto finished; 2130 buf++; 2131 addr++; 2132 count--; 2133 } 2134 n = vaddr + get_vm_area_size(vm) - addr; 2135 if (n > count) 2136 n = count; 2137 if (!(vm->flags & VM_IOREMAP)) { 2138 aligned_vwrite(buf, addr, n); 2139 copied++; 2140 } 2141 buf += n; 2142 addr += n; 2143 count -= n; 2144 } 2145 finished: 2146 spin_unlock(&vmap_area_lock); 2147 if (!copied) 2148 return 0; 2149 return buflen; 2150 } 2151 2152 /** 2153 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2154 * @vma: vma to cover 2155 * @uaddr: target user address to start at 2156 * @kaddr: virtual address of vmalloc kernel memory 2157 * @size: size of map area 2158 * 2159 * Returns: 0 for success, -Exxx on failure 2160 * 2161 * This function checks that @kaddr is a valid vmalloc'ed area, 2162 * and that it is big enough to cover the range starting at 2163 * @uaddr in @vma. Will return failure if that criteria isn't 2164 * met. 2165 * 2166 * Similar to remap_pfn_range() (see mm/memory.c) 2167 */ 2168 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2169 void *kaddr, unsigned long size) 2170 { 2171 struct vm_struct *area; 2172 2173 size = PAGE_ALIGN(size); 2174 2175 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2176 return -EINVAL; 2177 2178 area = find_vm_area(kaddr); 2179 if (!area) 2180 return -EINVAL; 2181 2182 if (!(area->flags & VM_USERMAP)) 2183 return -EINVAL; 2184 2185 if (kaddr + size > area->addr + area->size) 2186 return -EINVAL; 2187 2188 do { 2189 struct page *page = vmalloc_to_page(kaddr); 2190 int ret; 2191 2192 ret = vm_insert_page(vma, uaddr, page); 2193 if (ret) 2194 return ret; 2195 2196 uaddr += PAGE_SIZE; 2197 kaddr += PAGE_SIZE; 2198 size -= PAGE_SIZE; 2199 } while (size > 0); 2200 2201 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2202 2203 return 0; 2204 } 2205 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2206 2207 /** 2208 * remap_vmalloc_range - map vmalloc pages to userspace 2209 * @vma: vma to cover (map full range of vma) 2210 * @addr: vmalloc memory 2211 * @pgoff: number of pages into addr before first page to map 2212 * 2213 * Returns: 0 for success, -Exxx on failure 2214 * 2215 * This function checks that addr is a valid vmalloc'ed area, and 2216 * that it is big enough to cover the vma. Will return failure if 2217 * that criteria isn't met. 2218 * 2219 * Similar to remap_pfn_range() (see mm/memory.c) 2220 */ 2221 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2222 unsigned long pgoff) 2223 { 2224 return remap_vmalloc_range_partial(vma, vma->vm_start, 2225 addr + (pgoff << PAGE_SHIFT), 2226 vma->vm_end - vma->vm_start); 2227 } 2228 EXPORT_SYMBOL(remap_vmalloc_range); 2229 2230 /* 2231 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2232 * have one. 2233 */ 2234 void __weak vmalloc_sync_all(void) 2235 { 2236 } 2237 2238 2239 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2240 { 2241 pte_t ***p = data; 2242 2243 if (p) { 2244 *(*p) = pte; 2245 (*p)++; 2246 } 2247 return 0; 2248 } 2249 2250 /** 2251 * alloc_vm_area - allocate a range of kernel address space 2252 * @size: size of the area 2253 * @ptes: returns the PTEs for the address space 2254 * 2255 * Returns: NULL on failure, vm_struct on success 2256 * 2257 * This function reserves a range of kernel address space, and 2258 * allocates pagetables to map that range. No actual mappings 2259 * are created. 2260 * 2261 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2262 * allocated for the VM area are returned. 2263 */ 2264 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2265 { 2266 struct vm_struct *area; 2267 2268 area = get_vm_area_caller(size, VM_IOREMAP, 2269 __builtin_return_address(0)); 2270 if (area == NULL) 2271 return NULL; 2272 2273 /* 2274 * This ensures that page tables are constructed for this region 2275 * of kernel virtual address space and mapped into init_mm. 2276 */ 2277 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2278 size, f, ptes ? &ptes : NULL)) { 2279 free_vm_area(area); 2280 return NULL; 2281 } 2282 2283 return area; 2284 } 2285 EXPORT_SYMBOL_GPL(alloc_vm_area); 2286 2287 void free_vm_area(struct vm_struct *area) 2288 { 2289 struct vm_struct *ret; 2290 ret = remove_vm_area(area->addr); 2291 BUG_ON(ret != area); 2292 kfree(area); 2293 } 2294 EXPORT_SYMBOL_GPL(free_vm_area); 2295 2296 #ifdef CONFIG_SMP 2297 static struct vmap_area *node_to_va(struct rb_node *n) 2298 { 2299 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2300 } 2301 2302 /** 2303 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2304 * @end: target address 2305 * @pnext: out arg for the next vmap_area 2306 * @pprev: out arg for the previous vmap_area 2307 * 2308 * Returns: %true if either or both of next and prev are found, 2309 * %false if no vmap_area exists 2310 * 2311 * Find vmap_areas end addresses of which enclose @end. ie. if not 2312 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2313 */ 2314 static bool pvm_find_next_prev(unsigned long end, 2315 struct vmap_area **pnext, 2316 struct vmap_area **pprev) 2317 { 2318 struct rb_node *n = vmap_area_root.rb_node; 2319 struct vmap_area *va = NULL; 2320 2321 while (n) { 2322 va = rb_entry(n, struct vmap_area, rb_node); 2323 if (end < va->va_end) 2324 n = n->rb_left; 2325 else if (end > va->va_end) 2326 n = n->rb_right; 2327 else 2328 break; 2329 } 2330 2331 if (!va) 2332 return false; 2333 2334 if (va->va_end > end) { 2335 *pnext = va; 2336 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2337 } else { 2338 *pprev = va; 2339 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2340 } 2341 return true; 2342 } 2343 2344 /** 2345 * pvm_determine_end - find the highest aligned address between two vmap_areas 2346 * @pnext: in/out arg for the next vmap_area 2347 * @pprev: in/out arg for the previous vmap_area 2348 * @align: alignment 2349 * 2350 * Returns: determined end address 2351 * 2352 * Find the highest aligned address between *@pnext and *@pprev below 2353 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2354 * down address is between the end addresses of the two vmap_areas. 2355 * 2356 * Please note that the address returned by this function may fall 2357 * inside *@pnext vmap_area. The caller is responsible for checking 2358 * that. 2359 */ 2360 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2361 struct vmap_area **pprev, 2362 unsigned long align) 2363 { 2364 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2365 unsigned long addr; 2366 2367 if (*pnext) 2368 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2369 else 2370 addr = vmalloc_end; 2371 2372 while (*pprev && (*pprev)->va_end > addr) { 2373 *pnext = *pprev; 2374 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2375 } 2376 2377 return addr; 2378 } 2379 2380 /** 2381 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2382 * @offsets: array containing offset of each area 2383 * @sizes: array containing size of each area 2384 * @nr_vms: the number of areas to allocate 2385 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2386 * 2387 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2388 * vm_structs on success, %NULL on failure 2389 * 2390 * Percpu allocator wants to use congruent vm areas so that it can 2391 * maintain the offsets among percpu areas. This function allocates 2392 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2393 * be scattered pretty far, distance between two areas easily going up 2394 * to gigabytes. To avoid interacting with regular vmallocs, these 2395 * areas are allocated from top. 2396 * 2397 * Despite its complicated look, this allocator is rather simple. It 2398 * does everything top-down and scans areas from the end looking for 2399 * matching slot. While scanning, if any of the areas overlaps with 2400 * existing vmap_area, the base address is pulled down to fit the 2401 * area. Scanning is repeated till all the areas fit and then all 2402 * necessary data structres are inserted and the result is returned. 2403 */ 2404 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2405 const size_t *sizes, int nr_vms, 2406 size_t align) 2407 { 2408 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2409 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2410 struct vmap_area **vas, *prev, *next; 2411 struct vm_struct **vms; 2412 int area, area2, last_area, term_area; 2413 unsigned long base, start, end, last_end; 2414 bool purged = false; 2415 2416 /* verify parameters and allocate data structures */ 2417 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 2418 for (last_area = 0, area = 0; area < nr_vms; area++) { 2419 start = offsets[area]; 2420 end = start + sizes[area]; 2421 2422 /* is everything aligned properly? */ 2423 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2424 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2425 2426 /* detect the area with the highest address */ 2427 if (start > offsets[last_area]) 2428 last_area = area; 2429 2430 for (area2 = 0; area2 < nr_vms; area2++) { 2431 unsigned long start2 = offsets[area2]; 2432 unsigned long end2 = start2 + sizes[area2]; 2433 2434 if (area2 == area) 2435 continue; 2436 2437 BUG_ON(start2 >= start && start2 < end); 2438 BUG_ON(end2 <= end && end2 > start); 2439 } 2440 } 2441 last_end = offsets[last_area] + sizes[last_area]; 2442 2443 if (vmalloc_end - vmalloc_start < last_end) { 2444 WARN_ON(true); 2445 return NULL; 2446 } 2447 2448 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2449 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2450 if (!vas || !vms) 2451 goto err_free2; 2452 2453 for (area = 0; area < nr_vms; area++) { 2454 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2455 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2456 if (!vas[area] || !vms[area]) 2457 goto err_free; 2458 } 2459 retry: 2460 spin_lock(&vmap_area_lock); 2461 2462 /* start scanning - we scan from the top, begin with the last area */ 2463 area = term_area = last_area; 2464 start = offsets[area]; 2465 end = start + sizes[area]; 2466 2467 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2468 base = vmalloc_end - last_end; 2469 goto found; 2470 } 2471 base = pvm_determine_end(&next, &prev, align) - end; 2472 2473 while (true) { 2474 BUG_ON(next && next->va_end <= base + end); 2475 BUG_ON(prev && prev->va_end > base + end); 2476 2477 /* 2478 * base might have underflowed, add last_end before 2479 * comparing. 2480 */ 2481 if (base + last_end < vmalloc_start + last_end) { 2482 spin_unlock(&vmap_area_lock); 2483 if (!purged) { 2484 purge_vmap_area_lazy(); 2485 purged = true; 2486 goto retry; 2487 } 2488 goto err_free; 2489 } 2490 2491 /* 2492 * If next overlaps, move base downwards so that it's 2493 * right below next and then recheck. 2494 */ 2495 if (next && next->va_start < base + end) { 2496 base = pvm_determine_end(&next, &prev, align) - end; 2497 term_area = area; 2498 continue; 2499 } 2500 2501 /* 2502 * If prev overlaps, shift down next and prev and move 2503 * base so that it's right below new next and then 2504 * recheck. 2505 */ 2506 if (prev && prev->va_end > base + start) { 2507 next = prev; 2508 prev = node_to_va(rb_prev(&next->rb_node)); 2509 base = pvm_determine_end(&next, &prev, align) - end; 2510 term_area = area; 2511 continue; 2512 } 2513 2514 /* 2515 * This area fits, move on to the previous one. If 2516 * the previous one is the terminal one, we're done. 2517 */ 2518 area = (area + nr_vms - 1) % nr_vms; 2519 if (area == term_area) 2520 break; 2521 start = offsets[area]; 2522 end = start + sizes[area]; 2523 pvm_find_next_prev(base + end, &next, &prev); 2524 } 2525 found: 2526 /* we've found a fitting base, insert all va's */ 2527 for (area = 0; area < nr_vms; area++) { 2528 struct vmap_area *va = vas[area]; 2529 2530 va->va_start = base + offsets[area]; 2531 va->va_end = va->va_start + sizes[area]; 2532 __insert_vmap_area(va); 2533 } 2534 2535 vmap_area_pcpu_hole = base + offsets[last_area]; 2536 2537 spin_unlock(&vmap_area_lock); 2538 2539 /* insert all vm's */ 2540 for (area = 0; area < nr_vms; area++) 2541 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2542 pcpu_get_vm_areas); 2543 2544 kfree(vas); 2545 return vms; 2546 2547 err_free: 2548 for (area = 0; area < nr_vms; area++) { 2549 kfree(vas[area]); 2550 kfree(vms[area]); 2551 } 2552 err_free2: 2553 kfree(vas); 2554 kfree(vms); 2555 return NULL; 2556 } 2557 2558 /** 2559 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2560 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2561 * @nr_vms: the number of allocated areas 2562 * 2563 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2564 */ 2565 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2566 { 2567 int i; 2568 2569 for (i = 0; i < nr_vms; i++) 2570 free_vm_area(vms[i]); 2571 kfree(vms); 2572 } 2573 #endif /* CONFIG_SMP */ 2574 2575 #ifdef CONFIG_PROC_FS 2576 static void *s_start(struct seq_file *m, loff_t *pos) 2577 __acquires(&vmap_area_lock) 2578 { 2579 loff_t n = *pos; 2580 struct vmap_area *va; 2581 2582 spin_lock(&vmap_area_lock); 2583 va = list_first_entry(&vmap_area_list, typeof(*va), list); 2584 while (n > 0 && &va->list != &vmap_area_list) { 2585 n--; 2586 va = list_next_entry(va, list); 2587 } 2588 if (!n && &va->list != &vmap_area_list) 2589 return va; 2590 2591 return NULL; 2592 2593 } 2594 2595 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2596 { 2597 struct vmap_area *va = p, *next; 2598 2599 ++*pos; 2600 next = list_next_entry(va, list); 2601 if (&next->list != &vmap_area_list) 2602 return next; 2603 2604 return NULL; 2605 } 2606 2607 static void s_stop(struct seq_file *m, void *p) 2608 __releases(&vmap_area_lock) 2609 { 2610 spin_unlock(&vmap_area_lock); 2611 } 2612 2613 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2614 { 2615 if (IS_ENABLED(CONFIG_NUMA)) { 2616 unsigned int nr, *counters = m->private; 2617 2618 if (!counters) 2619 return; 2620 2621 if (v->flags & VM_UNINITIALIZED) 2622 return; 2623 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2624 smp_rmb(); 2625 2626 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2627 2628 for (nr = 0; nr < v->nr_pages; nr++) 2629 counters[page_to_nid(v->pages[nr])]++; 2630 2631 for_each_node_state(nr, N_HIGH_MEMORY) 2632 if (counters[nr]) 2633 seq_printf(m, " N%u=%u", nr, counters[nr]); 2634 } 2635 } 2636 2637 static int s_show(struct seq_file *m, void *p) 2638 { 2639 struct vmap_area *va = p; 2640 struct vm_struct *v; 2641 2642 /* 2643 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2644 * behalf of vmap area is being tear down or vm_map_ram allocation. 2645 */ 2646 if (!(va->flags & VM_VM_AREA)) 2647 return 0; 2648 2649 v = va->vm; 2650 2651 seq_printf(m, "0x%pK-0x%pK %7ld", 2652 v->addr, v->addr + v->size, v->size); 2653 2654 if (v->caller) 2655 seq_printf(m, " %pS", v->caller); 2656 2657 if (v->nr_pages) 2658 seq_printf(m, " pages=%d", v->nr_pages); 2659 2660 if (v->phys_addr) 2661 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2662 2663 if (v->flags & VM_IOREMAP) 2664 seq_puts(m, " ioremap"); 2665 2666 if (v->flags & VM_ALLOC) 2667 seq_puts(m, " vmalloc"); 2668 2669 if (v->flags & VM_MAP) 2670 seq_puts(m, " vmap"); 2671 2672 if (v->flags & VM_USERMAP) 2673 seq_puts(m, " user"); 2674 2675 if (is_vmalloc_addr(v->pages)) 2676 seq_puts(m, " vpages"); 2677 2678 show_numa_info(m, v); 2679 seq_putc(m, '\n'); 2680 return 0; 2681 } 2682 2683 static const struct seq_operations vmalloc_op = { 2684 .start = s_start, 2685 .next = s_next, 2686 .stop = s_stop, 2687 .show = s_show, 2688 }; 2689 2690 static int vmalloc_open(struct inode *inode, struct file *file) 2691 { 2692 if (IS_ENABLED(CONFIG_NUMA)) 2693 return seq_open_private(file, &vmalloc_op, 2694 nr_node_ids * sizeof(unsigned int)); 2695 else 2696 return seq_open(file, &vmalloc_op); 2697 } 2698 2699 static const struct file_operations proc_vmalloc_operations = { 2700 .open = vmalloc_open, 2701 .read = seq_read, 2702 .llseek = seq_lseek, 2703 .release = seq_release_private, 2704 }; 2705 2706 static int __init proc_vmalloc_init(void) 2707 { 2708 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2709 return 0; 2710 } 2711 module_init(proc_vmalloc_init); 2712 2713 #endif 2714 2715