1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 1993 Linus Torvalds 4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 7 * Numa awareness, Christoph Lameter, SGI, June 2005 8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched/signal.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/set_memory.h> 22 #include <linux/debugobjects.h> 23 #include <linux/kallsyms.h> 24 #include <linux/list.h> 25 #include <linux/notifier.h> 26 #include <linux/rbtree.h> 27 #include <linux/xarray.h> 28 #include <linux/io.h> 29 #include <linux/rcupdate.h> 30 #include <linux/pfn.h> 31 #include <linux/kmemleak.h> 32 #include <linux/atomic.h> 33 #include <linux/compiler.h> 34 #include <linux/llist.h> 35 #include <linux/bitops.h> 36 #include <linux/rbtree_augmented.h> 37 #include <linux/overflow.h> 38 #include <linux/pgtable.h> 39 #include <linux/uaccess.h> 40 #include <linux/hugetlb.h> 41 #include <asm/tlbflush.h> 42 #include <asm/shmparam.h> 43 44 #include "internal.h" 45 #include "pgalloc-track.h" 46 47 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 48 static bool __ro_after_init vmap_allow_huge = true; 49 50 static int __init set_nohugevmalloc(char *str) 51 { 52 vmap_allow_huge = false; 53 return 0; 54 } 55 early_param("nohugevmalloc", set_nohugevmalloc); 56 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 57 static const bool vmap_allow_huge = false; 58 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ 59 60 bool is_vmalloc_addr(const void *x) 61 { 62 unsigned long addr = (unsigned long)x; 63 64 return addr >= VMALLOC_START && addr < VMALLOC_END; 65 } 66 EXPORT_SYMBOL(is_vmalloc_addr); 67 68 struct vfree_deferred { 69 struct llist_head list; 70 struct work_struct wq; 71 }; 72 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 73 74 static void __vunmap(const void *, int); 75 76 static void free_work(struct work_struct *w) 77 { 78 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 79 struct llist_node *t, *llnode; 80 81 llist_for_each_safe(llnode, t, llist_del_all(&p->list)) 82 __vunmap((void *)llnode, 1); 83 } 84 85 /*** Page table manipulation functions ***/ 86 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 87 phys_addr_t phys_addr, pgprot_t prot, 88 unsigned int max_page_shift, pgtbl_mod_mask *mask) 89 { 90 pte_t *pte; 91 u64 pfn; 92 unsigned long size = PAGE_SIZE; 93 94 pfn = phys_addr >> PAGE_SHIFT; 95 pte = pte_alloc_kernel_track(pmd, addr, mask); 96 if (!pte) 97 return -ENOMEM; 98 do { 99 BUG_ON(!pte_none(*pte)); 100 101 #ifdef CONFIG_HUGETLB_PAGE 102 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); 103 if (size != PAGE_SIZE) { 104 pte_t entry = pfn_pte(pfn, prot); 105 106 entry = pte_mkhuge(entry); 107 entry = arch_make_huge_pte(entry, ilog2(size), 0); 108 set_huge_pte_at(&init_mm, addr, pte, entry); 109 pfn += PFN_DOWN(size); 110 continue; 111 } 112 #endif 113 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); 114 pfn++; 115 } while (pte += PFN_DOWN(size), addr += size, addr != end); 116 *mask |= PGTBL_PTE_MODIFIED; 117 return 0; 118 } 119 120 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, 121 phys_addr_t phys_addr, pgprot_t prot, 122 unsigned int max_page_shift) 123 { 124 if (max_page_shift < PMD_SHIFT) 125 return 0; 126 127 if (!arch_vmap_pmd_supported(prot)) 128 return 0; 129 130 if ((end - addr) != PMD_SIZE) 131 return 0; 132 133 if (!IS_ALIGNED(addr, PMD_SIZE)) 134 return 0; 135 136 if (!IS_ALIGNED(phys_addr, PMD_SIZE)) 137 return 0; 138 139 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) 140 return 0; 141 142 return pmd_set_huge(pmd, phys_addr, prot); 143 } 144 145 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 146 phys_addr_t phys_addr, pgprot_t prot, 147 unsigned int max_page_shift, pgtbl_mod_mask *mask) 148 { 149 pmd_t *pmd; 150 unsigned long next; 151 152 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 153 if (!pmd) 154 return -ENOMEM; 155 do { 156 next = pmd_addr_end(addr, end); 157 158 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, 159 max_page_shift)) { 160 *mask |= PGTBL_PMD_MODIFIED; 161 continue; 162 } 163 164 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) 165 return -ENOMEM; 166 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); 167 return 0; 168 } 169 170 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, 171 phys_addr_t phys_addr, pgprot_t prot, 172 unsigned int max_page_shift) 173 { 174 if (max_page_shift < PUD_SHIFT) 175 return 0; 176 177 if (!arch_vmap_pud_supported(prot)) 178 return 0; 179 180 if ((end - addr) != PUD_SIZE) 181 return 0; 182 183 if (!IS_ALIGNED(addr, PUD_SIZE)) 184 return 0; 185 186 if (!IS_ALIGNED(phys_addr, PUD_SIZE)) 187 return 0; 188 189 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) 190 return 0; 191 192 return pud_set_huge(pud, phys_addr, prot); 193 } 194 195 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 196 phys_addr_t phys_addr, pgprot_t prot, 197 unsigned int max_page_shift, pgtbl_mod_mask *mask) 198 { 199 pud_t *pud; 200 unsigned long next; 201 202 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 203 if (!pud) 204 return -ENOMEM; 205 do { 206 next = pud_addr_end(addr, end); 207 208 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, 209 max_page_shift)) { 210 *mask |= PGTBL_PUD_MODIFIED; 211 continue; 212 } 213 214 if (vmap_pmd_range(pud, addr, next, phys_addr, prot, 215 max_page_shift, mask)) 216 return -ENOMEM; 217 } while (pud++, phys_addr += (next - addr), addr = next, addr != end); 218 return 0; 219 } 220 221 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, 222 phys_addr_t phys_addr, pgprot_t prot, 223 unsigned int max_page_shift) 224 { 225 if (max_page_shift < P4D_SHIFT) 226 return 0; 227 228 if (!arch_vmap_p4d_supported(prot)) 229 return 0; 230 231 if ((end - addr) != P4D_SIZE) 232 return 0; 233 234 if (!IS_ALIGNED(addr, P4D_SIZE)) 235 return 0; 236 237 if (!IS_ALIGNED(phys_addr, P4D_SIZE)) 238 return 0; 239 240 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) 241 return 0; 242 243 return p4d_set_huge(p4d, phys_addr, prot); 244 } 245 246 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 247 phys_addr_t phys_addr, pgprot_t prot, 248 unsigned int max_page_shift, pgtbl_mod_mask *mask) 249 { 250 p4d_t *p4d; 251 unsigned long next; 252 253 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 254 if (!p4d) 255 return -ENOMEM; 256 do { 257 next = p4d_addr_end(addr, end); 258 259 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, 260 max_page_shift)) { 261 *mask |= PGTBL_P4D_MODIFIED; 262 continue; 263 } 264 265 if (vmap_pud_range(p4d, addr, next, phys_addr, prot, 266 max_page_shift, mask)) 267 return -ENOMEM; 268 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); 269 return 0; 270 } 271 272 static int vmap_range_noflush(unsigned long addr, unsigned long end, 273 phys_addr_t phys_addr, pgprot_t prot, 274 unsigned int max_page_shift) 275 { 276 pgd_t *pgd; 277 unsigned long start; 278 unsigned long next; 279 int err; 280 pgtbl_mod_mask mask = 0; 281 282 might_sleep(); 283 BUG_ON(addr >= end); 284 285 start = addr; 286 pgd = pgd_offset_k(addr); 287 do { 288 next = pgd_addr_end(addr, end); 289 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, 290 max_page_shift, &mask); 291 if (err) 292 break; 293 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); 294 295 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 296 arch_sync_kernel_mappings(start, end); 297 298 return err; 299 } 300 301 int vmap_range(unsigned long addr, unsigned long end, 302 phys_addr_t phys_addr, pgprot_t prot, 303 unsigned int max_page_shift) 304 { 305 int err; 306 307 err = vmap_range_noflush(addr, end, phys_addr, prot, max_page_shift); 308 flush_cache_vmap(addr, end); 309 310 return err; 311 } 312 313 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 314 pgtbl_mod_mask *mask) 315 { 316 pte_t *pte; 317 318 pte = pte_offset_kernel(pmd, addr); 319 do { 320 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 321 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 322 } while (pte++, addr += PAGE_SIZE, addr != end); 323 *mask |= PGTBL_PTE_MODIFIED; 324 } 325 326 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 327 pgtbl_mod_mask *mask) 328 { 329 pmd_t *pmd; 330 unsigned long next; 331 int cleared; 332 333 pmd = pmd_offset(pud, addr); 334 do { 335 next = pmd_addr_end(addr, end); 336 337 cleared = pmd_clear_huge(pmd); 338 if (cleared || pmd_bad(*pmd)) 339 *mask |= PGTBL_PMD_MODIFIED; 340 341 if (cleared) 342 continue; 343 if (pmd_none_or_clear_bad(pmd)) 344 continue; 345 vunmap_pte_range(pmd, addr, next, mask); 346 347 cond_resched(); 348 } while (pmd++, addr = next, addr != end); 349 } 350 351 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 352 pgtbl_mod_mask *mask) 353 { 354 pud_t *pud; 355 unsigned long next; 356 int cleared; 357 358 pud = pud_offset(p4d, addr); 359 do { 360 next = pud_addr_end(addr, end); 361 362 cleared = pud_clear_huge(pud); 363 if (cleared || pud_bad(*pud)) 364 *mask |= PGTBL_PUD_MODIFIED; 365 366 if (cleared) 367 continue; 368 if (pud_none_or_clear_bad(pud)) 369 continue; 370 vunmap_pmd_range(pud, addr, next, mask); 371 } while (pud++, addr = next, addr != end); 372 } 373 374 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 375 pgtbl_mod_mask *mask) 376 { 377 p4d_t *p4d; 378 unsigned long next; 379 int cleared; 380 381 p4d = p4d_offset(pgd, addr); 382 do { 383 next = p4d_addr_end(addr, end); 384 385 cleared = p4d_clear_huge(p4d); 386 if (cleared || p4d_bad(*p4d)) 387 *mask |= PGTBL_P4D_MODIFIED; 388 389 if (cleared) 390 continue; 391 if (p4d_none_or_clear_bad(p4d)) 392 continue; 393 vunmap_pud_range(p4d, addr, next, mask); 394 } while (p4d++, addr = next, addr != end); 395 } 396 397 /* 398 * vunmap_range_noflush is similar to vunmap_range, but does not 399 * flush caches or TLBs. 400 * 401 * The caller is responsible for calling flush_cache_vmap() before calling 402 * this function, and flush_tlb_kernel_range after it has returned 403 * successfully (and before the addresses are expected to cause a page fault 404 * or be re-mapped for something else, if TLB flushes are being delayed or 405 * coalesced). 406 * 407 * This is an internal function only. Do not use outside mm/. 408 */ 409 void vunmap_range_noflush(unsigned long start, unsigned long end) 410 { 411 unsigned long next; 412 pgd_t *pgd; 413 unsigned long addr = start; 414 pgtbl_mod_mask mask = 0; 415 416 BUG_ON(addr >= end); 417 pgd = pgd_offset_k(addr); 418 do { 419 next = pgd_addr_end(addr, end); 420 if (pgd_bad(*pgd)) 421 mask |= PGTBL_PGD_MODIFIED; 422 if (pgd_none_or_clear_bad(pgd)) 423 continue; 424 vunmap_p4d_range(pgd, addr, next, &mask); 425 } while (pgd++, addr = next, addr != end); 426 427 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 428 arch_sync_kernel_mappings(start, end); 429 } 430 431 /** 432 * vunmap_range - unmap kernel virtual addresses 433 * @addr: start of the VM area to unmap 434 * @end: end of the VM area to unmap (non-inclusive) 435 * 436 * Clears any present PTEs in the virtual address range, flushes TLBs and 437 * caches. Any subsequent access to the address before it has been re-mapped 438 * is a kernel bug. 439 */ 440 void vunmap_range(unsigned long addr, unsigned long end) 441 { 442 flush_cache_vunmap(addr, end); 443 vunmap_range_noflush(addr, end); 444 flush_tlb_kernel_range(addr, end); 445 } 446 447 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, 448 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 449 pgtbl_mod_mask *mask) 450 { 451 pte_t *pte; 452 453 /* 454 * nr is a running index into the array which helps higher level 455 * callers keep track of where we're up to. 456 */ 457 458 pte = pte_alloc_kernel_track(pmd, addr, mask); 459 if (!pte) 460 return -ENOMEM; 461 do { 462 struct page *page = pages[*nr]; 463 464 if (WARN_ON(!pte_none(*pte))) 465 return -EBUSY; 466 if (WARN_ON(!page)) 467 return -ENOMEM; 468 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 469 (*nr)++; 470 } while (pte++, addr += PAGE_SIZE, addr != end); 471 *mask |= PGTBL_PTE_MODIFIED; 472 return 0; 473 } 474 475 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, 476 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 477 pgtbl_mod_mask *mask) 478 { 479 pmd_t *pmd; 480 unsigned long next; 481 482 pmd = pmd_alloc_track(&init_mm, pud, addr, mask); 483 if (!pmd) 484 return -ENOMEM; 485 do { 486 next = pmd_addr_end(addr, end); 487 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) 488 return -ENOMEM; 489 } while (pmd++, addr = next, addr != end); 490 return 0; 491 } 492 493 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, 494 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 495 pgtbl_mod_mask *mask) 496 { 497 pud_t *pud; 498 unsigned long next; 499 500 pud = pud_alloc_track(&init_mm, p4d, addr, mask); 501 if (!pud) 502 return -ENOMEM; 503 do { 504 next = pud_addr_end(addr, end); 505 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) 506 return -ENOMEM; 507 } while (pud++, addr = next, addr != end); 508 return 0; 509 } 510 511 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, 512 unsigned long end, pgprot_t prot, struct page **pages, int *nr, 513 pgtbl_mod_mask *mask) 514 { 515 p4d_t *p4d; 516 unsigned long next; 517 518 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); 519 if (!p4d) 520 return -ENOMEM; 521 do { 522 next = p4d_addr_end(addr, end); 523 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) 524 return -ENOMEM; 525 } while (p4d++, addr = next, addr != end); 526 return 0; 527 } 528 529 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, 530 pgprot_t prot, struct page **pages) 531 { 532 unsigned long start = addr; 533 pgd_t *pgd; 534 unsigned long next; 535 int err = 0; 536 int nr = 0; 537 pgtbl_mod_mask mask = 0; 538 539 BUG_ON(addr >= end); 540 pgd = pgd_offset_k(addr); 541 do { 542 next = pgd_addr_end(addr, end); 543 if (pgd_bad(*pgd)) 544 mask |= PGTBL_PGD_MODIFIED; 545 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); 546 if (err) 547 return err; 548 } while (pgd++, addr = next, addr != end); 549 550 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 551 arch_sync_kernel_mappings(start, end); 552 553 return 0; 554 } 555 556 /* 557 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not 558 * flush caches. 559 * 560 * The caller is responsible for calling flush_cache_vmap() after this 561 * function returns successfully and before the addresses are accessed. 562 * 563 * This is an internal function only. Do not use outside mm/. 564 */ 565 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 566 pgprot_t prot, struct page **pages, unsigned int page_shift) 567 { 568 unsigned int i, nr = (end - addr) >> PAGE_SHIFT; 569 570 WARN_ON(page_shift < PAGE_SHIFT); 571 572 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || 573 page_shift == PAGE_SHIFT) 574 return vmap_small_pages_range_noflush(addr, end, prot, pages); 575 576 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { 577 int err; 578 579 err = vmap_range_noflush(addr, addr + (1UL << page_shift), 580 __pa(page_address(pages[i])), prot, 581 page_shift); 582 if (err) 583 return err; 584 585 addr += 1UL << page_shift; 586 } 587 588 return 0; 589 } 590 591 /** 592 * vmap_pages_range - map pages to a kernel virtual address 593 * @addr: start of the VM area to map 594 * @end: end of the VM area to map (non-inclusive) 595 * @prot: page protection flags to use 596 * @pages: pages to map (always PAGE_SIZE pages) 597 * @page_shift: maximum shift that the pages may be mapped with, @pages must 598 * be aligned and contiguous up to at least this shift. 599 * 600 * RETURNS: 601 * 0 on success, -errno on failure. 602 */ 603 static int vmap_pages_range(unsigned long addr, unsigned long end, 604 pgprot_t prot, struct page **pages, unsigned int page_shift) 605 { 606 int err; 607 608 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); 609 flush_cache_vmap(addr, end); 610 return err; 611 } 612 613 int is_vmalloc_or_module_addr(const void *x) 614 { 615 /* 616 * ARM, x86-64 and sparc64 put modules in a special place, 617 * and fall back on vmalloc() if that fails. Others 618 * just put it in the vmalloc space. 619 */ 620 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 621 unsigned long addr = (unsigned long)x; 622 if (addr >= MODULES_VADDR && addr < MODULES_END) 623 return 1; 624 #endif 625 return is_vmalloc_addr(x); 626 } 627 628 /* 629 * Walk a vmap address to the struct page it maps. Huge vmap mappings will 630 * return the tail page that corresponds to the base page address, which 631 * matches small vmap mappings. 632 */ 633 struct page *vmalloc_to_page(const void *vmalloc_addr) 634 { 635 unsigned long addr = (unsigned long) vmalloc_addr; 636 struct page *page = NULL; 637 pgd_t *pgd = pgd_offset_k(addr); 638 p4d_t *p4d; 639 pud_t *pud; 640 pmd_t *pmd; 641 pte_t *ptep, pte; 642 643 /* 644 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 645 * architectures that do not vmalloc module space 646 */ 647 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 648 649 if (pgd_none(*pgd)) 650 return NULL; 651 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 652 return NULL; /* XXX: no allowance for huge pgd */ 653 if (WARN_ON_ONCE(pgd_bad(*pgd))) 654 return NULL; 655 656 p4d = p4d_offset(pgd, addr); 657 if (p4d_none(*p4d)) 658 return NULL; 659 if (p4d_leaf(*p4d)) 660 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); 661 if (WARN_ON_ONCE(p4d_bad(*p4d))) 662 return NULL; 663 664 pud = pud_offset(p4d, addr); 665 if (pud_none(*pud)) 666 return NULL; 667 if (pud_leaf(*pud)) 668 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 669 if (WARN_ON_ONCE(pud_bad(*pud))) 670 return NULL; 671 672 pmd = pmd_offset(pud, addr); 673 if (pmd_none(*pmd)) 674 return NULL; 675 if (pmd_leaf(*pmd)) 676 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 677 if (WARN_ON_ONCE(pmd_bad(*pmd))) 678 return NULL; 679 680 ptep = pte_offset_map(pmd, addr); 681 pte = *ptep; 682 if (pte_present(pte)) 683 page = pte_page(pte); 684 pte_unmap(ptep); 685 686 return page; 687 } 688 EXPORT_SYMBOL(vmalloc_to_page); 689 690 /* 691 * Map a vmalloc()-space virtual address to the physical page frame number. 692 */ 693 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 694 { 695 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 696 } 697 EXPORT_SYMBOL(vmalloc_to_pfn); 698 699 700 /*** Global kva allocator ***/ 701 702 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 703 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 704 705 706 static DEFINE_SPINLOCK(vmap_area_lock); 707 static DEFINE_SPINLOCK(free_vmap_area_lock); 708 /* Export for kexec only */ 709 LIST_HEAD(vmap_area_list); 710 static struct rb_root vmap_area_root = RB_ROOT; 711 static bool vmap_initialized __read_mostly; 712 713 static struct rb_root purge_vmap_area_root = RB_ROOT; 714 static LIST_HEAD(purge_vmap_area_list); 715 static DEFINE_SPINLOCK(purge_vmap_area_lock); 716 717 /* 718 * This kmem_cache is used for vmap_area objects. Instead of 719 * allocating from slab we reuse an object from this cache to 720 * make things faster. Especially in "no edge" splitting of 721 * free block. 722 */ 723 static struct kmem_cache *vmap_area_cachep; 724 725 /* 726 * This linked list is used in pair with free_vmap_area_root. 727 * It gives O(1) access to prev/next to perform fast coalescing. 728 */ 729 static LIST_HEAD(free_vmap_area_list); 730 731 /* 732 * This augment red-black tree represents the free vmap space. 733 * All vmap_area objects in this tree are sorted by va->va_start 734 * address. It is used for allocation and merging when a vmap 735 * object is released. 736 * 737 * Each vmap_area node contains a maximum available free block 738 * of its sub-tree, right or left. Therefore it is possible to 739 * find a lowest match of free area. 740 */ 741 static struct rb_root free_vmap_area_root = RB_ROOT; 742 743 /* 744 * Preload a CPU with one object for "no edge" split case. The 745 * aim is to get rid of allocations from the atomic context, thus 746 * to use more permissive allocation masks. 747 */ 748 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); 749 750 static __always_inline unsigned long 751 va_size(struct vmap_area *va) 752 { 753 return (va->va_end - va->va_start); 754 } 755 756 static __always_inline unsigned long 757 get_subtree_max_size(struct rb_node *node) 758 { 759 struct vmap_area *va; 760 761 va = rb_entry_safe(node, struct vmap_area, rb_node); 762 return va ? va->subtree_max_size : 0; 763 } 764 765 /* 766 * Gets called when remove the node and rotate. 767 */ 768 static __always_inline unsigned long 769 compute_subtree_max_size(struct vmap_area *va) 770 { 771 return max3(va_size(va), 772 get_subtree_max_size(va->rb_node.rb_left), 773 get_subtree_max_size(va->rb_node.rb_right)); 774 } 775 776 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, 777 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) 778 779 static void purge_vmap_area_lazy(void); 780 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); 781 static unsigned long lazy_max_pages(void); 782 783 static atomic_long_t nr_vmalloc_pages; 784 785 unsigned long vmalloc_nr_pages(void) 786 { 787 return atomic_long_read(&nr_vmalloc_pages); 788 } 789 790 static struct vmap_area *__find_vmap_area(unsigned long addr) 791 { 792 struct rb_node *n = vmap_area_root.rb_node; 793 794 while (n) { 795 struct vmap_area *va; 796 797 va = rb_entry(n, struct vmap_area, rb_node); 798 if (addr < va->va_start) 799 n = n->rb_left; 800 else if (addr >= va->va_end) 801 n = n->rb_right; 802 else 803 return va; 804 } 805 806 return NULL; 807 } 808 809 /* 810 * This function returns back addresses of parent node 811 * and its left or right link for further processing. 812 * 813 * Otherwise NULL is returned. In that case all further 814 * steps regarding inserting of conflicting overlap range 815 * have to be declined and actually considered as a bug. 816 */ 817 static __always_inline struct rb_node ** 818 find_va_links(struct vmap_area *va, 819 struct rb_root *root, struct rb_node *from, 820 struct rb_node **parent) 821 { 822 struct vmap_area *tmp_va; 823 struct rb_node **link; 824 825 if (root) { 826 link = &root->rb_node; 827 if (unlikely(!*link)) { 828 *parent = NULL; 829 return link; 830 } 831 } else { 832 link = &from; 833 } 834 835 /* 836 * Go to the bottom of the tree. When we hit the last point 837 * we end up with parent rb_node and correct direction, i name 838 * it link, where the new va->rb_node will be attached to. 839 */ 840 do { 841 tmp_va = rb_entry(*link, struct vmap_area, rb_node); 842 843 /* 844 * During the traversal we also do some sanity check. 845 * Trigger the BUG() if there are sides(left/right) 846 * or full overlaps. 847 */ 848 if (va->va_start < tmp_va->va_end && 849 va->va_end <= tmp_va->va_start) 850 link = &(*link)->rb_left; 851 else if (va->va_end > tmp_va->va_start && 852 va->va_start >= tmp_va->va_end) 853 link = &(*link)->rb_right; 854 else { 855 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", 856 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); 857 858 return NULL; 859 } 860 } while (*link); 861 862 *parent = &tmp_va->rb_node; 863 return link; 864 } 865 866 static __always_inline struct list_head * 867 get_va_next_sibling(struct rb_node *parent, struct rb_node **link) 868 { 869 struct list_head *list; 870 871 if (unlikely(!parent)) 872 /* 873 * The red-black tree where we try to find VA neighbors 874 * before merging or inserting is empty, i.e. it means 875 * there is no free vmap space. Normally it does not 876 * happen but we handle this case anyway. 877 */ 878 return NULL; 879 880 list = &rb_entry(parent, struct vmap_area, rb_node)->list; 881 return (&parent->rb_right == link ? list->next : list); 882 } 883 884 static __always_inline void 885 link_va(struct vmap_area *va, struct rb_root *root, 886 struct rb_node *parent, struct rb_node **link, struct list_head *head) 887 { 888 /* 889 * VA is still not in the list, but we can 890 * identify its future previous list_head node. 891 */ 892 if (likely(parent)) { 893 head = &rb_entry(parent, struct vmap_area, rb_node)->list; 894 if (&parent->rb_right != link) 895 head = head->prev; 896 } 897 898 /* Insert to the rb-tree */ 899 rb_link_node(&va->rb_node, parent, link); 900 if (root == &free_vmap_area_root) { 901 /* 902 * Some explanation here. Just perform simple insertion 903 * to the tree. We do not set va->subtree_max_size to 904 * its current size before calling rb_insert_augmented(). 905 * It is because of we populate the tree from the bottom 906 * to parent levels when the node _is_ in the tree. 907 * 908 * Therefore we set subtree_max_size to zero after insertion, 909 * to let __augment_tree_propagate_from() puts everything to 910 * the correct order later on. 911 */ 912 rb_insert_augmented(&va->rb_node, 913 root, &free_vmap_area_rb_augment_cb); 914 va->subtree_max_size = 0; 915 } else { 916 rb_insert_color(&va->rb_node, root); 917 } 918 919 /* Address-sort this list */ 920 list_add(&va->list, head); 921 } 922 923 static __always_inline void 924 unlink_va(struct vmap_area *va, struct rb_root *root) 925 { 926 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) 927 return; 928 929 if (root == &free_vmap_area_root) 930 rb_erase_augmented(&va->rb_node, 931 root, &free_vmap_area_rb_augment_cb); 932 else 933 rb_erase(&va->rb_node, root); 934 935 list_del(&va->list); 936 RB_CLEAR_NODE(&va->rb_node); 937 } 938 939 #if DEBUG_AUGMENT_PROPAGATE_CHECK 940 static void 941 augment_tree_propagate_check(void) 942 { 943 struct vmap_area *va; 944 unsigned long computed_size; 945 946 list_for_each_entry(va, &free_vmap_area_list, list) { 947 computed_size = compute_subtree_max_size(va); 948 if (computed_size != va->subtree_max_size) 949 pr_emerg("tree is corrupted: %lu, %lu\n", 950 va_size(va), va->subtree_max_size); 951 } 952 } 953 #endif 954 955 /* 956 * This function populates subtree_max_size from bottom to upper 957 * levels starting from VA point. The propagation must be done 958 * when VA size is modified by changing its va_start/va_end. Or 959 * in case of newly inserting of VA to the tree. 960 * 961 * It means that __augment_tree_propagate_from() must be called: 962 * - After VA has been inserted to the tree(free path); 963 * - After VA has been shrunk(allocation path); 964 * - After VA has been increased(merging path). 965 * 966 * Please note that, it does not mean that upper parent nodes 967 * and their subtree_max_size are recalculated all the time up 968 * to the root node. 969 * 970 * 4--8 971 * /\ 972 * / \ 973 * / \ 974 * 2--2 8--8 975 * 976 * For example if we modify the node 4, shrinking it to 2, then 977 * no any modification is required. If we shrink the node 2 to 1 978 * its subtree_max_size is updated only, and set to 1. If we shrink 979 * the node 8 to 6, then its subtree_max_size is set to 6 and parent 980 * node becomes 4--6. 981 */ 982 static __always_inline void 983 augment_tree_propagate_from(struct vmap_area *va) 984 { 985 /* 986 * Populate the tree from bottom towards the root until 987 * the calculated maximum available size of checked node 988 * is equal to its current one. 989 */ 990 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); 991 992 #if DEBUG_AUGMENT_PROPAGATE_CHECK 993 augment_tree_propagate_check(); 994 #endif 995 } 996 997 static void 998 insert_vmap_area(struct vmap_area *va, 999 struct rb_root *root, struct list_head *head) 1000 { 1001 struct rb_node **link; 1002 struct rb_node *parent; 1003 1004 link = find_va_links(va, root, NULL, &parent); 1005 if (link) 1006 link_va(va, root, parent, link, head); 1007 } 1008 1009 static void 1010 insert_vmap_area_augment(struct vmap_area *va, 1011 struct rb_node *from, struct rb_root *root, 1012 struct list_head *head) 1013 { 1014 struct rb_node **link; 1015 struct rb_node *parent; 1016 1017 if (from) 1018 link = find_va_links(va, NULL, from, &parent); 1019 else 1020 link = find_va_links(va, root, NULL, &parent); 1021 1022 if (link) { 1023 link_va(va, root, parent, link, head); 1024 augment_tree_propagate_from(va); 1025 } 1026 } 1027 1028 /* 1029 * Merge de-allocated chunk of VA memory with previous 1030 * and next free blocks. If coalesce is not done a new 1031 * free area is inserted. If VA has been merged, it is 1032 * freed. 1033 * 1034 * Please note, it can return NULL in case of overlap 1035 * ranges, followed by WARN() report. Despite it is a 1036 * buggy behaviour, a system can be alive and keep 1037 * ongoing. 1038 */ 1039 static __always_inline struct vmap_area * 1040 merge_or_add_vmap_area(struct vmap_area *va, 1041 struct rb_root *root, struct list_head *head) 1042 { 1043 struct vmap_area *sibling; 1044 struct list_head *next; 1045 struct rb_node **link; 1046 struct rb_node *parent; 1047 bool merged = false; 1048 1049 /* 1050 * Find a place in the tree where VA potentially will be 1051 * inserted, unless it is merged with its sibling/siblings. 1052 */ 1053 link = find_va_links(va, root, NULL, &parent); 1054 if (!link) 1055 return NULL; 1056 1057 /* 1058 * Get next node of VA to check if merging can be done. 1059 */ 1060 next = get_va_next_sibling(parent, link); 1061 if (unlikely(next == NULL)) 1062 goto insert; 1063 1064 /* 1065 * start end 1066 * | | 1067 * |<------VA------>|<-----Next----->| 1068 * | | 1069 * start end 1070 */ 1071 if (next != head) { 1072 sibling = list_entry(next, struct vmap_area, list); 1073 if (sibling->va_start == va->va_end) { 1074 sibling->va_start = va->va_start; 1075 1076 /* Free vmap_area object. */ 1077 kmem_cache_free(vmap_area_cachep, va); 1078 1079 /* Point to the new merged area. */ 1080 va = sibling; 1081 merged = true; 1082 } 1083 } 1084 1085 /* 1086 * start end 1087 * | | 1088 * |<-----Prev----->|<------VA------>| 1089 * | | 1090 * start end 1091 */ 1092 if (next->prev != head) { 1093 sibling = list_entry(next->prev, struct vmap_area, list); 1094 if (sibling->va_end == va->va_start) { 1095 /* 1096 * If both neighbors are coalesced, it is important 1097 * to unlink the "next" node first, followed by merging 1098 * with "previous" one. Otherwise the tree might not be 1099 * fully populated if a sibling's augmented value is 1100 * "normalized" because of rotation operations. 1101 */ 1102 if (merged) 1103 unlink_va(va, root); 1104 1105 sibling->va_end = va->va_end; 1106 1107 /* Free vmap_area object. */ 1108 kmem_cache_free(vmap_area_cachep, va); 1109 1110 /* Point to the new merged area. */ 1111 va = sibling; 1112 merged = true; 1113 } 1114 } 1115 1116 insert: 1117 if (!merged) 1118 link_va(va, root, parent, link, head); 1119 1120 return va; 1121 } 1122 1123 static __always_inline struct vmap_area * 1124 merge_or_add_vmap_area_augment(struct vmap_area *va, 1125 struct rb_root *root, struct list_head *head) 1126 { 1127 va = merge_or_add_vmap_area(va, root, head); 1128 if (va) 1129 augment_tree_propagate_from(va); 1130 1131 return va; 1132 } 1133 1134 static __always_inline bool 1135 is_within_this_va(struct vmap_area *va, unsigned long size, 1136 unsigned long align, unsigned long vstart) 1137 { 1138 unsigned long nva_start_addr; 1139 1140 if (va->va_start > vstart) 1141 nva_start_addr = ALIGN(va->va_start, align); 1142 else 1143 nva_start_addr = ALIGN(vstart, align); 1144 1145 /* Can be overflowed due to big size or alignment. */ 1146 if (nva_start_addr + size < nva_start_addr || 1147 nva_start_addr < vstart) 1148 return false; 1149 1150 return (nva_start_addr + size <= va->va_end); 1151 } 1152 1153 /* 1154 * Find the first free block(lowest start address) in the tree, 1155 * that will accomplish the request corresponding to passing 1156 * parameters. 1157 */ 1158 static __always_inline struct vmap_area * 1159 find_vmap_lowest_match(unsigned long size, 1160 unsigned long align, unsigned long vstart) 1161 { 1162 struct vmap_area *va; 1163 struct rb_node *node; 1164 unsigned long length; 1165 1166 /* Start from the root. */ 1167 node = free_vmap_area_root.rb_node; 1168 1169 /* Adjust the search size for alignment overhead. */ 1170 length = size + align - 1; 1171 1172 while (node) { 1173 va = rb_entry(node, struct vmap_area, rb_node); 1174 1175 if (get_subtree_max_size(node->rb_left) >= length && 1176 vstart < va->va_start) { 1177 node = node->rb_left; 1178 } else { 1179 if (is_within_this_va(va, size, align, vstart)) 1180 return va; 1181 1182 /* 1183 * Does not make sense to go deeper towards the right 1184 * sub-tree if it does not have a free block that is 1185 * equal or bigger to the requested search length. 1186 */ 1187 if (get_subtree_max_size(node->rb_right) >= length) { 1188 node = node->rb_right; 1189 continue; 1190 } 1191 1192 /* 1193 * OK. We roll back and find the first right sub-tree, 1194 * that will satisfy the search criteria. It can happen 1195 * only once due to "vstart" restriction. 1196 */ 1197 while ((node = rb_parent(node))) { 1198 va = rb_entry(node, struct vmap_area, rb_node); 1199 if (is_within_this_va(va, size, align, vstart)) 1200 return va; 1201 1202 if (get_subtree_max_size(node->rb_right) >= length && 1203 vstart <= va->va_start) { 1204 node = node->rb_right; 1205 break; 1206 } 1207 } 1208 } 1209 } 1210 1211 return NULL; 1212 } 1213 1214 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1215 #include <linux/random.h> 1216 1217 static struct vmap_area * 1218 find_vmap_lowest_linear_match(unsigned long size, 1219 unsigned long align, unsigned long vstart) 1220 { 1221 struct vmap_area *va; 1222 1223 list_for_each_entry(va, &free_vmap_area_list, list) { 1224 if (!is_within_this_va(va, size, align, vstart)) 1225 continue; 1226 1227 return va; 1228 } 1229 1230 return NULL; 1231 } 1232 1233 static void 1234 find_vmap_lowest_match_check(unsigned long size) 1235 { 1236 struct vmap_area *va_1, *va_2; 1237 unsigned long vstart; 1238 unsigned int rnd; 1239 1240 get_random_bytes(&rnd, sizeof(rnd)); 1241 vstart = VMALLOC_START + rnd; 1242 1243 va_1 = find_vmap_lowest_match(size, 1, vstart); 1244 va_2 = find_vmap_lowest_linear_match(size, 1, vstart); 1245 1246 if (va_1 != va_2) 1247 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", 1248 va_1, va_2, vstart); 1249 } 1250 #endif 1251 1252 enum fit_type { 1253 NOTHING_FIT = 0, 1254 FL_FIT_TYPE = 1, /* full fit */ 1255 LE_FIT_TYPE = 2, /* left edge fit */ 1256 RE_FIT_TYPE = 3, /* right edge fit */ 1257 NE_FIT_TYPE = 4 /* no edge fit */ 1258 }; 1259 1260 static __always_inline enum fit_type 1261 classify_va_fit_type(struct vmap_area *va, 1262 unsigned long nva_start_addr, unsigned long size) 1263 { 1264 enum fit_type type; 1265 1266 /* Check if it is within VA. */ 1267 if (nva_start_addr < va->va_start || 1268 nva_start_addr + size > va->va_end) 1269 return NOTHING_FIT; 1270 1271 /* Now classify. */ 1272 if (va->va_start == nva_start_addr) { 1273 if (va->va_end == nva_start_addr + size) 1274 type = FL_FIT_TYPE; 1275 else 1276 type = LE_FIT_TYPE; 1277 } else if (va->va_end == nva_start_addr + size) { 1278 type = RE_FIT_TYPE; 1279 } else { 1280 type = NE_FIT_TYPE; 1281 } 1282 1283 return type; 1284 } 1285 1286 static __always_inline int 1287 adjust_va_to_fit_type(struct vmap_area *va, 1288 unsigned long nva_start_addr, unsigned long size, 1289 enum fit_type type) 1290 { 1291 struct vmap_area *lva = NULL; 1292 1293 if (type == FL_FIT_TYPE) { 1294 /* 1295 * No need to split VA, it fully fits. 1296 * 1297 * | | 1298 * V NVA V 1299 * |---------------| 1300 */ 1301 unlink_va(va, &free_vmap_area_root); 1302 kmem_cache_free(vmap_area_cachep, va); 1303 } else if (type == LE_FIT_TYPE) { 1304 /* 1305 * Split left edge of fit VA. 1306 * 1307 * | | 1308 * V NVA V R 1309 * |-------|-------| 1310 */ 1311 va->va_start += size; 1312 } else if (type == RE_FIT_TYPE) { 1313 /* 1314 * Split right edge of fit VA. 1315 * 1316 * | | 1317 * L V NVA V 1318 * |-------|-------| 1319 */ 1320 va->va_end = nva_start_addr; 1321 } else if (type == NE_FIT_TYPE) { 1322 /* 1323 * Split no edge of fit VA. 1324 * 1325 * | | 1326 * L V NVA V R 1327 * |---|-------|---| 1328 */ 1329 lva = __this_cpu_xchg(ne_fit_preload_node, NULL); 1330 if (unlikely(!lva)) { 1331 /* 1332 * For percpu allocator we do not do any pre-allocation 1333 * and leave it as it is. The reason is it most likely 1334 * never ends up with NE_FIT_TYPE splitting. In case of 1335 * percpu allocations offsets and sizes are aligned to 1336 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE 1337 * are its main fitting cases. 1338 * 1339 * There are a few exceptions though, as an example it is 1340 * a first allocation (early boot up) when we have "one" 1341 * big free space that has to be split. 1342 * 1343 * Also we can hit this path in case of regular "vmap" 1344 * allocations, if "this" current CPU was not preloaded. 1345 * See the comment in alloc_vmap_area() why. If so, then 1346 * GFP_NOWAIT is used instead to get an extra object for 1347 * split purpose. That is rare and most time does not 1348 * occur. 1349 * 1350 * What happens if an allocation gets failed. Basically, 1351 * an "overflow" path is triggered to purge lazily freed 1352 * areas to free some memory, then, the "retry" path is 1353 * triggered to repeat one more time. See more details 1354 * in alloc_vmap_area() function. 1355 */ 1356 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); 1357 if (!lva) 1358 return -1; 1359 } 1360 1361 /* 1362 * Build the remainder. 1363 */ 1364 lva->va_start = va->va_start; 1365 lva->va_end = nva_start_addr; 1366 1367 /* 1368 * Shrink this VA to remaining size. 1369 */ 1370 va->va_start = nva_start_addr + size; 1371 } else { 1372 return -1; 1373 } 1374 1375 if (type != FL_FIT_TYPE) { 1376 augment_tree_propagate_from(va); 1377 1378 if (lva) /* type == NE_FIT_TYPE */ 1379 insert_vmap_area_augment(lva, &va->rb_node, 1380 &free_vmap_area_root, &free_vmap_area_list); 1381 } 1382 1383 return 0; 1384 } 1385 1386 /* 1387 * Returns a start address of the newly allocated area, if success. 1388 * Otherwise a vend is returned that indicates failure. 1389 */ 1390 static __always_inline unsigned long 1391 __alloc_vmap_area(unsigned long size, unsigned long align, 1392 unsigned long vstart, unsigned long vend) 1393 { 1394 unsigned long nva_start_addr; 1395 struct vmap_area *va; 1396 enum fit_type type; 1397 int ret; 1398 1399 va = find_vmap_lowest_match(size, align, vstart); 1400 if (unlikely(!va)) 1401 return vend; 1402 1403 if (va->va_start > vstart) 1404 nva_start_addr = ALIGN(va->va_start, align); 1405 else 1406 nva_start_addr = ALIGN(vstart, align); 1407 1408 /* Check the "vend" restriction. */ 1409 if (nva_start_addr + size > vend) 1410 return vend; 1411 1412 /* Classify what we have found. */ 1413 type = classify_va_fit_type(va, nva_start_addr, size); 1414 if (WARN_ON_ONCE(type == NOTHING_FIT)) 1415 return vend; 1416 1417 /* Update the free vmap_area. */ 1418 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); 1419 if (ret) 1420 return vend; 1421 1422 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK 1423 find_vmap_lowest_match_check(size); 1424 #endif 1425 1426 return nva_start_addr; 1427 } 1428 1429 /* 1430 * Free a region of KVA allocated by alloc_vmap_area 1431 */ 1432 static void free_vmap_area(struct vmap_area *va) 1433 { 1434 /* 1435 * Remove from the busy tree/list. 1436 */ 1437 spin_lock(&vmap_area_lock); 1438 unlink_va(va, &vmap_area_root); 1439 spin_unlock(&vmap_area_lock); 1440 1441 /* 1442 * Insert/Merge it back to the free tree/list. 1443 */ 1444 spin_lock(&free_vmap_area_lock); 1445 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); 1446 spin_unlock(&free_vmap_area_lock); 1447 } 1448 1449 static inline void 1450 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) 1451 { 1452 struct vmap_area *va = NULL; 1453 1454 /* 1455 * Preload this CPU with one extra vmap_area object. It is used 1456 * when fit type of free area is NE_FIT_TYPE. It guarantees that 1457 * a CPU that does an allocation is preloaded. 1458 * 1459 * We do it in non-atomic context, thus it allows us to use more 1460 * permissive allocation masks to be more stable under low memory 1461 * condition and high memory pressure. 1462 */ 1463 if (!this_cpu_read(ne_fit_preload_node)) 1464 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1465 1466 spin_lock(lock); 1467 1468 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) 1469 kmem_cache_free(vmap_area_cachep, va); 1470 } 1471 1472 /* 1473 * Allocate a region of KVA of the specified size and alignment, within the 1474 * vstart and vend. 1475 */ 1476 static struct vmap_area *alloc_vmap_area(unsigned long size, 1477 unsigned long align, 1478 unsigned long vstart, unsigned long vend, 1479 int node, gfp_t gfp_mask) 1480 { 1481 struct vmap_area *va; 1482 unsigned long addr; 1483 int purged = 0; 1484 int ret; 1485 1486 BUG_ON(!size); 1487 BUG_ON(offset_in_page(size)); 1488 BUG_ON(!is_power_of_2(align)); 1489 1490 if (unlikely(!vmap_initialized)) 1491 return ERR_PTR(-EBUSY); 1492 1493 might_sleep(); 1494 gfp_mask = gfp_mask & GFP_RECLAIM_MASK; 1495 1496 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); 1497 if (unlikely(!va)) 1498 return ERR_PTR(-ENOMEM); 1499 1500 /* 1501 * Only scan the relevant parts containing pointers to other objects 1502 * to avoid false negatives. 1503 */ 1504 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); 1505 1506 retry: 1507 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); 1508 addr = __alloc_vmap_area(size, align, vstart, vend); 1509 spin_unlock(&free_vmap_area_lock); 1510 1511 /* 1512 * If an allocation fails, the "vend" address is 1513 * returned. Therefore trigger the overflow path. 1514 */ 1515 if (unlikely(addr == vend)) 1516 goto overflow; 1517 1518 va->va_start = addr; 1519 va->va_end = addr + size; 1520 va->vm = NULL; 1521 1522 spin_lock(&vmap_area_lock); 1523 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 1524 spin_unlock(&vmap_area_lock); 1525 1526 BUG_ON(!IS_ALIGNED(va->va_start, align)); 1527 BUG_ON(va->va_start < vstart); 1528 BUG_ON(va->va_end > vend); 1529 1530 ret = kasan_populate_vmalloc(addr, size); 1531 if (ret) { 1532 free_vmap_area(va); 1533 return ERR_PTR(ret); 1534 } 1535 1536 return va; 1537 1538 overflow: 1539 if (!purged) { 1540 purge_vmap_area_lazy(); 1541 purged = 1; 1542 goto retry; 1543 } 1544 1545 if (gfpflags_allow_blocking(gfp_mask)) { 1546 unsigned long freed = 0; 1547 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); 1548 if (freed > 0) { 1549 purged = 0; 1550 goto retry; 1551 } 1552 } 1553 1554 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) 1555 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", 1556 size); 1557 1558 kmem_cache_free(vmap_area_cachep, va); 1559 return ERR_PTR(-EBUSY); 1560 } 1561 1562 int register_vmap_purge_notifier(struct notifier_block *nb) 1563 { 1564 return blocking_notifier_chain_register(&vmap_notify_list, nb); 1565 } 1566 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); 1567 1568 int unregister_vmap_purge_notifier(struct notifier_block *nb) 1569 { 1570 return blocking_notifier_chain_unregister(&vmap_notify_list, nb); 1571 } 1572 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); 1573 1574 /* 1575 * lazy_max_pages is the maximum amount of virtual address space we gather up 1576 * before attempting to purge with a TLB flush. 1577 * 1578 * There is a tradeoff here: a larger number will cover more kernel page tables 1579 * and take slightly longer to purge, but it will linearly reduce the number of 1580 * global TLB flushes that must be performed. It would seem natural to scale 1581 * this number up linearly with the number of CPUs (because vmapping activity 1582 * could also scale linearly with the number of CPUs), however it is likely 1583 * that in practice, workloads might be constrained in other ways that mean 1584 * vmap activity will not scale linearly with CPUs. Also, I want to be 1585 * conservative and not introduce a big latency on huge systems, so go with 1586 * a less aggressive log scale. It will still be an improvement over the old 1587 * code, and it will be simple to change the scale factor if we find that it 1588 * becomes a problem on bigger systems. 1589 */ 1590 static unsigned long lazy_max_pages(void) 1591 { 1592 unsigned int log; 1593 1594 log = fls(num_online_cpus()); 1595 1596 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 1597 } 1598 1599 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); 1600 1601 /* 1602 * Serialize vmap purging. There is no actual critical section protected 1603 * by this look, but we want to avoid concurrent calls for performance 1604 * reasons and to make the pcpu_get_vm_areas more deterministic. 1605 */ 1606 static DEFINE_MUTEX(vmap_purge_lock); 1607 1608 /* for per-CPU blocks */ 1609 static void purge_fragmented_blocks_allcpus(void); 1610 1611 #ifdef CONFIG_X86_64 1612 /* 1613 * called before a call to iounmap() if the caller wants vm_area_struct's 1614 * immediately freed. 1615 */ 1616 void set_iounmap_nonlazy(void) 1617 { 1618 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); 1619 } 1620 #endif /* CONFIG_X86_64 */ 1621 1622 /* 1623 * Purges all lazily-freed vmap areas. 1624 */ 1625 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) 1626 { 1627 unsigned long resched_threshold; 1628 struct list_head local_pure_list; 1629 struct vmap_area *va, *n_va; 1630 1631 lockdep_assert_held(&vmap_purge_lock); 1632 1633 spin_lock(&purge_vmap_area_lock); 1634 purge_vmap_area_root = RB_ROOT; 1635 list_replace_init(&purge_vmap_area_list, &local_pure_list); 1636 spin_unlock(&purge_vmap_area_lock); 1637 1638 if (unlikely(list_empty(&local_pure_list))) 1639 return false; 1640 1641 start = min(start, 1642 list_first_entry(&local_pure_list, 1643 struct vmap_area, list)->va_start); 1644 1645 end = max(end, 1646 list_last_entry(&local_pure_list, 1647 struct vmap_area, list)->va_end); 1648 1649 flush_tlb_kernel_range(start, end); 1650 resched_threshold = lazy_max_pages() << 1; 1651 1652 spin_lock(&free_vmap_area_lock); 1653 list_for_each_entry_safe(va, n_va, &local_pure_list, list) { 1654 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; 1655 unsigned long orig_start = va->va_start; 1656 unsigned long orig_end = va->va_end; 1657 1658 /* 1659 * Finally insert or merge lazily-freed area. It is 1660 * detached and there is no need to "unlink" it from 1661 * anything. 1662 */ 1663 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, 1664 &free_vmap_area_list); 1665 1666 if (!va) 1667 continue; 1668 1669 if (is_vmalloc_or_module_addr((void *)orig_start)) 1670 kasan_release_vmalloc(orig_start, orig_end, 1671 va->va_start, va->va_end); 1672 1673 atomic_long_sub(nr, &vmap_lazy_nr); 1674 1675 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) 1676 cond_resched_lock(&free_vmap_area_lock); 1677 } 1678 spin_unlock(&free_vmap_area_lock); 1679 return true; 1680 } 1681 1682 /* 1683 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 1684 * is already purging. 1685 */ 1686 static void try_purge_vmap_area_lazy(void) 1687 { 1688 if (mutex_trylock(&vmap_purge_lock)) { 1689 __purge_vmap_area_lazy(ULONG_MAX, 0); 1690 mutex_unlock(&vmap_purge_lock); 1691 } 1692 } 1693 1694 /* 1695 * Kick off a purge of the outstanding lazy areas. 1696 */ 1697 static void purge_vmap_area_lazy(void) 1698 { 1699 mutex_lock(&vmap_purge_lock); 1700 purge_fragmented_blocks_allcpus(); 1701 __purge_vmap_area_lazy(ULONG_MAX, 0); 1702 mutex_unlock(&vmap_purge_lock); 1703 } 1704 1705 /* 1706 * Free a vmap area, caller ensuring that the area has been unmapped 1707 * and flush_cache_vunmap had been called for the correct range 1708 * previously. 1709 */ 1710 static void free_vmap_area_noflush(struct vmap_area *va) 1711 { 1712 unsigned long nr_lazy; 1713 1714 spin_lock(&vmap_area_lock); 1715 unlink_va(va, &vmap_area_root); 1716 spin_unlock(&vmap_area_lock); 1717 1718 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> 1719 PAGE_SHIFT, &vmap_lazy_nr); 1720 1721 /* 1722 * Merge or place it to the purge tree/list. 1723 */ 1724 spin_lock(&purge_vmap_area_lock); 1725 merge_or_add_vmap_area(va, 1726 &purge_vmap_area_root, &purge_vmap_area_list); 1727 spin_unlock(&purge_vmap_area_lock); 1728 1729 /* After this point, we may free va at any time */ 1730 if (unlikely(nr_lazy > lazy_max_pages())) 1731 try_purge_vmap_area_lazy(); 1732 } 1733 1734 /* 1735 * Free and unmap a vmap area 1736 */ 1737 static void free_unmap_vmap_area(struct vmap_area *va) 1738 { 1739 flush_cache_vunmap(va->va_start, va->va_end); 1740 vunmap_range_noflush(va->va_start, va->va_end); 1741 if (debug_pagealloc_enabled_static()) 1742 flush_tlb_kernel_range(va->va_start, va->va_end); 1743 1744 free_vmap_area_noflush(va); 1745 } 1746 1747 static struct vmap_area *find_vmap_area(unsigned long addr) 1748 { 1749 struct vmap_area *va; 1750 1751 spin_lock(&vmap_area_lock); 1752 va = __find_vmap_area(addr); 1753 spin_unlock(&vmap_area_lock); 1754 1755 return va; 1756 } 1757 1758 /*** Per cpu kva allocator ***/ 1759 1760 /* 1761 * vmap space is limited especially on 32 bit architectures. Ensure there is 1762 * room for at least 16 percpu vmap blocks per CPU. 1763 */ 1764 /* 1765 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 1766 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 1767 * instead (we just need a rough idea) 1768 */ 1769 #if BITS_PER_LONG == 32 1770 #define VMALLOC_SPACE (128UL*1024*1024) 1771 #else 1772 #define VMALLOC_SPACE (128UL*1024*1024*1024) 1773 #endif 1774 1775 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 1776 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 1777 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 1778 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 1779 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 1780 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 1781 #define VMAP_BBMAP_BITS \ 1782 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 1783 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 1784 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 1785 1786 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 1787 1788 struct vmap_block_queue { 1789 spinlock_t lock; 1790 struct list_head free; 1791 }; 1792 1793 struct vmap_block { 1794 spinlock_t lock; 1795 struct vmap_area *va; 1796 unsigned long free, dirty; 1797 unsigned long dirty_min, dirty_max; /*< dirty range */ 1798 struct list_head free_list; 1799 struct rcu_head rcu_head; 1800 struct list_head purge; 1801 }; 1802 1803 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 1804 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 1805 1806 /* 1807 * XArray of vmap blocks, indexed by address, to quickly find a vmap block 1808 * in the free path. Could get rid of this if we change the API to return a 1809 * "cookie" from alloc, to be passed to free. But no big deal yet. 1810 */ 1811 static DEFINE_XARRAY(vmap_blocks); 1812 1813 /* 1814 * We should probably have a fallback mechanism to allocate virtual memory 1815 * out of partially filled vmap blocks. However vmap block sizing should be 1816 * fairly reasonable according to the vmalloc size, so it shouldn't be a 1817 * big problem. 1818 */ 1819 1820 static unsigned long addr_to_vb_idx(unsigned long addr) 1821 { 1822 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 1823 addr /= VMAP_BLOCK_SIZE; 1824 return addr; 1825 } 1826 1827 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) 1828 { 1829 unsigned long addr; 1830 1831 addr = va_start + (pages_off << PAGE_SHIFT); 1832 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); 1833 return (void *)addr; 1834 } 1835 1836 /** 1837 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this 1838 * block. Of course pages number can't exceed VMAP_BBMAP_BITS 1839 * @order: how many 2^order pages should be occupied in newly allocated block 1840 * @gfp_mask: flags for the page level allocator 1841 * 1842 * Return: virtual address in a newly allocated block or ERR_PTR(-errno) 1843 */ 1844 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) 1845 { 1846 struct vmap_block_queue *vbq; 1847 struct vmap_block *vb; 1848 struct vmap_area *va; 1849 unsigned long vb_idx; 1850 int node, err; 1851 void *vaddr; 1852 1853 node = numa_node_id(); 1854 1855 vb = kmalloc_node(sizeof(struct vmap_block), 1856 gfp_mask & GFP_RECLAIM_MASK, node); 1857 if (unlikely(!vb)) 1858 return ERR_PTR(-ENOMEM); 1859 1860 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 1861 VMALLOC_START, VMALLOC_END, 1862 node, gfp_mask); 1863 if (IS_ERR(va)) { 1864 kfree(vb); 1865 return ERR_CAST(va); 1866 } 1867 1868 vaddr = vmap_block_vaddr(va->va_start, 0); 1869 spin_lock_init(&vb->lock); 1870 vb->va = va; 1871 /* At least something should be left free */ 1872 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); 1873 vb->free = VMAP_BBMAP_BITS - (1UL << order); 1874 vb->dirty = 0; 1875 vb->dirty_min = VMAP_BBMAP_BITS; 1876 vb->dirty_max = 0; 1877 INIT_LIST_HEAD(&vb->free_list); 1878 1879 vb_idx = addr_to_vb_idx(va->va_start); 1880 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); 1881 if (err) { 1882 kfree(vb); 1883 free_vmap_area(va); 1884 return ERR_PTR(err); 1885 } 1886 1887 vbq = &get_cpu_var(vmap_block_queue); 1888 spin_lock(&vbq->lock); 1889 list_add_tail_rcu(&vb->free_list, &vbq->free); 1890 spin_unlock(&vbq->lock); 1891 put_cpu_var(vmap_block_queue); 1892 1893 return vaddr; 1894 } 1895 1896 static void free_vmap_block(struct vmap_block *vb) 1897 { 1898 struct vmap_block *tmp; 1899 1900 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); 1901 BUG_ON(tmp != vb); 1902 1903 free_vmap_area_noflush(vb->va); 1904 kfree_rcu(vb, rcu_head); 1905 } 1906 1907 static void purge_fragmented_blocks(int cpu) 1908 { 1909 LIST_HEAD(purge); 1910 struct vmap_block *vb; 1911 struct vmap_block *n_vb; 1912 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1913 1914 rcu_read_lock(); 1915 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1916 1917 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 1918 continue; 1919 1920 spin_lock(&vb->lock); 1921 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 1922 vb->free = 0; /* prevent further allocs after releasing lock */ 1923 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 1924 vb->dirty_min = 0; 1925 vb->dirty_max = VMAP_BBMAP_BITS; 1926 spin_lock(&vbq->lock); 1927 list_del_rcu(&vb->free_list); 1928 spin_unlock(&vbq->lock); 1929 spin_unlock(&vb->lock); 1930 list_add_tail(&vb->purge, &purge); 1931 } else 1932 spin_unlock(&vb->lock); 1933 } 1934 rcu_read_unlock(); 1935 1936 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 1937 list_del(&vb->purge); 1938 free_vmap_block(vb); 1939 } 1940 } 1941 1942 static void purge_fragmented_blocks_allcpus(void) 1943 { 1944 int cpu; 1945 1946 for_each_possible_cpu(cpu) 1947 purge_fragmented_blocks(cpu); 1948 } 1949 1950 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 1951 { 1952 struct vmap_block_queue *vbq; 1953 struct vmap_block *vb; 1954 void *vaddr = NULL; 1955 unsigned int order; 1956 1957 BUG_ON(offset_in_page(size)); 1958 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 1959 if (WARN_ON(size == 0)) { 1960 /* 1961 * Allocating 0 bytes isn't what caller wants since 1962 * get_order(0) returns funny result. Just warn and terminate 1963 * early. 1964 */ 1965 return NULL; 1966 } 1967 order = get_order(size); 1968 1969 rcu_read_lock(); 1970 vbq = &get_cpu_var(vmap_block_queue); 1971 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1972 unsigned long pages_off; 1973 1974 spin_lock(&vb->lock); 1975 if (vb->free < (1UL << order)) { 1976 spin_unlock(&vb->lock); 1977 continue; 1978 } 1979 1980 pages_off = VMAP_BBMAP_BITS - vb->free; 1981 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); 1982 vb->free -= 1UL << order; 1983 if (vb->free == 0) { 1984 spin_lock(&vbq->lock); 1985 list_del_rcu(&vb->free_list); 1986 spin_unlock(&vbq->lock); 1987 } 1988 1989 spin_unlock(&vb->lock); 1990 break; 1991 } 1992 1993 put_cpu_var(vmap_block_queue); 1994 rcu_read_unlock(); 1995 1996 /* Allocate new block if nothing was found */ 1997 if (!vaddr) 1998 vaddr = new_vmap_block(order, gfp_mask); 1999 2000 return vaddr; 2001 } 2002 2003 static void vb_free(unsigned long addr, unsigned long size) 2004 { 2005 unsigned long offset; 2006 unsigned int order; 2007 struct vmap_block *vb; 2008 2009 BUG_ON(offset_in_page(size)); 2010 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 2011 2012 flush_cache_vunmap(addr, addr + size); 2013 2014 order = get_order(size); 2015 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; 2016 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); 2017 2018 vunmap_range_noflush(addr, addr + size); 2019 2020 if (debug_pagealloc_enabled_static()) 2021 flush_tlb_kernel_range(addr, addr + size); 2022 2023 spin_lock(&vb->lock); 2024 2025 /* Expand dirty range */ 2026 vb->dirty_min = min(vb->dirty_min, offset); 2027 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); 2028 2029 vb->dirty += 1UL << order; 2030 if (vb->dirty == VMAP_BBMAP_BITS) { 2031 BUG_ON(vb->free); 2032 spin_unlock(&vb->lock); 2033 free_vmap_block(vb); 2034 } else 2035 spin_unlock(&vb->lock); 2036 } 2037 2038 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) 2039 { 2040 int cpu; 2041 2042 if (unlikely(!vmap_initialized)) 2043 return; 2044 2045 might_sleep(); 2046 2047 for_each_possible_cpu(cpu) { 2048 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 2049 struct vmap_block *vb; 2050 2051 rcu_read_lock(); 2052 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 2053 spin_lock(&vb->lock); 2054 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { 2055 unsigned long va_start = vb->va->va_start; 2056 unsigned long s, e; 2057 2058 s = va_start + (vb->dirty_min << PAGE_SHIFT); 2059 e = va_start + (vb->dirty_max << PAGE_SHIFT); 2060 2061 start = min(s, start); 2062 end = max(e, end); 2063 2064 flush = 1; 2065 } 2066 spin_unlock(&vb->lock); 2067 } 2068 rcu_read_unlock(); 2069 } 2070 2071 mutex_lock(&vmap_purge_lock); 2072 purge_fragmented_blocks_allcpus(); 2073 if (!__purge_vmap_area_lazy(start, end) && flush) 2074 flush_tlb_kernel_range(start, end); 2075 mutex_unlock(&vmap_purge_lock); 2076 } 2077 2078 /** 2079 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 2080 * 2081 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 2082 * to amortize TLB flushing overheads. What this means is that any page you 2083 * have now, may, in a former life, have been mapped into kernel virtual 2084 * address by the vmap layer and so there might be some CPUs with TLB entries 2085 * still referencing that page (additional to the regular 1:1 kernel mapping). 2086 * 2087 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 2088 * be sure that none of the pages we have control over will have any aliases 2089 * from the vmap layer. 2090 */ 2091 void vm_unmap_aliases(void) 2092 { 2093 unsigned long start = ULONG_MAX, end = 0; 2094 int flush = 0; 2095 2096 _vm_unmap_aliases(start, end, flush); 2097 } 2098 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 2099 2100 /** 2101 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 2102 * @mem: the pointer returned by vm_map_ram 2103 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 2104 */ 2105 void vm_unmap_ram(const void *mem, unsigned int count) 2106 { 2107 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2108 unsigned long addr = (unsigned long)mem; 2109 struct vmap_area *va; 2110 2111 might_sleep(); 2112 BUG_ON(!addr); 2113 BUG_ON(addr < VMALLOC_START); 2114 BUG_ON(addr > VMALLOC_END); 2115 BUG_ON(!PAGE_ALIGNED(addr)); 2116 2117 kasan_poison_vmalloc(mem, size); 2118 2119 if (likely(count <= VMAP_MAX_ALLOC)) { 2120 debug_check_no_locks_freed(mem, size); 2121 vb_free(addr, size); 2122 return; 2123 } 2124 2125 va = find_vmap_area(addr); 2126 BUG_ON(!va); 2127 debug_check_no_locks_freed((void *)va->va_start, 2128 (va->va_end - va->va_start)); 2129 free_unmap_vmap_area(va); 2130 } 2131 EXPORT_SYMBOL(vm_unmap_ram); 2132 2133 /** 2134 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 2135 * @pages: an array of pointers to the pages to be mapped 2136 * @count: number of pages 2137 * @node: prefer to allocate data structures on this node 2138 * 2139 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 2140 * faster than vmap so it's good. But if you mix long-life and short-life 2141 * objects with vm_map_ram(), it could consume lots of address space through 2142 * fragmentation (especially on a 32bit machine). You could see failures in 2143 * the end. Please use this function for short-lived objects. 2144 * 2145 * Returns: a pointer to the address that has been mapped, or %NULL on failure 2146 */ 2147 void *vm_map_ram(struct page **pages, unsigned int count, int node) 2148 { 2149 unsigned long size = (unsigned long)count << PAGE_SHIFT; 2150 unsigned long addr; 2151 void *mem; 2152 2153 if (likely(count <= VMAP_MAX_ALLOC)) { 2154 mem = vb_alloc(size, GFP_KERNEL); 2155 if (IS_ERR(mem)) 2156 return NULL; 2157 addr = (unsigned long)mem; 2158 } else { 2159 struct vmap_area *va; 2160 va = alloc_vmap_area(size, PAGE_SIZE, 2161 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 2162 if (IS_ERR(va)) 2163 return NULL; 2164 2165 addr = va->va_start; 2166 mem = (void *)addr; 2167 } 2168 2169 kasan_unpoison_vmalloc(mem, size); 2170 2171 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, 2172 pages, PAGE_SHIFT) < 0) { 2173 vm_unmap_ram(mem, count); 2174 return NULL; 2175 } 2176 2177 return mem; 2178 } 2179 EXPORT_SYMBOL(vm_map_ram); 2180 2181 static struct vm_struct *vmlist __initdata; 2182 2183 static inline unsigned int vm_area_page_order(struct vm_struct *vm) 2184 { 2185 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2186 return vm->page_order; 2187 #else 2188 return 0; 2189 #endif 2190 } 2191 2192 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) 2193 { 2194 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC 2195 vm->page_order = order; 2196 #else 2197 BUG_ON(order != 0); 2198 #endif 2199 } 2200 2201 /** 2202 * vm_area_add_early - add vmap area early during boot 2203 * @vm: vm_struct to add 2204 * 2205 * This function is used to add fixed kernel vm area to vmlist before 2206 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 2207 * should contain proper values and the other fields should be zero. 2208 * 2209 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2210 */ 2211 void __init vm_area_add_early(struct vm_struct *vm) 2212 { 2213 struct vm_struct *tmp, **p; 2214 2215 BUG_ON(vmap_initialized); 2216 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 2217 if (tmp->addr >= vm->addr) { 2218 BUG_ON(tmp->addr < vm->addr + vm->size); 2219 break; 2220 } else 2221 BUG_ON(tmp->addr + tmp->size > vm->addr); 2222 } 2223 vm->next = *p; 2224 *p = vm; 2225 } 2226 2227 /** 2228 * vm_area_register_early - register vmap area early during boot 2229 * @vm: vm_struct to register 2230 * @align: requested alignment 2231 * 2232 * This function is used to register kernel vm area before 2233 * vmalloc_init() is called. @vm->size and @vm->flags should contain 2234 * proper values on entry and other fields should be zero. On return, 2235 * vm->addr contains the allocated address. 2236 * 2237 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 2238 */ 2239 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 2240 { 2241 static size_t vm_init_off __initdata; 2242 unsigned long addr; 2243 2244 addr = ALIGN(VMALLOC_START + vm_init_off, align); 2245 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 2246 2247 vm->addr = (void *)addr; 2248 2249 vm_area_add_early(vm); 2250 } 2251 2252 static void vmap_init_free_space(void) 2253 { 2254 unsigned long vmap_start = 1; 2255 const unsigned long vmap_end = ULONG_MAX; 2256 struct vmap_area *busy, *free; 2257 2258 /* 2259 * B F B B B F 2260 * -|-----|.....|-----|-----|-----|.....|- 2261 * | The KVA space | 2262 * |<--------------------------------->| 2263 */ 2264 list_for_each_entry(busy, &vmap_area_list, list) { 2265 if (busy->va_start - vmap_start > 0) { 2266 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2267 if (!WARN_ON_ONCE(!free)) { 2268 free->va_start = vmap_start; 2269 free->va_end = busy->va_start; 2270 2271 insert_vmap_area_augment(free, NULL, 2272 &free_vmap_area_root, 2273 &free_vmap_area_list); 2274 } 2275 } 2276 2277 vmap_start = busy->va_end; 2278 } 2279 2280 if (vmap_end - vmap_start > 0) { 2281 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2282 if (!WARN_ON_ONCE(!free)) { 2283 free->va_start = vmap_start; 2284 free->va_end = vmap_end; 2285 2286 insert_vmap_area_augment(free, NULL, 2287 &free_vmap_area_root, 2288 &free_vmap_area_list); 2289 } 2290 } 2291 } 2292 2293 void __init vmalloc_init(void) 2294 { 2295 struct vmap_area *va; 2296 struct vm_struct *tmp; 2297 int i; 2298 2299 /* 2300 * Create the cache for vmap_area objects. 2301 */ 2302 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); 2303 2304 for_each_possible_cpu(i) { 2305 struct vmap_block_queue *vbq; 2306 struct vfree_deferred *p; 2307 2308 vbq = &per_cpu(vmap_block_queue, i); 2309 spin_lock_init(&vbq->lock); 2310 INIT_LIST_HEAD(&vbq->free); 2311 p = &per_cpu(vfree_deferred, i); 2312 init_llist_head(&p->list); 2313 INIT_WORK(&p->wq, free_work); 2314 } 2315 2316 /* Import existing vmlist entries. */ 2317 for (tmp = vmlist; tmp; tmp = tmp->next) { 2318 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); 2319 if (WARN_ON_ONCE(!va)) 2320 continue; 2321 2322 va->va_start = (unsigned long)tmp->addr; 2323 va->va_end = va->va_start + tmp->size; 2324 va->vm = tmp; 2325 insert_vmap_area(va, &vmap_area_root, &vmap_area_list); 2326 } 2327 2328 /* 2329 * Now we can initialize a free vmap space. 2330 */ 2331 vmap_init_free_space(); 2332 vmap_initialized = true; 2333 } 2334 2335 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, 2336 struct vmap_area *va, unsigned long flags, const void *caller) 2337 { 2338 vm->flags = flags; 2339 vm->addr = (void *)va->va_start; 2340 vm->size = va->va_end - va->va_start; 2341 vm->caller = caller; 2342 va->vm = vm; 2343 } 2344 2345 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 2346 unsigned long flags, const void *caller) 2347 { 2348 spin_lock(&vmap_area_lock); 2349 setup_vmalloc_vm_locked(vm, va, flags, caller); 2350 spin_unlock(&vmap_area_lock); 2351 } 2352 2353 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 2354 { 2355 /* 2356 * Before removing VM_UNINITIALIZED, 2357 * we should make sure that vm has proper values. 2358 * Pair with smp_rmb() in show_numa_info(). 2359 */ 2360 smp_wmb(); 2361 vm->flags &= ~VM_UNINITIALIZED; 2362 } 2363 2364 static struct vm_struct *__get_vm_area_node(unsigned long size, 2365 unsigned long align, unsigned long shift, unsigned long flags, 2366 unsigned long start, unsigned long end, int node, 2367 gfp_t gfp_mask, const void *caller) 2368 { 2369 struct vmap_area *va; 2370 struct vm_struct *area; 2371 unsigned long requested_size = size; 2372 2373 BUG_ON(in_interrupt()); 2374 size = ALIGN(size, 1ul << shift); 2375 if (unlikely(!size)) 2376 return NULL; 2377 2378 if (flags & VM_IOREMAP) 2379 align = 1ul << clamp_t(int, get_count_order_long(size), 2380 PAGE_SHIFT, IOREMAP_MAX_ORDER); 2381 2382 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 2383 if (unlikely(!area)) 2384 return NULL; 2385 2386 if (!(flags & VM_NO_GUARD)) 2387 size += PAGE_SIZE; 2388 2389 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 2390 if (IS_ERR(va)) { 2391 kfree(area); 2392 return NULL; 2393 } 2394 2395 kasan_unpoison_vmalloc((void *)va->va_start, requested_size); 2396 2397 setup_vmalloc_vm(area, va, flags, caller); 2398 2399 return area; 2400 } 2401 2402 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 2403 unsigned long start, unsigned long end, 2404 const void *caller) 2405 { 2406 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, 2407 NUMA_NO_NODE, GFP_KERNEL, caller); 2408 } 2409 2410 /** 2411 * get_vm_area - reserve a contiguous kernel virtual area 2412 * @size: size of the area 2413 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 2414 * 2415 * Search an area of @size in the kernel virtual mapping area, 2416 * and reserved it for out purposes. Returns the area descriptor 2417 * on success or %NULL on failure. 2418 * 2419 * Return: the area descriptor on success or %NULL on failure. 2420 */ 2421 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 2422 { 2423 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2424 VMALLOC_START, VMALLOC_END, 2425 NUMA_NO_NODE, GFP_KERNEL, 2426 __builtin_return_address(0)); 2427 } 2428 2429 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 2430 const void *caller) 2431 { 2432 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, 2433 VMALLOC_START, VMALLOC_END, 2434 NUMA_NO_NODE, GFP_KERNEL, caller); 2435 } 2436 2437 /** 2438 * find_vm_area - find a continuous kernel virtual area 2439 * @addr: base address 2440 * 2441 * Search for the kernel VM area starting at @addr, and return it. 2442 * It is up to the caller to do all required locking to keep the returned 2443 * pointer valid. 2444 * 2445 * Return: the area descriptor on success or %NULL on failure. 2446 */ 2447 struct vm_struct *find_vm_area(const void *addr) 2448 { 2449 struct vmap_area *va; 2450 2451 va = find_vmap_area((unsigned long)addr); 2452 if (!va) 2453 return NULL; 2454 2455 return va->vm; 2456 } 2457 2458 /** 2459 * remove_vm_area - find and remove a continuous kernel virtual area 2460 * @addr: base address 2461 * 2462 * Search for the kernel VM area starting at @addr, and remove it. 2463 * This function returns the found VM area, but using it is NOT safe 2464 * on SMP machines, except for its size or flags. 2465 * 2466 * Return: the area descriptor on success or %NULL on failure. 2467 */ 2468 struct vm_struct *remove_vm_area(const void *addr) 2469 { 2470 struct vmap_area *va; 2471 2472 might_sleep(); 2473 2474 spin_lock(&vmap_area_lock); 2475 va = __find_vmap_area((unsigned long)addr); 2476 if (va && va->vm) { 2477 struct vm_struct *vm = va->vm; 2478 2479 va->vm = NULL; 2480 spin_unlock(&vmap_area_lock); 2481 2482 kasan_free_shadow(vm); 2483 free_unmap_vmap_area(va); 2484 2485 return vm; 2486 } 2487 2488 spin_unlock(&vmap_area_lock); 2489 return NULL; 2490 } 2491 2492 static inline void set_area_direct_map(const struct vm_struct *area, 2493 int (*set_direct_map)(struct page *page)) 2494 { 2495 int i; 2496 2497 /* HUGE_VMALLOC passes small pages to set_direct_map */ 2498 for (i = 0; i < area->nr_pages; i++) 2499 if (page_address(area->pages[i])) 2500 set_direct_map(area->pages[i]); 2501 } 2502 2503 /* Handle removing and resetting vm mappings related to the vm_struct. */ 2504 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) 2505 { 2506 unsigned long start = ULONG_MAX, end = 0; 2507 unsigned int page_order = vm_area_page_order(area); 2508 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; 2509 int flush_dmap = 0; 2510 int i; 2511 2512 remove_vm_area(area->addr); 2513 2514 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ 2515 if (!flush_reset) 2516 return; 2517 2518 /* 2519 * If not deallocating pages, just do the flush of the VM area and 2520 * return. 2521 */ 2522 if (!deallocate_pages) { 2523 vm_unmap_aliases(); 2524 return; 2525 } 2526 2527 /* 2528 * If execution gets here, flush the vm mapping and reset the direct 2529 * map. Find the start and end range of the direct mappings to make sure 2530 * the vm_unmap_aliases() flush includes the direct map. 2531 */ 2532 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2533 unsigned long addr = (unsigned long)page_address(area->pages[i]); 2534 if (addr) { 2535 unsigned long page_size; 2536 2537 page_size = PAGE_SIZE << page_order; 2538 start = min(addr, start); 2539 end = max(addr + page_size, end); 2540 flush_dmap = 1; 2541 } 2542 } 2543 2544 /* 2545 * Set direct map to something invalid so that it won't be cached if 2546 * there are any accesses after the TLB flush, then flush the TLB and 2547 * reset the direct map permissions to the default. 2548 */ 2549 set_area_direct_map(area, set_direct_map_invalid_noflush); 2550 _vm_unmap_aliases(start, end, flush_dmap); 2551 set_area_direct_map(area, set_direct_map_default_noflush); 2552 } 2553 2554 static void __vunmap(const void *addr, int deallocate_pages) 2555 { 2556 struct vm_struct *area; 2557 2558 if (!addr) 2559 return; 2560 2561 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 2562 addr)) 2563 return; 2564 2565 area = find_vm_area(addr); 2566 if (unlikely(!area)) { 2567 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 2568 addr); 2569 return; 2570 } 2571 2572 debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); 2573 debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); 2574 2575 kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); 2576 2577 vm_remove_mappings(area, deallocate_pages); 2578 2579 if (deallocate_pages) { 2580 unsigned int page_order = vm_area_page_order(area); 2581 int i; 2582 2583 for (i = 0; i < area->nr_pages; i += 1U << page_order) { 2584 struct page *page = area->pages[i]; 2585 2586 BUG_ON(!page); 2587 __free_pages(page, page_order); 2588 cond_resched(); 2589 } 2590 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); 2591 2592 kvfree(area->pages); 2593 } 2594 2595 kfree(area); 2596 } 2597 2598 static inline void __vfree_deferred(const void *addr) 2599 { 2600 /* 2601 * Use raw_cpu_ptr() because this can be called from preemptible 2602 * context. Preemption is absolutely fine here, because the llist_add() 2603 * implementation is lockless, so it works even if we are adding to 2604 * another cpu's list. schedule_work() should be fine with this too. 2605 */ 2606 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); 2607 2608 if (llist_add((struct llist_node *)addr, &p->list)) 2609 schedule_work(&p->wq); 2610 } 2611 2612 /** 2613 * vfree_atomic - release memory allocated by vmalloc() 2614 * @addr: memory base address 2615 * 2616 * This one is just like vfree() but can be called in any atomic context 2617 * except NMIs. 2618 */ 2619 void vfree_atomic(const void *addr) 2620 { 2621 BUG_ON(in_nmi()); 2622 2623 kmemleak_free(addr); 2624 2625 if (!addr) 2626 return; 2627 __vfree_deferred(addr); 2628 } 2629 2630 static void __vfree(const void *addr) 2631 { 2632 if (unlikely(in_interrupt())) 2633 __vfree_deferred(addr); 2634 else 2635 __vunmap(addr, 1); 2636 } 2637 2638 /** 2639 * vfree - Release memory allocated by vmalloc() 2640 * @addr: Memory base address 2641 * 2642 * Free the virtually continuous memory area starting at @addr, as obtained 2643 * from one of the vmalloc() family of APIs. This will usually also free the 2644 * physical memory underlying the virtual allocation, but that memory is 2645 * reference counted, so it will not be freed until the last user goes away. 2646 * 2647 * If @addr is NULL, no operation is performed. 2648 * 2649 * Context: 2650 * May sleep if called *not* from interrupt context. 2651 * Must not be called in NMI context (strictly speaking, it could be 2652 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 2653 * conventions for vfree() arch-dependent would be a really bad idea). 2654 */ 2655 void vfree(const void *addr) 2656 { 2657 BUG_ON(in_nmi()); 2658 2659 kmemleak_free(addr); 2660 2661 might_sleep_if(!in_interrupt()); 2662 2663 if (!addr) 2664 return; 2665 2666 __vfree(addr); 2667 } 2668 EXPORT_SYMBOL(vfree); 2669 2670 /** 2671 * vunmap - release virtual mapping obtained by vmap() 2672 * @addr: memory base address 2673 * 2674 * Free the virtually contiguous memory area starting at @addr, 2675 * which was created from the page array passed to vmap(). 2676 * 2677 * Must not be called in interrupt context. 2678 */ 2679 void vunmap(const void *addr) 2680 { 2681 BUG_ON(in_interrupt()); 2682 might_sleep(); 2683 if (addr) 2684 __vunmap(addr, 0); 2685 } 2686 EXPORT_SYMBOL(vunmap); 2687 2688 /** 2689 * vmap - map an array of pages into virtually contiguous space 2690 * @pages: array of page pointers 2691 * @count: number of pages to map 2692 * @flags: vm_area->flags 2693 * @prot: page protection for the mapping 2694 * 2695 * Maps @count pages from @pages into contiguous kernel virtual space. 2696 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself 2697 * (which must be kmalloc or vmalloc memory) and one reference per pages in it 2698 * are transferred from the caller to vmap(), and will be freed / dropped when 2699 * vfree() is called on the return value. 2700 * 2701 * Return: the address of the area or %NULL on failure 2702 */ 2703 void *vmap(struct page **pages, unsigned int count, 2704 unsigned long flags, pgprot_t prot) 2705 { 2706 struct vm_struct *area; 2707 unsigned long addr; 2708 unsigned long size; /* In bytes */ 2709 2710 might_sleep(); 2711 2712 if (count > totalram_pages()) 2713 return NULL; 2714 2715 size = (unsigned long)count << PAGE_SHIFT; 2716 area = get_vm_area_caller(size, flags, __builtin_return_address(0)); 2717 if (!area) 2718 return NULL; 2719 2720 addr = (unsigned long)area->addr; 2721 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), 2722 pages, PAGE_SHIFT) < 0) { 2723 vunmap(area->addr); 2724 return NULL; 2725 } 2726 2727 if (flags & VM_MAP_PUT_PAGES) { 2728 area->pages = pages; 2729 area->nr_pages = count; 2730 } 2731 return area->addr; 2732 } 2733 EXPORT_SYMBOL(vmap); 2734 2735 #ifdef CONFIG_VMAP_PFN 2736 struct vmap_pfn_data { 2737 unsigned long *pfns; 2738 pgprot_t prot; 2739 unsigned int idx; 2740 }; 2741 2742 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) 2743 { 2744 struct vmap_pfn_data *data = private; 2745 2746 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) 2747 return -EINVAL; 2748 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); 2749 return 0; 2750 } 2751 2752 /** 2753 * vmap_pfn - map an array of PFNs into virtually contiguous space 2754 * @pfns: array of PFNs 2755 * @count: number of pages to map 2756 * @prot: page protection for the mapping 2757 * 2758 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns 2759 * the start address of the mapping. 2760 */ 2761 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) 2762 { 2763 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; 2764 struct vm_struct *area; 2765 2766 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, 2767 __builtin_return_address(0)); 2768 if (!area) 2769 return NULL; 2770 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2771 count * PAGE_SIZE, vmap_pfn_apply, &data)) { 2772 free_vm_area(area); 2773 return NULL; 2774 } 2775 return area->addr; 2776 } 2777 EXPORT_SYMBOL_GPL(vmap_pfn); 2778 #endif /* CONFIG_VMAP_PFN */ 2779 2780 static inline unsigned int 2781 vm_area_alloc_pages(gfp_t gfp, int nid, 2782 unsigned int order, unsigned long nr_pages, struct page **pages) 2783 { 2784 unsigned int nr_allocated = 0; 2785 2786 /* 2787 * For order-0 pages we make use of bulk allocator, if 2788 * the page array is partly or not at all populated due 2789 * to fails, fallback to a single page allocator that is 2790 * more permissive. 2791 */ 2792 if (!order) 2793 nr_allocated = alloc_pages_bulk_array_node( 2794 gfp, nid, nr_pages, pages); 2795 else 2796 /* 2797 * Compound pages required for remap_vmalloc_page if 2798 * high-order pages. 2799 */ 2800 gfp |= __GFP_COMP; 2801 2802 /* High-order pages or fallback path if "bulk" fails. */ 2803 while (nr_allocated < nr_pages) { 2804 struct page *page; 2805 int i; 2806 2807 page = alloc_pages_node(nid, gfp, order); 2808 if (unlikely(!page)) 2809 break; 2810 2811 /* 2812 * Careful, we allocate and map page-order pages, but 2813 * tracking is done per PAGE_SIZE page so as to keep the 2814 * vm_struct APIs independent of the physical/mapped size. 2815 */ 2816 for (i = 0; i < (1U << order); i++) 2817 pages[nr_allocated + i] = page + i; 2818 2819 if (gfpflags_allow_blocking(gfp)) 2820 cond_resched(); 2821 2822 nr_allocated += 1U << order; 2823 } 2824 2825 return nr_allocated; 2826 } 2827 2828 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 2829 pgprot_t prot, unsigned int page_shift, 2830 int node) 2831 { 2832 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 2833 unsigned long addr = (unsigned long)area->addr; 2834 unsigned long size = get_vm_area_size(area); 2835 unsigned long array_size; 2836 unsigned int nr_small_pages = size >> PAGE_SHIFT; 2837 unsigned int page_order; 2838 2839 array_size = (unsigned long)nr_small_pages * sizeof(struct page *); 2840 gfp_mask |= __GFP_NOWARN; 2841 if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) 2842 gfp_mask |= __GFP_HIGHMEM; 2843 2844 /* Please note that the recursion is strictly bounded. */ 2845 if (array_size > PAGE_SIZE) { 2846 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, 2847 area->caller); 2848 } else { 2849 area->pages = kmalloc_node(array_size, nested_gfp, node); 2850 } 2851 2852 if (!area->pages) { 2853 warn_alloc(gfp_mask, NULL, 2854 "vmalloc error: size %lu, failed to allocated page array size %lu", 2855 nr_small_pages * PAGE_SIZE, array_size); 2856 free_vm_area(area); 2857 return NULL; 2858 } 2859 2860 set_vm_area_page_order(area, page_shift - PAGE_SHIFT); 2861 page_order = vm_area_page_order(area); 2862 2863 area->nr_pages = vm_area_alloc_pages(gfp_mask, node, 2864 page_order, nr_small_pages, area->pages); 2865 2866 atomic_long_add(area->nr_pages, &nr_vmalloc_pages); 2867 2868 /* 2869 * If not enough pages were obtained to accomplish an 2870 * allocation request, free them via __vfree() if any. 2871 */ 2872 if (area->nr_pages != nr_small_pages) { 2873 warn_alloc(gfp_mask, NULL, 2874 "vmalloc error: size %lu, page order %u, failed to allocate pages", 2875 area->nr_pages * PAGE_SIZE, page_order); 2876 goto fail; 2877 } 2878 2879 if (vmap_pages_range(addr, addr + size, prot, area->pages, 2880 page_shift) < 0) { 2881 warn_alloc(gfp_mask, NULL, 2882 "vmalloc error: size %lu, failed to map pages", 2883 area->nr_pages * PAGE_SIZE); 2884 goto fail; 2885 } 2886 2887 return area->addr; 2888 2889 fail: 2890 __vfree(area->addr); 2891 return NULL; 2892 } 2893 2894 /** 2895 * __vmalloc_node_range - allocate virtually contiguous memory 2896 * @size: allocation size 2897 * @align: desired alignment 2898 * @start: vm area range start 2899 * @end: vm area range end 2900 * @gfp_mask: flags for the page level allocator 2901 * @prot: protection mask for the allocated pages 2902 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 2903 * @node: node to use for allocation or NUMA_NO_NODE 2904 * @caller: caller's return address 2905 * 2906 * Allocate enough pages to cover @size from the page level 2907 * allocator with @gfp_mask flags. Map them into contiguous 2908 * kernel virtual space, using a pagetable protection of @prot. 2909 * 2910 * Return: the address of the area or %NULL on failure 2911 */ 2912 void *__vmalloc_node_range(unsigned long size, unsigned long align, 2913 unsigned long start, unsigned long end, gfp_t gfp_mask, 2914 pgprot_t prot, unsigned long vm_flags, int node, 2915 const void *caller) 2916 { 2917 struct vm_struct *area; 2918 void *addr; 2919 unsigned long real_size = size; 2920 unsigned long real_align = align; 2921 unsigned int shift = PAGE_SHIFT; 2922 2923 if (WARN_ON_ONCE(!size)) 2924 return NULL; 2925 2926 if ((size >> PAGE_SHIFT) > totalram_pages()) { 2927 warn_alloc(gfp_mask, NULL, 2928 "vmalloc error: size %lu, exceeds total pages", 2929 real_size); 2930 return NULL; 2931 } 2932 2933 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) { 2934 unsigned long size_per_node; 2935 2936 /* 2937 * Try huge pages. Only try for PAGE_KERNEL allocations, 2938 * others like modules don't yet expect huge pages in 2939 * their allocations due to apply_to_page_range not 2940 * supporting them. 2941 */ 2942 2943 size_per_node = size; 2944 if (node == NUMA_NO_NODE) 2945 size_per_node /= num_online_nodes(); 2946 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) 2947 shift = PMD_SHIFT; 2948 else 2949 shift = arch_vmap_pte_supported_shift(size_per_node); 2950 2951 align = max(real_align, 1UL << shift); 2952 size = ALIGN(real_size, 1UL << shift); 2953 } 2954 2955 again: 2956 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | 2957 VM_UNINITIALIZED | vm_flags, start, end, node, 2958 gfp_mask, caller); 2959 if (!area) { 2960 warn_alloc(gfp_mask, NULL, 2961 "vmalloc error: size %lu, vm_struct allocation failed", 2962 real_size); 2963 goto fail; 2964 } 2965 2966 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node); 2967 if (!addr) 2968 goto fail; 2969 2970 /* 2971 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 2972 * flag. It means that vm_struct is not fully initialized. 2973 * Now, it is fully initialized, so remove this flag here. 2974 */ 2975 clear_vm_uninitialized_flag(area); 2976 2977 size = PAGE_ALIGN(size); 2978 kmemleak_vmalloc(area, size, gfp_mask); 2979 2980 return addr; 2981 2982 fail: 2983 if (shift > PAGE_SHIFT) { 2984 shift = PAGE_SHIFT; 2985 align = real_align; 2986 size = real_size; 2987 goto again; 2988 } 2989 2990 return NULL; 2991 } 2992 2993 /** 2994 * __vmalloc_node - allocate virtually contiguous memory 2995 * @size: allocation size 2996 * @align: desired alignment 2997 * @gfp_mask: flags for the page level allocator 2998 * @node: node to use for allocation or NUMA_NO_NODE 2999 * @caller: caller's return address 3000 * 3001 * Allocate enough pages to cover @size from the page level allocator with 3002 * @gfp_mask flags. Map them into contiguous kernel virtual space. 3003 * 3004 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL 3005 * and __GFP_NOFAIL are not supported 3006 * 3007 * Any use of gfp flags outside of GFP_KERNEL should be consulted 3008 * with mm people. 3009 * 3010 * Return: pointer to the allocated memory or %NULL on error 3011 */ 3012 void *__vmalloc_node(unsigned long size, unsigned long align, 3013 gfp_t gfp_mask, int node, const void *caller) 3014 { 3015 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 3016 gfp_mask, PAGE_KERNEL, 0, node, caller); 3017 } 3018 /* 3019 * This is only for performance analysis of vmalloc and stress purpose. 3020 * It is required by vmalloc test module, therefore do not use it other 3021 * than that. 3022 */ 3023 #ifdef CONFIG_TEST_VMALLOC_MODULE 3024 EXPORT_SYMBOL_GPL(__vmalloc_node); 3025 #endif 3026 3027 void *__vmalloc(unsigned long size, gfp_t gfp_mask) 3028 { 3029 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, 3030 __builtin_return_address(0)); 3031 } 3032 EXPORT_SYMBOL(__vmalloc); 3033 3034 /** 3035 * vmalloc - allocate virtually contiguous memory 3036 * @size: allocation size 3037 * 3038 * Allocate enough pages to cover @size from the page level 3039 * allocator and map them into contiguous kernel virtual space. 3040 * 3041 * For tight control over page level allocator and protection flags 3042 * use __vmalloc() instead. 3043 * 3044 * Return: pointer to the allocated memory or %NULL on error 3045 */ 3046 void *vmalloc(unsigned long size) 3047 { 3048 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, 3049 __builtin_return_address(0)); 3050 } 3051 EXPORT_SYMBOL(vmalloc); 3052 3053 /** 3054 * vmalloc_no_huge - allocate virtually contiguous memory using small pages 3055 * @size: allocation size 3056 * 3057 * Allocate enough non-huge pages to cover @size from the page level 3058 * allocator and map them into contiguous kernel virtual space. 3059 * 3060 * Return: pointer to the allocated memory or %NULL on error 3061 */ 3062 void *vmalloc_no_huge(unsigned long size) 3063 { 3064 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 3065 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP, 3066 NUMA_NO_NODE, __builtin_return_address(0)); 3067 } 3068 EXPORT_SYMBOL(vmalloc_no_huge); 3069 3070 /** 3071 * vzalloc - allocate virtually contiguous memory with zero fill 3072 * @size: allocation size 3073 * 3074 * Allocate enough pages to cover @size from the page level 3075 * allocator and map them into contiguous kernel virtual space. 3076 * The memory allocated is set to zero. 3077 * 3078 * For tight control over page level allocator and protection flags 3079 * use __vmalloc() instead. 3080 * 3081 * Return: pointer to the allocated memory or %NULL on error 3082 */ 3083 void *vzalloc(unsigned long size) 3084 { 3085 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, 3086 __builtin_return_address(0)); 3087 } 3088 EXPORT_SYMBOL(vzalloc); 3089 3090 /** 3091 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 3092 * @size: allocation size 3093 * 3094 * The resulting memory area is zeroed so it can be mapped to userspace 3095 * without leaking data. 3096 * 3097 * Return: pointer to the allocated memory or %NULL on error 3098 */ 3099 void *vmalloc_user(unsigned long size) 3100 { 3101 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3102 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, 3103 VM_USERMAP, NUMA_NO_NODE, 3104 __builtin_return_address(0)); 3105 } 3106 EXPORT_SYMBOL(vmalloc_user); 3107 3108 /** 3109 * vmalloc_node - allocate memory on a specific node 3110 * @size: allocation size 3111 * @node: numa node 3112 * 3113 * Allocate enough pages to cover @size from the page level 3114 * allocator and map them into contiguous kernel virtual space. 3115 * 3116 * For tight control over page level allocator and protection flags 3117 * use __vmalloc() instead. 3118 * 3119 * Return: pointer to the allocated memory or %NULL on error 3120 */ 3121 void *vmalloc_node(unsigned long size, int node) 3122 { 3123 return __vmalloc_node(size, 1, GFP_KERNEL, node, 3124 __builtin_return_address(0)); 3125 } 3126 EXPORT_SYMBOL(vmalloc_node); 3127 3128 /** 3129 * vzalloc_node - allocate memory on a specific node with zero fill 3130 * @size: allocation size 3131 * @node: numa node 3132 * 3133 * Allocate enough pages to cover @size from the page level 3134 * allocator and map them into contiguous kernel virtual space. 3135 * The memory allocated is set to zero. 3136 * 3137 * Return: pointer to the allocated memory or %NULL on error 3138 */ 3139 void *vzalloc_node(unsigned long size, int node) 3140 { 3141 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, 3142 __builtin_return_address(0)); 3143 } 3144 EXPORT_SYMBOL(vzalloc_node); 3145 3146 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 3147 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3148 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 3149 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) 3150 #else 3151 /* 3152 * 64b systems should always have either DMA or DMA32 zones. For others 3153 * GFP_DMA32 should do the right thing and use the normal zone. 3154 */ 3155 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) 3156 #endif 3157 3158 /** 3159 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 3160 * @size: allocation size 3161 * 3162 * Allocate enough 32bit PA addressable pages to cover @size from the 3163 * page level allocator and map them into contiguous kernel virtual space. 3164 * 3165 * Return: pointer to the allocated memory or %NULL on error 3166 */ 3167 void *vmalloc_32(unsigned long size) 3168 { 3169 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, 3170 __builtin_return_address(0)); 3171 } 3172 EXPORT_SYMBOL(vmalloc_32); 3173 3174 /** 3175 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 3176 * @size: allocation size 3177 * 3178 * The resulting memory area is 32bit addressable and zeroed so it can be 3179 * mapped to userspace without leaking data. 3180 * 3181 * Return: pointer to the allocated memory or %NULL on error 3182 */ 3183 void *vmalloc_32_user(unsigned long size) 3184 { 3185 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, 3186 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 3187 VM_USERMAP, NUMA_NO_NODE, 3188 __builtin_return_address(0)); 3189 } 3190 EXPORT_SYMBOL(vmalloc_32_user); 3191 3192 /* 3193 * small helper routine , copy contents to buf from addr. 3194 * If the page is not present, fill zero. 3195 */ 3196 3197 static int aligned_vread(char *buf, char *addr, unsigned long count) 3198 { 3199 struct page *p; 3200 int copied = 0; 3201 3202 while (count) { 3203 unsigned long offset, length; 3204 3205 offset = offset_in_page(addr); 3206 length = PAGE_SIZE - offset; 3207 if (length > count) 3208 length = count; 3209 p = vmalloc_to_page(addr); 3210 /* 3211 * To do safe access to this _mapped_ area, we need 3212 * lock. But adding lock here means that we need to add 3213 * overhead of vmalloc()/vfree() calls for this _debug_ 3214 * interface, rarely used. Instead of that, we'll use 3215 * kmap() and get small overhead in this access function. 3216 */ 3217 if (p) { 3218 /* We can expect USER0 is not used -- see vread() */ 3219 void *map = kmap_atomic(p); 3220 memcpy(buf, map + offset, length); 3221 kunmap_atomic(map); 3222 } else 3223 memset(buf, 0, length); 3224 3225 addr += length; 3226 buf += length; 3227 copied += length; 3228 count -= length; 3229 } 3230 return copied; 3231 } 3232 3233 /** 3234 * vread() - read vmalloc area in a safe way. 3235 * @buf: buffer for reading data 3236 * @addr: vm address. 3237 * @count: number of bytes to be read. 3238 * 3239 * This function checks that addr is a valid vmalloc'ed area, and 3240 * copy data from that area to a given buffer. If the given memory range 3241 * of [addr...addr+count) includes some valid address, data is copied to 3242 * proper area of @buf. If there are memory holes, they'll be zero-filled. 3243 * IOREMAP area is treated as memory hole and no copy is done. 3244 * 3245 * If [addr...addr+count) doesn't includes any intersects with alive 3246 * vm_struct area, returns 0. @buf should be kernel's buffer. 3247 * 3248 * Note: In usual ops, vread() is never necessary because the caller 3249 * should know vmalloc() area is valid and can use memcpy(). 3250 * This is for routines which have to access vmalloc area without 3251 * any information, as /proc/kcore. 3252 * 3253 * Return: number of bytes for which addr and buf should be increased 3254 * (same number as @count) or %0 if [addr...addr+count) doesn't 3255 * include any intersection with valid vmalloc area 3256 */ 3257 long vread(char *buf, char *addr, unsigned long count) 3258 { 3259 struct vmap_area *va; 3260 struct vm_struct *vm; 3261 char *vaddr, *buf_start = buf; 3262 unsigned long buflen = count; 3263 unsigned long n; 3264 3265 /* Don't allow overflow */ 3266 if ((unsigned long) addr + count < count) 3267 count = -(unsigned long) addr; 3268 3269 spin_lock(&vmap_area_lock); 3270 va = __find_vmap_area((unsigned long)addr); 3271 if (!va) 3272 goto finished; 3273 list_for_each_entry_from(va, &vmap_area_list, list) { 3274 if (!count) 3275 break; 3276 3277 if (!va->vm) 3278 continue; 3279 3280 vm = va->vm; 3281 vaddr = (char *) vm->addr; 3282 if (addr >= vaddr + get_vm_area_size(vm)) 3283 continue; 3284 while (addr < vaddr) { 3285 if (count == 0) 3286 goto finished; 3287 *buf = '\0'; 3288 buf++; 3289 addr++; 3290 count--; 3291 } 3292 n = vaddr + get_vm_area_size(vm) - addr; 3293 if (n > count) 3294 n = count; 3295 if (!(vm->flags & VM_IOREMAP)) 3296 aligned_vread(buf, addr, n); 3297 else /* IOREMAP area is treated as memory hole */ 3298 memset(buf, 0, n); 3299 buf += n; 3300 addr += n; 3301 count -= n; 3302 } 3303 finished: 3304 spin_unlock(&vmap_area_lock); 3305 3306 if (buf == buf_start) 3307 return 0; 3308 /* zero-fill memory holes */ 3309 if (buf != buf_start + buflen) 3310 memset(buf, 0, buflen - (buf - buf_start)); 3311 3312 return buflen; 3313 } 3314 3315 /** 3316 * remap_vmalloc_range_partial - map vmalloc pages to userspace 3317 * @vma: vma to cover 3318 * @uaddr: target user address to start at 3319 * @kaddr: virtual address of vmalloc kernel memory 3320 * @pgoff: offset from @kaddr to start at 3321 * @size: size of map area 3322 * 3323 * Returns: 0 for success, -Exxx on failure 3324 * 3325 * This function checks that @kaddr is a valid vmalloc'ed area, 3326 * and that it is big enough to cover the range starting at 3327 * @uaddr in @vma. Will return failure if that criteria isn't 3328 * met. 3329 * 3330 * Similar to remap_pfn_range() (see mm/memory.c) 3331 */ 3332 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 3333 void *kaddr, unsigned long pgoff, 3334 unsigned long size) 3335 { 3336 struct vm_struct *area; 3337 unsigned long off; 3338 unsigned long end_index; 3339 3340 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) 3341 return -EINVAL; 3342 3343 size = PAGE_ALIGN(size); 3344 3345 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 3346 return -EINVAL; 3347 3348 area = find_vm_area(kaddr); 3349 if (!area) 3350 return -EINVAL; 3351 3352 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) 3353 return -EINVAL; 3354 3355 if (check_add_overflow(size, off, &end_index) || 3356 end_index > get_vm_area_size(area)) 3357 return -EINVAL; 3358 kaddr += off; 3359 3360 do { 3361 struct page *page = vmalloc_to_page(kaddr); 3362 int ret; 3363 3364 ret = vm_insert_page(vma, uaddr, page); 3365 if (ret) 3366 return ret; 3367 3368 uaddr += PAGE_SIZE; 3369 kaddr += PAGE_SIZE; 3370 size -= PAGE_SIZE; 3371 } while (size > 0); 3372 3373 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 3374 3375 return 0; 3376 } 3377 3378 /** 3379 * remap_vmalloc_range - map vmalloc pages to userspace 3380 * @vma: vma to cover (map full range of vma) 3381 * @addr: vmalloc memory 3382 * @pgoff: number of pages into addr before first page to map 3383 * 3384 * Returns: 0 for success, -Exxx on failure 3385 * 3386 * This function checks that addr is a valid vmalloc'ed area, and 3387 * that it is big enough to cover the vma. Will return failure if 3388 * that criteria isn't met. 3389 * 3390 * Similar to remap_pfn_range() (see mm/memory.c) 3391 */ 3392 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 3393 unsigned long pgoff) 3394 { 3395 return remap_vmalloc_range_partial(vma, vma->vm_start, 3396 addr, pgoff, 3397 vma->vm_end - vma->vm_start); 3398 } 3399 EXPORT_SYMBOL(remap_vmalloc_range); 3400 3401 void free_vm_area(struct vm_struct *area) 3402 { 3403 struct vm_struct *ret; 3404 ret = remove_vm_area(area->addr); 3405 BUG_ON(ret != area); 3406 kfree(area); 3407 } 3408 EXPORT_SYMBOL_GPL(free_vm_area); 3409 3410 #ifdef CONFIG_SMP 3411 static struct vmap_area *node_to_va(struct rb_node *n) 3412 { 3413 return rb_entry_safe(n, struct vmap_area, rb_node); 3414 } 3415 3416 /** 3417 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to 3418 * @addr: target address 3419 * 3420 * Returns: vmap_area if it is found. If there is no such area 3421 * the first highest(reverse order) vmap_area is returned 3422 * i.e. va->va_start < addr && va->va_end < addr or NULL 3423 * if there are no any areas before @addr. 3424 */ 3425 static struct vmap_area * 3426 pvm_find_va_enclose_addr(unsigned long addr) 3427 { 3428 struct vmap_area *va, *tmp; 3429 struct rb_node *n; 3430 3431 n = free_vmap_area_root.rb_node; 3432 va = NULL; 3433 3434 while (n) { 3435 tmp = rb_entry(n, struct vmap_area, rb_node); 3436 if (tmp->va_start <= addr) { 3437 va = tmp; 3438 if (tmp->va_end >= addr) 3439 break; 3440 3441 n = n->rb_right; 3442 } else { 3443 n = n->rb_left; 3444 } 3445 } 3446 3447 return va; 3448 } 3449 3450 /** 3451 * pvm_determine_end_from_reverse - find the highest aligned address 3452 * of free block below VMALLOC_END 3453 * @va: 3454 * in - the VA we start the search(reverse order); 3455 * out - the VA with the highest aligned end address. 3456 * @align: alignment for required highest address 3457 * 3458 * Returns: determined end address within vmap_area 3459 */ 3460 static unsigned long 3461 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) 3462 { 3463 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3464 unsigned long addr; 3465 3466 if (likely(*va)) { 3467 list_for_each_entry_from_reverse((*va), 3468 &free_vmap_area_list, list) { 3469 addr = min((*va)->va_end & ~(align - 1), vmalloc_end); 3470 if ((*va)->va_start < addr) 3471 return addr; 3472 } 3473 } 3474 3475 return 0; 3476 } 3477 3478 /** 3479 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 3480 * @offsets: array containing offset of each area 3481 * @sizes: array containing size of each area 3482 * @nr_vms: the number of areas to allocate 3483 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 3484 * 3485 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 3486 * vm_structs on success, %NULL on failure 3487 * 3488 * Percpu allocator wants to use congruent vm areas so that it can 3489 * maintain the offsets among percpu areas. This function allocates 3490 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 3491 * be scattered pretty far, distance between two areas easily going up 3492 * to gigabytes. To avoid interacting with regular vmallocs, these 3493 * areas are allocated from top. 3494 * 3495 * Despite its complicated look, this allocator is rather simple. It 3496 * does everything top-down and scans free blocks from the end looking 3497 * for matching base. While scanning, if any of the areas do not fit the 3498 * base address is pulled down to fit the area. Scanning is repeated till 3499 * all the areas fit and then all necessary data structures are inserted 3500 * and the result is returned. 3501 */ 3502 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 3503 const size_t *sizes, int nr_vms, 3504 size_t align) 3505 { 3506 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 3507 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 3508 struct vmap_area **vas, *va; 3509 struct vm_struct **vms; 3510 int area, area2, last_area, term_area; 3511 unsigned long base, start, size, end, last_end, orig_start, orig_end; 3512 bool purged = false; 3513 enum fit_type type; 3514 3515 /* verify parameters and allocate data structures */ 3516 BUG_ON(offset_in_page(align) || !is_power_of_2(align)); 3517 for (last_area = 0, area = 0; area < nr_vms; area++) { 3518 start = offsets[area]; 3519 end = start + sizes[area]; 3520 3521 /* is everything aligned properly? */ 3522 BUG_ON(!IS_ALIGNED(offsets[area], align)); 3523 BUG_ON(!IS_ALIGNED(sizes[area], align)); 3524 3525 /* detect the area with the highest address */ 3526 if (start > offsets[last_area]) 3527 last_area = area; 3528 3529 for (area2 = area + 1; area2 < nr_vms; area2++) { 3530 unsigned long start2 = offsets[area2]; 3531 unsigned long end2 = start2 + sizes[area2]; 3532 3533 BUG_ON(start2 < end && start < end2); 3534 } 3535 } 3536 last_end = offsets[last_area] + sizes[last_area]; 3537 3538 if (vmalloc_end - vmalloc_start < last_end) { 3539 WARN_ON(true); 3540 return NULL; 3541 } 3542 3543 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 3544 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 3545 if (!vas || !vms) 3546 goto err_free2; 3547 3548 for (area = 0; area < nr_vms; area++) { 3549 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); 3550 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 3551 if (!vas[area] || !vms[area]) 3552 goto err_free; 3553 } 3554 retry: 3555 spin_lock(&free_vmap_area_lock); 3556 3557 /* start scanning - we scan from the top, begin with the last area */ 3558 area = term_area = last_area; 3559 start = offsets[area]; 3560 end = start + sizes[area]; 3561 3562 va = pvm_find_va_enclose_addr(vmalloc_end); 3563 base = pvm_determine_end_from_reverse(&va, align) - end; 3564 3565 while (true) { 3566 /* 3567 * base might have underflowed, add last_end before 3568 * comparing. 3569 */ 3570 if (base + last_end < vmalloc_start + last_end) 3571 goto overflow; 3572 3573 /* 3574 * Fitting base has not been found. 3575 */ 3576 if (va == NULL) 3577 goto overflow; 3578 3579 /* 3580 * If required width exceeds current VA block, move 3581 * base downwards and then recheck. 3582 */ 3583 if (base + end > va->va_end) { 3584 base = pvm_determine_end_from_reverse(&va, align) - end; 3585 term_area = area; 3586 continue; 3587 } 3588 3589 /* 3590 * If this VA does not fit, move base downwards and recheck. 3591 */ 3592 if (base + start < va->va_start) { 3593 va = node_to_va(rb_prev(&va->rb_node)); 3594 base = pvm_determine_end_from_reverse(&va, align) - end; 3595 term_area = area; 3596 continue; 3597 } 3598 3599 /* 3600 * This area fits, move on to the previous one. If 3601 * the previous one is the terminal one, we're done. 3602 */ 3603 area = (area + nr_vms - 1) % nr_vms; 3604 if (area == term_area) 3605 break; 3606 3607 start = offsets[area]; 3608 end = start + sizes[area]; 3609 va = pvm_find_va_enclose_addr(base + end); 3610 } 3611 3612 /* we've found a fitting base, insert all va's */ 3613 for (area = 0; area < nr_vms; area++) { 3614 int ret; 3615 3616 start = base + offsets[area]; 3617 size = sizes[area]; 3618 3619 va = pvm_find_va_enclose_addr(start); 3620 if (WARN_ON_ONCE(va == NULL)) 3621 /* It is a BUG(), but trigger recovery instead. */ 3622 goto recovery; 3623 3624 type = classify_va_fit_type(va, start, size); 3625 if (WARN_ON_ONCE(type == NOTHING_FIT)) 3626 /* It is a BUG(), but trigger recovery instead. */ 3627 goto recovery; 3628 3629 ret = adjust_va_to_fit_type(va, start, size, type); 3630 if (unlikely(ret)) 3631 goto recovery; 3632 3633 /* Allocated area. */ 3634 va = vas[area]; 3635 va->va_start = start; 3636 va->va_end = start + size; 3637 } 3638 3639 spin_unlock(&free_vmap_area_lock); 3640 3641 /* populate the kasan shadow space */ 3642 for (area = 0; area < nr_vms; area++) { 3643 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) 3644 goto err_free_shadow; 3645 3646 kasan_unpoison_vmalloc((void *)vas[area]->va_start, 3647 sizes[area]); 3648 } 3649 3650 /* insert all vm's */ 3651 spin_lock(&vmap_area_lock); 3652 for (area = 0; area < nr_vms; area++) { 3653 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); 3654 3655 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, 3656 pcpu_get_vm_areas); 3657 } 3658 spin_unlock(&vmap_area_lock); 3659 3660 kfree(vas); 3661 return vms; 3662 3663 recovery: 3664 /* 3665 * Remove previously allocated areas. There is no 3666 * need in removing these areas from the busy tree, 3667 * because they are inserted only on the final step 3668 * and when pcpu_get_vm_areas() is success. 3669 */ 3670 while (area--) { 3671 orig_start = vas[area]->va_start; 3672 orig_end = vas[area]->va_end; 3673 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3674 &free_vmap_area_list); 3675 if (va) 3676 kasan_release_vmalloc(orig_start, orig_end, 3677 va->va_start, va->va_end); 3678 vas[area] = NULL; 3679 } 3680 3681 overflow: 3682 spin_unlock(&free_vmap_area_lock); 3683 if (!purged) { 3684 purge_vmap_area_lazy(); 3685 purged = true; 3686 3687 /* Before "retry", check if we recover. */ 3688 for (area = 0; area < nr_vms; area++) { 3689 if (vas[area]) 3690 continue; 3691 3692 vas[area] = kmem_cache_zalloc( 3693 vmap_area_cachep, GFP_KERNEL); 3694 if (!vas[area]) 3695 goto err_free; 3696 } 3697 3698 goto retry; 3699 } 3700 3701 err_free: 3702 for (area = 0; area < nr_vms; area++) { 3703 if (vas[area]) 3704 kmem_cache_free(vmap_area_cachep, vas[area]); 3705 3706 kfree(vms[area]); 3707 } 3708 err_free2: 3709 kfree(vas); 3710 kfree(vms); 3711 return NULL; 3712 3713 err_free_shadow: 3714 spin_lock(&free_vmap_area_lock); 3715 /* 3716 * We release all the vmalloc shadows, even the ones for regions that 3717 * hadn't been successfully added. This relies on kasan_release_vmalloc 3718 * being able to tolerate this case. 3719 */ 3720 for (area = 0; area < nr_vms; area++) { 3721 orig_start = vas[area]->va_start; 3722 orig_end = vas[area]->va_end; 3723 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, 3724 &free_vmap_area_list); 3725 if (va) 3726 kasan_release_vmalloc(orig_start, orig_end, 3727 va->va_start, va->va_end); 3728 vas[area] = NULL; 3729 kfree(vms[area]); 3730 } 3731 spin_unlock(&free_vmap_area_lock); 3732 kfree(vas); 3733 kfree(vms); 3734 return NULL; 3735 } 3736 3737 /** 3738 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 3739 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 3740 * @nr_vms: the number of allocated areas 3741 * 3742 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 3743 */ 3744 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 3745 { 3746 int i; 3747 3748 for (i = 0; i < nr_vms; i++) 3749 free_vm_area(vms[i]); 3750 kfree(vms); 3751 } 3752 #endif /* CONFIG_SMP */ 3753 3754 #ifdef CONFIG_PRINTK 3755 bool vmalloc_dump_obj(void *object) 3756 { 3757 struct vm_struct *vm; 3758 void *objp = (void *)PAGE_ALIGN((unsigned long)object); 3759 3760 vm = find_vm_area(objp); 3761 if (!vm) 3762 return false; 3763 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", 3764 vm->nr_pages, (unsigned long)vm->addr, vm->caller); 3765 return true; 3766 } 3767 #endif 3768 3769 #ifdef CONFIG_PROC_FS 3770 static void *s_start(struct seq_file *m, loff_t *pos) 3771 __acquires(&vmap_purge_lock) 3772 __acquires(&vmap_area_lock) 3773 { 3774 mutex_lock(&vmap_purge_lock); 3775 spin_lock(&vmap_area_lock); 3776 3777 return seq_list_start(&vmap_area_list, *pos); 3778 } 3779 3780 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 3781 { 3782 return seq_list_next(p, &vmap_area_list, pos); 3783 } 3784 3785 static void s_stop(struct seq_file *m, void *p) 3786 __releases(&vmap_area_lock) 3787 __releases(&vmap_purge_lock) 3788 { 3789 spin_unlock(&vmap_area_lock); 3790 mutex_unlock(&vmap_purge_lock); 3791 } 3792 3793 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 3794 { 3795 if (IS_ENABLED(CONFIG_NUMA)) { 3796 unsigned int nr, *counters = m->private; 3797 3798 if (!counters) 3799 return; 3800 3801 if (v->flags & VM_UNINITIALIZED) 3802 return; 3803 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 3804 smp_rmb(); 3805 3806 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 3807 3808 for (nr = 0; nr < v->nr_pages; nr++) 3809 counters[page_to_nid(v->pages[nr])]++; 3810 3811 for_each_node_state(nr, N_HIGH_MEMORY) 3812 if (counters[nr]) 3813 seq_printf(m, " N%u=%u", nr, counters[nr]); 3814 } 3815 } 3816 3817 static void show_purge_info(struct seq_file *m) 3818 { 3819 struct vmap_area *va; 3820 3821 spin_lock(&purge_vmap_area_lock); 3822 list_for_each_entry(va, &purge_vmap_area_list, list) { 3823 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", 3824 (void *)va->va_start, (void *)va->va_end, 3825 va->va_end - va->va_start); 3826 } 3827 spin_unlock(&purge_vmap_area_lock); 3828 } 3829 3830 static int s_show(struct seq_file *m, void *p) 3831 { 3832 struct vmap_area *va; 3833 struct vm_struct *v; 3834 3835 va = list_entry(p, struct vmap_area, list); 3836 3837 /* 3838 * s_show can encounter race with remove_vm_area, !vm on behalf 3839 * of vmap area is being tear down or vm_map_ram allocation. 3840 */ 3841 if (!va->vm) { 3842 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", 3843 (void *)va->va_start, (void *)va->va_end, 3844 va->va_end - va->va_start); 3845 3846 return 0; 3847 } 3848 3849 v = va->vm; 3850 3851 seq_printf(m, "0x%pK-0x%pK %7ld", 3852 v->addr, v->addr + v->size, v->size); 3853 3854 if (v->caller) 3855 seq_printf(m, " %pS", v->caller); 3856 3857 if (v->nr_pages) 3858 seq_printf(m, " pages=%d", v->nr_pages); 3859 3860 if (v->phys_addr) 3861 seq_printf(m, " phys=%pa", &v->phys_addr); 3862 3863 if (v->flags & VM_IOREMAP) 3864 seq_puts(m, " ioremap"); 3865 3866 if (v->flags & VM_ALLOC) 3867 seq_puts(m, " vmalloc"); 3868 3869 if (v->flags & VM_MAP) 3870 seq_puts(m, " vmap"); 3871 3872 if (v->flags & VM_USERMAP) 3873 seq_puts(m, " user"); 3874 3875 if (v->flags & VM_DMA_COHERENT) 3876 seq_puts(m, " dma-coherent"); 3877 3878 if (is_vmalloc_addr(v->pages)) 3879 seq_puts(m, " vpages"); 3880 3881 show_numa_info(m, v); 3882 seq_putc(m, '\n'); 3883 3884 /* 3885 * As a final step, dump "unpurged" areas. 3886 */ 3887 if (list_is_last(&va->list, &vmap_area_list)) 3888 show_purge_info(m); 3889 3890 return 0; 3891 } 3892 3893 static const struct seq_operations vmalloc_op = { 3894 .start = s_start, 3895 .next = s_next, 3896 .stop = s_stop, 3897 .show = s_show, 3898 }; 3899 3900 static int __init proc_vmalloc_init(void) 3901 { 3902 if (IS_ENABLED(CONFIG_NUMA)) 3903 proc_create_seq_private("vmallocinfo", 0400, NULL, 3904 &vmalloc_op, 3905 nr_node_ids * sizeof(unsigned int), NULL); 3906 else 3907 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); 3908 return 0; 3909 } 3910 module_init(proc_vmalloc_init); 3911 3912 #endif 3913