xref: /openbmc/linux/mm/vmalloc.c (revision 1d7a0395)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38 #include <linux/pgtable.h>
39 #include <linux/uaccess.h>
40 #include <linux/hugetlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/shmparam.h>
43 
44 #include "internal.h"
45 #include "pgalloc-track.h"
46 
47 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
48 static bool __ro_after_init vmap_allow_huge = true;
49 
50 static int __init set_nohugevmalloc(char *str)
51 {
52 	vmap_allow_huge = false;
53 	return 0;
54 }
55 early_param("nohugevmalloc", set_nohugevmalloc);
56 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
57 static const bool vmap_allow_huge = false;
58 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
59 
60 bool is_vmalloc_addr(const void *x)
61 {
62 	unsigned long addr = (unsigned long)x;
63 
64 	return addr >= VMALLOC_START && addr < VMALLOC_END;
65 }
66 EXPORT_SYMBOL(is_vmalloc_addr);
67 
68 struct vfree_deferred {
69 	struct llist_head list;
70 	struct work_struct wq;
71 };
72 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
73 
74 static void __vunmap(const void *, int);
75 
76 static void free_work(struct work_struct *w)
77 {
78 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
79 	struct llist_node *t, *llnode;
80 
81 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
82 		__vunmap((void *)llnode, 1);
83 }
84 
85 /*** Page table manipulation functions ***/
86 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
87 			phys_addr_t phys_addr, pgprot_t prot,
88 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
89 {
90 	pte_t *pte;
91 	u64 pfn;
92 	unsigned long size = PAGE_SIZE;
93 
94 	pfn = phys_addr >> PAGE_SHIFT;
95 	pte = pte_alloc_kernel_track(pmd, addr, mask);
96 	if (!pte)
97 		return -ENOMEM;
98 	do {
99 		BUG_ON(!pte_none(*pte));
100 
101 #ifdef CONFIG_HUGETLB_PAGE
102 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
103 		if (size != PAGE_SIZE) {
104 			pte_t entry = pfn_pte(pfn, prot);
105 
106 			entry = pte_mkhuge(entry);
107 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
108 			set_huge_pte_at(&init_mm, addr, pte, entry);
109 			pfn += PFN_DOWN(size);
110 			continue;
111 		}
112 #endif
113 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
114 		pfn++;
115 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
116 	*mask |= PGTBL_PTE_MODIFIED;
117 	return 0;
118 }
119 
120 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
121 			phys_addr_t phys_addr, pgprot_t prot,
122 			unsigned int max_page_shift)
123 {
124 	if (max_page_shift < PMD_SHIFT)
125 		return 0;
126 
127 	if (!arch_vmap_pmd_supported(prot))
128 		return 0;
129 
130 	if ((end - addr) != PMD_SIZE)
131 		return 0;
132 
133 	if (!IS_ALIGNED(addr, PMD_SIZE))
134 		return 0;
135 
136 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
137 		return 0;
138 
139 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
140 		return 0;
141 
142 	return pmd_set_huge(pmd, phys_addr, prot);
143 }
144 
145 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
146 			phys_addr_t phys_addr, pgprot_t prot,
147 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
148 {
149 	pmd_t *pmd;
150 	unsigned long next;
151 
152 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
153 	if (!pmd)
154 		return -ENOMEM;
155 	do {
156 		next = pmd_addr_end(addr, end);
157 
158 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
159 					max_page_shift)) {
160 			*mask |= PGTBL_PMD_MODIFIED;
161 			continue;
162 		}
163 
164 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
165 			return -ENOMEM;
166 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
167 	return 0;
168 }
169 
170 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
171 			phys_addr_t phys_addr, pgprot_t prot,
172 			unsigned int max_page_shift)
173 {
174 	if (max_page_shift < PUD_SHIFT)
175 		return 0;
176 
177 	if (!arch_vmap_pud_supported(prot))
178 		return 0;
179 
180 	if ((end - addr) != PUD_SIZE)
181 		return 0;
182 
183 	if (!IS_ALIGNED(addr, PUD_SIZE))
184 		return 0;
185 
186 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
187 		return 0;
188 
189 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
190 		return 0;
191 
192 	return pud_set_huge(pud, phys_addr, prot);
193 }
194 
195 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
196 			phys_addr_t phys_addr, pgprot_t prot,
197 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
198 {
199 	pud_t *pud;
200 	unsigned long next;
201 
202 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
203 	if (!pud)
204 		return -ENOMEM;
205 	do {
206 		next = pud_addr_end(addr, end);
207 
208 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
209 					max_page_shift)) {
210 			*mask |= PGTBL_PUD_MODIFIED;
211 			continue;
212 		}
213 
214 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
215 					max_page_shift, mask))
216 			return -ENOMEM;
217 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
218 	return 0;
219 }
220 
221 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
222 			phys_addr_t phys_addr, pgprot_t prot,
223 			unsigned int max_page_shift)
224 {
225 	if (max_page_shift < P4D_SHIFT)
226 		return 0;
227 
228 	if (!arch_vmap_p4d_supported(prot))
229 		return 0;
230 
231 	if ((end - addr) != P4D_SIZE)
232 		return 0;
233 
234 	if (!IS_ALIGNED(addr, P4D_SIZE))
235 		return 0;
236 
237 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
238 		return 0;
239 
240 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
241 		return 0;
242 
243 	return p4d_set_huge(p4d, phys_addr, prot);
244 }
245 
246 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
247 			phys_addr_t phys_addr, pgprot_t prot,
248 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
249 {
250 	p4d_t *p4d;
251 	unsigned long next;
252 
253 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
254 	if (!p4d)
255 		return -ENOMEM;
256 	do {
257 		next = p4d_addr_end(addr, end);
258 
259 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
260 					max_page_shift)) {
261 			*mask |= PGTBL_P4D_MODIFIED;
262 			continue;
263 		}
264 
265 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
266 					max_page_shift, mask))
267 			return -ENOMEM;
268 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
269 	return 0;
270 }
271 
272 static int vmap_range_noflush(unsigned long addr, unsigned long end,
273 			phys_addr_t phys_addr, pgprot_t prot,
274 			unsigned int max_page_shift)
275 {
276 	pgd_t *pgd;
277 	unsigned long start;
278 	unsigned long next;
279 	int err;
280 	pgtbl_mod_mask mask = 0;
281 
282 	might_sleep();
283 	BUG_ON(addr >= end);
284 
285 	start = addr;
286 	pgd = pgd_offset_k(addr);
287 	do {
288 		next = pgd_addr_end(addr, end);
289 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
290 					max_page_shift, &mask);
291 		if (err)
292 			break;
293 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
294 
295 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
296 		arch_sync_kernel_mappings(start, end);
297 
298 	return err;
299 }
300 
301 int vmap_range(unsigned long addr, unsigned long end,
302 			phys_addr_t phys_addr, pgprot_t prot,
303 			unsigned int max_page_shift)
304 {
305 	int err;
306 
307 	err = vmap_range_noflush(addr, end, phys_addr, prot, max_page_shift);
308 	flush_cache_vmap(addr, end);
309 
310 	return err;
311 }
312 
313 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
314 			     pgtbl_mod_mask *mask)
315 {
316 	pte_t *pte;
317 
318 	pte = pte_offset_kernel(pmd, addr);
319 	do {
320 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
321 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
322 	} while (pte++, addr += PAGE_SIZE, addr != end);
323 	*mask |= PGTBL_PTE_MODIFIED;
324 }
325 
326 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
327 			     pgtbl_mod_mask *mask)
328 {
329 	pmd_t *pmd;
330 	unsigned long next;
331 	int cleared;
332 
333 	pmd = pmd_offset(pud, addr);
334 	do {
335 		next = pmd_addr_end(addr, end);
336 
337 		cleared = pmd_clear_huge(pmd);
338 		if (cleared || pmd_bad(*pmd))
339 			*mask |= PGTBL_PMD_MODIFIED;
340 
341 		if (cleared)
342 			continue;
343 		if (pmd_none_or_clear_bad(pmd))
344 			continue;
345 		vunmap_pte_range(pmd, addr, next, mask);
346 
347 		cond_resched();
348 	} while (pmd++, addr = next, addr != end);
349 }
350 
351 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
352 			     pgtbl_mod_mask *mask)
353 {
354 	pud_t *pud;
355 	unsigned long next;
356 	int cleared;
357 
358 	pud = pud_offset(p4d, addr);
359 	do {
360 		next = pud_addr_end(addr, end);
361 
362 		cleared = pud_clear_huge(pud);
363 		if (cleared || pud_bad(*pud))
364 			*mask |= PGTBL_PUD_MODIFIED;
365 
366 		if (cleared)
367 			continue;
368 		if (pud_none_or_clear_bad(pud))
369 			continue;
370 		vunmap_pmd_range(pud, addr, next, mask);
371 	} while (pud++, addr = next, addr != end);
372 }
373 
374 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
375 			     pgtbl_mod_mask *mask)
376 {
377 	p4d_t *p4d;
378 	unsigned long next;
379 	int cleared;
380 
381 	p4d = p4d_offset(pgd, addr);
382 	do {
383 		next = p4d_addr_end(addr, end);
384 
385 		cleared = p4d_clear_huge(p4d);
386 		if (cleared || p4d_bad(*p4d))
387 			*mask |= PGTBL_P4D_MODIFIED;
388 
389 		if (cleared)
390 			continue;
391 		if (p4d_none_or_clear_bad(p4d))
392 			continue;
393 		vunmap_pud_range(p4d, addr, next, mask);
394 	} while (p4d++, addr = next, addr != end);
395 }
396 
397 /*
398  * vunmap_range_noflush is similar to vunmap_range, but does not
399  * flush caches or TLBs.
400  *
401  * The caller is responsible for calling flush_cache_vmap() before calling
402  * this function, and flush_tlb_kernel_range after it has returned
403  * successfully (and before the addresses are expected to cause a page fault
404  * or be re-mapped for something else, if TLB flushes are being delayed or
405  * coalesced).
406  *
407  * This is an internal function only. Do not use outside mm/.
408  */
409 void vunmap_range_noflush(unsigned long start, unsigned long end)
410 {
411 	unsigned long next;
412 	pgd_t *pgd;
413 	unsigned long addr = start;
414 	pgtbl_mod_mask mask = 0;
415 
416 	BUG_ON(addr >= end);
417 	pgd = pgd_offset_k(addr);
418 	do {
419 		next = pgd_addr_end(addr, end);
420 		if (pgd_bad(*pgd))
421 			mask |= PGTBL_PGD_MODIFIED;
422 		if (pgd_none_or_clear_bad(pgd))
423 			continue;
424 		vunmap_p4d_range(pgd, addr, next, &mask);
425 	} while (pgd++, addr = next, addr != end);
426 
427 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
428 		arch_sync_kernel_mappings(start, end);
429 }
430 
431 /**
432  * vunmap_range - unmap kernel virtual addresses
433  * @addr: start of the VM area to unmap
434  * @end: end of the VM area to unmap (non-inclusive)
435  *
436  * Clears any present PTEs in the virtual address range, flushes TLBs and
437  * caches. Any subsequent access to the address before it has been re-mapped
438  * is a kernel bug.
439  */
440 void vunmap_range(unsigned long addr, unsigned long end)
441 {
442 	flush_cache_vunmap(addr, end);
443 	vunmap_range_noflush(addr, end);
444 	flush_tlb_kernel_range(addr, end);
445 }
446 
447 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
448 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
449 		pgtbl_mod_mask *mask)
450 {
451 	pte_t *pte;
452 
453 	/*
454 	 * nr is a running index into the array which helps higher level
455 	 * callers keep track of where we're up to.
456 	 */
457 
458 	pte = pte_alloc_kernel_track(pmd, addr, mask);
459 	if (!pte)
460 		return -ENOMEM;
461 	do {
462 		struct page *page = pages[*nr];
463 
464 		if (WARN_ON(!pte_none(*pte)))
465 			return -EBUSY;
466 		if (WARN_ON(!page))
467 			return -ENOMEM;
468 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
469 		(*nr)++;
470 	} while (pte++, addr += PAGE_SIZE, addr != end);
471 	*mask |= PGTBL_PTE_MODIFIED;
472 	return 0;
473 }
474 
475 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
476 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
477 		pgtbl_mod_mask *mask)
478 {
479 	pmd_t *pmd;
480 	unsigned long next;
481 
482 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
483 	if (!pmd)
484 		return -ENOMEM;
485 	do {
486 		next = pmd_addr_end(addr, end);
487 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
488 			return -ENOMEM;
489 	} while (pmd++, addr = next, addr != end);
490 	return 0;
491 }
492 
493 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
494 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
495 		pgtbl_mod_mask *mask)
496 {
497 	pud_t *pud;
498 	unsigned long next;
499 
500 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
501 	if (!pud)
502 		return -ENOMEM;
503 	do {
504 		next = pud_addr_end(addr, end);
505 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
506 			return -ENOMEM;
507 	} while (pud++, addr = next, addr != end);
508 	return 0;
509 }
510 
511 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
512 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
513 		pgtbl_mod_mask *mask)
514 {
515 	p4d_t *p4d;
516 	unsigned long next;
517 
518 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
519 	if (!p4d)
520 		return -ENOMEM;
521 	do {
522 		next = p4d_addr_end(addr, end);
523 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
524 			return -ENOMEM;
525 	} while (p4d++, addr = next, addr != end);
526 	return 0;
527 }
528 
529 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
530 		pgprot_t prot, struct page **pages)
531 {
532 	unsigned long start = addr;
533 	pgd_t *pgd;
534 	unsigned long next;
535 	int err = 0;
536 	int nr = 0;
537 	pgtbl_mod_mask mask = 0;
538 
539 	BUG_ON(addr >= end);
540 	pgd = pgd_offset_k(addr);
541 	do {
542 		next = pgd_addr_end(addr, end);
543 		if (pgd_bad(*pgd))
544 			mask |= PGTBL_PGD_MODIFIED;
545 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
546 		if (err)
547 			return err;
548 	} while (pgd++, addr = next, addr != end);
549 
550 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
551 		arch_sync_kernel_mappings(start, end);
552 
553 	return 0;
554 }
555 
556 /*
557  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
558  * flush caches.
559  *
560  * The caller is responsible for calling flush_cache_vmap() after this
561  * function returns successfully and before the addresses are accessed.
562  *
563  * This is an internal function only. Do not use outside mm/.
564  */
565 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
566 		pgprot_t prot, struct page **pages, unsigned int page_shift)
567 {
568 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
569 
570 	WARN_ON(page_shift < PAGE_SHIFT);
571 
572 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
573 			page_shift == PAGE_SHIFT)
574 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
575 
576 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
577 		int err;
578 
579 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
580 					__pa(page_address(pages[i])), prot,
581 					page_shift);
582 		if (err)
583 			return err;
584 
585 		addr += 1UL << page_shift;
586 	}
587 
588 	return 0;
589 }
590 
591 /**
592  * vmap_pages_range - map pages to a kernel virtual address
593  * @addr: start of the VM area to map
594  * @end: end of the VM area to map (non-inclusive)
595  * @prot: page protection flags to use
596  * @pages: pages to map (always PAGE_SIZE pages)
597  * @page_shift: maximum shift that the pages may be mapped with, @pages must
598  * be aligned and contiguous up to at least this shift.
599  *
600  * RETURNS:
601  * 0 on success, -errno on failure.
602  */
603 static int vmap_pages_range(unsigned long addr, unsigned long end,
604 		pgprot_t prot, struct page **pages, unsigned int page_shift)
605 {
606 	int err;
607 
608 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
609 	flush_cache_vmap(addr, end);
610 	return err;
611 }
612 
613 int is_vmalloc_or_module_addr(const void *x)
614 {
615 	/*
616 	 * ARM, x86-64 and sparc64 put modules in a special place,
617 	 * and fall back on vmalloc() if that fails. Others
618 	 * just put it in the vmalloc space.
619 	 */
620 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
621 	unsigned long addr = (unsigned long)x;
622 	if (addr >= MODULES_VADDR && addr < MODULES_END)
623 		return 1;
624 #endif
625 	return is_vmalloc_addr(x);
626 }
627 
628 /*
629  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
630  * return the tail page that corresponds to the base page address, which
631  * matches small vmap mappings.
632  */
633 struct page *vmalloc_to_page(const void *vmalloc_addr)
634 {
635 	unsigned long addr = (unsigned long) vmalloc_addr;
636 	struct page *page = NULL;
637 	pgd_t *pgd = pgd_offset_k(addr);
638 	p4d_t *p4d;
639 	pud_t *pud;
640 	pmd_t *pmd;
641 	pte_t *ptep, pte;
642 
643 	/*
644 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
645 	 * architectures that do not vmalloc module space
646 	 */
647 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
648 
649 	if (pgd_none(*pgd))
650 		return NULL;
651 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
652 		return NULL; /* XXX: no allowance for huge pgd */
653 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
654 		return NULL;
655 
656 	p4d = p4d_offset(pgd, addr);
657 	if (p4d_none(*p4d))
658 		return NULL;
659 	if (p4d_leaf(*p4d))
660 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
661 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
662 		return NULL;
663 
664 	pud = pud_offset(p4d, addr);
665 	if (pud_none(*pud))
666 		return NULL;
667 	if (pud_leaf(*pud))
668 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
669 	if (WARN_ON_ONCE(pud_bad(*pud)))
670 		return NULL;
671 
672 	pmd = pmd_offset(pud, addr);
673 	if (pmd_none(*pmd))
674 		return NULL;
675 	if (pmd_leaf(*pmd))
676 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
677 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
678 		return NULL;
679 
680 	ptep = pte_offset_map(pmd, addr);
681 	pte = *ptep;
682 	if (pte_present(pte))
683 		page = pte_page(pte);
684 	pte_unmap(ptep);
685 
686 	return page;
687 }
688 EXPORT_SYMBOL(vmalloc_to_page);
689 
690 /*
691  * Map a vmalloc()-space virtual address to the physical page frame number.
692  */
693 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
694 {
695 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
696 }
697 EXPORT_SYMBOL(vmalloc_to_pfn);
698 
699 
700 /*** Global kva allocator ***/
701 
702 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
703 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
704 
705 
706 static DEFINE_SPINLOCK(vmap_area_lock);
707 static DEFINE_SPINLOCK(free_vmap_area_lock);
708 /* Export for kexec only */
709 LIST_HEAD(vmap_area_list);
710 static struct rb_root vmap_area_root = RB_ROOT;
711 static bool vmap_initialized __read_mostly;
712 
713 static struct rb_root purge_vmap_area_root = RB_ROOT;
714 static LIST_HEAD(purge_vmap_area_list);
715 static DEFINE_SPINLOCK(purge_vmap_area_lock);
716 
717 /*
718  * This kmem_cache is used for vmap_area objects. Instead of
719  * allocating from slab we reuse an object from this cache to
720  * make things faster. Especially in "no edge" splitting of
721  * free block.
722  */
723 static struct kmem_cache *vmap_area_cachep;
724 
725 /*
726  * This linked list is used in pair with free_vmap_area_root.
727  * It gives O(1) access to prev/next to perform fast coalescing.
728  */
729 static LIST_HEAD(free_vmap_area_list);
730 
731 /*
732  * This augment red-black tree represents the free vmap space.
733  * All vmap_area objects in this tree are sorted by va->va_start
734  * address. It is used for allocation and merging when a vmap
735  * object is released.
736  *
737  * Each vmap_area node contains a maximum available free block
738  * of its sub-tree, right or left. Therefore it is possible to
739  * find a lowest match of free area.
740  */
741 static struct rb_root free_vmap_area_root = RB_ROOT;
742 
743 /*
744  * Preload a CPU with one object for "no edge" split case. The
745  * aim is to get rid of allocations from the atomic context, thus
746  * to use more permissive allocation masks.
747  */
748 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
749 
750 static __always_inline unsigned long
751 va_size(struct vmap_area *va)
752 {
753 	return (va->va_end - va->va_start);
754 }
755 
756 static __always_inline unsigned long
757 get_subtree_max_size(struct rb_node *node)
758 {
759 	struct vmap_area *va;
760 
761 	va = rb_entry_safe(node, struct vmap_area, rb_node);
762 	return va ? va->subtree_max_size : 0;
763 }
764 
765 /*
766  * Gets called when remove the node and rotate.
767  */
768 static __always_inline unsigned long
769 compute_subtree_max_size(struct vmap_area *va)
770 {
771 	return max3(va_size(va),
772 		get_subtree_max_size(va->rb_node.rb_left),
773 		get_subtree_max_size(va->rb_node.rb_right));
774 }
775 
776 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
777 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
778 
779 static void purge_vmap_area_lazy(void);
780 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
781 static unsigned long lazy_max_pages(void);
782 
783 static atomic_long_t nr_vmalloc_pages;
784 
785 unsigned long vmalloc_nr_pages(void)
786 {
787 	return atomic_long_read(&nr_vmalloc_pages);
788 }
789 
790 static struct vmap_area *__find_vmap_area(unsigned long addr)
791 {
792 	struct rb_node *n = vmap_area_root.rb_node;
793 
794 	while (n) {
795 		struct vmap_area *va;
796 
797 		va = rb_entry(n, struct vmap_area, rb_node);
798 		if (addr < va->va_start)
799 			n = n->rb_left;
800 		else if (addr >= va->va_end)
801 			n = n->rb_right;
802 		else
803 			return va;
804 	}
805 
806 	return NULL;
807 }
808 
809 /*
810  * This function returns back addresses of parent node
811  * and its left or right link for further processing.
812  *
813  * Otherwise NULL is returned. In that case all further
814  * steps regarding inserting of conflicting overlap range
815  * have to be declined and actually considered as a bug.
816  */
817 static __always_inline struct rb_node **
818 find_va_links(struct vmap_area *va,
819 	struct rb_root *root, struct rb_node *from,
820 	struct rb_node **parent)
821 {
822 	struct vmap_area *tmp_va;
823 	struct rb_node **link;
824 
825 	if (root) {
826 		link = &root->rb_node;
827 		if (unlikely(!*link)) {
828 			*parent = NULL;
829 			return link;
830 		}
831 	} else {
832 		link = &from;
833 	}
834 
835 	/*
836 	 * Go to the bottom of the tree. When we hit the last point
837 	 * we end up with parent rb_node and correct direction, i name
838 	 * it link, where the new va->rb_node will be attached to.
839 	 */
840 	do {
841 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
842 
843 		/*
844 		 * During the traversal we also do some sanity check.
845 		 * Trigger the BUG() if there are sides(left/right)
846 		 * or full overlaps.
847 		 */
848 		if (va->va_start < tmp_va->va_end &&
849 				va->va_end <= tmp_va->va_start)
850 			link = &(*link)->rb_left;
851 		else if (va->va_end > tmp_va->va_start &&
852 				va->va_start >= tmp_va->va_end)
853 			link = &(*link)->rb_right;
854 		else {
855 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
856 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
857 
858 			return NULL;
859 		}
860 	} while (*link);
861 
862 	*parent = &tmp_va->rb_node;
863 	return link;
864 }
865 
866 static __always_inline struct list_head *
867 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
868 {
869 	struct list_head *list;
870 
871 	if (unlikely(!parent))
872 		/*
873 		 * The red-black tree where we try to find VA neighbors
874 		 * before merging or inserting is empty, i.e. it means
875 		 * there is no free vmap space. Normally it does not
876 		 * happen but we handle this case anyway.
877 		 */
878 		return NULL;
879 
880 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
881 	return (&parent->rb_right == link ? list->next : list);
882 }
883 
884 static __always_inline void
885 link_va(struct vmap_area *va, struct rb_root *root,
886 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
887 {
888 	/*
889 	 * VA is still not in the list, but we can
890 	 * identify its future previous list_head node.
891 	 */
892 	if (likely(parent)) {
893 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
894 		if (&parent->rb_right != link)
895 			head = head->prev;
896 	}
897 
898 	/* Insert to the rb-tree */
899 	rb_link_node(&va->rb_node, parent, link);
900 	if (root == &free_vmap_area_root) {
901 		/*
902 		 * Some explanation here. Just perform simple insertion
903 		 * to the tree. We do not set va->subtree_max_size to
904 		 * its current size before calling rb_insert_augmented().
905 		 * It is because of we populate the tree from the bottom
906 		 * to parent levels when the node _is_ in the tree.
907 		 *
908 		 * Therefore we set subtree_max_size to zero after insertion,
909 		 * to let __augment_tree_propagate_from() puts everything to
910 		 * the correct order later on.
911 		 */
912 		rb_insert_augmented(&va->rb_node,
913 			root, &free_vmap_area_rb_augment_cb);
914 		va->subtree_max_size = 0;
915 	} else {
916 		rb_insert_color(&va->rb_node, root);
917 	}
918 
919 	/* Address-sort this list */
920 	list_add(&va->list, head);
921 }
922 
923 static __always_inline void
924 unlink_va(struct vmap_area *va, struct rb_root *root)
925 {
926 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
927 		return;
928 
929 	if (root == &free_vmap_area_root)
930 		rb_erase_augmented(&va->rb_node,
931 			root, &free_vmap_area_rb_augment_cb);
932 	else
933 		rb_erase(&va->rb_node, root);
934 
935 	list_del(&va->list);
936 	RB_CLEAR_NODE(&va->rb_node);
937 }
938 
939 #if DEBUG_AUGMENT_PROPAGATE_CHECK
940 static void
941 augment_tree_propagate_check(void)
942 {
943 	struct vmap_area *va;
944 	unsigned long computed_size;
945 
946 	list_for_each_entry(va, &free_vmap_area_list, list) {
947 		computed_size = compute_subtree_max_size(va);
948 		if (computed_size != va->subtree_max_size)
949 			pr_emerg("tree is corrupted: %lu, %lu\n",
950 				va_size(va), va->subtree_max_size);
951 	}
952 }
953 #endif
954 
955 /*
956  * This function populates subtree_max_size from bottom to upper
957  * levels starting from VA point. The propagation must be done
958  * when VA size is modified by changing its va_start/va_end. Or
959  * in case of newly inserting of VA to the tree.
960  *
961  * It means that __augment_tree_propagate_from() must be called:
962  * - After VA has been inserted to the tree(free path);
963  * - After VA has been shrunk(allocation path);
964  * - After VA has been increased(merging path).
965  *
966  * Please note that, it does not mean that upper parent nodes
967  * and their subtree_max_size are recalculated all the time up
968  * to the root node.
969  *
970  *       4--8
971  *        /\
972  *       /  \
973  *      /    \
974  *    2--2  8--8
975  *
976  * For example if we modify the node 4, shrinking it to 2, then
977  * no any modification is required. If we shrink the node 2 to 1
978  * its subtree_max_size is updated only, and set to 1. If we shrink
979  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
980  * node becomes 4--6.
981  */
982 static __always_inline void
983 augment_tree_propagate_from(struct vmap_area *va)
984 {
985 	/*
986 	 * Populate the tree from bottom towards the root until
987 	 * the calculated maximum available size of checked node
988 	 * is equal to its current one.
989 	 */
990 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
991 
992 #if DEBUG_AUGMENT_PROPAGATE_CHECK
993 	augment_tree_propagate_check();
994 #endif
995 }
996 
997 static void
998 insert_vmap_area(struct vmap_area *va,
999 	struct rb_root *root, struct list_head *head)
1000 {
1001 	struct rb_node **link;
1002 	struct rb_node *parent;
1003 
1004 	link = find_va_links(va, root, NULL, &parent);
1005 	if (link)
1006 		link_va(va, root, parent, link, head);
1007 }
1008 
1009 static void
1010 insert_vmap_area_augment(struct vmap_area *va,
1011 	struct rb_node *from, struct rb_root *root,
1012 	struct list_head *head)
1013 {
1014 	struct rb_node **link;
1015 	struct rb_node *parent;
1016 
1017 	if (from)
1018 		link = find_va_links(va, NULL, from, &parent);
1019 	else
1020 		link = find_va_links(va, root, NULL, &parent);
1021 
1022 	if (link) {
1023 		link_va(va, root, parent, link, head);
1024 		augment_tree_propagate_from(va);
1025 	}
1026 }
1027 
1028 /*
1029  * Merge de-allocated chunk of VA memory with previous
1030  * and next free blocks. If coalesce is not done a new
1031  * free area is inserted. If VA has been merged, it is
1032  * freed.
1033  *
1034  * Please note, it can return NULL in case of overlap
1035  * ranges, followed by WARN() report. Despite it is a
1036  * buggy behaviour, a system can be alive and keep
1037  * ongoing.
1038  */
1039 static __always_inline struct vmap_area *
1040 merge_or_add_vmap_area(struct vmap_area *va,
1041 	struct rb_root *root, struct list_head *head)
1042 {
1043 	struct vmap_area *sibling;
1044 	struct list_head *next;
1045 	struct rb_node **link;
1046 	struct rb_node *parent;
1047 	bool merged = false;
1048 
1049 	/*
1050 	 * Find a place in the tree where VA potentially will be
1051 	 * inserted, unless it is merged with its sibling/siblings.
1052 	 */
1053 	link = find_va_links(va, root, NULL, &parent);
1054 	if (!link)
1055 		return NULL;
1056 
1057 	/*
1058 	 * Get next node of VA to check if merging can be done.
1059 	 */
1060 	next = get_va_next_sibling(parent, link);
1061 	if (unlikely(next == NULL))
1062 		goto insert;
1063 
1064 	/*
1065 	 * start            end
1066 	 * |                |
1067 	 * |<------VA------>|<-----Next----->|
1068 	 *                  |                |
1069 	 *                  start            end
1070 	 */
1071 	if (next != head) {
1072 		sibling = list_entry(next, struct vmap_area, list);
1073 		if (sibling->va_start == va->va_end) {
1074 			sibling->va_start = va->va_start;
1075 
1076 			/* Free vmap_area object. */
1077 			kmem_cache_free(vmap_area_cachep, va);
1078 
1079 			/* Point to the new merged area. */
1080 			va = sibling;
1081 			merged = true;
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * start            end
1087 	 * |                |
1088 	 * |<-----Prev----->|<------VA------>|
1089 	 *                  |                |
1090 	 *                  start            end
1091 	 */
1092 	if (next->prev != head) {
1093 		sibling = list_entry(next->prev, struct vmap_area, list);
1094 		if (sibling->va_end == va->va_start) {
1095 			/*
1096 			 * If both neighbors are coalesced, it is important
1097 			 * to unlink the "next" node first, followed by merging
1098 			 * with "previous" one. Otherwise the tree might not be
1099 			 * fully populated if a sibling's augmented value is
1100 			 * "normalized" because of rotation operations.
1101 			 */
1102 			if (merged)
1103 				unlink_va(va, root);
1104 
1105 			sibling->va_end = va->va_end;
1106 
1107 			/* Free vmap_area object. */
1108 			kmem_cache_free(vmap_area_cachep, va);
1109 
1110 			/* Point to the new merged area. */
1111 			va = sibling;
1112 			merged = true;
1113 		}
1114 	}
1115 
1116 insert:
1117 	if (!merged)
1118 		link_va(va, root, parent, link, head);
1119 
1120 	return va;
1121 }
1122 
1123 static __always_inline struct vmap_area *
1124 merge_or_add_vmap_area_augment(struct vmap_area *va,
1125 	struct rb_root *root, struct list_head *head)
1126 {
1127 	va = merge_or_add_vmap_area(va, root, head);
1128 	if (va)
1129 		augment_tree_propagate_from(va);
1130 
1131 	return va;
1132 }
1133 
1134 static __always_inline bool
1135 is_within_this_va(struct vmap_area *va, unsigned long size,
1136 	unsigned long align, unsigned long vstart)
1137 {
1138 	unsigned long nva_start_addr;
1139 
1140 	if (va->va_start > vstart)
1141 		nva_start_addr = ALIGN(va->va_start, align);
1142 	else
1143 		nva_start_addr = ALIGN(vstart, align);
1144 
1145 	/* Can be overflowed due to big size or alignment. */
1146 	if (nva_start_addr + size < nva_start_addr ||
1147 			nva_start_addr < vstart)
1148 		return false;
1149 
1150 	return (nva_start_addr + size <= va->va_end);
1151 }
1152 
1153 /*
1154  * Find the first free block(lowest start address) in the tree,
1155  * that will accomplish the request corresponding to passing
1156  * parameters.
1157  */
1158 static __always_inline struct vmap_area *
1159 find_vmap_lowest_match(unsigned long size,
1160 	unsigned long align, unsigned long vstart)
1161 {
1162 	struct vmap_area *va;
1163 	struct rb_node *node;
1164 	unsigned long length;
1165 
1166 	/* Start from the root. */
1167 	node = free_vmap_area_root.rb_node;
1168 
1169 	/* Adjust the search size for alignment overhead. */
1170 	length = size + align - 1;
1171 
1172 	while (node) {
1173 		va = rb_entry(node, struct vmap_area, rb_node);
1174 
1175 		if (get_subtree_max_size(node->rb_left) >= length &&
1176 				vstart < va->va_start) {
1177 			node = node->rb_left;
1178 		} else {
1179 			if (is_within_this_va(va, size, align, vstart))
1180 				return va;
1181 
1182 			/*
1183 			 * Does not make sense to go deeper towards the right
1184 			 * sub-tree if it does not have a free block that is
1185 			 * equal or bigger to the requested search length.
1186 			 */
1187 			if (get_subtree_max_size(node->rb_right) >= length) {
1188 				node = node->rb_right;
1189 				continue;
1190 			}
1191 
1192 			/*
1193 			 * OK. We roll back and find the first right sub-tree,
1194 			 * that will satisfy the search criteria. It can happen
1195 			 * only once due to "vstart" restriction.
1196 			 */
1197 			while ((node = rb_parent(node))) {
1198 				va = rb_entry(node, struct vmap_area, rb_node);
1199 				if (is_within_this_va(va, size, align, vstart))
1200 					return va;
1201 
1202 				if (get_subtree_max_size(node->rb_right) >= length &&
1203 						vstart <= va->va_start) {
1204 					node = node->rb_right;
1205 					break;
1206 				}
1207 			}
1208 		}
1209 	}
1210 
1211 	return NULL;
1212 }
1213 
1214 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1215 #include <linux/random.h>
1216 
1217 static struct vmap_area *
1218 find_vmap_lowest_linear_match(unsigned long size,
1219 	unsigned long align, unsigned long vstart)
1220 {
1221 	struct vmap_area *va;
1222 
1223 	list_for_each_entry(va, &free_vmap_area_list, list) {
1224 		if (!is_within_this_va(va, size, align, vstart))
1225 			continue;
1226 
1227 		return va;
1228 	}
1229 
1230 	return NULL;
1231 }
1232 
1233 static void
1234 find_vmap_lowest_match_check(unsigned long size)
1235 {
1236 	struct vmap_area *va_1, *va_2;
1237 	unsigned long vstart;
1238 	unsigned int rnd;
1239 
1240 	get_random_bytes(&rnd, sizeof(rnd));
1241 	vstart = VMALLOC_START + rnd;
1242 
1243 	va_1 = find_vmap_lowest_match(size, 1, vstart);
1244 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
1245 
1246 	if (va_1 != va_2)
1247 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1248 			va_1, va_2, vstart);
1249 }
1250 #endif
1251 
1252 enum fit_type {
1253 	NOTHING_FIT = 0,
1254 	FL_FIT_TYPE = 1,	/* full fit */
1255 	LE_FIT_TYPE = 2,	/* left edge fit */
1256 	RE_FIT_TYPE = 3,	/* right edge fit */
1257 	NE_FIT_TYPE = 4		/* no edge fit */
1258 };
1259 
1260 static __always_inline enum fit_type
1261 classify_va_fit_type(struct vmap_area *va,
1262 	unsigned long nva_start_addr, unsigned long size)
1263 {
1264 	enum fit_type type;
1265 
1266 	/* Check if it is within VA. */
1267 	if (nva_start_addr < va->va_start ||
1268 			nva_start_addr + size > va->va_end)
1269 		return NOTHING_FIT;
1270 
1271 	/* Now classify. */
1272 	if (va->va_start == nva_start_addr) {
1273 		if (va->va_end == nva_start_addr + size)
1274 			type = FL_FIT_TYPE;
1275 		else
1276 			type = LE_FIT_TYPE;
1277 	} else if (va->va_end == nva_start_addr + size) {
1278 		type = RE_FIT_TYPE;
1279 	} else {
1280 		type = NE_FIT_TYPE;
1281 	}
1282 
1283 	return type;
1284 }
1285 
1286 static __always_inline int
1287 adjust_va_to_fit_type(struct vmap_area *va,
1288 	unsigned long nva_start_addr, unsigned long size,
1289 	enum fit_type type)
1290 {
1291 	struct vmap_area *lva = NULL;
1292 
1293 	if (type == FL_FIT_TYPE) {
1294 		/*
1295 		 * No need to split VA, it fully fits.
1296 		 *
1297 		 * |               |
1298 		 * V      NVA      V
1299 		 * |---------------|
1300 		 */
1301 		unlink_va(va, &free_vmap_area_root);
1302 		kmem_cache_free(vmap_area_cachep, va);
1303 	} else if (type == LE_FIT_TYPE) {
1304 		/*
1305 		 * Split left edge of fit VA.
1306 		 *
1307 		 * |       |
1308 		 * V  NVA  V   R
1309 		 * |-------|-------|
1310 		 */
1311 		va->va_start += size;
1312 	} else if (type == RE_FIT_TYPE) {
1313 		/*
1314 		 * Split right edge of fit VA.
1315 		 *
1316 		 *         |       |
1317 		 *     L   V  NVA  V
1318 		 * |-------|-------|
1319 		 */
1320 		va->va_end = nva_start_addr;
1321 	} else if (type == NE_FIT_TYPE) {
1322 		/*
1323 		 * Split no edge of fit VA.
1324 		 *
1325 		 *     |       |
1326 		 *   L V  NVA  V R
1327 		 * |---|-------|---|
1328 		 */
1329 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1330 		if (unlikely(!lva)) {
1331 			/*
1332 			 * For percpu allocator we do not do any pre-allocation
1333 			 * and leave it as it is. The reason is it most likely
1334 			 * never ends up with NE_FIT_TYPE splitting. In case of
1335 			 * percpu allocations offsets and sizes are aligned to
1336 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1337 			 * are its main fitting cases.
1338 			 *
1339 			 * There are a few exceptions though, as an example it is
1340 			 * a first allocation (early boot up) when we have "one"
1341 			 * big free space that has to be split.
1342 			 *
1343 			 * Also we can hit this path in case of regular "vmap"
1344 			 * allocations, if "this" current CPU was not preloaded.
1345 			 * See the comment in alloc_vmap_area() why. If so, then
1346 			 * GFP_NOWAIT is used instead to get an extra object for
1347 			 * split purpose. That is rare and most time does not
1348 			 * occur.
1349 			 *
1350 			 * What happens if an allocation gets failed. Basically,
1351 			 * an "overflow" path is triggered to purge lazily freed
1352 			 * areas to free some memory, then, the "retry" path is
1353 			 * triggered to repeat one more time. See more details
1354 			 * in alloc_vmap_area() function.
1355 			 */
1356 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1357 			if (!lva)
1358 				return -1;
1359 		}
1360 
1361 		/*
1362 		 * Build the remainder.
1363 		 */
1364 		lva->va_start = va->va_start;
1365 		lva->va_end = nva_start_addr;
1366 
1367 		/*
1368 		 * Shrink this VA to remaining size.
1369 		 */
1370 		va->va_start = nva_start_addr + size;
1371 	} else {
1372 		return -1;
1373 	}
1374 
1375 	if (type != FL_FIT_TYPE) {
1376 		augment_tree_propagate_from(va);
1377 
1378 		if (lva)	/* type == NE_FIT_TYPE */
1379 			insert_vmap_area_augment(lva, &va->rb_node,
1380 				&free_vmap_area_root, &free_vmap_area_list);
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 /*
1387  * Returns a start address of the newly allocated area, if success.
1388  * Otherwise a vend is returned that indicates failure.
1389  */
1390 static __always_inline unsigned long
1391 __alloc_vmap_area(unsigned long size, unsigned long align,
1392 	unsigned long vstart, unsigned long vend)
1393 {
1394 	unsigned long nva_start_addr;
1395 	struct vmap_area *va;
1396 	enum fit_type type;
1397 	int ret;
1398 
1399 	va = find_vmap_lowest_match(size, align, vstart);
1400 	if (unlikely(!va))
1401 		return vend;
1402 
1403 	if (va->va_start > vstart)
1404 		nva_start_addr = ALIGN(va->va_start, align);
1405 	else
1406 		nva_start_addr = ALIGN(vstart, align);
1407 
1408 	/* Check the "vend" restriction. */
1409 	if (nva_start_addr + size > vend)
1410 		return vend;
1411 
1412 	/* Classify what we have found. */
1413 	type = classify_va_fit_type(va, nva_start_addr, size);
1414 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1415 		return vend;
1416 
1417 	/* Update the free vmap_area. */
1418 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1419 	if (ret)
1420 		return vend;
1421 
1422 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1423 	find_vmap_lowest_match_check(size);
1424 #endif
1425 
1426 	return nva_start_addr;
1427 }
1428 
1429 /*
1430  * Free a region of KVA allocated by alloc_vmap_area
1431  */
1432 static void free_vmap_area(struct vmap_area *va)
1433 {
1434 	/*
1435 	 * Remove from the busy tree/list.
1436 	 */
1437 	spin_lock(&vmap_area_lock);
1438 	unlink_va(va, &vmap_area_root);
1439 	spin_unlock(&vmap_area_lock);
1440 
1441 	/*
1442 	 * Insert/Merge it back to the free tree/list.
1443 	 */
1444 	spin_lock(&free_vmap_area_lock);
1445 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1446 	spin_unlock(&free_vmap_area_lock);
1447 }
1448 
1449 static inline void
1450 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1451 {
1452 	struct vmap_area *va = NULL;
1453 
1454 	/*
1455 	 * Preload this CPU with one extra vmap_area object. It is used
1456 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1457 	 * a CPU that does an allocation is preloaded.
1458 	 *
1459 	 * We do it in non-atomic context, thus it allows us to use more
1460 	 * permissive allocation masks to be more stable under low memory
1461 	 * condition and high memory pressure.
1462 	 */
1463 	if (!this_cpu_read(ne_fit_preload_node))
1464 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1465 
1466 	spin_lock(lock);
1467 
1468 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1469 		kmem_cache_free(vmap_area_cachep, va);
1470 }
1471 
1472 /*
1473  * Allocate a region of KVA of the specified size and alignment, within the
1474  * vstart and vend.
1475  */
1476 static struct vmap_area *alloc_vmap_area(unsigned long size,
1477 				unsigned long align,
1478 				unsigned long vstart, unsigned long vend,
1479 				int node, gfp_t gfp_mask)
1480 {
1481 	struct vmap_area *va;
1482 	unsigned long addr;
1483 	int purged = 0;
1484 	int ret;
1485 
1486 	BUG_ON(!size);
1487 	BUG_ON(offset_in_page(size));
1488 	BUG_ON(!is_power_of_2(align));
1489 
1490 	if (unlikely(!vmap_initialized))
1491 		return ERR_PTR(-EBUSY);
1492 
1493 	might_sleep();
1494 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1495 
1496 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1497 	if (unlikely(!va))
1498 		return ERR_PTR(-ENOMEM);
1499 
1500 	/*
1501 	 * Only scan the relevant parts containing pointers to other objects
1502 	 * to avoid false negatives.
1503 	 */
1504 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1505 
1506 retry:
1507 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1508 	addr = __alloc_vmap_area(size, align, vstart, vend);
1509 	spin_unlock(&free_vmap_area_lock);
1510 
1511 	/*
1512 	 * If an allocation fails, the "vend" address is
1513 	 * returned. Therefore trigger the overflow path.
1514 	 */
1515 	if (unlikely(addr == vend))
1516 		goto overflow;
1517 
1518 	va->va_start = addr;
1519 	va->va_end = addr + size;
1520 	va->vm = NULL;
1521 
1522 	spin_lock(&vmap_area_lock);
1523 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1524 	spin_unlock(&vmap_area_lock);
1525 
1526 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1527 	BUG_ON(va->va_start < vstart);
1528 	BUG_ON(va->va_end > vend);
1529 
1530 	ret = kasan_populate_vmalloc(addr, size);
1531 	if (ret) {
1532 		free_vmap_area(va);
1533 		return ERR_PTR(ret);
1534 	}
1535 
1536 	return va;
1537 
1538 overflow:
1539 	if (!purged) {
1540 		purge_vmap_area_lazy();
1541 		purged = 1;
1542 		goto retry;
1543 	}
1544 
1545 	if (gfpflags_allow_blocking(gfp_mask)) {
1546 		unsigned long freed = 0;
1547 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1548 		if (freed > 0) {
1549 			purged = 0;
1550 			goto retry;
1551 		}
1552 	}
1553 
1554 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1555 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1556 			size);
1557 
1558 	kmem_cache_free(vmap_area_cachep, va);
1559 	return ERR_PTR(-EBUSY);
1560 }
1561 
1562 int register_vmap_purge_notifier(struct notifier_block *nb)
1563 {
1564 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1565 }
1566 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1567 
1568 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1569 {
1570 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1571 }
1572 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1573 
1574 /*
1575  * lazy_max_pages is the maximum amount of virtual address space we gather up
1576  * before attempting to purge with a TLB flush.
1577  *
1578  * There is a tradeoff here: a larger number will cover more kernel page tables
1579  * and take slightly longer to purge, but it will linearly reduce the number of
1580  * global TLB flushes that must be performed. It would seem natural to scale
1581  * this number up linearly with the number of CPUs (because vmapping activity
1582  * could also scale linearly with the number of CPUs), however it is likely
1583  * that in practice, workloads might be constrained in other ways that mean
1584  * vmap activity will not scale linearly with CPUs. Also, I want to be
1585  * conservative and not introduce a big latency on huge systems, so go with
1586  * a less aggressive log scale. It will still be an improvement over the old
1587  * code, and it will be simple to change the scale factor if we find that it
1588  * becomes a problem on bigger systems.
1589  */
1590 static unsigned long lazy_max_pages(void)
1591 {
1592 	unsigned int log;
1593 
1594 	log = fls(num_online_cpus());
1595 
1596 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1597 }
1598 
1599 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1600 
1601 /*
1602  * Serialize vmap purging.  There is no actual critical section protected
1603  * by this look, but we want to avoid concurrent calls for performance
1604  * reasons and to make the pcpu_get_vm_areas more deterministic.
1605  */
1606 static DEFINE_MUTEX(vmap_purge_lock);
1607 
1608 /* for per-CPU blocks */
1609 static void purge_fragmented_blocks_allcpus(void);
1610 
1611 #ifdef CONFIG_X86_64
1612 /*
1613  * called before a call to iounmap() if the caller wants vm_area_struct's
1614  * immediately freed.
1615  */
1616 void set_iounmap_nonlazy(void)
1617 {
1618 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1619 }
1620 #endif /* CONFIG_X86_64 */
1621 
1622 /*
1623  * Purges all lazily-freed vmap areas.
1624  */
1625 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1626 {
1627 	unsigned long resched_threshold;
1628 	struct list_head local_pure_list;
1629 	struct vmap_area *va, *n_va;
1630 
1631 	lockdep_assert_held(&vmap_purge_lock);
1632 
1633 	spin_lock(&purge_vmap_area_lock);
1634 	purge_vmap_area_root = RB_ROOT;
1635 	list_replace_init(&purge_vmap_area_list, &local_pure_list);
1636 	spin_unlock(&purge_vmap_area_lock);
1637 
1638 	if (unlikely(list_empty(&local_pure_list)))
1639 		return false;
1640 
1641 	start = min(start,
1642 		list_first_entry(&local_pure_list,
1643 			struct vmap_area, list)->va_start);
1644 
1645 	end = max(end,
1646 		list_last_entry(&local_pure_list,
1647 			struct vmap_area, list)->va_end);
1648 
1649 	flush_tlb_kernel_range(start, end);
1650 	resched_threshold = lazy_max_pages() << 1;
1651 
1652 	spin_lock(&free_vmap_area_lock);
1653 	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1654 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1655 		unsigned long orig_start = va->va_start;
1656 		unsigned long orig_end = va->va_end;
1657 
1658 		/*
1659 		 * Finally insert or merge lazily-freed area. It is
1660 		 * detached and there is no need to "unlink" it from
1661 		 * anything.
1662 		 */
1663 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1664 				&free_vmap_area_list);
1665 
1666 		if (!va)
1667 			continue;
1668 
1669 		if (is_vmalloc_or_module_addr((void *)orig_start))
1670 			kasan_release_vmalloc(orig_start, orig_end,
1671 					      va->va_start, va->va_end);
1672 
1673 		atomic_long_sub(nr, &vmap_lazy_nr);
1674 
1675 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1676 			cond_resched_lock(&free_vmap_area_lock);
1677 	}
1678 	spin_unlock(&free_vmap_area_lock);
1679 	return true;
1680 }
1681 
1682 /*
1683  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1684  * is already purging.
1685  */
1686 static void try_purge_vmap_area_lazy(void)
1687 {
1688 	if (mutex_trylock(&vmap_purge_lock)) {
1689 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1690 		mutex_unlock(&vmap_purge_lock);
1691 	}
1692 }
1693 
1694 /*
1695  * Kick off a purge of the outstanding lazy areas.
1696  */
1697 static void purge_vmap_area_lazy(void)
1698 {
1699 	mutex_lock(&vmap_purge_lock);
1700 	purge_fragmented_blocks_allcpus();
1701 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1702 	mutex_unlock(&vmap_purge_lock);
1703 }
1704 
1705 /*
1706  * Free a vmap area, caller ensuring that the area has been unmapped
1707  * and flush_cache_vunmap had been called for the correct range
1708  * previously.
1709  */
1710 static void free_vmap_area_noflush(struct vmap_area *va)
1711 {
1712 	unsigned long nr_lazy;
1713 
1714 	spin_lock(&vmap_area_lock);
1715 	unlink_va(va, &vmap_area_root);
1716 	spin_unlock(&vmap_area_lock);
1717 
1718 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1719 				PAGE_SHIFT, &vmap_lazy_nr);
1720 
1721 	/*
1722 	 * Merge or place it to the purge tree/list.
1723 	 */
1724 	spin_lock(&purge_vmap_area_lock);
1725 	merge_or_add_vmap_area(va,
1726 		&purge_vmap_area_root, &purge_vmap_area_list);
1727 	spin_unlock(&purge_vmap_area_lock);
1728 
1729 	/* After this point, we may free va at any time */
1730 	if (unlikely(nr_lazy > lazy_max_pages()))
1731 		try_purge_vmap_area_lazy();
1732 }
1733 
1734 /*
1735  * Free and unmap a vmap area
1736  */
1737 static void free_unmap_vmap_area(struct vmap_area *va)
1738 {
1739 	flush_cache_vunmap(va->va_start, va->va_end);
1740 	vunmap_range_noflush(va->va_start, va->va_end);
1741 	if (debug_pagealloc_enabled_static())
1742 		flush_tlb_kernel_range(va->va_start, va->va_end);
1743 
1744 	free_vmap_area_noflush(va);
1745 }
1746 
1747 static struct vmap_area *find_vmap_area(unsigned long addr)
1748 {
1749 	struct vmap_area *va;
1750 
1751 	spin_lock(&vmap_area_lock);
1752 	va = __find_vmap_area(addr);
1753 	spin_unlock(&vmap_area_lock);
1754 
1755 	return va;
1756 }
1757 
1758 /*** Per cpu kva allocator ***/
1759 
1760 /*
1761  * vmap space is limited especially on 32 bit architectures. Ensure there is
1762  * room for at least 16 percpu vmap blocks per CPU.
1763  */
1764 /*
1765  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1766  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1767  * instead (we just need a rough idea)
1768  */
1769 #if BITS_PER_LONG == 32
1770 #define VMALLOC_SPACE		(128UL*1024*1024)
1771 #else
1772 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1773 #endif
1774 
1775 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1776 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1777 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1778 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1779 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1780 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1781 #define VMAP_BBMAP_BITS		\
1782 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1783 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1784 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1785 
1786 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1787 
1788 struct vmap_block_queue {
1789 	spinlock_t lock;
1790 	struct list_head free;
1791 };
1792 
1793 struct vmap_block {
1794 	spinlock_t lock;
1795 	struct vmap_area *va;
1796 	unsigned long free, dirty;
1797 	unsigned long dirty_min, dirty_max; /*< dirty range */
1798 	struct list_head free_list;
1799 	struct rcu_head rcu_head;
1800 	struct list_head purge;
1801 };
1802 
1803 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1804 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1805 
1806 /*
1807  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1808  * in the free path. Could get rid of this if we change the API to return a
1809  * "cookie" from alloc, to be passed to free. But no big deal yet.
1810  */
1811 static DEFINE_XARRAY(vmap_blocks);
1812 
1813 /*
1814  * We should probably have a fallback mechanism to allocate virtual memory
1815  * out of partially filled vmap blocks. However vmap block sizing should be
1816  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1817  * big problem.
1818  */
1819 
1820 static unsigned long addr_to_vb_idx(unsigned long addr)
1821 {
1822 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1823 	addr /= VMAP_BLOCK_SIZE;
1824 	return addr;
1825 }
1826 
1827 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1828 {
1829 	unsigned long addr;
1830 
1831 	addr = va_start + (pages_off << PAGE_SHIFT);
1832 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1833 	return (void *)addr;
1834 }
1835 
1836 /**
1837  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1838  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1839  * @order:    how many 2^order pages should be occupied in newly allocated block
1840  * @gfp_mask: flags for the page level allocator
1841  *
1842  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1843  */
1844 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1845 {
1846 	struct vmap_block_queue *vbq;
1847 	struct vmap_block *vb;
1848 	struct vmap_area *va;
1849 	unsigned long vb_idx;
1850 	int node, err;
1851 	void *vaddr;
1852 
1853 	node = numa_node_id();
1854 
1855 	vb = kmalloc_node(sizeof(struct vmap_block),
1856 			gfp_mask & GFP_RECLAIM_MASK, node);
1857 	if (unlikely(!vb))
1858 		return ERR_PTR(-ENOMEM);
1859 
1860 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1861 					VMALLOC_START, VMALLOC_END,
1862 					node, gfp_mask);
1863 	if (IS_ERR(va)) {
1864 		kfree(vb);
1865 		return ERR_CAST(va);
1866 	}
1867 
1868 	vaddr = vmap_block_vaddr(va->va_start, 0);
1869 	spin_lock_init(&vb->lock);
1870 	vb->va = va;
1871 	/* At least something should be left free */
1872 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1873 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1874 	vb->dirty = 0;
1875 	vb->dirty_min = VMAP_BBMAP_BITS;
1876 	vb->dirty_max = 0;
1877 	INIT_LIST_HEAD(&vb->free_list);
1878 
1879 	vb_idx = addr_to_vb_idx(va->va_start);
1880 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1881 	if (err) {
1882 		kfree(vb);
1883 		free_vmap_area(va);
1884 		return ERR_PTR(err);
1885 	}
1886 
1887 	vbq = &get_cpu_var(vmap_block_queue);
1888 	spin_lock(&vbq->lock);
1889 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1890 	spin_unlock(&vbq->lock);
1891 	put_cpu_var(vmap_block_queue);
1892 
1893 	return vaddr;
1894 }
1895 
1896 static void free_vmap_block(struct vmap_block *vb)
1897 {
1898 	struct vmap_block *tmp;
1899 
1900 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1901 	BUG_ON(tmp != vb);
1902 
1903 	free_vmap_area_noflush(vb->va);
1904 	kfree_rcu(vb, rcu_head);
1905 }
1906 
1907 static void purge_fragmented_blocks(int cpu)
1908 {
1909 	LIST_HEAD(purge);
1910 	struct vmap_block *vb;
1911 	struct vmap_block *n_vb;
1912 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1913 
1914 	rcu_read_lock();
1915 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1916 
1917 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1918 			continue;
1919 
1920 		spin_lock(&vb->lock);
1921 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1922 			vb->free = 0; /* prevent further allocs after releasing lock */
1923 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1924 			vb->dirty_min = 0;
1925 			vb->dirty_max = VMAP_BBMAP_BITS;
1926 			spin_lock(&vbq->lock);
1927 			list_del_rcu(&vb->free_list);
1928 			spin_unlock(&vbq->lock);
1929 			spin_unlock(&vb->lock);
1930 			list_add_tail(&vb->purge, &purge);
1931 		} else
1932 			spin_unlock(&vb->lock);
1933 	}
1934 	rcu_read_unlock();
1935 
1936 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1937 		list_del(&vb->purge);
1938 		free_vmap_block(vb);
1939 	}
1940 }
1941 
1942 static void purge_fragmented_blocks_allcpus(void)
1943 {
1944 	int cpu;
1945 
1946 	for_each_possible_cpu(cpu)
1947 		purge_fragmented_blocks(cpu);
1948 }
1949 
1950 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1951 {
1952 	struct vmap_block_queue *vbq;
1953 	struct vmap_block *vb;
1954 	void *vaddr = NULL;
1955 	unsigned int order;
1956 
1957 	BUG_ON(offset_in_page(size));
1958 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1959 	if (WARN_ON(size == 0)) {
1960 		/*
1961 		 * Allocating 0 bytes isn't what caller wants since
1962 		 * get_order(0) returns funny result. Just warn and terminate
1963 		 * early.
1964 		 */
1965 		return NULL;
1966 	}
1967 	order = get_order(size);
1968 
1969 	rcu_read_lock();
1970 	vbq = &get_cpu_var(vmap_block_queue);
1971 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1972 		unsigned long pages_off;
1973 
1974 		spin_lock(&vb->lock);
1975 		if (vb->free < (1UL << order)) {
1976 			spin_unlock(&vb->lock);
1977 			continue;
1978 		}
1979 
1980 		pages_off = VMAP_BBMAP_BITS - vb->free;
1981 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1982 		vb->free -= 1UL << order;
1983 		if (vb->free == 0) {
1984 			spin_lock(&vbq->lock);
1985 			list_del_rcu(&vb->free_list);
1986 			spin_unlock(&vbq->lock);
1987 		}
1988 
1989 		spin_unlock(&vb->lock);
1990 		break;
1991 	}
1992 
1993 	put_cpu_var(vmap_block_queue);
1994 	rcu_read_unlock();
1995 
1996 	/* Allocate new block if nothing was found */
1997 	if (!vaddr)
1998 		vaddr = new_vmap_block(order, gfp_mask);
1999 
2000 	return vaddr;
2001 }
2002 
2003 static void vb_free(unsigned long addr, unsigned long size)
2004 {
2005 	unsigned long offset;
2006 	unsigned int order;
2007 	struct vmap_block *vb;
2008 
2009 	BUG_ON(offset_in_page(size));
2010 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2011 
2012 	flush_cache_vunmap(addr, addr + size);
2013 
2014 	order = get_order(size);
2015 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2016 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2017 
2018 	vunmap_range_noflush(addr, addr + size);
2019 
2020 	if (debug_pagealloc_enabled_static())
2021 		flush_tlb_kernel_range(addr, addr + size);
2022 
2023 	spin_lock(&vb->lock);
2024 
2025 	/* Expand dirty range */
2026 	vb->dirty_min = min(vb->dirty_min, offset);
2027 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2028 
2029 	vb->dirty += 1UL << order;
2030 	if (vb->dirty == VMAP_BBMAP_BITS) {
2031 		BUG_ON(vb->free);
2032 		spin_unlock(&vb->lock);
2033 		free_vmap_block(vb);
2034 	} else
2035 		spin_unlock(&vb->lock);
2036 }
2037 
2038 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2039 {
2040 	int cpu;
2041 
2042 	if (unlikely(!vmap_initialized))
2043 		return;
2044 
2045 	might_sleep();
2046 
2047 	for_each_possible_cpu(cpu) {
2048 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2049 		struct vmap_block *vb;
2050 
2051 		rcu_read_lock();
2052 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2053 			spin_lock(&vb->lock);
2054 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2055 				unsigned long va_start = vb->va->va_start;
2056 				unsigned long s, e;
2057 
2058 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2059 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2060 
2061 				start = min(s, start);
2062 				end   = max(e, end);
2063 
2064 				flush = 1;
2065 			}
2066 			spin_unlock(&vb->lock);
2067 		}
2068 		rcu_read_unlock();
2069 	}
2070 
2071 	mutex_lock(&vmap_purge_lock);
2072 	purge_fragmented_blocks_allcpus();
2073 	if (!__purge_vmap_area_lazy(start, end) && flush)
2074 		flush_tlb_kernel_range(start, end);
2075 	mutex_unlock(&vmap_purge_lock);
2076 }
2077 
2078 /**
2079  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2080  *
2081  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2082  * to amortize TLB flushing overheads. What this means is that any page you
2083  * have now, may, in a former life, have been mapped into kernel virtual
2084  * address by the vmap layer and so there might be some CPUs with TLB entries
2085  * still referencing that page (additional to the regular 1:1 kernel mapping).
2086  *
2087  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2088  * be sure that none of the pages we have control over will have any aliases
2089  * from the vmap layer.
2090  */
2091 void vm_unmap_aliases(void)
2092 {
2093 	unsigned long start = ULONG_MAX, end = 0;
2094 	int flush = 0;
2095 
2096 	_vm_unmap_aliases(start, end, flush);
2097 }
2098 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2099 
2100 /**
2101  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2102  * @mem: the pointer returned by vm_map_ram
2103  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2104  */
2105 void vm_unmap_ram(const void *mem, unsigned int count)
2106 {
2107 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2108 	unsigned long addr = (unsigned long)mem;
2109 	struct vmap_area *va;
2110 
2111 	might_sleep();
2112 	BUG_ON(!addr);
2113 	BUG_ON(addr < VMALLOC_START);
2114 	BUG_ON(addr > VMALLOC_END);
2115 	BUG_ON(!PAGE_ALIGNED(addr));
2116 
2117 	kasan_poison_vmalloc(mem, size);
2118 
2119 	if (likely(count <= VMAP_MAX_ALLOC)) {
2120 		debug_check_no_locks_freed(mem, size);
2121 		vb_free(addr, size);
2122 		return;
2123 	}
2124 
2125 	va = find_vmap_area(addr);
2126 	BUG_ON(!va);
2127 	debug_check_no_locks_freed((void *)va->va_start,
2128 				    (va->va_end - va->va_start));
2129 	free_unmap_vmap_area(va);
2130 }
2131 EXPORT_SYMBOL(vm_unmap_ram);
2132 
2133 /**
2134  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2135  * @pages: an array of pointers to the pages to be mapped
2136  * @count: number of pages
2137  * @node: prefer to allocate data structures on this node
2138  *
2139  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2140  * faster than vmap so it's good.  But if you mix long-life and short-life
2141  * objects with vm_map_ram(), it could consume lots of address space through
2142  * fragmentation (especially on a 32bit machine).  You could see failures in
2143  * the end.  Please use this function for short-lived objects.
2144  *
2145  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2146  */
2147 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2148 {
2149 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2150 	unsigned long addr;
2151 	void *mem;
2152 
2153 	if (likely(count <= VMAP_MAX_ALLOC)) {
2154 		mem = vb_alloc(size, GFP_KERNEL);
2155 		if (IS_ERR(mem))
2156 			return NULL;
2157 		addr = (unsigned long)mem;
2158 	} else {
2159 		struct vmap_area *va;
2160 		va = alloc_vmap_area(size, PAGE_SIZE,
2161 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2162 		if (IS_ERR(va))
2163 			return NULL;
2164 
2165 		addr = va->va_start;
2166 		mem = (void *)addr;
2167 	}
2168 
2169 	kasan_unpoison_vmalloc(mem, size);
2170 
2171 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2172 				pages, PAGE_SHIFT) < 0) {
2173 		vm_unmap_ram(mem, count);
2174 		return NULL;
2175 	}
2176 
2177 	return mem;
2178 }
2179 EXPORT_SYMBOL(vm_map_ram);
2180 
2181 static struct vm_struct *vmlist __initdata;
2182 
2183 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2184 {
2185 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2186 	return vm->page_order;
2187 #else
2188 	return 0;
2189 #endif
2190 }
2191 
2192 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2193 {
2194 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2195 	vm->page_order = order;
2196 #else
2197 	BUG_ON(order != 0);
2198 #endif
2199 }
2200 
2201 /**
2202  * vm_area_add_early - add vmap area early during boot
2203  * @vm: vm_struct to add
2204  *
2205  * This function is used to add fixed kernel vm area to vmlist before
2206  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2207  * should contain proper values and the other fields should be zero.
2208  *
2209  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2210  */
2211 void __init vm_area_add_early(struct vm_struct *vm)
2212 {
2213 	struct vm_struct *tmp, **p;
2214 
2215 	BUG_ON(vmap_initialized);
2216 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2217 		if (tmp->addr >= vm->addr) {
2218 			BUG_ON(tmp->addr < vm->addr + vm->size);
2219 			break;
2220 		} else
2221 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2222 	}
2223 	vm->next = *p;
2224 	*p = vm;
2225 }
2226 
2227 /**
2228  * vm_area_register_early - register vmap area early during boot
2229  * @vm: vm_struct to register
2230  * @align: requested alignment
2231  *
2232  * This function is used to register kernel vm area before
2233  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2234  * proper values on entry and other fields should be zero.  On return,
2235  * vm->addr contains the allocated address.
2236  *
2237  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2238  */
2239 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2240 {
2241 	static size_t vm_init_off __initdata;
2242 	unsigned long addr;
2243 
2244 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
2245 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
2246 
2247 	vm->addr = (void *)addr;
2248 
2249 	vm_area_add_early(vm);
2250 }
2251 
2252 static void vmap_init_free_space(void)
2253 {
2254 	unsigned long vmap_start = 1;
2255 	const unsigned long vmap_end = ULONG_MAX;
2256 	struct vmap_area *busy, *free;
2257 
2258 	/*
2259 	 *     B     F     B     B     B     F
2260 	 * -|-----|.....|-----|-----|-----|.....|-
2261 	 *  |           The KVA space           |
2262 	 *  |<--------------------------------->|
2263 	 */
2264 	list_for_each_entry(busy, &vmap_area_list, list) {
2265 		if (busy->va_start - vmap_start > 0) {
2266 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2267 			if (!WARN_ON_ONCE(!free)) {
2268 				free->va_start = vmap_start;
2269 				free->va_end = busy->va_start;
2270 
2271 				insert_vmap_area_augment(free, NULL,
2272 					&free_vmap_area_root,
2273 						&free_vmap_area_list);
2274 			}
2275 		}
2276 
2277 		vmap_start = busy->va_end;
2278 	}
2279 
2280 	if (vmap_end - vmap_start > 0) {
2281 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2282 		if (!WARN_ON_ONCE(!free)) {
2283 			free->va_start = vmap_start;
2284 			free->va_end = vmap_end;
2285 
2286 			insert_vmap_area_augment(free, NULL,
2287 				&free_vmap_area_root,
2288 					&free_vmap_area_list);
2289 		}
2290 	}
2291 }
2292 
2293 void __init vmalloc_init(void)
2294 {
2295 	struct vmap_area *va;
2296 	struct vm_struct *tmp;
2297 	int i;
2298 
2299 	/*
2300 	 * Create the cache for vmap_area objects.
2301 	 */
2302 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2303 
2304 	for_each_possible_cpu(i) {
2305 		struct vmap_block_queue *vbq;
2306 		struct vfree_deferred *p;
2307 
2308 		vbq = &per_cpu(vmap_block_queue, i);
2309 		spin_lock_init(&vbq->lock);
2310 		INIT_LIST_HEAD(&vbq->free);
2311 		p = &per_cpu(vfree_deferred, i);
2312 		init_llist_head(&p->list);
2313 		INIT_WORK(&p->wq, free_work);
2314 	}
2315 
2316 	/* Import existing vmlist entries. */
2317 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2318 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2319 		if (WARN_ON_ONCE(!va))
2320 			continue;
2321 
2322 		va->va_start = (unsigned long)tmp->addr;
2323 		va->va_end = va->va_start + tmp->size;
2324 		va->vm = tmp;
2325 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2326 	}
2327 
2328 	/*
2329 	 * Now we can initialize a free vmap space.
2330 	 */
2331 	vmap_init_free_space();
2332 	vmap_initialized = true;
2333 }
2334 
2335 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2336 	struct vmap_area *va, unsigned long flags, const void *caller)
2337 {
2338 	vm->flags = flags;
2339 	vm->addr = (void *)va->va_start;
2340 	vm->size = va->va_end - va->va_start;
2341 	vm->caller = caller;
2342 	va->vm = vm;
2343 }
2344 
2345 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2346 			      unsigned long flags, const void *caller)
2347 {
2348 	spin_lock(&vmap_area_lock);
2349 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2350 	spin_unlock(&vmap_area_lock);
2351 }
2352 
2353 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2354 {
2355 	/*
2356 	 * Before removing VM_UNINITIALIZED,
2357 	 * we should make sure that vm has proper values.
2358 	 * Pair with smp_rmb() in show_numa_info().
2359 	 */
2360 	smp_wmb();
2361 	vm->flags &= ~VM_UNINITIALIZED;
2362 }
2363 
2364 static struct vm_struct *__get_vm_area_node(unsigned long size,
2365 		unsigned long align, unsigned long shift, unsigned long flags,
2366 		unsigned long start, unsigned long end, int node,
2367 		gfp_t gfp_mask, const void *caller)
2368 {
2369 	struct vmap_area *va;
2370 	struct vm_struct *area;
2371 	unsigned long requested_size = size;
2372 
2373 	BUG_ON(in_interrupt());
2374 	size = ALIGN(size, 1ul << shift);
2375 	if (unlikely(!size))
2376 		return NULL;
2377 
2378 	if (flags & VM_IOREMAP)
2379 		align = 1ul << clamp_t(int, get_count_order_long(size),
2380 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2381 
2382 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2383 	if (unlikely(!area))
2384 		return NULL;
2385 
2386 	if (!(flags & VM_NO_GUARD))
2387 		size += PAGE_SIZE;
2388 
2389 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2390 	if (IS_ERR(va)) {
2391 		kfree(area);
2392 		return NULL;
2393 	}
2394 
2395 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2396 
2397 	setup_vmalloc_vm(area, va, flags, caller);
2398 
2399 	return area;
2400 }
2401 
2402 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2403 				       unsigned long start, unsigned long end,
2404 				       const void *caller)
2405 {
2406 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2407 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2408 }
2409 
2410 /**
2411  * get_vm_area - reserve a contiguous kernel virtual area
2412  * @size:	 size of the area
2413  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2414  *
2415  * Search an area of @size in the kernel virtual mapping area,
2416  * and reserved it for out purposes.  Returns the area descriptor
2417  * on success or %NULL on failure.
2418  *
2419  * Return: the area descriptor on success or %NULL on failure.
2420  */
2421 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2422 {
2423 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2424 				  VMALLOC_START, VMALLOC_END,
2425 				  NUMA_NO_NODE, GFP_KERNEL,
2426 				  __builtin_return_address(0));
2427 }
2428 
2429 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2430 				const void *caller)
2431 {
2432 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2433 				  VMALLOC_START, VMALLOC_END,
2434 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2435 }
2436 
2437 /**
2438  * find_vm_area - find a continuous kernel virtual area
2439  * @addr:	  base address
2440  *
2441  * Search for the kernel VM area starting at @addr, and return it.
2442  * It is up to the caller to do all required locking to keep the returned
2443  * pointer valid.
2444  *
2445  * Return: the area descriptor on success or %NULL on failure.
2446  */
2447 struct vm_struct *find_vm_area(const void *addr)
2448 {
2449 	struct vmap_area *va;
2450 
2451 	va = find_vmap_area((unsigned long)addr);
2452 	if (!va)
2453 		return NULL;
2454 
2455 	return va->vm;
2456 }
2457 
2458 /**
2459  * remove_vm_area - find and remove a continuous kernel virtual area
2460  * @addr:	    base address
2461  *
2462  * Search for the kernel VM area starting at @addr, and remove it.
2463  * This function returns the found VM area, but using it is NOT safe
2464  * on SMP machines, except for its size or flags.
2465  *
2466  * Return: the area descriptor on success or %NULL on failure.
2467  */
2468 struct vm_struct *remove_vm_area(const void *addr)
2469 {
2470 	struct vmap_area *va;
2471 
2472 	might_sleep();
2473 
2474 	spin_lock(&vmap_area_lock);
2475 	va = __find_vmap_area((unsigned long)addr);
2476 	if (va && va->vm) {
2477 		struct vm_struct *vm = va->vm;
2478 
2479 		va->vm = NULL;
2480 		spin_unlock(&vmap_area_lock);
2481 
2482 		kasan_free_shadow(vm);
2483 		free_unmap_vmap_area(va);
2484 
2485 		return vm;
2486 	}
2487 
2488 	spin_unlock(&vmap_area_lock);
2489 	return NULL;
2490 }
2491 
2492 static inline void set_area_direct_map(const struct vm_struct *area,
2493 				       int (*set_direct_map)(struct page *page))
2494 {
2495 	int i;
2496 
2497 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2498 	for (i = 0; i < area->nr_pages; i++)
2499 		if (page_address(area->pages[i]))
2500 			set_direct_map(area->pages[i]);
2501 }
2502 
2503 /* Handle removing and resetting vm mappings related to the vm_struct. */
2504 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2505 {
2506 	unsigned long start = ULONG_MAX, end = 0;
2507 	unsigned int page_order = vm_area_page_order(area);
2508 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2509 	int flush_dmap = 0;
2510 	int i;
2511 
2512 	remove_vm_area(area->addr);
2513 
2514 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2515 	if (!flush_reset)
2516 		return;
2517 
2518 	/*
2519 	 * If not deallocating pages, just do the flush of the VM area and
2520 	 * return.
2521 	 */
2522 	if (!deallocate_pages) {
2523 		vm_unmap_aliases();
2524 		return;
2525 	}
2526 
2527 	/*
2528 	 * If execution gets here, flush the vm mapping and reset the direct
2529 	 * map. Find the start and end range of the direct mappings to make sure
2530 	 * the vm_unmap_aliases() flush includes the direct map.
2531 	 */
2532 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2533 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2534 		if (addr) {
2535 			unsigned long page_size;
2536 
2537 			page_size = PAGE_SIZE << page_order;
2538 			start = min(addr, start);
2539 			end = max(addr + page_size, end);
2540 			flush_dmap = 1;
2541 		}
2542 	}
2543 
2544 	/*
2545 	 * Set direct map to something invalid so that it won't be cached if
2546 	 * there are any accesses after the TLB flush, then flush the TLB and
2547 	 * reset the direct map permissions to the default.
2548 	 */
2549 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2550 	_vm_unmap_aliases(start, end, flush_dmap);
2551 	set_area_direct_map(area, set_direct_map_default_noflush);
2552 }
2553 
2554 static void __vunmap(const void *addr, int deallocate_pages)
2555 {
2556 	struct vm_struct *area;
2557 
2558 	if (!addr)
2559 		return;
2560 
2561 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2562 			addr))
2563 		return;
2564 
2565 	area = find_vm_area(addr);
2566 	if (unlikely(!area)) {
2567 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2568 				addr);
2569 		return;
2570 	}
2571 
2572 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2573 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2574 
2575 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2576 
2577 	vm_remove_mappings(area, deallocate_pages);
2578 
2579 	if (deallocate_pages) {
2580 		unsigned int page_order = vm_area_page_order(area);
2581 		int i;
2582 
2583 		for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2584 			struct page *page = area->pages[i];
2585 
2586 			BUG_ON(!page);
2587 			__free_pages(page, page_order);
2588 			cond_resched();
2589 		}
2590 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2591 
2592 		kvfree(area->pages);
2593 	}
2594 
2595 	kfree(area);
2596 }
2597 
2598 static inline void __vfree_deferred(const void *addr)
2599 {
2600 	/*
2601 	 * Use raw_cpu_ptr() because this can be called from preemptible
2602 	 * context. Preemption is absolutely fine here, because the llist_add()
2603 	 * implementation is lockless, so it works even if we are adding to
2604 	 * another cpu's list. schedule_work() should be fine with this too.
2605 	 */
2606 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2607 
2608 	if (llist_add((struct llist_node *)addr, &p->list))
2609 		schedule_work(&p->wq);
2610 }
2611 
2612 /**
2613  * vfree_atomic - release memory allocated by vmalloc()
2614  * @addr:	  memory base address
2615  *
2616  * This one is just like vfree() but can be called in any atomic context
2617  * except NMIs.
2618  */
2619 void vfree_atomic(const void *addr)
2620 {
2621 	BUG_ON(in_nmi());
2622 
2623 	kmemleak_free(addr);
2624 
2625 	if (!addr)
2626 		return;
2627 	__vfree_deferred(addr);
2628 }
2629 
2630 static void __vfree(const void *addr)
2631 {
2632 	if (unlikely(in_interrupt()))
2633 		__vfree_deferred(addr);
2634 	else
2635 		__vunmap(addr, 1);
2636 }
2637 
2638 /**
2639  * vfree - Release memory allocated by vmalloc()
2640  * @addr:  Memory base address
2641  *
2642  * Free the virtually continuous memory area starting at @addr, as obtained
2643  * from one of the vmalloc() family of APIs.  This will usually also free the
2644  * physical memory underlying the virtual allocation, but that memory is
2645  * reference counted, so it will not be freed until the last user goes away.
2646  *
2647  * If @addr is NULL, no operation is performed.
2648  *
2649  * Context:
2650  * May sleep if called *not* from interrupt context.
2651  * Must not be called in NMI context (strictly speaking, it could be
2652  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2653  * conventions for vfree() arch-dependent would be a really bad idea).
2654  */
2655 void vfree(const void *addr)
2656 {
2657 	BUG_ON(in_nmi());
2658 
2659 	kmemleak_free(addr);
2660 
2661 	might_sleep_if(!in_interrupt());
2662 
2663 	if (!addr)
2664 		return;
2665 
2666 	__vfree(addr);
2667 }
2668 EXPORT_SYMBOL(vfree);
2669 
2670 /**
2671  * vunmap - release virtual mapping obtained by vmap()
2672  * @addr:   memory base address
2673  *
2674  * Free the virtually contiguous memory area starting at @addr,
2675  * which was created from the page array passed to vmap().
2676  *
2677  * Must not be called in interrupt context.
2678  */
2679 void vunmap(const void *addr)
2680 {
2681 	BUG_ON(in_interrupt());
2682 	might_sleep();
2683 	if (addr)
2684 		__vunmap(addr, 0);
2685 }
2686 EXPORT_SYMBOL(vunmap);
2687 
2688 /**
2689  * vmap - map an array of pages into virtually contiguous space
2690  * @pages: array of page pointers
2691  * @count: number of pages to map
2692  * @flags: vm_area->flags
2693  * @prot: page protection for the mapping
2694  *
2695  * Maps @count pages from @pages into contiguous kernel virtual space.
2696  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2697  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2698  * are transferred from the caller to vmap(), and will be freed / dropped when
2699  * vfree() is called on the return value.
2700  *
2701  * Return: the address of the area or %NULL on failure
2702  */
2703 void *vmap(struct page **pages, unsigned int count,
2704 	   unsigned long flags, pgprot_t prot)
2705 {
2706 	struct vm_struct *area;
2707 	unsigned long addr;
2708 	unsigned long size;		/* In bytes */
2709 
2710 	might_sleep();
2711 
2712 	if (count > totalram_pages())
2713 		return NULL;
2714 
2715 	size = (unsigned long)count << PAGE_SHIFT;
2716 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2717 	if (!area)
2718 		return NULL;
2719 
2720 	addr = (unsigned long)area->addr;
2721 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2722 				pages, PAGE_SHIFT) < 0) {
2723 		vunmap(area->addr);
2724 		return NULL;
2725 	}
2726 
2727 	if (flags & VM_MAP_PUT_PAGES) {
2728 		area->pages = pages;
2729 		area->nr_pages = count;
2730 	}
2731 	return area->addr;
2732 }
2733 EXPORT_SYMBOL(vmap);
2734 
2735 #ifdef CONFIG_VMAP_PFN
2736 struct vmap_pfn_data {
2737 	unsigned long	*pfns;
2738 	pgprot_t	prot;
2739 	unsigned int	idx;
2740 };
2741 
2742 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2743 {
2744 	struct vmap_pfn_data *data = private;
2745 
2746 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2747 		return -EINVAL;
2748 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2749 	return 0;
2750 }
2751 
2752 /**
2753  * vmap_pfn - map an array of PFNs into virtually contiguous space
2754  * @pfns: array of PFNs
2755  * @count: number of pages to map
2756  * @prot: page protection for the mapping
2757  *
2758  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2759  * the start address of the mapping.
2760  */
2761 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2762 {
2763 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2764 	struct vm_struct *area;
2765 
2766 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2767 			__builtin_return_address(0));
2768 	if (!area)
2769 		return NULL;
2770 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2771 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2772 		free_vm_area(area);
2773 		return NULL;
2774 	}
2775 	return area->addr;
2776 }
2777 EXPORT_SYMBOL_GPL(vmap_pfn);
2778 #endif /* CONFIG_VMAP_PFN */
2779 
2780 static inline unsigned int
2781 vm_area_alloc_pages(gfp_t gfp, int nid,
2782 		unsigned int order, unsigned long nr_pages, struct page **pages)
2783 {
2784 	unsigned int nr_allocated = 0;
2785 
2786 	/*
2787 	 * For order-0 pages we make use of bulk allocator, if
2788 	 * the page array is partly or not at all populated due
2789 	 * to fails, fallback to a single page allocator that is
2790 	 * more permissive.
2791 	 */
2792 	if (!order)
2793 		nr_allocated = alloc_pages_bulk_array_node(
2794 			gfp, nid, nr_pages, pages);
2795 	else
2796 		/*
2797 		 * Compound pages required for remap_vmalloc_page if
2798 		 * high-order pages.
2799 		 */
2800 		gfp |= __GFP_COMP;
2801 
2802 	/* High-order pages or fallback path if "bulk" fails. */
2803 	while (nr_allocated < nr_pages) {
2804 		struct page *page;
2805 		int i;
2806 
2807 		page = alloc_pages_node(nid, gfp, order);
2808 		if (unlikely(!page))
2809 			break;
2810 
2811 		/*
2812 		 * Careful, we allocate and map page-order pages, but
2813 		 * tracking is done per PAGE_SIZE page so as to keep the
2814 		 * vm_struct APIs independent of the physical/mapped size.
2815 		 */
2816 		for (i = 0; i < (1U << order); i++)
2817 			pages[nr_allocated + i] = page + i;
2818 
2819 		if (gfpflags_allow_blocking(gfp))
2820 			cond_resched();
2821 
2822 		nr_allocated += 1U << order;
2823 	}
2824 
2825 	return nr_allocated;
2826 }
2827 
2828 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2829 				 pgprot_t prot, unsigned int page_shift,
2830 				 int node)
2831 {
2832 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2833 	unsigned long addr = (unsigned long)area->addr;
2834 	unsigned long size = get_vm_area_size(area);
2835 	unsigned long array_size;
2836 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
2837 	unsigned int page_order;
2838 
2839 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2840 	gfp_mask |= __GFP_NOWARN;
2841 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2842 		gfp_mask |= __GFP_HIGHMEM;
2843 
2844 	/* Please note that the recursion is strictly bounded. */
2845 	if (array_size > PAGE_SIZE) {
2846 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2847 					area->caller);
2848 	} else {
2849 		area->pages = kmalloc_node(array_size, nested_gfp, node);
2850 	}
2851 
2852 	if (!area->pages) {
2853 		warn_alloc(gfp_mask, NULL,
2854 			"vmalloc error: size %lu, failed to allocated page array size %lu",
2855 			nr_small_pages * PAGE_SIZE, array_size);
2856 		free_vm_area(area);
2857 		return NULL;
2858 	}
2859 
2860 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2861 	page_order = vm_area_page_order(area);
2862 
2863 	area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2864 		page_order, nr_small_pages, area->pages);
2865 
2866 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2867 
2868 	/*
2869 	 * If not enough pages were obtained to accomplish an
2870 	 * allocation request, free them via __vfree() if any.
2871 	 */
2872 	if (area->nr_pages != nr_small_pages) {
2873 		warn_alloc(gfp_mask, NULL,
2874 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
2875 			area->nr_pages * PAGE_SIZE, page_order);
2876 		goto fail;
2877 	}
2878 
2879 	if (vmap_pages_range(addr, addr + size, prot, area->pages,
2880 			page_shift) < 0) {
2881 		warn_alloc(gfp_mask, NULL,
2882 			"vmalloc error: size %lu, failed to map pages",
2883 			area->nr_pages * PAGE_SIZE);
2884 		goto fail;
2885 	}
2886 
2887 	return area->addr;
2888 
2889 fail:
2890 	__vfree(area->addr);
2891 	return NULL;
2892 }
2893 
2894 /**
2895  * __vmalloc_node_range - allocate virtually contiguous memory
2896  * @size:		  allocation size
2897  * @align:		  desired alignment
2898  * @start:		  vm area range start
2899  * @end:		  vm area range end
2900  * @gfp_mask:		  flags for the page level allocator
2901  * @prot:		  protection mask for the allocated pages
2902  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2903  * @node:		  node to use for allocation or NUMA_NO_NODE
2904  * @caller:		  caller's return address
2905  *
2906  * Allocate enough pages to cover @size from the page level
2907  * allocator with @gfp_mask flags.  Map them into contiguous
2908  * kernel virtual space, using a pagetable protection of @prot.
2909  *
2910  * Return: the address of the area or %NULL on failure
2911  */
2912 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2913 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2914 			pgprot_t prot, unsigned long vm_flags, int node,
2915 			const void *caller)
2916 {
2917 	struct vm_struct *area;
2918 	void *addr;
2919 	unsigned long real_size = size;
2920 	unsigned long real_align = align;
2921 	unsigned int shift = PAGE_SHIFT;
2922 
2923 	if (WARN_ON_ONCE(!size))
2924 		return NULL;
2925 
2926 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
2927 		warn_alloc(gfp_mask, NULL,
2928 			"vmalloc error: size %lu, exceeds total pages",
2929 			real_size);
2930 		return NULL;
2931 	}
2932 
2933 	if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
2934 		unsigned long size_per_node;
2935 
2936 		/*
2937 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
2938 		 * others like modules don't yet expect huge pages in
2939 		 * their allocations due to apply_to_page_range not
2940 		 * supporting them.
2941 		 */
2942 
2943 		size_per_node = size;
2944 		if (node == NUMA_NO_NODE)
2945 			size_per_node /= num_online_nodes();
2946 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
2947 			shift = PMD_SHIFT;
2948 		else
2949 			shift = arch_vmap_pte_supported_shift(size_per_node);
2950 
2951 		align = max(real_align, 1UL << shift);
2952 		size = ALIGN(real_size, 1UL << shift);
2953 	}
2954 
2955 again:
2956 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
2957 				  VM_UNINITIALIZED | vm_flags, start, end, node,
2958 				  gfp_mask, caller);
2959 	if (!area) {
2960 		warn_alloc(gfp_mask, NULL,
2961 			"vmalloc error: size %lu, vm_struct allocation failed",
2962 			real_size);
2963 		goto fail;
2964 	}
2965 
2966 	addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
2967 	if (!addr)
2968 		goto fail;
2969 
2970 	/*
2971 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2972 	 * flag. It means that vm_struct is not fully initialized.
2973 	 * Now, it is fully initialized, so remove this flag here.
2974 	 */
2975 	clear_vm_uninitialized_flag(area);
2976 
2977 	size = PAGE_ALIGN(size);
2978 	kmemleak_vmalloc(area, size, gfp_mask);
2979 
2980 	return addr;
2981 
2982 fail:
2983 	if (shift > PAGE_SHIFT) {
2984 		shift = PAGE_SHIFT;
2985 		align = real_align;
2986 		size = real_size;
2987 		goto again;
2988 	}
2989 
2990 	return NULL;
2991 }
2992 
2993 /**
2994  * __vmalloc_node - allocate virtually contiguous memory
2995  * @size:	    allocation size
2996  * @align:	    desired alignment
2997  * @gfp_mask:	    flags for the page level allocator
2998  * @node:	    node to use for allocation or NUMA_NO_NODE
2999  * @caller:	    caller's return address
3000  *
3001  * Allocate enough pages to cover @size from the page level allocator with
3002  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3003  *
3004  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3005  * and __GFP_NOFAIL are not supported
3006  *
3007  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3008  * with mm people.
3009  *
3010  * Return: pointer to the allocated memory or %NULL on error
3011  */
3012 void *__vmalloc_node(unsigned long size, unsigned long align,
3013 			    gfp_t gfp_mask, int node, const void *caller)
3014 {
3015 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3016 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3017 }
3018 /*
3019  * This is only for performance analysis of vmalloc and stress purpose.
3020  * It is required by vmalloc test module, therefore do not use it other
3021  * than that.
3022  */
3023 #ifdef CONFIG_TEST_VMALLOC_MODULE
3024 EXPORT_SYMBOL_GPL(__vmalloc_node);
3025 #endif
3026 
3027 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3028 {
3029 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3030 				__builtin_return_address(0));
3031 }
3032 EXPORT_SYMBOL(__vmalloc);
3033 
3034 /**
3035  * vmalloc - allocate virtually contiguous memory
3036  * @size:    allocation size
3037  *
3038  * Allocate enough pages to cover @size from the page level
3039  * allocator and map them into contiguous kernel virtual space.
3040  *
3041  * For tight control over page level allocator and protection flags
3042  * use __vmalloc() instead.
3043  *
3044  * Return: pointer to the allocated memory or %NULL on error
3045  */
3046 void *vmalloc(unsigned long size)
3047 {
3048 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3049 				__builtin_return_address(0));
3050 }
3051 EXPORT_SYMBOL(vmalloc);
3052 
3053 /**
3054  * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3055  * @size:    allocation size
3056  *
3057  * Allocate enough non-huge pages to cover @size from the page level
3058  * allocator and map them into contiguous kernel virtual space.
3059  *
3060  * Return: pointer to the allocated memory or %NULL on error
3061  */
3062 void *vmalloc_no_huge(unsigned long size)
3063 {
3064 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3065 				    GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3066 				    NUMA_NO_NODE, __builtin_return_address(0));
3067 }
3068 EXPORT_SYMBOL(vmalloc_no_huge);
3069 
3070 /**
3071  * vzalloc - allocate virtually contiguous memory with zero fill
3072  * @size:    allocation size
3073  *
3074  * Allocate enough pages to cover @size from the page level
3075  * allocator and map them into contiguous kernel virtual space.
3076  * The memory allocated is set to zero.
3077  *
3078  * For tight control over page level allocator and protection flags
3079  * use __vmalloc() instead.
3080  *
3081  * Return: pointer to the allocated memory or %NULL on error
3082  */
3083 void *vzalloc(unsigned long size)
3084 {
3085 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3086 				__builtin_return_address(0));
3087 }
3088 EXPORT_SYMBOL(vzalloc);
3089 
3090 /**
3091  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3092  * @size: allocation size
3093  *
3094  * The resulting memory area is zeroed so it can be mapped to userspace
3095  * without leaking data.
3096  *
3097  * Return: pointer to the allocated memory or %NULL on error
3098  */
3099 void *vmalloc_user(unsigned long size)
3100 {
3101 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3102 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3103 				    VM_USERMAP, NUMA_NO_NODE,
3104 				    __builtin_return_address(0));
3105 }
3106 EXPORT_SYMBOL(vmalloc_user);
3107 
3108 /**
3109  * vmalloc_node - allocate memory on a specific node
3110  * @size:	  allocation size
3111  * @node:	  numa node
3112  *
3113  * Allocate enough pages to cover @size from the page level
3114  * allocator and map them into contiguous kernel virtual space.
3115  *
3116  * For tight control over page level allocator and protection flags
3117  * use __vmalloc() instead.
3118  *
3119  * Return: pointer to the allocated memory or %NULL on error
3120  */
3121 void *vmalloc_node(unsigned long size, int node)
3122 {
3123 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3124 			__builtin_return_address(0));
3125 }
3126 EXPORT_SYMBOL(vmalloc_node);
3127 
3128 /**
3129  * vzalloc_node - allocate memory on a specific node with zero fill
3130  * @size:	allocation size
3131  * @node:	numa node
3132  *
3133  * Allocate enough pages to cover @size from the page level
3134  * allocator and map them into contiguous kernel virtual space.
3135  * The memory allocated is set to zero.
3136  *
3137  * Return: pointer to the allocated memory or %NULL on error
3138  */
3139 void *vzalloc_node(unsigned long size, int node)
3140 {
3141 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3142 				__builtin_return_address(0));
3143 }
3144 EXPORT_SYMBOL(vzalloc_node);
3145 
3146 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3147 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3148 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3149 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3150 #else
3151 /*
3152  * 64b systems should always have either DMA or DMA32 zones. For others
3153  * GFP_DMA32 should do the right thing and use the normal zone.
3154  */
3155 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3156 #endif
3157 
3158 /**
3159  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3160  * @size:	allocation size
3161  *
3162  * Allocate enough 32bit PA addressable pages to cover @size from the
3163  * page level allocator and map them into contiguous kernel virtual space.
3164  *
3165  * Return: pointer to the allocated memory or %NULL on error
3166  */
3167 void *vmalloc_32(unsigned long size)
3168 {
3169 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3170 			__builtin_return_address(0));
3171 }
3172 EXPORT_SYMBOL(vmalloc_32);
3173 
3174 /**
3175  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3176  * @size:	     allocation size
3177  *
3178  * The resulting memory area is 32bit addressable and zeroed so it can be
3179  * mapped to userspace without leaking data.
3180  *
3181  * Return: pointer to the allocated memory or %NULL on error
3182  */
3183 void *vmalloc_32_user(unsigned long size)
3184 {
3185 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3186 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3187 				    VM_USERMAP, NUMA_NO_NODE,
3188 				    __builtin_return_address(0));
3189 }
3190 EXPORT_SYMBOL(vmalloc_32_user);
3191 
3192 /*
3193  * small helper routine , copy contents to buf from addr.
3194  * If the page is not present, fill zero.
3195  */
3196 
3197 static int aligned_vread(char *buf, char *addr, unsigned long count)
3198 {
3199 	struct page *p;
3200 	int copied = 0;
3201 
3202 	while (count) {
3203 		unsigned long offset, length;
3204 
3205 		offset = offset_in_page(addr);
3206 		length = PAGE_SIZE - offset;
3207 		if (length > count)
3208 			length = count;
3209 		p = vmalloc_to_page(addr);
3210 		/*
3211 		 * To do safe access to this _mapped_ area, we need
3212 		 * lock. But adding lock here means that we need to add
3213 		 * overhead of vmalloc()/vfree() calls for this _debug_
3214 		 * interface, rarely used. Instead of that, we'll use
3215 		 * kmap() and get small overhead in this access function.
3216 		 */
3217 		if (p) {
3218 			/* We can expect USER0 is not used -- see vread() */
3219 			void *map = kmap_atomic(p);
3220 			memcpy(buf, map + offset, length);
3221 			kunmap_atomic(map);
3222 		} else
3223 			memset(buf, 0, length);
3224 
3225 		addr += length;
3226 		buf += length;
3227 		copied += length;
3228 		count -= length;
3229 	}
3230 	return copied;
3231 }
3232 
3233 /**
3234  * vread() - read vmalloc area in a safe way.
3235  * @buf:     buffer for reading data
3236  * @addr:    vm address.
3237  * @count:   number of bytes to be read.
3238  *
3239  * This function checks that addr is a valid vmalloc'ed area, and
3240  * copy data from that area to a given buffer. If the given memory range
3241  * of [addr...addr+count) includes some valid address, data is copied to
3242  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3243  * IOREMAP area is treated as memory hole and no copy is done.
3244  *
3245  * If [addr...addr+count) doesn't includes any intersects with alive
3246  * vm_struct area, returns 0. @buf should be kernel's buffer.
3247  *
3248  * Note: In usual ops, vread() is never necessary because the caller
3249  * should know vmalloc() area is valid and can use memcpy().
3250  * This is for routines which have to access vmalloc area without
3251  * any information, as /proc/kcore.
3252  *
3253  * Return: number of bytes for which addr and buf should be increased
3254  * (same number as @count) or %0 if [addr...addr+count) doesn't
3255  * include any intersection with valid vmalloc area
3256  */
3257 long vread(char *buf, char *addr, unsigned long count)
3258 {
3259 	struct vmap_area *va;
3260 	struct vm_struct *vm;
3261 	char *vaddr, *buf_start = buf;
3262 	unsigned long buflen = count;
3263 	unsigned long n;
3264 
3265 	/* Don't allow overflow */
3266 	if ((unsigned long) addr + count < count)
3267 		count = -(unsigned long) addr;
3268 
3269 	spin_lock(&vmap_area_lock);
3270 	va = __find_vmap_area((unsigned long)addr);
3271 	if (!va)
3272 		goto finished;
3273 	list_for_each_entry_from(va, &vmap_area_list, list) {
3274 		if (!count)
3275 			break;
3276 
3277 		if (!va->vm)
3278 			continue;
3279 
3280 		vm = va->vm;
3281 		vaddr = (char *) vm->addr;
3282 		if (addr >= vaddr + get_vm_area_size(vm))
3283 			continue;
3284 		while (addr < vaddr) {
3285 			if (count == 0)
3286 				goto finished;
3287 			*buf = '\0';
3288 			buf++;
3289 			addr++;
3290 			count--;
3291 		}
3292 		n = vaddr + get_vm_area_size(vm) - addr;
3293 		if (n > count)
3294 			n = count;
3295 		if (!(vm->flags & VM_IOREMAP))
3296 			aligned_vread(buf, addr, n);
3297 		else /* IOREMAP area is treated as memory hole */
3298 			memset(buf, 0, n);
3299 		buf += n;
3300 		addr += n;
3301 		count -= n;
3302 	}
3303 finished:
3304 	spin_unlock(&vmap_area_lock);
3305 
3306 	if (buf == buf_start)
3307 		return 0;
3308 	/* zero-fill memory holes */
3309 	if (buf != buf_start + buflen)
3310 		memset(buf, 0, buflen - (buf - buf_start));
3311 
3312 	return buflen;
3313 }
3314 
3315 /**
3316  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3317  * @vma:		vma to cover
3318  * @uaddr:		target user address to start at
3319  * @kaddr:		virtual address of vmalloc kernel memory
3320  * @pgoff:		offset from @kaddr to start at
3321  * @size:		size of map area
3322  *
3323  * Returns:	0 for success, -Exxx on failure
3324  *
3325  * This function checks that @kaddr is a valid vmalloc'ed area,
3326  * and that it is big enough to cover the range starting at
3327  * @uaddr in @vma. Will return failure if that criteria isn't
3328  * met.
3329  *
3330  * Similar to remap_pfn_range() (see mm/memory.c)
3331  */
3332 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3333 				void *kaddr, unsigned long pgoff,
3334 				unsigned long size)
3335 {
3336 	struct vm_struct *area;
3337 	unsigned long off;
3338 	unsigned long end_index;
3339 
3340 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3341 		return -EINVAL;
3342 
3343 	size = PAGE_ALIGN(size);
3344 
3345 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3346 		return -EINVAL;
3347 
3348 	area = find_vm_area(kaddr);
3349 	if (!area)
3350 		return -EINVAL;
3351 
3352 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3353 		return -EINVAL;
3354 
3355 	if (check_add_overflow(size, off, &end_index) ||
3356 	    end_index > get_vm_area_size(area))
3357 		return -EINVAL;
3358 	kaddr += off;
3359 
3360 	do {
3361 		struct page *page = vmalloc_to_page(kaddr);
3362 		int ret;
3363 
3364 		ret = vm_insert_page(vma, uaddr, page);
3365 		if (ret)
3366 			return ret;
3367 
3368 		uaddr += PAGE_SIZE;
3369 		kaddr += PAGE_SIZE;
3370 		size -= PAGE_SIZE;
3371 	} while (size > 0);
3372 
3373 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3374 
3375 	return 0;
3376 }
3377 
3378 /**
3379  * remap_vmalloc_range - map vmalloc pages to userspace
3380  * @vma:		vma to cover (map full range of vma)
3381  * @addr:		vmalloc memory
3382  * @pgoff:		number of pages into addr before first page to map
3383  *
3384  * Returns:	0 for success, -Exxx on failure
3385  *
3386  * This function checks that addr is a valid vmalloc'ed area, and
3387  * that it is big enough to cover the vma. Will return failure if
3388  * that criteria isn't met.
3389  *
3390  * Similar to remap_pfn_range() (see mm/memory.c)
3391  */
3392 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3393 						unsigned long pgoff)
3394 {
3395 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3396 					   addr, pgoff,
3397 					   vma->vm_end - vma->vm_start);
3398 }
3399 EXPORT_SYMBOL(remap_vmalloc_range);
3400 
3401 void free_vm_area(struct vm_struct *area)
3402 {
3403 	struct vm_struct *ret;
3404 	ret = remove_vm_area(area->addr);
3405 	BUG_ON(ret != area);
3406 	kfree(area);
3407 }
3408 EXPORT_SYMBOL_GPL(free_vm_area);
3409 
3410 #ifdef CONFIG_SMP
3411 static struct vmap_area *node_to_va(struct rb_node *n)
3412 {
3413 	return rb_entry_safe(n, struct vmap_area, rb_node);
3414 }
3415 
3416 /**
3417  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3418  * @addr: target address
3419  *
3420  * Returns: vmap_area if it is found. If there is no such area
3421  *   the first highest(reverse order) vmap_area is returned
3422  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3423  *   if there are no any areas before @addr.
3424  */
3425 static struct vmap_area *
3426 pvm_find_va_enclose_addr(unsigned long addr)
3427 {
3428 	struct vmap_area *va, *tmp;
3429 	struct rb_node *n;
3430 
3431 	n = free_vmap_area_root.rb_node;
3432 	va = NULL;
3433 
3434 	while (n) {
3435 		tmp = rb_entry(n, struct vmap_area, rb_node);
3436 		if (tmp->va_start <= addr) {
3437 			va = tmp;
3438 			if (tmp->va_end >= addr)
3439 				break;
3440 
3441 			n = n->rb_right;
3442 		} else {
3443 			n = n->rb_left;
3444 		}
3445 	}
3446 
3447 	return va;
3448 }
3449 
3450 /**
3451  * pvm_determine_end_from_reverse - find the highest aligned address
3452  * of free block below VMALLOC_END
3453  * @va:
3454  *   in - the VA we start the search(reverse order);
3455  *   out - the VA with the highest aligned end address.
3456  * @align: alignment for required highest address
3457  *
3458  * Returns: determined end address within vmap_area
3459  */
3460 static unsigned long
3461 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3462 {
3463 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3464 	unsigned long addr;
3465 
3466 	if (likely(*va)) {
3467 		list_for_each_entry_from_reverse((*va),
3468 				&free_vmap_area_list, list) {
3469 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3470 			if ((*va)->va_start < addr)
3471 				return addr;
3472 		}
3473 	}
3474 
3475 	return 0;
3476 }
3477 
3478 /**
3479  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3480  * @offsets: array containing offset of each area
3481  * @sizes: array containing size of each area
3482  * @nr_vms: the number of areas to allocate
3483  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3484  *
3485  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3486  *	    vm_structs on success, %NULL on failure
3487  *
3488  * Percpu allocator wants to use congruent vm areas so that it can
3489  * maintain the offsets among percpu areas.  This function allocates
3490  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3491  * be scattered pretty far, distance between two areas easily going up
3492  * to gigabytes.  To avoid interacting with regular vmallocs, these
3493  * areas are allocated from top.
3494  *
3495  * Despite its complicated look, this allocator is rather simple. It
3496  * does everything top-down and scans free blocks from the end looking
3497  * for matching base. While scanning, if any of the areas do not fit the
3498  * base address is pulled down to fit the area. Scanning is repeated till
3499  * all the areas fit and then all necessary data structures are inserted
3500  * and the result is returned.
3501  */
3502 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3503 				     const size_t *sizes, int nr_vms,
3504 				     size_t align)
3505 {
3506 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3507 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3508 	struct vmap_area **vas, *va;
3509 	struct vm_struct **vms;
3510 	int area, area2, last_area, term_area;
3511 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3512 	bool purged = false;
3513 	enum fit_type type;
3514 
3515 	/* verify parameters and allocate data structures */
3516 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3517 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3518 		start = offsets[area];
3519 		end = start + sizes[area];
3520 
3521 		/* is everything aligned properly? */
3522 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3523 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3524 
3525 		/* detect the area with the highest address */
3526 		if (start > offsets[last_area])
3527 			last_area = area;
3528 
3529 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3530 			unsigned long start2 = offsets[area2];
3531 			unsigned long end2 = start2 + sizes[area2];
3532 
3533 			BUG_ON(start2 < end && start < end2);
3534 		}
3535 	}
3536 	last_end = offsets[last_area] + sizes[last_area];
3537 
3538 	if (vmalloc_end - vmalloc_start < last_end) {
3539 		WARN_ON(true);
3540 		return NULL;
3541 	}
3542 
3543 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3544 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3545 	if (!vas || !vms)
3546 		goto err_free2;
3547 
3548 	for (area = 0; area < nr_vms; area++) {
3549 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3550 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3551 		if (!vas[area] || !vms[area])
3552 			goto err_free;
3553 	}
3554 retry:
3555 	spin_lock(&free_vmap_area_lock);
3556 
3557 	/* start scanning - we scan from the top, begin with the last area */
3558 	area = term_area = last_area;
3559 	start = offsets[area];
3560 	end = start + sizes[area];
3561 
3562 	va = pvm_find_va_enclose_addr(vmalloc_end);
3563 	base = pvm_determine_end_from_reverse(&va, align) - end;
3564 
3565 	while (true) {
3566 		/*
3567 		 * base might have underflowed, add last_end before
3568 		 * comparing.
3569 		 */
3570 		if (base + last_end < vmalloc_start + last_end)
3571 			goto overflow;
3572 
3573 		/*
3574 		 * Fitting base has not been found.
3575 		 */
3576 		if (va == NULL)
3577 			goto overflow;
3578 
3579 		/*
3580 		 * If required width exceeds current VA block, move
3581 		 * base downwards and then recheck.
3582 		 */
3583 		if (base + end > va->va_end) {
3584 			base = pvm_determine_end_from_reverse(&va, align) - end;
3585 			term_area = area;
3586 			continue;
3587 		}
3588 
3589 		/*
3590 		 * If this VA does not fit, move base downwards and recheck.
3591 		 */
3592 		if (base + start < va->va_start) {
3593 			va = node_to_va(rb_prev(&va->rb_node));
3594 			base = pvm_determine_end_from_reverse(&va, align) - end;
3595 			term_area = area;
3596 			continue;
3597 		}
3598 
3599 		/*
3600 		 * This area fits, move on to the previous one.  If
3601 		 * the previous one is the terminal one, we're done.
3602 		 */
3603 		area = (area + nr_vms - 1) % nr_vms;
3604 		if (area == term_area)
3605 			break;
3606 
3607 		start = offsets[area];
3608 		end = start + sizes[area];
3609 		va = pvm_find_va_enclose_addr(base + end);
3610 	}
3611 
3612 	/* we've found a fitting base, insert all va's */
3613 	for (area = 0; area < nr_vms; area++) {
3614 		int ret;
3615 
3616 		start = base + offsets[area];
3617 		size = sizes[area];
3618 
3619 		va = pvm_find_va_enclose_addr(start);
3620 		if (WARN_ON_ONCE(va == NULL))
3621 			/* It is a BUG(), but trigger recovery instead. */
3622 			goto recovery;
3623 
3624 		type = classify_va_fit_type(va, start, size);
3625 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3626 			/* It is a BUG(), but trigger recovery instead. */
3627 			goto recovery;
3628 
3629 		ret = adjust_va_to_fit_type(va, start, size, type);
3630 		if (unlikely(ret))
3631 			goto recovery;
3632 
3633 		/* Allocated area. */
3634 		va = vas[area];
3635 		va->va_start = start;
3636 		va->va_end = start + size;
3637 	}
3638 
3639 	spin_unlock(&free_vmap_area_lock);
3640 
3641 	/* populate the kasan shadow space */
3642 	for (area = 0; area < nr_vms; area++) {
3643 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3644 			goto err_free_shadow;
3645 
3646 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3647 				       sizes[area]);
3648 	}
3649 
3650 	/* insert all vm's */
3651 	spin_lock(&vmap_area_lock);
3652 	for (area = 0; area < nr_vms; area++) {
3653 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3654 
3655 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3656 				 pcpu_get_vm_areas);
3657 	}
3658 	spin_unlock(&vmap_area_lock);
3659 
3660 	kfree(vas);
3661 	return vms;
3662 
3663 recovery:
3664 	/*
3665 	 * Remove previously allocated areas. There is no
3666 	 * need in removing these areas from the busy tree,
3667 	 * because they are inserted only on the final step
3668 	 * and when pcpu_get_vm_areas() is success.
3669 	 */
3670 	while (area--) {
3671 		orig_start = vas[area]->va_start;
3672 		orig_end = vas[area]->va_end;
3673 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3674 				&free_vmap_area_list);
3675 		if (va)
3676 			kasan_release_vmalloc(orig_start, orig_end,
3677 				va->va_start, va->va_end);
3678 		vas[area] = NULL;
3679 	}
3680 
3681 overflow:
3682 	spin_unlock(&free_vmap_area_lock);
3683 	if (!purged) {
3684 		purge_vmap_area_lazy();
3685 		purged = true;
3686 
3687 		/* Before "retry", check if we recover. */
3688 		for (area = 0; area < nr_vms; area++) {
3689 			if (vas[area])
3690 				continue;
3691 
3692 			vas[area] = kmem_cache_zalloc(
3693 				vmap_area_cachep, GFP_KERNEL);
3694 			if (!vas[area])
3695 				goto err_free;
3696 		}
3697 
3698 		goto retry;
3699 	}
3700 
3701 err_free:
3702 	for (area = 0; area < nr_vms; area++) {
3703 		if (vas[area])
3704 			kmem_cache_free(vmap_area_cachep, vas[area]);
3705 
3706 		kfree(vms[area]);
3707 	}
3708 err_free2:
3709 	kfree(vas);
3710 	kfree(vms);
3711 	return NULL;
3712 
3713 err_free_shadow:
3714 	spin_lock(&free_vmap_area_lock);
3715 	/*
3716 	 * We release all the vmalloc shadows, even the ones for regions that
3717 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3718 	 * being able to tolerate this case.
3719 	 */
3720 	for (area = 0; area < nr_vms; area++) {
3721 		orig_start = vas[area]->va_start;
3722 		orig_end = vas[area]->va_end;
3723 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3724 				&free_vmap_area_list);
3725 		if (va)
3726 			kasan_release_vmalloc(orig_start, orig_end,
3727 				va->va_start, va->va_end);
3728 		vas[area] = NULL;
3729 		kfree(vms[area]);
3730 	}
3731 	spin_unlock(&free_vmap_area_lock);
3732 	kfree(vas);
3733 	kfree(vms);
3734 	return NULL;
3735 }
3736 
3737 /**
3738  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3739  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3740  * @nr_vms: the number of allocated areas
3741  *
3742  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3743  */
3744 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3745 {
3746 	int i;
3747 
3748 	for (i = 0; i < nr_vms; i++)
3749 		free_vm_area(vms[i]);
3750 	kfree(vms);
3751 }
3752 #endif	/* CONFIG_SMP */
3753 
3754 #ifdef CONFIG_PRINTK
3755 bool vmalloc_dump_obj(void *object)
3756 {
3757 	struct vm_struct *vm;
3758 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3759 
3760 	vm = find_vm_area(objp);
3761 	if (!vm)
3762 		return false;
3763 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3764 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3765 	return true;
3766 }
3767 #endif
3768 
3769 #ifdef CONFIG_PROC_FS
3770 static void *s_start(struct seq_file *m, loff_t *pos)
3771 	__acquires(&vmap_purge_lock)
3772 	__acquires(&vmap_area_lock)
3773 {
3774 	mutex_lock(&vmap_purge_lock);
3775 	spin_lock(&vmap_area_lock);
3776 
3777 	return seq_list_start(&vmap_area_list, *pos);
3778 }
3779 
3780 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3781 {
3782 	return seq_list_next(p, &vmap_area_list, pos);
3783 }
3784 
3785 static void s_stop(struct seq_file *m, void *p)
3786 	__releases(&vmap_area_lock)
3787 	__releases(&vmap_purge_lock)
3788 {
3789 	spin_unlock(&vmap_area_lock);
3790 	mutex_unlock(&vmap_purge_lock);
3791 }
3792 
3793 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3794 {
3795 	if (IS_ENABLED(CONFIG_NUMA)) {
3796 		unsigned int nr, *counters = m->private;
3797 
3798 		if (!counters)
3799 			return;
3800 
3801 		if (v->flags & VM_UNINITIALIZED)
3802 			return;
3803 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3804 		smp_rmb();
3805 
3806 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3807 
3808 		for (nr = 0; nr < v->nr_pages; nr++)
3809 			counters[page_to_nid(v->pages[nr])]++;
3810 
3811 		for_each_node_state(nr, N_HIGH_MEMORY)
3812 			if (counters[nr])
3813 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3814 	}
3815 }
3816 
3817 static void show_purge_info(struct seq_file *m)
3818 {
3819 	struct vmap_area *va;
3820 
3821 	spin_lock(&purge_vmap_area_lock);
3822 	list_for_each_entry(va, &purge_vmap_area_list, list) {
3823 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3824 			(void *)va->va_start, (void *)va->va_end,
3825 			va->va_end - va->va_start);
3826 	}
3827 	spin_unlock(&purge_vmap_area_lock);
3828 }
3829 
3830 static int s_show(struct seq_file *m, void *p)
3831 {
3832 	struct vmap_area *va;
3833 	struct vm_struct *v;
3834 
3835 	va = list_entry(p, struct vmap_area, list);
3836 
3837 	/*
3838 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3839 	 * of vmap area is being tear down or vm_map_ram allocation.
3840 	 */
3841 	if (!va->vm) {
3842 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3843 			(void *)va->va_start, (void *)va->va_end,
3844 			va->va_end - va->va_start);
3845 
3846 		return 0;
3847 	}
3848 
3849 	v = va->vm;
3850 
3851 	seq_printf(m, "0x%pK-0x%pK %7ld",
3852 		v->addr, v->addr + v->size, v->size);
3853 
3854 	if (v->caller)
3855 		seq_printf(m, " %pS", v->caller);
3856 
3857 	if (v->nr_pages)
3858 		seq_printf(m, " pages=%d", v->nr_pages);
3859 
3860 	if (v->phys_addr)
3861 		seq_printf(m, " phys=%pa", &v->phys_addr);
3862 
3863 	if (v->flags & VM_IOREMAP)
3864 		seq_puts(m, " ioremap");
3865 
3866 	if (v->flags & VM_ALLOC)
3867 		seq_puts(m, " vmalloc");
3868 
3869 	if (v->flags & VM_MAP)
3870 		seq_puts(m, " vmap");
3871 
3872 	if (v->flags & VM_USERMAP)
3873 		seq_puts(m, " user");
3874 
3875 	if (v->flags & VM_DMA_COHERENT)
3876 		seq_puts(m, " dma-coherent");
3877 
3878 	if (is_vmalloc_addr(v->pages))
3879 		seq_puts(m, " vpages");
3880 
3881 	show_numa_info(m, v);
3882 	seq_putc(m, '\n');
3883 
3884 	/*
3885 	 * As a final step, dump "unpurged" areas.
3886 	 */
3887 	if (list_is_last(&va->list, &vmap_area_list))
3888 		show_purge_info(m);
3889 
3890 	return 0;
3891 }
3892 
3893 static const struct seq_operations vmalloc_op = {
3894 	.start = s_start,
3895 	.next = s_next,
3896 	.stop = s_stop,
3897 	.show = s_show,
3898 };
3899 
3900 static int __init proc_vmalloc_init(void)
3901 {
3902 	if (IS_ENABLED(CONFIG_NUMA))
3903 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3904 				&vmalloc_op,
3905 				nr_node_ids * sizeof(unsigned int), NULL);
3906 	else
3907 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3908 	return 0;
3909 }
3910 module_init(proc_vmalloc_init);
3911 
3912 #endif
3913