xref: /openbmc/linux/mm/vmalloc.c (revision 22246614)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/seq_file.h>
18 #include <linux/debugobjects.h>
19 #include <linux/vmalloc.h>
20 #include <linux/kallsyms.h>
21 
22 #include <asm/uaccess.h>
23 #include <asm/tlbflush.h>
24 
25 
26 DEFINE_RWLOCK(vmlist_lock);
27 struct vm_struct *vmlist;
28 
29 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
30 			    int node, void *caller);
31 
32 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
33 {
34 	pte_t *pte;
35 
36 	pte = pte_offset_kernel(pmd, addr);
37 	do {
38 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
39 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
40 	} while (pte++, addr += PAGE_SIZE, addr != end);
41 }
42 
43 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
44 						unsigned long end)
45 {
46 	pmd_t *pmd;
47 	unsigned long next;
48 
49 	pmd = pmd_offset(pud, addr);
50 	do {
51 		next = pmd_addr_end(addr, end);
52 		if (pmd_none_or_clear_bad(pmd))
53 			continue;
54 		vunmap_pte_range(pmd, addr, next);
55 	} while (pmd++, addr = next, addr != end);
56 }
57 
58 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
59 						unsigned long end)
60 {
61 	pud_t *pud;
62 	unsigned long next;
63 
64 	pud = pud_offset(pgd, addr);
65 	do {
66 		next = pud_addr_end(addr, end);
67 		if (pud_none_or_clear_bad(pud))
68 			continue;
69 		vunmap_pmd_range(pud, addr, next);
70 	} while (pud++, addr = next, addr != end);
71 }
72 
73 void unmap_kernel_range(unsigned long addr, unsigned long size)
74 {
75 	pgd_t *pgd;
76 	unsigned long next;
77 	unsigned long start = addr;
78 	unsigned long end = addr + size;
79 
80 	BUG_ON(addr >= end);
81 	pgd = pgd_offset_k(addr);
82 	flush_cache_vunmap(addr, end);
83 	do {
84 		next = pgd_addr_end(addr, end);
85 		if (pgd_none_or_clear_bad(pgd))
86 			continue;
87 		vunmap_pud_range(pgd, addr, next);
88 	} while (pgd++, addr = next, addr != end);
89 	flush_tlb_kernel_range(start, end);
90 }
91 
92 static void unmap_vm_area(struct vm_struct *area)
93 {
94 	unmap_kernel_range((unsigned long)area->addr, area->size);
95 }
96 
97 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
98 			unsigned long end, pgprot_t prot, struct page ***pages)
99 {
100 	pte_t *pte;
101 
102 	pte = pte_alloc_kernel(pmd, addr);
103 	if (!pte)
104 		return -ENOMEM;
105 	do {
106 		struct page *page = **pages;
107 		WARN_ON(!pte_none(*pte));
108 		if (!page)
109 			return -ENOMEM;
110 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 		(*pages)++;
112 	} while (pte++, addr += PAGE_SIZE, addr != end);
113 	return 0;
114 }
115 
116 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 			unsigned long end, pgprot_t prot, struct page ***pages)
118 {
119 	pmd_t *pmd;
120 	unsigned long next;
121 
122 	pmd = pmd_alloc(&init_mm, pud, addr);
123 	if (!pmd)
124 		return -ENOMEM;
125 	do {
126 		next = pmd_addr_end(addr, end);
127 		if (vmap_pte_range(pmd, addr, next, prot, pages))
128 			return -ENOMEM;
129 	} while (pmd++, addr = next, addr != end);
130 	return 0;
131 }
132 
133 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 			unsigned long end, pgprot_t prot, struct page ***pages)
135 {
136 	pud_t *pud;
137 	unsigned long next;
138 
139 	pud = pud_alloc(&init_mm, pgd, addr);
140 	if (!pud)
141 		return -ENOMEM;
142 	do {
143 		next = pud_addr_end(addr, end);
144 		if (vmap_pmd_range(pud, addr, next, prot, pages))
145 			return -ENOMEM;
146 	} while (pud++, addr = next, addr != end);
147 	return 0;
148 }
149 
150 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
151 {
152 	pgd_t *pgd;
153 	unsigned long next;
154 	unsigned long addr = (unsigned long) area->addr;
155 	unsigned long end = addr + area->size - PAGE_SIZE;
156 	int err;
157 
158 	BUG_ON(addr >= end);
159 	pgd = pgd_offset_k(addr);
160 	do {
161 		next = pgd_addr_end(addr, end);
162 		err = vmap_pud_range(pgd, addr, next, prot, pages);
163 		if (err)
164 			break;
165 	} while (pgd++, addr = next, addr != end);
166 	flush_cache_vmap((unsigned long) area->addr, end);
167 	return err;
168 }
169 EXPORT_SYMBOL_GPL(map_vm_area);
170 
171 /*
172  * Map a vmalloc()-space virtual address to the physical page.
173  */
174 struct page *vmalloc_to_page(const void *vmalloc_addr)
175 {
176 	unsigned long addr = (unsigned long) vmalloc_addr;
177 	struct page *page = NULL;
178 	pgd_t *pgd = pgd_offset_k(addr);
179 	pud_t *pud;
180 	pmd_t *pmd;
181 	pte_t *ptep, pte;
182 
183 	if (!pgd_none(*pgd)) {
184 		pud = pud_offset(pgd, addr);
185 		if (!pud_none(*pud)) {
186 			pmd = pmd_offset(pud, addr);
187 			if (!pmd_none(*pmd)) {
188 				ptep = pte_offset_map(pmd, addr);
189 				pte = *ptep;
190 				if (pte_present(pte))
191 					page = pte_page(pte);
192 				pte_unmap(ptep);
193 			}
194 		}
195 	}
196 	return page;
197 }
198 EXPORT_SYMBOL(vmalloc_to_page);
199 
200 /*
201  * Map a vmalloc()-space virtual address to the physical page frame number.
202  */
203 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
204 {
205 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
206 }
207 EXPORT_SYMBOL(vmalloc_to_pfn);
208 
209 static struct vm_struct *
210 __get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
211 		unsigned long end, int node, gfp_t gfp_mask, void *caller)
212 {
213 	struct vm_struct **p, *tmp, *area;
214 	unsigned long align = 1;
215 	unsigned long addr;
216 
217 	BUG_ON(in_interrupt());
218 	if (flags & VM_IOREMAP) {
219 		int bit = fls(size);
220 
221 		if (bit > IOREMAP_MAX_ORDER)
222 			bit = IOREMAP_MAX_ORDER;
223 		else if (bit < PAGE_SHIFT)
224 			bit = PAGE_SHIFT;
225 
226 		align = 1ul << bit;
227 	}
228 	addr = ALIGN(start, align);
229 	size = PAGE_ALIGN(size);
230 	if (unlikely(!size))
231 		return NULL;
232 
233 	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
234 
235 	if (unlikely(!area))
236 		return NULL;
237 
238 	/*
239 	 * We always allocate a guard page.
240 	 */
241 	size += PAGE_SIZE;
242 
243 	write_lock(&vmlist_lock);
244 	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
245 		if ((unsigned long)tmp->addr < addr) {
246 			if((unsigned long)tmp->addr + tmp->size >= addr)
247 				addr = ALIGN(tmp->size +
248 					     (unsigned long)tmp->addr, align);
249 			continue;
250 		}
251 		if ((size + addr) < addr)
252 			goto out;
253 		if (size + addr <= (unsigned long)tmp->addr)
254 			goto found;
255 		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
256 		if (addr > end - size)
257 			goto out;
258 	}
259 	if ((size + addr) < addr)
260 		goto out;
261 	if (addr > end - size)
262 		goto out;
263 
264 found:
265 	area->next = *p;
266 	*p = area;
267 
268 	area->flags = flags;
269 	area->addr = (void *)addr;
270 	area->size = size;
271 	area->pages = NULL;
272 	area->nr_pages = 0;
273 	area->phys_addr = 0;
274 	area->caller = caller;
275 	write_unlock(&vmlist_lock);
276 
277 	return area;
278 
279 out:
280 	write_unlock(&vmlist_lock);
281 	kfree(area);
282 	if (printk_ratelimit())
283 		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
284 	return NULL;
285 }
286 
287 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
288 				unsigned long start, unsigned long end)
289 {
290 	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
291 						__builtin_return_address(0));
292 }
293 EXPORT_SYMBOL_GPL(__get_vm_area);
294 
295 /**
296  *	get_vm_area  -  reserve a contiguous kernel virtual area
297  *	@size:		size of the area
298  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
299  *
300  *	Search an area of @size in the kernel virtual mapping area,
301  *	and reserved it for out purposes.  Returns the area descriptor
302  *	on success or %NULL on failure.
303  */
304 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
305 {
306 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
307 				-1, GFP_KERNEL, __builtin_return_address(0));
308 }
309 
310 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
311 				void *caller)
312 {
313 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
314 						-1, GFP_KERNEL, caller);
315 }
316 
317 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
318 				   int node, gfp_t gfp_mask)
319 {
320 	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
321 				  gfp_mask, __builtin_return_address(0));
322 }
323 
324 /* Caller must hold vmlist_lock */
325 static struct vm_struct *__find_vm_area(const void *addr)
326 {
327 	struct vm_struct *tmp;
328 
329 	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
330 		 if (tmp->addr == addr)
331 			break;
332 	}
333 
334 	return tmp;
335 }
336 
337 /* Caller must hold vmlist_lock */
338 static struct vm_struct *__remove_vm_area(const void *addr)
339 {
340 	struct vm_struct **p, *tmp;
341 
342 	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
343 		 if (tmp->addr == addr)
344 			 goto found;
345 	}
346 	return NULL;
347 
348 found:
349 	unmap_vm_area(tmp);
350 	*p = tmp->next;
351 
352 	/*
353 	 * Remove the guard page.
354 	 */
355 	tmp->size -= PAGE_SIZE;
356 	return tmp;
357 }
358 
359 /**
360  *	remove_vm_area  -  find and remove a continuous kernel virtual area
361  *	@addr:		base address
362  *
363  *	Search for the kernel VM area starting at @addr, and remove it.
364  *	This function returns the found VM area, but using it is NOT safe
365  *	on SMP machines, except for its size or flags.
366  */
367 struct vm_struct *remove_vm_area(const void *addr)
368 {
369 	struct vm_struct *v;
370 	write_lock(&vmlist_lock);
371 	v = __remove_vm_area(addr);
372 	write_unlock(&vmlist_lock);
373 	return v;
374 }
375 
376 static void __vunmap(const void *addr, int deallocate_pages)
377 {
378 	struct vm_struct *area;
379 
380 	if (!addr)
381 		return;
382 
383 	if ((PAGE_SIZE-1) & (unsigned long)addr) {
384 		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
385 		WARN_ON(1);
386 		return;
387 	}
388 
389 	area = remove_vm_area(addr);
390 	if (unlikely(!area)) {
391 		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
392 				addr);
393 		WARN_ON(1);
394 		return;
395 	}
396 
397 	debug_check_no_locks_freed(addr, area->size);
398 	debug_check_no_obj_freed(addr, area->size);
399 
400 	if (deallocate_pages) {
401 		int i;
402 
403 		for (i = 0; i < area->nr_pages; i++) {
404 			struct page *page = area->pages[i];
405 
406 			BUG_ON(!page);
407 			__free_page(page);
408 		}
409 
410 		if (area->flags & VM_VPAGES)
411 			vfree(area->pages);
412 		else
413 			kfree(area->pages);
414 	}
415 
416 	kfree(area);
417 	return;
418 }
419 
420 /**
421  *	vfree  -  release memory allocated by vmalloc()
422  *	@addr:		memory base address
423  *
424  *	Free the virtually continuous memory area starting at @addr, as
425  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
426  *	NULL, no operation is performed.
427  *
428  *	Must not be called in interrupt context.
429  */
430 void vfree(const void *addr)
431 {
432 	BUG_ON(in_interrupt());
433 	__vunmap(addr, 1);
434 }
435 EXPORT_SYMBOL(vfree);
436 
437 /**
438  *	vunmap  -  release virtual mapping obtained by vmap()
439  *	@addr:		memory base address
440  *
441  *	Free the virtually contiguous memory area starting at @addr,
442  *	which was created from the page array passed to vmap().
443  *
444  *	Must not be called in interrupt context.
445  */
446 void vunmap(const void *addr)
447 {
448 	BUG_ON(in_interrupt());
449 	__vunmap(addr, 0);
450 }
451 EXPORT_SYMBOL(vunmap);
452 
453 /**
454  *	vmap  -  map an array of pages into virtually contiguous space
455  *	@pages:		array of page pointers
456  *	@count:		number of pages to map
457  *	@flags:		vm_area->flags
458  *	@prot:		page protection for the mapping
459  *
460  *	Maps @count pages from @pages into contiguous kernel virtual
461  *	space.
462  */
463 void *vmap(struct page **pages, unsigned int count,
464 		unsigned long flags, pgprot_t prot)
465 {
466 	struct vm_struct *area;
467 
468 	if (count > num_physpages)
469 		return NULL;
470 
471 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
472 					__builtin_return_address(0));
473 	if (!area)
474 		return NULL;
475 
476 	if (map_vm_area(area, prot, &pages)) {
477 		vunmap(area->addr);
478 		return NULL;
479 	}
480 
481 	return area->addr;
482 }
483 EXPORT_SYMBOL(vmap);
484 
485 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
486 				 pgprot_t prot, int node, void *caller)
487 {
488 	struct page **pages;
489 	unsigned int nr_pages, array_size, i;
490 
491 	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
492 	array_size = (nr_pages * sizeof(struct page *));
493 
494 	area->nr_pages = nr_pages;
495 	/* Please note that the recursion is strictly bounded. */
496 	if (array_size > PAGE_SIZE) {
497 		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
498 				PAGE_KERNEL, node, caller);
499 		area->flags |= VM_VPAGES;
500 	} else {
501 		pages = kmalloc_node(array_size,
502 				(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
503 				node);
504 	}
505 	area->pages = pages;
506 	area->caller = caller;
507 	if (!area->pages) {
508 		remove_vm_area(area->addr);
509 		kfree(area);
510 		return NULL;
511 	}
512 
513 	for (i = 0; i < area->nr_pages; i++) {
514 		struct page *page;
515 
516 		if (node < 0)
517 			page = alloc_page(gfp_mask);
518 		else
519 			page = alloc_pages_node(node, gfp_mask, 0);
520 
521 		if (unlikely(!page)) {
522 			/* Successfully allocated i pages, free them in __vunmap() */
523 			area->nr_pages = i;
524 			goto fail;
525 		}
526 		area->pages[i] = page;
527 	}
528 
529 	if (map_vm_area(area, prot, &pages))
530 		goto fail;
531 	return area->addr;
532 
533 fail:
534 	vfree(area->addr);
535 	return NULL;
536 }
537 
538 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
539 {
540 	return __vmalloc_area_node(area, gfp_mask, prot, -1,
541 					__builtin_return_address(0));
542 }
543 
544 /**
545  *	__vmalloc_node  -  allocate virtually contiguous memory
546  *	@size:		allocation size
547  *	@gfp_mask:	flags for the page level allocator
548  *	@prot:		protection mask for the allocated pages
549  *	@node:		node to use for allocation or -1
550  *	@caller:	caller's return address
551  *
552  *	Allocate enough pages to cover @size from the page level
553  *	allocator with @gfp_mask flags.  Map them into contiguous
554  *	kernel virtual space, using a pagetable protection of @prot.
555  */
556 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
557 						int node, void *caller)
558 {
559 	struct vm_struct *area;
560 
561 	size = PAGE_ALIGN(size);
562 	if (!size || (size >> PAGE_SHIFT) > num_physpages)
563 		return NULL;
564 
565 	area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
566 						node, gfp_mask, caller);
567 
568 	if (!area)
569 		return NULL;
570 
571 	return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
572 }
573 
574 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
575 {
576 	return __vmalloc_node(size, gfp_mask, prot, -1,
577 				__builtin_return_address(0));
578 }
579 EXPORT_SYMBOL(__vmalloc);
580 
581 /**
582  *	vmalloc  -  allocate virtually contiguous memory
583  *	@size:		allocation size
584  *	Allocate enough pages to cover @size from the page level
585  *	allocator and map them into contiguous kernel virtual space.
586  *
587  *	For tight control over page level allocator and protection flags
588  *	use __vmalloc() instead.
589  */
590 void *vmalloc(unsigned long size)
591 {
592 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
593 					-1, __builtin_return_address(0));
594 }
595 EXPORT_SYMBOL(vmalloc);
596 
597 /**
598  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
599  * @size: allocation size
600  *
601  * The resulting memory area is zeroed so it can be mapped to userspace
602  * without leaking data.
603  */
604 void *vmalloc_user(unsigned long size)
605 {
606 	struct vm_struct *area;
607 	void *ret;
608 
609 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
610 	if (ret) {
611 		write_lock(&vmlist_lock);
612 		area = __find_vm_area(ret);
613 		area->flags |= VM_USERMAP;
614 		write_unlock(&vmlist_lock);
615 	}
616 	return ret;
617 }
618 EXPORT_SYMBOL(vmalloc_user);
619 
620 /**
621  *	vmalloc_node  -  allocate memory on a specific node
622  *	@size:		allocation size
623  *	@node:		numa node
624  *
625  *	Allocate enough pages to cover @size from the page level
626  *	allocator and map them into contiguous kernel virtual space.
627  *
628  *	For tight control over page level allocator and protection flags
629  *	use __vmalloc() instead.
630  */
631 void *vmalloc_node(unsigned long size, int node)
632 {
633 	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
634 					node, __builtin_return_address(0));
635 }
636 EXPORT_SYMBOL(vmalloc_node);
637 
638 #ifndef PAGE_KERNEL_EXEC
639 # define PAGE_KERNEL_EXEC PAGE_KERNEL
640 #endif
641 
642 /**
643  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
644  *	@size:		allocation size
645  *
646  *	Kernel-internal function to allocate enough pages to cover @size
647  *	the page level allocator and map them into contiguous and
648  *	executable kernel virtual space.
649  *
650  *	For tight control over page level allocator and protection flags
651  *	use __vmalloc() instead.
652  */
653 
654 void *vmalloc_exec(unsigned long size)
655 {
656 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
657 }
658 
659 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
660 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
661 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
662 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
663 #else
664 #define GFP_VMALLOC32 GFP_KERNEL
665 #endif
666 
667 /**
668  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
669  *	@size:		allocation size
670  *
671  *	Allocate enough 32bit PA addressable pages to cover @size from the
672  *	page level allocator and map them into contiguous kernel virtual space.
673  */
674 void *vmalloc_32(unsigned long size)
675 {
676 	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
677 }
678 EXPORT_SYMBOL(vmalloc_32);
679 
680 /**
681  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
682  *	@size:		allocation size
683  *
684  * The resulting memory area is 32bit addressable and zeroed so it can be
685  * mapped to userspace without leaking data.
686  */
687 void *vmalloc_32_user(unsigned long size)
688 {
689 	struct vm_struct *area;
690 	void *ret;
691 
692 	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
693 	if (ret) {
694 		write_lock(&vmlist_lock);
695 		area = __find_vm_area(ret);
696 		area->flags |= VM_USERMAP;
697 		write_unlock(&vmlist_lock);
698 	}
699 	return ret;
700 }
701 EXPORT_SYMBOL(vmalloc_32_user);
702 
703 long vread(char *buf, char *addr, unsigned long count)
704 {
705 	struct vm_struct *tmp;
706 	char *vaddr, *buf_start = buf;
707 	unsigned long n;
708 
709 	/* Don't allow overflow */
710 	if ((unsigned long) addr + count < count)
711 		count = -(unsigned long) addr;
712 
713 	read_lock(&vmlist_lock);
714 	for (tmp = vmlist; tmp; tmp = tmp->next) {
715 		vaddr = (char *) tmp->addr;
716 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
717 			continue;
718 		while (addr < vaddr) {
719 			if (count == 0)
720 				goto finished;
721 			*buf = '\0';
722 			buf++;
723 			addr++;
724 			count--;
725 		}
726 		n = vaddr + tmp->size - PAGE_SIZE - addr;
727 		do {
728 			if (count == 0)
729 				goto finished;
730 			*buf = *addr;
731 			buf++;
732 			addr++;
733 			count--;
734 		} while (--n > 0);
735 	}
736 finished:
737 	read_unlock(&vmlist_lock);
738 	return buf - buf_start;
739 }
740 
741 long vwrite(char *buf, char *addr, unsigned long count)
742 {
743 	struct vm_struct *tmp;
744 	char *vaddr, *buf_start = buf;
745 	unsigned long n;
746 
747 	/* Don't allow overflow */
748 	if ((unsigned long) addr + count < count)
749 		count = -(unsigned long) addr;
750 
751 	read_lock(&vmlist_lock);
752 	for (tmp = vmlist; tmp; tmp = tmp->next) {
753 		vaddr = (char *) tmp->addr;
754 		if (addr >= vaddr + tmp->size - PAGE_SIZE)
755 			continue;
756 		while (addr < vaddr) {
757 			if (count == 0)
758 				goto finished;
759 			buf++;
760 			addr++;
761 			count--;
762 		}
763 		n = vaddr + tmp->size - PAGE_SIZE - addr;
764 		do {
765 			if (count == 0)
766 				goto finished;
767 			*addr = *buf;
768 			buf++;
769 			addr++;
770 			count--;
771 		} while (--n > 0);
772 	}
773 finished:
774 	read_unlock(&vmlist_lock);
775 	return buf - buf_start;
776 }
777 
778 /**
779  *	remap_vmalloc_range  -  map vmalloc pages to userspace
780  *	@vma:		vma to cover (map full range of vma)
781  *	@addr:		vmalloc memory
782  *	@pgoff:		number of pages into addr before first page to map
783  *
784  *	Returns:	0 for success, -Exxx on failure
785  *
786  *	This function checks that addr is a valid vmalloc'ed area, and
787  *	that it is big enough to cover the vma. Will return failure if
788  *	that criteria isn't met.
789  *
790  *	Similar to remap_pfn_range() (see mm/memory.c)
791  */
792 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
793 						unsigned long pgoff)
794 {
795 	struct vm_struct *area;
796 	unsigned long uaddr = vma->vm_start;
797 	unsigned long usize = vma->vm_end - vma->vm_start;
798 	int ret;
799 
800 	if ((PAGE_SIZE-1) & (unsigned long)addr)
801 		return -EINVAL;
802 
803 	read_lock(&vmlist_lock);
804 	area = __find_vm_area(addr);
805 	if (!area)
806 		goto out_einval_locked;
807 
808 	if (!(area->flags & VM_USERMAP))
809 		goto out_einval_locked;
810 
811 	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
812 		goto out_einval_locked;
813 	read_unlock(&vmlist_lock);
814 
815 	addr += pgoff << PAGE_SHIFT;
816 	do {
817 		struct page *page = vmalloc_to_page(addr);
818 		ret = vm_insert_page(vma, uaddr, page);
819 		if (ret)
820 			return ret;
821 
822 		uaddr += PAGE_SIZE;
823 		addr += PAGE_SIZE;
824 		usize -= PAGE_SIZE;
825 	} while (usize > 0);
826 
827 	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
828 	vma->vm_flags |= VM_RESERVED;
829 
830 	return ret;
831 
832 out_einval_locked:
833 	read_unlock(&vmlist_lock);
834 	return -EINVAL;
835 }
836 EXPORT_SYMBOL(remap_vmalloc_range);
837 
838 /*
839  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
840  * have one.
841  */
842 void  __attribute__((weak)) vmalloc_sync_all(void)
843 {
844 }
845 
846 
847 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
848 {
849 	/* apply_to_page_range() does all the hard work. */
850 	return 0;
851 }
852 
853 /**
854  *	alloc_vm_area - allocate a range of kernel address space
855  *	@size:		size of the area
856  *
857  *	Returns:	NULL on failure, vm_struct on success
858  *
859  *	This function reserves a range of kernel address space, and
860  *	allocates pagetables to map that range.  No actual mappings
861  *	are created.  If the kernel address space is not shared
862  *	between processes, it syncs the pagetable across all
863  *	processes.
864  */
865 struct vm_struct *alloc_vm_area(size_t size)
866 {
867 	struct vm_struct *area;
868 
869 	area = get_vm_area_caller(size, VM_IOREMAP,
870 				__builtin_return_address(0));
871 	if (area == NULL)
872 		return NULL;
873 
874 	/*
875 	 * This ensures that page tables are constructed for this region
876 	 * of kernel virtual address space and mapped into init_mm.
877 	 */
878 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
879 				area->size, f, NULL)) {
880 		free_vm_area(area);
881 		return NULL;
882 	}
883 
884 	/* Make sure the pagetables are constructed in process kernel
885 	   mappings */
886 	vmalloc_sync_all();
887 
888 	return area;
889 }
890 EXPORT_SYMBOL_GPL(alloc_vm_area);
891 
892 void free_vm_area(struct vm_struct *area)
893 {
894 	struct vm_struct *ret;
895 	ret = remove_vm_area(area->addr);
896 	BUG_ON(ret != area);
897 	kfree(area);
898 }
899 EXPORT_SYMBOL_GPL(free_vm_area);
900 
901 
902 #ifdef CONFIG_PROC_FS
903 static void *s_start(struct seq_file *m, loff_t *pos)
904 {
905 	loff_t n = *pos;
906 	struct vm_struct *v;
907 
908 	read_lock(&vmlist_lock);
909 	v = vmlist;
910 	while (n > 0 && v) {
911 		n--;
912 		v = v->next;
913 	}
914 	if (!n)
915 		return v;
916 
917 	return NULL;
918 
919 }
920 
921 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
922 {
923 	struct vm_struct *v = p;
924 
925 	++*pos;
926 	return v->next;
927 }
928 
929 static void s_stop(struct seq_file *m, void *p)
930 {
931 	read_unlock(&vmlist_lock);
932 }
933 
934 static int s_show(struct seq_file *m, void *p)
935 {
936 	struct vm_struct *v = p;
937 
938 	seq_printf(m, "0x%p-0x%p %7ld",
939 		v->addr, v->addr + v->size, v->size);
940 
941 	if (v->caller) {
942 		char buff[2 * KSYM_NAME_LEN];
943 
944 		seq_putc(m, ' ');
945 		sprint_symbol(buff, (unsigned long)v->caller);
946 		seq_puts(m, buff);
947 	}
948 
949 	if (v->nr_pages)
950 		seq_printf(m, " pages=%d", v->nr_pages);
951 
952 	if (v->phys_addr)
953 		seq_printf(m, " phys=%lx", v->phys_addr);
954 
955 	if (v->flags & VM_IOREMAP)
956 		seq_printf(m, " ioremap");
957 
958 	if (v->flags & VM_ALLOC)
959 		seq_printf(m, " vmalloc");
960 
961 	if (v->flags & VM_MAP)
962 		seq_printf(m, " vmap");
963 
964 	if (v->flags & VM_USERMAP)
965 		seq_printf(m, " user");
966 
967 	if (v->flags & VM_VPAGES)
968 		seq_printf(m, " vpages");
969 
970 	seq_putc(m, '\n');
971 	return 0;
972 }
973 
974 const struct seq_operations vmalloc_op = {
975 	.start = s_start,
976 	.next = s_next,
977 	.stop = s_stop,
978 	.show = s_show,
979 };
980 #endif
981 
982