xref: /openbmc/linux/mm/vmalloc.c (revision 1482ec00)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/memcontrol.h>
35 #include <linux/llist.h>
36 #include <linux/bitops.h>
37 #include <linux/rbtree_augmented.h>
38 #include <linux/overflow.h>
39 #include <linux/pgtable.h>
40 #include <linux/uaccess.h>
41 #include <linux/hugetlb.h>
42 #include <linux/sched/mm.h>
43 #include <asm/tlbflush.h>
44 #include <asm/shmparam.h>
45 
46 #include "internal.h"
47 #include "pgalloc-track.h"
48 
49 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
50 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
51 
52 static int __init set_nohugeiomap(char *str)
53 {
54 	ioremap_max_page_shift = PAGE_SHIFT;
55 	return 0;
56 }
57 early_param("nohugeiomap", set_nohugeiomap);
58 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
60 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
61 
62 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
63 static bool __ro_after_init vmap_allow_huge = true;
64 
65 static int __init set_nohugevmalloc(char *str)
66 {
67 	vmap_allow_huge = false;
68 	return 0;
69 }
70 early_param("nohugevmalloc", set_nohugevmalloc);
71 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72 static const bool vmap_allow_huge = false;
73 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
74 
75 bool is_vmalloc_addr(const void *x)
76 {
77 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
78 
79 	return addr >= VMALLOC_START && addr < VMALLOC_END;
80 }
81 EXPORT_SYMBOL(is_vmalloc_addr);
82 
83 struct vfree_deferred {
84 	struct llist_head list;
85 	struct work_struct wq;
86 };
87 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
88 
89 static void __vunmap(const void *, int);
90 
91 static void free_work(struct work_struct *w)
92 {
93 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
94 	struct llist_node *t, *llnode;
95 
96 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
97 		__vunmap((void *)llnode, 1);
98 }
99 
100 /*** Page table manipulation functions ***/
101 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
102 			phys_addr_t phys_addr, pgprot_t prot,
103 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
104 {
105 	pte_t *pte;
106 	u64 pfn;
107 	unsigned long size = PAGE_SIZE;
108 
109 	pfn = phys_addr >> PAGE_SHIFT;
110 	pte = pte_alloc_kernel_track(pmd, addr, mask);
111 	if (!pte)
112 		return -ENOMEM;
113 	do {
114 		BUG_ON(!pte_none(*pte));
115 
116 #ifdef CONFIG_HUGETLB_PAGE
117 		size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
118 		if (size != PAGE_SIZE) {
119 			pte_t entry = pfn_pte(pfn, prot);
120 
121 			entry = arch_make_huge_pte(entry, ilog2(size), 0);
122 			set_huge_pte_at(&init_mm, addr, pte, entry);
123 			pfn += PFN_DOWN(size);
124 			continue;
125 		}
126 #endif
127 		set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
128 		pfn++;
129 	} while (pte += PFN_DOWN(size), addr += size, addr != end);
130 	*mask |= PGTBL_PTE_MODIFIED;
131 	return 0;
132 }
133 
134 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
135 			phys_addr_t phys_addr, pgprot_t prot,
136 			unsigned int max_page_shift)
137 {
138 	if (max_page_shift < PMD_SHIFT)
139 		return 0;
140 
141 	if (!arch_vmap_pmd_supported(prot))
142 		return 0;
143 
144 	if ((end - addr) != PMD_SIZE)
145 		return 0;
146 
147 	if (!IS_ALIGNED(addr, PMD_SIZE))
148 		return 0;
149 
150 	if (!IS_ALIGNED(phys_addr, PMD_SIZE))
151 		return 0;
152 
153 	if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
154 		return 0;
155 
156 	return pmd_set_huge(pmd, phys_addr, prot);
157 }
158 
159 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
160 			phys_addr_t phys_addr, pgprot_t prot,
161 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 
172 		if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
173 					max_page_shift)) {
174 			*mask |= PGTBL_PMD_MODIFIED;
175 			continue;
176 		}
177 
178 		if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
179 			return -ENOMEM;
180 	} while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
181 	return 0;
182 }
183 
184 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
185 			phys_addr_t phys_addr, pgprot_t prot,
186 			unsigned int max_page_shift)
187 {
188 	if (max_page_shift < PUD_SHIFT)
189 		return 0;
190 
191 	if (!arch_vmap_pud_supported(prot))
192 		return 0;
193 
194 	if ((end - addr) != PUD_SIZE)
195 		return 0;
196 
197 	if (!IS_ALIGNED(addr, PUD_SIZE))
198 		return 0;
199 
200 	if (!IS_ALIGNED(phys_addr, PUD_SIZE))
201 		return 0;
202 
203 	if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
204 		return 0;
205 
206 	return pud_set_huge(pud, phys_addr, prot);
207 }
208 
209 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
210 			phys_addr_t phys_addr, pgprot_t prot,
211 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
212 {
213 	pud_t *pud;
214 	unsigned long next;
215 
216 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
217 	if (!pud)
218 		return -ENOMEM;
219 	do {
220 		next = pud_addr_end(addr, end);
221 
222 		if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
223 					max_page_shift)) {
224 			*mask |= PGTBL_PUD_MODIFIED;
225 			continue;
226 		}
227 
228 		if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
229 					max_page_shift, mask))
230 			return -ENOMEM;
231 	} while (pud++, phys_addr += (next - addr), addr = next, addr != end);
232 	return 0;
233 }
234 
235 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
236 			phys_addr_t phys_addr, pgprot_t prot,
237 			unsigned int max_page_shift)
238 {
239 	if (max_page_shift < P4D_SHIFT)
240 		return 0;
241 
242 	if (!arch_vmap_p4d_supported(prot))
243 		return 0;
244 
245 	if ((end - addr) != P4D_SIZE)
246 		return 0;
247 
248 	if (!IS_ALIGNED(addr, P4D_SIZE))
249 		return 0;
250 
251 	if (!IS_ALIGNED(phys_addr, P4D_SIZE))
252 		return 0;
253 
254 	if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
255 		return 0;
256 
257 	return p4d_set_huge(p4d, phys_addr, prot);
258 }
259 
260 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
261 			phys_addr_t phys_addr, pgprot_t prot,
262 			unsigned int max_page_shift, pgtbl_mod_mask *mask)
263 {
264 	p4d_t *p4d;
265 	unsigned long next;
266 
267 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
268 	if (!p4d)
269 		return -ENOMEM;
270 	do {
271 		next = p4d_addr_end(addr, end);
272 
273 		if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
274 					max_page_shift)) {
275 			*mask |= PGTBL_P4D_MODIFIED;
276 			continue;
277 		}
278 
279 		if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
280 					max_page_shift, mask))
281 			return -ENOMEM;
282 	} while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
283 	return 0;
284 }
285 
286 static int vmap_range_noflush(unsigned long addr, unsigned long end,
287 			phys_addr_t phys_addr, pgprot_t prot,
288 			unsigned int max_page_shift)
289 {
290 	pgd_t *pgd;
291 	unsigned long start;
292 	unsigned long next;
293 	int err;
294 	pgtbl_mod_mask mask = 0;
295 
296 	might_sleep();
297 	BUG_ON(addr >= end);
298 
299 	start = addr;
300 	pgd = pgd_offset_k(addr);
301 	do {
302 		next = pgd_addr_end(addr, end);
303 		err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
304 					max_page_shift, &mask);
305 		if (err)
306 			break;
307 	} while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
308 
309 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
310 		arch_sync_kernel_mappings(start, end);
311 
312 	return err;
313 }
314 
315 int ioremap_page_range(unsigned long addr, unsigned long end,
316 		phys_addr_t phys_addr, pgprot_t prot)
317 {
318 	int err;
319 
320 	err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
321 				 ioremap_max_page_shift);
322 	flush_cache_vmap(addr, end);
323 	if (!err)
324 		kmsan_ioremap_page_range(addr, end, phys_addr, prot,
325 					 ioremap_max_page_shift);
326 	return err;
327 }
328 
329 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
330 			     pgtbl_mod_mask *mask)
331 {
332 	pte_t *pte;
333 
334 	pte = pte_offset_kernel(pmd, addr);
335 	do {
336 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
337 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
338 	} while (pte++, addr += PAGE_SIZE, addr != end);
339 	*mask |= PGTBL_PTE_MODIFIED;
340 }
341 
342 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
343 			     pgtbl_mod_mask *mask)
344 {
345 	pmd_t *pmd;
346 	unsigned long next;
347 	int cleared;
348 
349 	pmd = pmd_offset(pud, addr);
350 	do {
351 		next = pmd_addr_end(addr, end);
352 
353 		cleared = pmd_clear_huge(pmd);
354 		if (cleared || pmd_bad(*pmd))
355 			*mask |= PGTBL_PMD_MODIFIED;
356 
357 		if (cleared)
358 			continue;
359 		if (pmd_none_or_clear_bad(pmd))
360 			continue;
361 		vunmap_pte_range(pmd, addr, next, mask);
362 
363 		cond_resched();
364 	} while (pmd++, addr = next, addr != end);
365 }
366 
367 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
368 			     pgtbl_mod_mask *mask)
369 {
370 	pud_t *pud;
371 	unsigned long next;
372 	int cleared;
373 
374 	pud = pud_offset(p4d, addr);
375 	do {
376 		next = pud_addr_end(addr, end);
377 
378 		cleared = pud_clear_huge(pud);
379 		if (cleared || pud_bad(*pud))
380 			*mask |= PGTBL_PUD_MODIFIED;
381 
382 		if (cleared)
383 			continue;
384 		if (pud_none_or_clear_bad(pud))
385 			continue;
386 		vunmap_pmd_range(pud, addr, next, mask);
387 	} while (pud++, addr = next, addr != end);
388 }
389 
390 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
391 			     pgtbl_mod_mask *mask)
392 {
393 	p4d_t *p4d;
394 	unsigned long next;
395 
396 	p4d = p4d_offset(pgd, addr);
397 	do {
398 		next = p4d_addr_end(addr, end);
399 
400 		p4d_clear_huge(p4d);
401 		if (p4d_bad(*p4d))
402 			*mask |= PGTBL_P4D_MODIFIED;
403 
404 		if (p4d_none_or_clear_bad(p4d))
405 			continue;
406 		vunmap_pud_range(p4d, addr, next, mask);
407 	} while (p4d++, addr = next, addr != end);
408 }
409 
410 /*
411  * vunmap_range_noflush is similar to vunmap_range, but does not
412  * flush caches or TLBs.
413  *
414  * The caller is responsible for calling flush_cache_vmap() before calling
415  * this function, and flush_tlb_kernel_range after it has returned
416  * successfully (and before the addresses are expected to cause a page fault
417  * or be re-mapped for something else, if TLB flushes are being delayed or
418  * coalesced).
419  *
420  * This is an internal function only. Do not use outside mm/.
421  */
422 void __vunmap_range_noflush(unsigned long start, unsigned long end)
423 {
424 	unsigned long next;
425 	pgd_t *pgd;
426 	unsigned long addr = start;
427 	pgtbl_mod_mask mask = 0;
428 
429 	BUG_ON(addr >= end);
430 	pgd = pgd_offset_k(addr);
431 	do {
432 		next = pgd_addr_end(addr, end);
433 		if (pgd_bad(*pgd))
434 			mask |= PGTBL_PGD_MODIFIED;
435 		if (pgd_none_or_clear_bad(pgd))
436 			continue;
437 		vunmap_p4d_range(pgd, addr, next, &mask);
438 	} while (pgd++, addr = next, addr != end);
439 
440 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
441 		arch_sync_kernel_mappings(start, end);
442 }
443 
444 void vunmap_range_noflush(unsigned long start, unsigned long end)
445 {
446 	kmsan_vunmap_range_noflush(start, end);
447 	__vunmap_range_noflush(start, end);
448 }
449 
450 /**
451  * vunmap_range - unmap kernel virtual addresses
452  * @addr: start of the VM area to unmap
453  * @end: end of the VM area to unmap (non-inclusive)
454  *
455  * Clears any present PTEs in the virtual address range, flushes TLBs and
456  * caches. Any subsequent access to the address before it has been re-mapped
457  * is a kernel bug.
458  */
459 void vunmap_range(unsigned long addr, unsigned long end)
460 {
461 	flush_cache_vunmap(addr, end);
462 	vunmap_range_noflush(addr, end);
463 	flush_tlb_kernel_range(addr, end);
464 }
465 
466 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
467 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
468 		pgtbl_mod_mask *mask)
469 {
470 	pte_t *pte;
471 
472 	/*
473 	 * nr is a running index into the array which helps higher level
474 	 * callers keep track of where we're up to.
475 	 */
476 
477 	pte = pte_alloc_kernel_track(pmd, addr, mask);
478 	if (!pte)
479 		return -ENOMEM;
480 	do {
481 		struct page *page = pages[*nr];
482 
483 		if (WARN_ON(!pte_none(*pte)))
484 			return -EBUSY;
485 		if (WARN_ON(!page))
486 			return -ENOMEM;
487 		if (WARN_ON(!pfn_valid(page_to_pfn(page))))
488 			return -EINVAL;
489 
490 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
491 		(*nr)++;
492 	} while (pte++, addr += PAGE_SIZE, addr != end);
493 	*mask |= PGTBL_PTE_MODIFIED;
494 	return 0;
495 }
496 
497 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
498 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
499 		pgtbl_mod_mask *mask)
500 {
501 	pmd_t *pmd;
502 	unsigned long next;
503 
504 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
505 	if (!pmd)
506 		return -ENOMEM;
507 	do {
508 		next = pmd_addr_end(addr, end);
509 		if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
510 			return -ENOMEM;
511 	} while (pmd++, addr = next, addr != end);
512 	return 0;
513 }
514 
515 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
516 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
517 		pgtbl_mod_mask *mask)
518 {
519 	pud_t *pud;
520 	unsigned long next;
521 
522 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
523 	if (!pud)
524 		return -ENOMEM;
525 	do {
526 		next = pud_addr_end(addr, end);
527 		if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
528 			return -ENOMEM;
529 	} while (pud++, addr = next, addr != end);
530 	return 0;
531 }
532 
533 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
534 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
535 		pgtbl_mod_mask *mask)
536 {
537 	p4d_t *p4d;
538 	unsigned long next;
539 
540 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
541 	if (!p4d)
542 		return -ENOMEM;
543 	do {
544 		next = p4d_addr_end(addr, end);
545 		if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
546 			return -ENOMEM;
547 	} while (p4d++, addr = next, addr != end);
548 	return 0;
549 }
550 
551 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
552 		pgprot_t prot, struct page **pages)
553 {
554 	unsigned long start = addr;
555 	pgd_t *pgd;
556 	unsigned long next;
557 	int err = 0;
558 	int nr = 0;
559 	pgtbl_mod_mask mask = 0;
560 
561 	BUG_ON(addr >= end);
562 	pgd = pgd_offset_k(addr);
563 	do {
564 		next = pgd_addr_end(addr, end);
565 		if (pgd_bad(*pgd))
566 			mask |= PGTBL_PGD_MODIFIED;
567 		err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
568 		if (err)
569 			return err;
570 	} while (pgd++, addr = next, addr != end);
571 
572 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
573 		arch_sync_kernel_mappings(start, end);
574 
575 	return 0;
576 }
577 
578 /*
579  * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
580  * flush caches.
581  *
582  * The caller is responsible for calling flush_cache_vmap() after this
583  * function returns successfully and before the addresses are accessed.
584  *
585  * This is an internal function only. Do not use outside mm/.
586  */
587 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
588 		pgprot_t prot, struct page **pages, unsigned int page_shift)
589 {
590 	unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
591 
592 	WARN_ON(page_shift < PAGE_SHIFT);
593 
594 	if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
595 			page_shift == PAGE_SHIFT)
596 		return vmap_small_pages_range_noflush(addr, end, prot, pages);
597 
598 	for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
599 		int err;
600 
601 		err = vmap_range_noflush(addr, addr + (1UL << page_shift),
602 					page_to_phys(pages[i]), prot,
603 					page_shift);
604 		if (err)
605 			return err;
606 
607 		addr += 1UL << page_shift;
608 	}
609 
610 	return 0;
611 }
612 
613 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
614 		pgprot_t prot, struct page **pages, unsigned int page_shift)
615 {
616 	kmsan_vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
617 	return __vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
618 }
619 
620 /**
621  * vmap_pages_range - map pages to a kernel virtual address
622  * @addr: start of the VM area to map
623  * @end: end of the VM area to map (non-inclusive)
624  * @prot: page protection flags to use
625  * @pages: pages to map (always PAGE_SIZE pages)
626  * @page_shift: maximum shift that the pages may be mapped with, @pages must
627  * be aligned and contiguous up to at least this shift.
628  *
629  * RETURNS:
630  * 0 on success, -errno on failure.
631  */
632 static int vmap_pages_range(unsigned long addr, unsigned long end,
633 		pgprot_t prot, struct page **pages, unsigned int page_shift)
634 {
635 	int err;
636 
637 	err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
638 	flush_cache_vmap(addr, end);
639 	return err;
640 }
641 
642 int is_vmalloc_or_module_addr(const void *x)
643 {
644 	/*
645 	 * ARM, x86-64 and sparc64 put modules in a special place,
646 	 * and fall back on vmalloc() if that fails. Others
647 	 * just put it in the vmalloc space.
648 	 */
649 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
650 	unsigned long addr = (unsigned long)kasan_reset_tag(x);
651 	if (addr >= MODULES_VADDR && addr < MODULES_END)
652 		return 1;
653 #endif
654 	return is_vmalloc_addr(x);
655 }
656 
657 /*
658  * Walk a vmap address to the struct page it maps. Huge vmap mappings will
659  * return the tail page that corresponds to the base page address, which
660  * matches small vmap mappings.
661  */
662 struct page *vmalloc_to_page(const void *vmalloc_addr)
663 {
664 	unsigned long addr = (unsigned long) vmalloc_addr;
665 	struct page *page = NULL;
666 	pgd_t *pgd = pgd_offset_k(addr);
667 	p4d_t *p4d;
668 	pud_t *pud;
669 	pmd_t *pmd;
670 	pte_t *ptep, pte;
671 
672 	/*
673 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
674 	 * architectures that do not vmalloc module space
675 	 */
676 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
677 
678 	if (pgd_none(*pgd))
679 		return NULL;
680 	if (WARN_ON_ONCE(pgd_leaf(*pgd)))
681 		return NULL; /* XXX: no allowance for huge pgd */
682 	if (WARN_ON_ONCE(pgd_bad(*pgd)))
683 		return NULL;
684 
685 	p4d = p4d_offset(pgd, addr);
686 	if (p4d_none(*p4d))
687 		return NULL;
688 	if (p4d_leaf(*p4d))
689 		return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
690 	if (WARN_ON_ONCE(p4d_bad(*p4d)))
691 		return NULL;
692 
693 	pud = pud_offset(p4d, addr);
694 	if (pud_none(*pud))
695 		return NULL;
696 	if (pud_leaf(*pud))
697 		return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
698 	if (WARN_ON_ONCE(pud_bad(*pud)))
699 		return NULL;
700 
701 	pmd = pmd_offset(pud, addr);
702 	if (pmd_none(*pmd))
703 		return NULL;
704 	if (pmd_leaf(*pmd))
705 		return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
706 	if (WARN_ON_ONCE(pmd_bad(*pmd)))
707 		return NULL;
708 
709 	ptep = pte_offset_map(pmd, addr);
710 	pte = *ptep;
711 	if (pte_present(pte))
712 		page = pte_page(pte);
713 	pte_unmap(ptep);
714 
715 	return page;
716 }
717 EXPORT_SYMBOL(vmalloc_to_page);
718 
719 /*
720  * Map a vmalloc()-space virtual address to the physical page frame number.
721  */
722 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
723 {
724 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
725 }
726 EXPORT_SYMBOL(vmalloc_to_pfn);
727 
728 
729 /*** Global kva allocator ***/
730 
731 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
732 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
733 
734 
735 static DEFINE_SPINLOCK(vmap_area_lock);
736 static DEFINE_SPINLOCK(free_vmap_area_lock);
737 /* Export for kexec only */
738 LIST_HEAD(vmap_area_list);
739 static struct rb_root vmap_area_root = RB_ROOT;
740 static bool vmap_initialized __read_mostly;
741 
742 static struct rb_root purge_vmap_area_root = RB_ROOT;
743 static LIST_HEAD(purge_vmap_area_list);
744 static DEFINE_SPINLOCK(purge_vmap_area_lock);
745 
746 /*
747  * This kmem_cache is used for vmap_area objects. Instead of
748  * allocating from slab we reuse an object from this cache to
749  * make things faster. Especially in "no edge" splitting of
750  * free block.
751  */
752 static struct kmem_cache *vmap_area_cachep;
753 
754 /*
755  * This linked list is used in pair with free_vmap_area_root.
756  * It gives O(1) access to prev/next to perform fast coalescing.
757  */
758 static LIST_HEAD(free_vmap_area_list);
759 
760 /*
761  * This augment red-black tree represents the free vmap space.
762  * All vmap_area objects in this tree are sorted by va->va_start
763  * address. It is used for allocation and merging when a vmap
764  * object is released.
765  *
766  * Each vmap_area node contains a maximum available free block
767  * of its sub-tree, right or left. Therefore it is possible to
768  * find a lowest match of free area.
769  */
770 static struct rb_root free_vmap_area_root = RB_ROOT;
771 
772 /*
773  * Preload a CPU with one object for "no edge" split case. The
774  * aim is to get rid of allocations from the atomic context, thus
775  * to use more permissive allocation masks.
776  */
777 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
778 
779 static __always_inline unsigned long
780 va_size(struct vmap_area *va)
781 {
782 	return (va->va_end - va->va_start);
783 }
784 
785 static __always_inline unsigned long
786 get_subtree_max_size(struct rb_node *node)
787 {
788 	struct vmap_area *va;
789 
790 	va = rb_entry_safe(node, struct vmap_area, rb_node);
791 	return va ? va->subtree_max_size : 0;
792 }
793 
794 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
795 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
796 
797 static void purge_vmap_area_lazy(void);
798 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
799 static void drain_vmap_area_work(struct work_struct *work);
800 static DECLARE_WORK(drain_vmap_work, drain_vmap_area_work);
801 
802 static atomic_long_t nr_vmalloc_pages;
803 
804 unsigned long vmalloc_nr_pages(void)
805 {
806 	return atomic_long_read(&nr_vmalloc_pages);
807 }
808 
809 /* Look up the first VA which satisfies addr < va_end, NULL if none. */
810 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
811 {
812 	struct vmap_area *va = NULL;
813 	struct rb_node *n = vmap_area_root.rb_node;
814 
815 	addr = (unsigned long)kasan_reset_tag((void *)addr);
816 
817 	while (n) {
818 		struct vmap_area *tmp;
819 
820 		tmp = rb_entry(n, struct vmap_area, rb_node);
821 		if (tmp->va_end > addr) {
822 			va = tmp;
823 			if (tmp->va_start <= addr)
824 				break;
825 
826 			n = n->rb_left;
827 		} else
828 			n = n->rb_right;
829 	}
830 
831 	return va;
832 }
833 
834 static struct vmap_area *__find_vmap_area(unsigned long addr, struct rb_root *root)
835 {
836 	struct rb_node *n = root->rb_node;
837 
838 	addr = (unsigned long)kasan_reset_tag((void *)addr);
839 
840 	while (n) {
841 		struct vmap_area *va;
842 
843 		va = rb_entry(n, struct vmap_area, rb_node);
844 		if (addr < va->va_start)
845 			n = n->rb_left;
846 		else if (addr >= va->va_end)
847 			n = n->rb_right;
848 		else
849 			return va;
850 	}
851 
852 	return NULL;
853 }
854 
855 /*
856  * This function returns back addresses of parent node
857  * and its left or right link for further processing.
858  *
859  * Otherwise NULL is returned. In that case all further
860  * steps regarding inserting of conflicting overlap range
861  * have to be declined and actually considered as a bug.
862  */
863 static __always_inline struct rb_node **
864 find_va_links(struct vmap_area *va,
865 	struct rb_root *root, struct rb_node *from,
866 	struct rb_node **parent)
867 {
868 	struct vmap_area *tmp_va;
869 	struct rb_node **link;
870 
871 	if (root) {
872 		link = &root->rb_node;
873 		if (unlikely(!*link)) {
874 			*parent = NULL;
875 			return link;
876 		}
877 	} else {
878 		link = &from;
879 	}
880 
881 	/*
882 	 * Go to the bottom of the tree. When we hit the last point
883 	 * we end up with parent rb_node and correct direction, i name
884 	 * it link, where the new va->rb_node will be attached to.
885 	 */
886 	do {
887 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
888 
889 		/*
890 		 * During the traversal we also do some sanity check.
891 		 * Trigger the BUG() if there are sides(left/right)
892 		 * or full overlaps.
893 		 */
894 		if (va->va_end <= tmp_va->va_start)
895 			link = &(*link)->rb_left;
896 		else if (va->va_start >= tmp_va->va_end)
897 			link = &(*link)->rb_right;
898 		else {
899 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
900 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
901 
902 			return NULL;
903 		}
904 	} while (*link);
905 
906 	*parent = &tmp_va->rb_node;
907 	return link;
908 }
909 
910 static __always_inline struct list_head *
911 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
912 {
913 	struct list_head *list;
914 
915 	if (unlikely(!parent))
916 		/*
917 		 * The red-black tree where we try to find VA neighbors
918 		 * before merging or inserting is empty, i.e. it means
919 		 * there is no free vmap space. Normally it does not
920 		 * happen but we handle this case anyway.
921 		 */
922 		return NULL;
923 
924 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
925 	return (&parent->rb_right == link ? list->next : list);
926 }
927 
928 static __always_inline void
929 __link_va(struct vmap_area *va, struct rb_root *root,
930 	struct rb_node *parent, struct rb_node **link,
931 	struct list_head *head, bool augment)
932 {
933 	/*
934 	 * VA is still not in the list, but we can
935 	 * identify its future previous list_head node.
936 	 */
937 	if (likely(parent)) {
938 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
939 		if (&parent->rb_right != link)
940 			head = head->prev;
941 	}
942 
943 	/* Insert to the rb-tree */
944 	rb_link_node(&va->rb_node, parent, link);
945 	if (augment) {
946 		/*
947 		 * Some explanation here. Just perform simple insertion
948 		 * to the tree. We do not set va->subtree_max_size to
949 		 * its current size before calling rb_insert_augmented().
950 		 * It is because we populate the tree from the bottom
951 		 * to parent levels when the node _is_ in the tree.
952 		 *
953 		 * Therefore we set subtree_max_size to zero after insertion,
954 		 * to let __augment_tree_propagate_from() puts everything to
955 		 * the correct order later on.
956 		 */
957 		rb_insert_augmented(&va->rb_node,
958 			root, &free_vmap_area_rb_augment_cb);
959 		va->subtree_max_size = 0;
960 	} else {
961 		rb_insert_color(&va->rb_node, root);
962 	}
963 
964 	/* Address-sort this list */
965 	list_add(&va->list, head);
966 }
967 
968 static __always_inline void
969 link_va(struct vmap_area *va, struct rb_root *root,
970 	struct rb_node *parent, struct rb_node **link,
971 	struct list_head *head)
972 {
973 	__link_va(va, root, parent, link, head, false);
974 }
975 
976 static __always_inline void
977 link_va_augment(struct vmap_area *va, struct rb_root *root,
978 	struct rb_node *parent, struct rb_node **link,
979 	struct list_head *head)
980 {
981 	__link_va(va, root, parent, link, head, true);
982 }
983 
984 static __always_inline void
985 __unlink_va(struct vmap_area *va, struct rb_root *root, bool augment)
986 {
987 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
988 		return;
989 
990 	if (augment)
991 		rb_erase_augmented(&va->rb_node,
992 			root, &free_vmap_area_rb_augment_cb);
993 	else
994 		rb_erase(&va->rb_node, root);
995 
996 	list_del_init(&va->list);
997 	RB_CLEAR_NODE(&va->rb_node);
998 }
999 
1000 static __always_inline void
1001 unlink_va(struct vmap_area *va, struct rb_root *root)
1002 {
1003 	__unlink_va(va, root, false);
1004 }
1005 
1006 static __always_inline void
1007 unlink_va_augment(struct vmap_area *va, struct rb_root *root)
1008 {
1009 	__unlink_va(va, root, true);
1010 }
1011 
1012 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1013 /*
1014  * Gets called when remove the node and rotate.
1015  */
1016 static __always_inline unsigned long
1017 compute_subtree_max_size(struct vmap_area *va)
1018 {
1019 	return max3(va_size(va),
1020 		get_subtree_max_size(va->rb_node.rb_left),
1021 		get_subtree_max_size(va->rb_node.rb_right));
1022 }
1023 
1024 static void
1025 augment_tree_propagate_check(void)
1026 {
1027 	struct vmap_area *va;
1028 	unsigned long computed_size;
1029 
1030 	list_for_each_entry(va, &free_vmap_area_list, list) {
1031 		computed_size = compute_subtree_max_size(va);
1032 		if (computed_size != va->subtree_max_size)
1033 			pr_emerg("tree is corrupted: %lu, %lu\n",
1034 				va_size(va), va->subtree_max_size);
1035 	}
1036 }
1037 #endif
1038 
1039 /*
1040  * This function populates subtree_max_size from bottom to upper
1041  * levels starting from VA point. The propagation must be done
1042  * when VA size is modified by changing its va_start/va_end. Or
1043  * in case of newly inserting of VA to the tree.
1044  *
1045  * It means that __augment_tree_propagate_from() must be called:
1046  * - After VA has been inserted to the tree(free path);
1047  * - After VA has been shrunk(allocation path);
1048  * - After VA has been increased(merging path).
1049  *
1050  * Please note that, it does not mean that upper parent nodes
1051  * and their subtree_max_size are recalculated all the time up
1052  * to the root node.
1053  *
1054  *       4--8
1055  *        /\
1056  *       /  \
1057  *      /    \
1058  *    2--2  8--8
1059  *
1060  * For example if we modify the node 4, shrinking it to 2, then
1061  * no any modification is required. If we shrink the node 2 to 1
1062  * its subtree_max_size is updated only, and set to 1. If we shrink
1063  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1064  * node becomes 4--6.
1065  */
1066 static __always_inline void
1067 augment_tree_propagate_from(struct vmap_area *va)
1068 {
1069 	/*
1070 	 * Populate the tree from bottom towards the root until
1071 	 * the calculated maximum available size of checked node
1072 	 * is equal to its current one.
1073 	 */
1074 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1075 
1076 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1077 	augment_tree_propagate_check();
1078 #endif
1079 }
1080 
1081 static void
1082 insert_vmap_area(struct vmap_area *va,
1083 	struct rb_root *root, struct list_head *head)
1084 {
1085 	struct rb_node **link;
1086 	struct rb_node *parent;
1087 
1088 	link = find_va_links(va, root, NULL, &parent);
1089 	if (link)
1090 		link_va(va, root, parent, link, head);
1091 }
1092 
1093 static void
1094 insert_vmap_area_augment(struct vmap_area *va,
1095 	struct rb_node *from, struct rb_root *root,
1096 	struct list_head *head)
1097 {
1098 	struct rb_node **link;
1099 	struct rb_node *parent;
1100 
1101 	if (from)
1102 		link = find_va_links(va, NULL, from, &parent);
1103 	else
1104 		link = find_va_links(va, root, NULL, &parent);
1105 
1106 	if (link) {
1107 		link_va_augment(va, root, parent, link, head);
1108 		augment_tree_propagate_from(va);
1109 	}
1110 }
1111 
1112 /*
1113  * Merge de-allocated chunk of VA memory with previous
1114  * and next free blocks. If coalesce is not done a new
1115  * free area is inserted. If VA has been merged, it is
1116  * freed.
1117  *
1118  * Please note, it can return NULL in case of overlap
1119  * ranges, followed by WARN() report. Despite it is a
1120  * buggy behaviour, a system can be alive and keep
1121  * ongoing.
1122  */
1123 static __always_inline struct vmap_area *
1124 __merge_or_add_vmap_area(struct vmap_area *va,
1125 	struct rb_root *root, struct list_head *head, bool augment)
1126 {
1127 	struct vmap_area *sibling;
1128 	struct list_head *next;
1129 	struct rb_node **link;
1130 	struct rb_node *parent;
1131 	bool merged = false;
1132 
1133 	/*
1134 	 * Find a place in the tree where VA potentially will be
1135 	 * inserted, unless it is merged with its sibling/siblings.
1136 	 */
1137 	link = find_va_links(va, root, NULL, &parent);
1138 	if (!link)
1139 		return NULL;
1140 
1141 	/*
1142 	 * Get next node of VA to check if merging can be done.
1143 	 */
1144 	next = get_va_next_sibling(parent, link);
1145 	if (unlikely(next == NULL))
1146 		goto insert;
1147 
1148 	/*
1149 	 * start            end
1150 	 * |                |
1151 	 * |<------VA------>|<-----Next----->|
1152 	 *                  |                |
1153 	 *                  start            end
1154 	 */
1155 	if (next != head) {
1156 		sibling = list_entry(next, struct vmap_area, list);
1157 		if (sibling->va_start == va->va_end) {
1158 			sibling->va_start = va->va_start;
1159 
1160 			/* Free vmap_area object. */
1161 			kmem_cache_free(vmap_area_cachep, va);
1162 
1163 			/* Point to the new merged area. */
1164 			va = sibling;
1165 			merged = true;
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * start            end
1171 	 * |                |
1172 	 * |<-----Prev----->|<------VA------>|
1173 	 *                  |                |
1174 	 *                  start            end
1175 	 */
1176 	if (next->prev != head) {
1177 		sibling = list_entry(next->prev, struct vmap_area, list);
1178 		if (sibling->va_end == va->va_start) {
1179 			/*
1180 			 * If both neighbors are coalesced, it is important
1181 			 * to unlink the "next" node first, followed by merging
1182 			 * with "previous" one. Otherwise the tree might not be
1183 			 * fully populated if a sibling's augmented value is
1184 			 * "normalized" because of rotation operations.
1185 			 */
1186 			if (merged)
1187 				__unlink_va(va, root, augment);
1188 
1189 			sibling->va_end = va->va_end;
1190 
1191 			/* Free vmap_area object. */
1192 			kmem_cache_free(vmap_area_cachep, va);
1193 
1194 			/* Point to the new merged area. */
1195 			va = sibling;
1196 			merged = true;
1197 		}
1198 	}
1199 
1200 insert:
1201 	if (!merged)
1202 		__link_va(va, root, parent, link, head, augment);
1203 
1204 	return va;
1205 }
1206 
1207 static __always_inline struct vmap_area *
1208 merge_or_add_vmap_area(struct vmap_area *va,
1209 	struct rb_root *root, struct list_head *head)
1210 {
1211 	return __merge_or_add_vmap_area(va, root, head, false);
1212 }
1213 
1214 static __always_inline struct vmap_area *
1215 merge_or_add_vmap_area_augment(struct vmap_area *va,
1216 	struct rb_root *root, struct list_head *head)
1217 {
1218 	va = __merge_or_add_vmap_area(va, root, head, true);
1219 	if (va)
1220 		augment_tree_propagate_from(va);
1221 
1222 	return va;
1223 }
1224 
1225 static __always_inline bool
1226 is_within_this_va(struct vmap_area *va, unsigned long size,
1227 	unsigned long align, unsigned long vstart)
1228 {
1229 	unsigned long nva_start_addr;
1230 
1231 	if (va->va_start > vstart)
1232 		nva_start_addr = ALIGN(va->va_start, align);
1233 	else
1234 		nva_start_addr = ALIGN(vstart, align);
1235 
1236 	/* Can be overflowed due to big size or alignment. */
1237 	if (nva_start_addr + size < nva_start_addr ||
1238 			nva_start_addr < vstart)
1239 		return false;
1240 
1241 	return (nva_start_addr + size <= va->va_end);
1242 }
1243 
1244 /*
1245  * Find the first free block(lowest start address) in the tree,
1246  * that will accomplish the request corresponding to passing
1247  * parameters. Please note, with an alignment bigger than PAGE_SIZE,
1248  * a search length is adjusted to account for worst case alignment
1249  * overhead.
1250  */
1251 static __always_inline struct vmap_area *
1252 find_vmap_lowest_match(struct rb_root *root, unsigned long size,
1253 	unsigned long align, unsigned long vstart, bool adjust_search_size)
1254 {
1255 	struct vmap_area *va;
1256 	struct rb_node *node;
1257 	unsigned long length;
1258 
1259 	/* Start from the root. */
1260 	node = root->rb_node;
1261 
1262 	/* Adjust the search size for alignment overhead. */
1263 	length = adjust_search_size ? size + align - 1 : size;
1264 
1265 	while (node) {
1266 		va = rb_entry(node, struct vmap_area, rb_node);
1267 
1268 		if (get_subtree_max_size(node->rb_left) >= length &&
1269 				vstart < va->va_start) {
1270 			node = node->rb_left;
1271 		} else {
1272 			if (is_within_this_va(va, size, align, vstart))
1273 				return va;
1274 
1275 			/*
1276 			 * Does not make sense to go deeper towards the right
1277 			 * sub-tree if it does not have a free block that is
1278 			 * equal or bigger to the requested search length.
1279 			 */
1280 			if (get_subtree_max_size(node->rb_right) >= length) {
1281 				node = node->rb_right;
1282 				continue;
1283 			}
1284 
1285 			/*
1286 			 * OK. We roll back and find the first right sub-tree,
1287 			 * that will satisfy the search criteria. It can happen
1288 			 * due to "vstart" restriction or an alignment overhead
1289 			 * that is bigger then PAGE_SIZE.
1290 			 */
1291 			while ((node = rb_parent(node))) {
1292 				va = rb_entry(node, struct vmap_area, rb_node);
1293 				if (is_within_this_va(va, size, align, vstart))
1294 					return va;
1295 
1296 				if (get_subtree_max_size(node->rb_right) >= length &&
1297 						vstart <= va->va_start) {
1298 					/*
1299 					 * Shift the vstart forward. Please note, we update it with
1300 					 * parent's start address adding "1" because we do not want
1301 					 * to enter same sub-tree after it has already been checked
1302 					 * and no suitable free block found there.
1303 					 */
1304 					vstart = va->va_start + 1;
1305 					node = node->rb_right;
1306 					break;
1307 				}
1308 			}
1309 		}
1310 	}
1311 
1312 	return NULL;
1313 }
1314 
1315 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1316 #include <linux/random.h>
1317 
1318 static struct vmap_area *
1319 find_vmap_lowest_linear_match(struct list_head *head, unsigned long size,
1320 	unsigned long align, unsigned long vstart)
1321 {
1322 	struct vmap_area *va;
1323 
1324 	list_for_each_entry(va, head, list) {
1325 		if (!is_within_this_va(va, size, align, vstart))
1326 			continue;
1327 
1328 		return va;
1329 	}
1330 
1331 	return NULL;
1332 }
1333 
1334 static void
1335 find_vmap_lowest_match_check(struct rb_root *root, struct list_head *head,
1336 			     unsigned long size, unsigned long align)
1337 {
1338 	struct vmap_area *va_1, *va_2;
1339 	unsigned long vstart;
1340 	unsigned int rnd;
1341 
1342 	get_random_bytes(&rnd, sizeof(rnd));
1343 	vstart = VMALLOC_START + rnd;
1344 
1345 	va_1 = find_vmap_lowest_match(root, size, align, vstart, false);
1346 	va_2 = find_vmap_lowest_linear_match(head, size, align, vstart);
1347 
1348 	if (va_1 != va_2)
1349 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1350 			va_1, va_2, vstart);
1351 }
1352 #endif
1353 
1354 enum fit_type {
1355 	NOTHING_FIT = 0,
1356 	FL_FIT_TYPE = 1,	/* full fit */
1357 	LE_FIT_TYPE = 2,	/* left edge fit */
1358 	RE_FIT_TYPE = 3,	/* right edge fit */
1359 	NE_FIT_TYPE = 4		/* no edge fit */
1360 };
1361 
1362 static __always_inline enum fit_type
1363 classify_va_fit_type(struct vmap_area *va,
1364 	unsigned long nva_start_addr, unsigned long size)
1365 {
1366 	enum fit_type type;
1367 
1368 	/* Check if it is within VA. */
1369 	if (nva_start_addr < va->va_start ||
1370 			nva_start_addr + size > va->va_end)
1371 		return NOTHING_FIT;
1372 
1373 	/* Now classify. */
1374 	if (va->va_start == nva_start_addr) {
1375 		if (va->va_end == nva_start_addr + size)
1376 			type = FL_FIT_TYPE;
1377 		else
1378 			type = LE_FIT_TYPE;
1379 	} else if (va->va_end == nva_start_addr + size) {
1380 		type = RE_FIT_TYPE;
1381 	} else {
1382 		type = NE_FIT_TYPE;
1383 	}
1384 
1385 	return type;
1386 }
1387 
1388 static __always_inline int
1389 adjust_va_to_fit_type(struct rb_root *root, struct list_head *head,
1390 		      struct vmap_area *va, unsigned long nva_start_addr,
1391 		      unsigned long size)
1392 {
1393 	struct vmap_area *lva = NULL;
1394 	enum fit_type type = classify_va_fit_type(va, nva_start_addr, size);
1395 
1396 	if (type == FL_FIT_TYPE) {
1397 		/*
1398 		 * No need to split VA, it fully fits.
1399 		 *
1400 		 * |               |
1401 		 * V      NVA      V
1402 		 * |---------------|
1403 		 */
1404 		unlink_va_augment(va, root);
1405 		kmem_cache_free(vmap_area_cachep, va);
1406 	} else if (type == LE_FIT_TYPE) {
1407 		/*
1408 		 * Split left edge of fit VA.
1409 		 *
1410 		 * |       |
1411 		 * V  NVA  V   R
1412 		 * |-------|-------|
1413 		 */
1414 		va->va_start += size;
1415 	} else if (type == RE_FIT_TYPE) {
1416 		/*
1417 		 * Split right edge of fit VA.
1418 		 *
1419 		 *         |       |
1420 		 *     L   V  NVA  V
1421 		 * |-------|-------|
1422 		 */
1423 		va->va_end = nva_start_addr;
1424 	} else if (type == NE_FIT_TYPE) {
1425 		/*
1426 		 * Split no edge of fit VA.
1427 		 *
1428 		 *     |       |
1429 		 *   L V  NVA  V R
1430 		 * |---|-------|---|
1431 		 */
1432 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1433 		if (unlikely(!lva)) {
1434 			/*
1435 			 * For percpu allocator we do not do any pre-allocation
1436 			 * and leave it as it is. The reason is it most likely
1437 			 * never ends up with NE_FIT_TYPE splitting. In case of
1438 			 * percpu allocations offsets and sizes are aligned to
1439 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1440 			 * are its main fitting cases.
1441 			 *
1442 			 * There are a few exceptions though, as an example it is
1443 			 * a first allocation (early boot up) when we have "one"
1444 			 * big free space that has to be split.
1445 			 *
1446 			 * Also we can hit this path in case of regular "vmap"
1447 			 * allocations, if "this" current CPU was not preloaded.
1448 			 * See the comment in alloc_vmap_area() why. If so, then
1449 			 * GFP_NOWAIT is used instead to get an extra object for
1450 			 * split purpose. That is rare and most time does not
1451 			 * occur.
1452 			 *
1453 			 * What happens if an allocation gets failed. Basically,
1454 			 * an "overflow" path is triggered to purge lazily freed
1455 			 * areas to free some memory, then, the "retry" path is
1456 			 * triggered to repeat one more time. See more details
1457 			 * in alloc_vmap_area() function.
1458 			 */
1459 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1460 			if (!lva)
1461 				return -1;
1462 		}
1463 
1464 		/*
1465 		 * Build the remainder.
1466 		 */
1467 		lva->va_start = va->va_start;
1468 		lva->va_end = nva_start_addr;
1469 
1470 		/*
1471 		 * Shrink this VA to remaining size.
1472 		 */
1473 		va->va_start = nva_start_addr + size;
1474 	} else {
1475 		return -1;
1476 	}
1477 
1478 	if (type != FL_FIT_TYPE) {
1479 		augment_tree_propagate_from(va);
1480 
1481 		if (lva)	/* type == NE_FIT_TYPE */
1482 			insert_vmap_area_augment(lva, &va->rb_node, root, head);
1483 	}
1484 
1485 	return 0;
1486 }
1487 
1488 /*
1489  * Returns a start address of the newly allocated area, if success.
1490  * Otherwise a vend is returned that indicates failure.
1491  */
1492 static __always_inline unsigned long
1493 __alloc_vmap_area(struct rb_root *root, struct list_head *head,
1494 	unsigned long size, unsigned long align,
1495 	unsigned long vstart, unsigned long vend)
1496 {
1497 	bool adjust_search_size = true;
1498 	unsigned long nva_start_addr;
1499 	struct vmap_area *va;
1500 	int ret;
1501 
1502 	/*
1503 	 * Do not adjust when:
1504 	 *   a) align <= PAGE_SIZE, because it does not make any sense.
1505 	 *      All blocks(their start addresses) are at least PAGE_SIZE
1506 	 *      aligned anyway;
1507 	 *   b) a short range where a requested size corresponds to exactly
1508 	 *      specified [vstart:vend] interval and an alignment > PAGE_SIZE.
1509 	 *      With adjusted search length an allocation would not succeed.
1510 	 */
1511 	if (align <= PAGE_SIZE || (align > PAGE_SIZE && (vend - vstart) == size))
1512 		adjust_search_size = false;
1513 
1514 	va = find_vmap_lowest_match(root, size, align, vstart, adjust_search_size);
1515 	if (unlikely(!va))
1516 		return vend;
1517 
1518 	if (va->va_start > vstart)
1519 		nva_start_addr = ALIGN(va->va_start, align);
1520 	else
1521 		nva_start_addr = ALIGN(vstart, align);
1522 
1523 	/* Check the "vend" restriction. */
1524 	if (nva_start_addr + size > vend)
1525 		return vend;
1526 
1527 	/* Update the free vmap_area. */
1528 	ret = adjust_va_to_fit_type(root, head, va, nva_start_addr, size);
1529 	if (WARN_ON_ONCE(ret))
1530 		return vend;
1531 
1532 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1533 	find_vmap_lowest_match_check(root, head, size, align);
1534 #endif
1535 
1536 	return nva_start_addr;
1537 }
1538 
1539 /*
1540  * Free a region of KVA allocated by alloc_vmap_area
1541  */
1542 static void free_vmap_area(struct vmap_area *va)
1543 {
1544 	/*
1545 	 * Remove from the busy tree/list.
1546 	 */
1547 	spin_lock(&vmap_area_lock);
1548 	unlink_va(va, &vmap_area_root);
1549 	spin_unlock(&vmap_area_lock);
1550 
1551 	/*
1552 	 * Insert/Merge it back to the free tree/list.
1553 	 */
1554 	spin_lock(&free_vmap_area_lock);
1555 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1556 	spin_unlock(&free_vmap_area_lock);
1557 }
1558 
1559 static inline void
1560 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1561 {
1562 	struct vmap_area *va = NULL;
1563 
1564 	/*
1565 	 * Preload this CPU with one extra vmap_area object. It is used
1566 	 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1567 	 * a CPU that does an allocation is preloaded.
1568 	 *
1569 	 * We do it in non-atomic context, thus it allows us to use more
1570 	 * permissive allocation masks to be more stable under low memory
1571 	 * condition and high memory pressure.
1572 	 */
1573 	if (!this_cpu_read(ne_fit_preload_node))
1574 		va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1575 
1576 	spin_lock(lock);
1577 
1578 	if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1579 		kmem_cache_free(vmap_area_cachep, va);
1580 }
1581 
1582 /*
1583  * Allocate a region of KVA of the specified size and alignment, within the
1584  * vstart and vend.
1585  */
1586 static struct vmap_area *alloc_vmap_area(unsigned long size,
1587 				unsigned long align,
1588 				unsigned long vstart, unsigned long vend,
1589 				int node, gfp_t gfp_mask)
1590 {
1591 	struct vmap_area *va;
1592 	unsigned long freed;
1593 	unsigned long addr;
1594 	int purged = 0;
1595 	int ret;
1596 
1597 	BUG_ON(!size);
1598 	BUG_ON(offset_in_page(size));
1599 	BUG_ON(!is_power_of_2(align));
1600 
1601 	if (unlikely(!vmap_initialized))
1602 		return ERR_PTR(-EBUSY);
1603 
1604 	might_sleep();
1605 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1606 
1607 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1608 	if (unlikely(!va))
1609 		return ERR_PTR(-ENOMEM);
1610 
1611 	/*
1612 	 * Only scan the relevant parts containing pointers to other objects
1613 	 * to avoid false negatives.
1614 	 */
1615 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1616 
1617 retry:
1618 	preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1619 	addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
1620 		size, align, vstart, vend);
1621 	spin_unlock(&free_vmap_area_lock);
1622 
1623 	/*
1624 	 * If an allocation fails, the "vend" address is
1625 	 * returned. Therefore trigger the overflow path.
1626 	 */
1627 	if (unlikely(addr == vend))
1628 		goto overflow;
1629 
1630 	va->va_start = addr;
1631 	va->va_end = addr + size;
1632 	va->vm = NULL;
1633 
1634 	spin_lock(&vmap_area_lock);
1635 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1636 	spin_unlock(&vmap_area_lock);
1637 
1638 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1639 	BUG_ON(va->va_start < vstart);
1640 	BUG_ON(va->va_end > vend);
1641 
1642 	ret = kasan_populate_vmalloc(addr, size);
1643 	if (ret) {
1644 		free_vmap_area(va);
1645 		return ERR_PTR(ret);
1646 	}
1647 
1648 	return va;
1649 
1650 overflow:
1651 	if (!purged) {
1652 		purge_vmap_area_lazy();
1653 		purged = 1;
1654 		goto retry;
1655 	}
1656 
1657 	freed = 0;
1658 	blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1659 
1660 	if (freed > 0) {
1661 		purged = 0;
1662 		goto retry;
1663 	}
1664 
1665 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1666 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1667 			size);
1668 
1669 	kmem_cache_free(vmap_area_cachep, va);
1670 	return ERR_PTR(-EBUSY);
1671 }
1672 
1673 int register_vmap_purge_notifier(struct notifier_block *nb)
1674 {
1675 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1676 }
1677 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1678 
1679 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1680 {
1681 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1682 }
1683 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1684 
1685 /*
1686  * lazy_max_pages is the maximum amount of virtual address space we gather up
1687  * before attempting to purge with a TLB flush.
1688  *
1689  * There is a tradeoff here: a larger number will cover more kernel page tables
1690  * and take slightly longer to purge, but it will linearly reduce the number of
1691  * global TLB flushes that must be performed. It would seem natural to scale
1692  * this number up linearly with the number of CPUs (because vmapping activity
1693  * could also scale linearly with the number of CPUs), however it is likely
1694  * that in practice, workloads might be constrained in other ways that mean
1695  * vmap activity will not scale linearly with CPUs. Also, I want to be
1696  * conservative and not introduce a big latency on huge systems, so go with
1697  * a less aggressive log scale. It will still be an improvement over the old
1698  * code, and it will be simple to change the scale factor if we find that it
1699  * becomes a problem on bigger systems.
1700  */
1701 static unsigned long lazy_max_pages(void)
1702 {
1703 	unsigned int log;
1704 
1705 	log = fls(num_online_cpus());
1706 
1707 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1708 }
1709 
1710 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1711 
1712 /*
1713  * Serialize vmap purging.  There is no actual critical section protected
1714  * by this lock, but we want to avoid concurrent calls for performance
1715  * reasons and to make the pcpu_get_vm_areas more deterministic.
1716  */
1717 static DEFINE_MUTEX(vmap_purge_lock);
1718 
1719 /* for per-CPU blocks */
1720 static void purge_fragmented_blocks_allcpus(void);
1721 
1722 /*
1723  * Purges all lazily-freed vmap areas.
1724  */
1725 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1726 {
1727 	unsigned long resched_threshold;
1728 	struct list_head local_purge_list;
1729 	struct vmap_area *va, *n_va;
1730 
1731 	lockdep_assert_held(&vmap_purge_lock);
1732 
1733 	spin_lock(&purge_vmap_area_lock);
1734 	purge_vmap_area_root = RB_ROOT;
1735 	list_replace_init(&purge_vmap_area_list, &local_purge_list);
1736 	spin_unlock(&purge_vmap_area_lock);
1737 
1738 	if (unlikely(list_empty(&local_purge_list)))
1739 		return false;
1740 
1741 	start = min(start,
1742 		list_first_entry(&local_purge_list,
1743 			struct vmap_area, list)->va_start);
1744 
1745 	end = max(end,
1746 		list_last_entry(&local_purge_list,
1747 			struct vmap_area, list)->va_end);
1748 
1749 	flush_tlb_kernel_range(start, end);
1750 	resched_threshold = lazy_max_pages() << 1;
1751 
1752 	spin_lock(&free_vmap_area_lock);
1753 	list_for_each_entry_safe(va, n_va, &local_purge_list, list) {
1754 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1755 		unsigned long orig_start = va->va_start;
1756 		unsigned long orig_end = va->va_end;
1757 
1758 		/*
1759 		 * Finally insert or merge lazily-freed area. It is
1760 		 * detached and there is no need to "unlink" it from
1761 		 * anything.
1762 		 */
1763 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1764 				&free_vmap_area_list);
1765 
1766 		if (!va)
1767 			continue;
1768 
1769 		if (is_vmalloc_or_module_addr((void *)orig_start))
1770 			kasan_release_vmalloc(orig_start, orig_end,
1771 					      va->va_start, va->va_end);
1772 
1773 		atomic_long_sub(nr, &vmap_lazy_nr);
1774 
1775 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1776 			cond_resched_lock(&free_vmap_area_lock);
1777 	}
1778 	spin_unlock(&free_vmap_area_lock);
1779 	return true;
1780 }
1781 
1782 /*
1783  * Kick off a purge of the outstanding lazy areas.
1784  */
1785 static void purge_vmap_area_lazy(void)
1786 {
1787 	mutex_lock(&vmap_purge_lock);
1788 	purge_fragmented_blocks_allcpus();
1789 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1790 	mutex_unlock(&vmap_purge_lock);
1791 }
1792 
1793 static void drain_vmap_area_work(struct work_struct *work)
1794 {
1795 	unsigned long nr_lazy;
1796 
1797 	do {
1798 		mutex_lock(&vmap_purge_lock);
1799 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1800 		mutex_unlock(&vmap_purge_lock);
1801 
1802 		/* Recheck if further work is required. */
1803 		nr_lazy = atomic_long_read(&vmap_lazy_nr);
1804 	} while (nr_lazy > lazy_max_pages());
1805 }
1806 
1807 /*
1808  * Free a vmap area, caller ensuring that the area has been unmapped
1809  * and flush_cache_vunmap had been called for the correct range
1810  * previously.
1811  */
1812 static void free_vmap_area_noflush(struct vmap_area *va)
1813 {
1814 	unsigned long nr_lazy;
1815 
1816 	spin_lock(&vmap_area_lock);
1817 	unlink_va(va, &vmap_area_root);
1818 	spin_unlock(&vmap_area_lock);
1819 
1820 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1821 				PAGE_SHIFT, &vmap_lazy_nr);
1822 
1823 	/*
1824 	 * Merge or place it to the purge tree/list.
1825 	 */
1826 	spin_lock(&purge_vmap_area_lock);
1827 	merge_or_add_vmap_area(va,
1828 		&purge_vmap_area_root, &purge_vmap_area_list);
1829 	spin_unlock(&purge_vmap_area_lock);
1830 
1831 	/* After this point, we may free va at any time */
1832 	if (unlikely(nr_lazy > lazy_max_pages()))
1833 		schedule_work(&drain_vmap_work);
1834 }
1835 
1836 /*
1837  * Free and unmap a vmap area
1838  */
1839 static void free_unmap_vmap_area(struct vmap_area *va)
1840 {
1841 	flush_cache_vunmap(va->va_start, va->va_end);
1842 	vunmap_range_noflush(va->va_start, va->va_end);
1843 	if (debug_pagealloc_enabled_static())
1844 		flush_tlb_kernel_range(va->va_start, va->va_end);
1845 
1846 	free_vmap_area_noflush(va);
1847 }
1848 
1849 struct vmap_area *find_vmap_area(unsigned long addr)
1850 {
1851 	struct vmap_area *va;
1852 
1853 	spin_lock(&vmap_area_lock);
1854 	va = __find_vmap_area(addr, &vmap_area_root);
1855 	spin_unlock(&vmap_area_lock);
1856 
1857 	return va;
1858 }
1859 
1860 /*** Per cpu kva allocator ***/
1861 
1862 /*
1863  * vmap space is limited especially on 32 bit architectures. Ensure there is
1864  * room for at least 16 percpu vmap blocks per CPU.
1865  */
1866 /*
1867  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1868  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1869  * instead (we just need a rough idea)
1870  */
1871 #if BITS_PER_LONG == 32
1872 #define VMALLOC_SPACE		(128UL*1024*1024)
1873 #else
1874 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1875 #endif
1876 
1877 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1878 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1879 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1880 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1881 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1882 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1883 #define VMAP_BBMAP_BITS		\
1884 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1885 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1886 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1887 
1888 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1889 
1890 struct vmap_block_queue {
1891 	spinlock_t lock;
1892 	struct list_head free;
1893 };
1894 
1895 struct vmap_block {
1896 	spinlock_t lock;
1897 	struct vmap_area *va;
1898 	unsigned long free, dirty;
1899 	unsigned long dirty_min, dirty_max; /*< dirty range */
1900 	struct list_head free_list;
1901 	struct rcu_head rcu_head;
1902 	struct list_head purge;
1903 };
1904 
1905 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1906 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1907 
1908 /*
1909  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1910  * in the free path. Could get rid of this if we change the API to return a
1911  * "cookie" from alloc, to be passed to free. But no big deal yet.
1912  */
1913 static DEFINE_XARRAY(vmap_blocks);
1914 
1915 /*
1916  * We should probably have a fallback mechanism to allocate virtual memory
1917  * out of partially filled vmap blocks. However vmap block sizing should be
1918  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1919  * big problem.
1920  */
1921 
1922 static unsigned long addr_to_vb_idx(unsigned long addr)
1923 {
1924 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1925 	addr /= VMAP_BLOCK_SIZE;
1926 	return addr;
1927 }
1928 
1929 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1930 {
1931 	unsigned long addr;
1932 
1933 	addr = va_start + (pages_off << PAGE_SHIFT);
1934 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1935 	return (void *)addr;
1936 }
1937 
1938 /**
1939  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1940  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1941  * @order:    how many 2^order pages should be occupied in newly allocated block
1942  * @gfp_mask: flags for the page level allocator
1943  *
1944  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1945  */
1946 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1947 {
1948 	struct vmap_block_queue *vbq;
1949 	struct vmap_block *vb;
1950 	struct vmap_area *va;
1951 	unsigned long vb_idx;
1952 	int node, err;
1953 	void *vaddr;
1954 
1955 	node = numa_node_id();
1956 
1957 	vb = kmalloc_node(sizeof(struct vmap_block),
1958 			gfp_mask & GFP_RECLAIM_MASK, node);
1959 	if (unlikely(!vb))
1960 		return ERR_PTR(-ENOMEM);
1961 
1962 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1963 					VMALLOC_START, VMALLOC_END,
1964 					node, gfp_mask);
1965 	if (IS_ERR(va)) {
1966 		kfree(vb);
1967 		return ERR_CAST(va);
1968 	}
1969 
1970 	vaddr = vmap_block_vaddr(va->va_start, 0);
1971 	spin_lock_init(&vb->lock);
1972 	vb->va = va;
1973 	/* At least something should be left free */
1974 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1975 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1976 	vb->dirty = 0;
1977 	vb->dirty_min = VMAP_BBMAP_BITS;
1978 	vb->dirty_max = 0;
1979 	INIT_LIST_HEAD(&vb->free_list);
1980 
1981 	vb_idx = addr_to_vb_idx(va->va_start);
1982 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1983 	if (err) {
1984 		kfree(vb);
1985 		free_vmap_area(va);
1986 		return ERR_PTR(err);
1987 	}
1988 
1989 	vbq = raw_cpu_ptr(&vmap_block_queue);
1990 	spin_lock(&vbq->lock);
1991 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1992 	spin_unlock(&vbq->lock);
1993 
1994 	return vaddr;
1995 }
1996 
1997 static void free_vmap_block(struct vmap_block *vb)
1998 {
1999 	struct vmap_block *tmp;
2000 
2001 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
2002 	BUG_ON(tmp != vb);
2003 
2004 	free_vmap_area_noflush(vb->va);
2005 	kfree_rcu(vb, rcu_head);
2006 }
2007 
2008 static void purge_fragmented_blocks(int cpu)
2009 {
2010 	LIST_HEAD(purge);
2011 	struct vmap_block *vb;
2012 	struct vmap_block *n_vb;
2013 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2014 
2015 	rcu_read_lock();
2016 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2017 
2018 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
2019 			continue;
2020 
2021 		spin_lock(&vb->lock);
2022 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
2023 			vb->free = 0; /* prevent further allocs after releasing lock */
2024 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
2025 			vb->dirty_min = 0;
2026 			vb->dirty_max = VMAP_BBMAP_BITS;
2027 			spin_lock(&vbq->lock);
2028 			list_del_rcu(&vb->free_list);
2029 			spin_unlock(&vbq->lock);
2030 			spin_unlock(&vb->lock);
2031 			list_add_tail(&vb->purge, &purge);
2032 		} else
2033 			spin_unlock(&vb->lock);
2034 	}
2035 	rcu_read_unlock();
2036 
2037 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
2038 		list_del(&vb->purge);
2039 		free_vmap_block(vb);
2040 	}
2041 }
2042 
2043 static void purge_fragmented_blocks_allcpus(void)
2044 {
2045 	int cpu;
2046 
2047 	for_each_possible_cpu(cpu)
2048 		purge_fragmented_blocks(cpu);
2049 }
2050 
2051 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
2052 {
2053 	struct vmap_block_queue *vbq;
2054 	struct vmap_block *vb;
2055 	void *vaddr = NULL;
2056 	unsigned int order;
2057 
2058 	BUG_ON(offset_in_page(size));
2059 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2060 	if (WARN_ON(size == 0)) {
2061 		/*
2062 		 * Allocating 0 bytes isn't what caller wants since
2063 		 * get_order(0) returns funny result. Just warn and terminate
2064 		 * early.
2065 		 */
2066 		return NULL;
2067 	}
2068 	order = get_order(size);
2069 
2070 	rcu_read_lock();
2071 	vbq = raw_cpu_ptr(&vmap_block_queue);
2072 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2073 		unsigned long pages_off;
2074 
2075 		spin_lock(&vb->lock);
2076 		if (vb->free < (1UL << order)) {
2077 			spin_unlock(&vb->lock);
2078 			continue;
2079 		}
2080 
2081 		pages_off = VMAP_BBMAP_BITS - vb->free;
2082 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2083 		vb->free -= 1UL << order;
2084 		if (vb->free == 0) {
2085 			spin_lock(&vbq->lock);
2086 			list_del_rcu(&vb->free_list);
2087 			spin_unlock(&vbq->lock);
2088 		}
2089 
2090 		spin_unlock(&vb->lock);
2091 		break;
2092 	}
2093 
2094 	rcu_read_unlock();
2095 
2096 	/* Allocate new block if nothing was found */
2097 	if (!vaddr)
2098 		vaddr = new_vmap_block(order, gfp_mask);
2099 
2100 	return vaddr;
2101 }
2102 
2103 static void vb_free(unsigned long addr, unsigned long size)
2104 {
2105 	unsigned long offset;
2106 	unsigned int order;
2107 	struct vmap_block *vb;
2108 
2109 	BUG_ON(offset_in_page(size));
2110 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2111 
2112 	flush_cache_vunmap(addr, addr + size);
2113 
2114 	order = get_order(size);
2115 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2116 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2117 
2118 	vunmap_range_noflush(addr, addr + size);
2119 
2120 	if (debug_pagealloc_enabled_static())
2121 		flush_tlb_kernel_range(addr, addr + size);
2122 
2123 	spin_lock(&vb->lock);
2124 
2125 	/* Expand dirty range */
2126 	vb->dirty_min = min(vb->dirty_min, offset);
2127 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2128 
2129 	vb->dirty += 1UL << order;
2130 	if (vb->dirty == VMAP_BBMAP_BITS) {
2131 		BUG_ON(vb->free);
2132 		spin_unlock(&vb->lock);
2133 		free_vmap_block(vb);
2134 	} else
2135 		spin_unlock(&vb->lock);
2136 }
2137 
2138 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2139 {
2140 	int cpu;
2141 
2142 	if (unlikely(!vmap_initialized))
2143 		return;
2144 
2145 	might_sleep();
2146 
2147 	for_each_possible_cpu(cpu) {
2148 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2149 		struct vmap_block *vb;
2150 
2151 		rcu_read_lock();
2152 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2153 			spin_lock(&vb->lock);
2154 			if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2155 				unsigned long va_start = vb->va->va_start;
2156 				unsigned long s, e;
2157 
2158 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
2159 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
2160 
2161 				start = min(s, start);
2162 				end   = max(e, end);
2163 
2164 				flush = 1;
2165 			}
2166 			spin_unlock(&vb->lock);
2167 		}
2168 		rcu_read_unlock();
2169 	}
2170 
2171 	mutex_lock(&vmap_purge_lock);
2172 	purge_fragmented_blocks_allcpus();
2173 	if (!__purge_vmap_area_lazy(start, end) && flush)
2174 		flush_tlb_kernel_range(start, end);
2175 	mutex_unlock(&vmap_purge_lock);
2176 }
2177 
2178 /**
2179  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2180  *
2181  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2182  * to amortize TLB flushing overheads. What this means is that any page you
2183  * have now, may, in a former life, have been mapped into kernel virtual
2184  * address by the vmap layer and so there might be some CPUs with TLB entries
2185  * still referencing that page (additional to the regular 1:1 kernel mapping).
2186  *
2187  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2188  * be sure that none of the pages we have control over will have any aliases
2189  * from the vmap layer.
2190  */
2191 void vm_unmap_aliases(void)
2192 {
2193 	unsigned long start = ULONG_MAX, end = 0;
2194 	int flush = 0;
2195 
2196 	_vm_unmap_aliases(start, end, flush);
2197 }
2198 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2199 
2200 /**
2201  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2202  * @mem: the pointer returned by vm_map_ram
2203  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2204  */
2205 void vm_unmap_ram(const void *mem, unsigned int count)
2206 {
2207 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2208 	unsigned long addr = (unsigned long)kasan_reset_tag(mem);
2209 	struct vmap_area *va;
2210 
2211 	might_sleep();
2212 	BUG_ON(!addr);
2213 	BUG_ON(addr < VMALLOC_START);
2214 	BUG_ON(addr > VMALLOC_END);
2215 	BUG_ON(!PAGE_ALIGNED(addr));
2216 
2217 	kasan_poison_vmalloc(mem, size);
2218 
2219 	if (likely(count <= VMAP_MAX_ALLOC)) {
2220 		debug_check_no_locks_freed(mem, size);
2221 		vb_free(addr, size);
2222 		return;
2223 	}
2224 
2225 	va = find_vmap_area(addr);
2226 	BUG_ON(!va);
2227 	debug_check_no_locks_freed((void *)va->va_start,
2228 				    (va->va_end - va->va_start));
2229 	free_unmap_vmap_area(va);
2230 }
2231 EXPORT_SYMBOL(vm_unmap_ram);
2232 
2233 /**
2234  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2235  * @pages: an array of pointers to the pages to be mapped
2236  * @count: number of pages
2237  * @node: prefer to allocate data structures on this node
2238  *
2239  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2240  * faster than vmap so it's good.  But if you mix long-life and short-life
2241  * objects with vm_map_ram(), it could consume lots of address space through
2242  * fragmentation (especially on a 32bit machine).  You could see failures in
2243  * the end.  Please use this function for short-lived objects.
2244  *
2245  * Returns: a pointer to the address that has been mapped, or %NULL on failure
2246  */
2247 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2248 {
2249 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
2250 	unsigned long addr;
2251 	void *mem;
2252 
2253 	if (likely(count <= VMAP_MAX_ALLOC)) {
2254 		mem = vb_alloc(size, GFP_KERNEL);
2255 		if (IS_ERR(mem))
2256 			return NULL;
2257 		addr = (unsigned long)mem;
2258 	} else {
2259 		struct vmap_area *va;
2260 		va = alloc_vmap_area(size, PAGE_SIZE,
2261 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2262 		if (IS_ERR(va))
2263 			return NULL;
2264 
2265 		addr = va->va_start;
2266 		mem = (void *)addr;
2267 	}
2268 
2269 	if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2270 				pages, PAGE_SHIFT) < 0) {
2271 		vm_unmap_ram(mem, count);
2272 		return NULL;
2273 	}
2274 
2275 	/*
2276 	 * Mark the pages as accessible, now that they are mapped.
2277 	 * With hardware tag-based KASAN, marking is skipped for
2278 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2279 	 */
2280 	mem = kasan_unpoison_vmalloc(mem, size, KASAN_VMALLOC_PROT_NORMAL);
2281 
2282 	return mem;
2283 }
2284 EXPORT_SYMBOL(vm_map_ram);
2285 
2286 static struct vm_struct *vmlist __initdata;
2287 
2288 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2289 {
2290 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2291 	return vm->page_order;
2292 #else
2293 	return 0;
2294 #endif
2295 }
2296 
2297 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2298 {
2299 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2300 	vm->page_order = order;
2301 #else
2302 	BUG_ON(order != 0);
2303 #endif
2304 }
2305 
2306 /**
2307  * vm_area_add_early - add vmap area early during boot
2308  * @vm: vm_struct to add
2309  *
2310  * This function is used to add fixed kernel vm area to vmlist before
2311  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
2312  * should contain proper values and the other fields should be zero.
2313  *
2314  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2315  */
2316 void __init vm_area_add_early(struct vm_struct *vm)
2317 {
2318 	struct vm_struct *tmp, **p;
2319 
2320 	BUG_ON(vmap_initialized);
2321 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2322 		if (tmp->addr >= vm->addr) {
2323 			BUG_ON(tmp->addr < vm->addr + vm->size);
2324 			break;
2325 		} else
2326 			BUG_ON(tmp->addr + tmp->size > vm->addr);
2327 	}
2328 	vm->next = *p;
2329 	*p = vm;
2330 }
2331 
2332 /**
2333  * vm_area_register_early - register vmap area early during boot
2334  * @vm: vm_struct to register
2335  * @align: requested alignment
2336  *
2337  * This function is used to register kernel vm area before
2338  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
2339  * proper values on entry and other fields should be zero.  On return,
2340  * vm->addr contains the allocated address.
2341  *
2342  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2343  */
2344 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2345 {
2346 	unsigned long addr = ALIGN(VMALLOC_START, align);
2347 	struct vm_struct *cur, **p;
2348 
2349 	BUG_ON(vmap_initialized);
2350 
2351 	for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2352 		if ((unsigned long)cur->addr - addr >= vm->size)
2353 			break;
2354 		addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2355 	}
2356 
2357 	BUG_ON(addr > VMALLOC_END - vm->size);
2358 	vm->addr = (void *)addr;
2359 	vm->next = *p;
2360 	*p = vm;
2361 	kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2362 }
2363 
2364 static void vmap_init_free_space(void)
2365 {
2366 	unsigned long vmap_start = 1;
2367 	const unsigned long vmap_end = ULONG_MAX;
2368 	struct vmap_area *busy, *free;
2369 
2370 	/*
2371 	 *     B     F     B     B     B     F
2372 	 * -|-----|.....|-----|-----|-----|.....|-
2373 	 *  |           The KVA space           |
2374 	 *  |<--------------------------------->|
2375 	 */
2376 	list_for_each_entry(busy, &vmap_area_list, list) {
2377 		if (busy->va_start - vmap_start > 0) {
2378 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2379 			if (!WARN_ON_ONCE(!free)) {
2380 				free->va_start = vmap_start;
2381 				free->va_end = busy->va_start;
2382 
2383 				insert_vmap_area_augment(free, NULL,
2384 					&free_vmap_area_root,
2385 						&free_vmap_area_list);
2386 			}
2387 		}
2388 
2389 		vmap_start = busy->va_end;
2390 	}
2391 
2392 	if (vmap_end - vmap_start > 0) {
2393 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2394 		if (!WARN_ON_ONCE(!free)) {
2395 			free->va_start = vmap_start;
2396 			free->va_end = vmap_end;
2397 
2398 			insert_vmap_area_augment(free, NULL,
2399 				&free_vmap_area_root,
2400 					&free_vmap_area_list);
2401 		}
2402 	}
2403 }
2404 
2405 void __init vmalloc_init(void)
2406 {
2407 	struct vmap_area *va;
2408 	struct vm_struct *tmp;
2409 	int i;
2410 
2411 	/*
2412 	 * Create the cache for vmap_area objects.
2413 	 */
2414 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2415 
2416 	for_each_possible_cpu(i) {
2417 		struct vmap_block_queue *vbq;
2418 		struct vfree_deferred *p;
2419 
2420 		vbq = &per_cpu(vmap_block_queue, i);
2421 		spin_lock_init(&vbq->lock);
2422 		INIT_LIST_HEAD(&vbq->free);
2423 		p = &per_cpu(vfree_deferred, i);
2424 		init_llist_head(&p->list);
2425 		INIT_WORK(&p->wq, free_work);
2426 	}
2427 
2428 	/* Import existing vmlist entries. */
2429 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2430 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2431 		if (WARN_ON_ONCE(!va))
2432 			continue;
2433 
2434 		va->va_start = (unsigned long)tmp->addr;
2435 		va->va_end = va->va_start + tmp->size;
2436 		va->vm = tmp;
2437 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2438 	}
2439 
2440 	/*
2441 	 * Now we can initialize a free vmap space.
2442 	 */
2443 	vmap_init_free_space();
2444 	vmap_initialized = true;
2445 }
2446 
2447 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2448 	struct vmap_area *va, unsigned long flags, const void *caller)
2449 {
2450 	vm->flags = flags;
2451 	vm->addr = (void *)va->va_start;
2452 	vm->size = va->va_end - va->va_start;
2453 	vm->caller = caller;
2454 	va->vm = vm;
2455 }
2456 
2457 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2458 			      unsigned long flags, const void *caller)
2459 {
2460 	spin_lock(&vmap_area_lock);
2461 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2462 	spin_unlock(&vmap_area_lock);
2463 }
2464 
2465 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2466 {
2467 	/*
2468 	 * Before removing VM_UNINITIALIZED,
2469 	 * we should make sure that vm has proper values.
2470 	 * Pair with smp_rmb() in show_numa_info().
2471 	 */
2472 	smp_wmb();
2473 	vm->flags &= ~VM_UNINITIALIZED;
2474 }
2475 
2476 static struct vm_struct *__get_vm_area_node(unsigned long size,
2477 		unsigned long align, unsigned long shift, unsigned long flags,
2478 		unsigned long start, unsigned long end, int node,
2479 		gfp_t gfp_mask, const void *caller)
2480 {
2481 	struct vmap_area *va;
2482 	struct vm_struct *area;
2483 	unsigned long requested_size = size;
2484 
2485 	BUG_ON(in_interrupt());
2486 	size = ALIGN(size, 1ul << shift);
2487 	if (unlikely(!size))
2488 		return NULL;
2489 
2490 	if (flags & VM_IOREMAP)
2491 		align = 1ul << clamp_t(int, get_count_order_long(size),
2492 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2493 
2494 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2495 	if (unlikely(!area))
2496 		return NULL;
2497 
2498 	if (!(flags & VM_NO_GUARD))
2499 		size += PAGE_SIZE;
2500 
2501 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2502 	if (IS_ERR(va)) {
2503 		kfree(area);
2504 		return NULL;
2505 	}
2506 
2507 	setup_vmalloc_vm(area, va, flags, caller);
2508 
2509 	/*
2510 	 * Mark pages for non-VM_ALLOC mappings as accessible. Do it now as a
2511 	 * best-effort approach, as they can be mapped outside of vmalloc code.
2512 	 * For VM_ALLOC mappings, the pages are marked as accessible after
2513 	 * getting mapped in __vmalloc_node_range().
2514 	 * With hardware tag-based KASAN, marking is skipped for
2515 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
2516 	 */
2517 	if (!(flags & VM_ALLOC))
2518 		area->addr = kasan_unpoison_vmalloc(area->addr, requested_size,
2519 						    KASAN_VMALLOC_PROT_NORMAL);
2520 
2521 	return area;
2522 }
2523 
2524 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2525 				       unsigned long start, unsigned long end,
2526 				       const void *caller)
2527 {
2528 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2529 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2530 }
2531 
2532 /**
2533  * get_vm_area - reserve a contiguous kernel virtual area
2534  * @size:	 size of the area
2535  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2536  *
2537  * Search an area of @size in the kernel virtual mapping area,
2538  * and reserved it for out purposes.  Returns the area descriptor
2539  * on success or %NULL on failure.
2540  *
2541  * Return: the area descriptor on success or %NULL on failure.
2542  */
2543 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2544 {
2545 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2546 				  VMALLOC_START, VMALLOC_END,
2547 				  NUMA_NO_NODE, GFP_KERNEL,
2548 				  __builtin_return_address(0));
2549 }
2550 
2551 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2552 				const void *caller)
2553 {
2554 	return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2555 				  VMALLOC_START, VMALLOC_END,
2556 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2557 }
2558 
2559 /**
2560  * find_vm_area - find a continuous kernel virtual area
2561  * @addr:	  base address
2562  *
2563  * Search for the kernel VM area starting at @addr, and return it.
2564  * It is up to the caller to do all required locking to keep the returned
2565  * pointer valid.
2566  *
2567  * Return: the area descriptor on success or %NULL on failure.
2568  */
2569 struct vm_struct *find_vm_area(const void *addr)
2570 {
2571 	struct vmap_area *va;
2572 
2573 	va = find_vmap_area((unsigned long)addr);
2574 	if (!va)
2575 		return NULL;
2576 
2577 	return va->vm;
2578 }
2579 
2580 /**
2581  * remove_vm_area - find and remove a continuous kernel virtual area
2582  * @addr:	    base address
2583  *
2584  * Search for the kernel VM area starting at @addr, and remove it.
2585  * This function returns the found VM area, but using it is NOT safe
2586  * on SMP machines, except for its size or flags.
2587  *
2588  * Return: the area descriptor on success or %NULL on failure.
2589  */
2590 struct vm_struct *remove_vm_area(const void *addr)
2591 {
2592 	struct vmap_area *va;
2593 
2594 	might_sleep();
2595 
2596 	spin_lock(&vmap_area_lock);
2597 	va = __find_vmap_area((unsigned long)addr, &vmap_area_root);
2598 	if (va && va->vm) {
2599 		struct vm_struct *vm = va->vm;
2600 
2601 		va->vm = NULL;
2602 		spin_unlock(&vmap_area_lock);
2603 
2604 		kasan_free_module_shadow(vm);
2605 		free_unmap_vmap_area(va);
2606 
2607 		return vm;
2608 	}
2609 
2610 	spin_unlock(&vmap_area_lock);
2611 	return NULL;
2612 }
2613 
2614 static inline void set_area_direct_map(const struct vm_struct *area,
2615 				       int (*set_direct_map)(struct page *page))
2616 {
2617 	int i;
2618 
2619 	/* HUGE_VMALLOC passes small pages to set_direct_map */
2620 	for (i = 0; i < area->nr_pages; i++)
2621 		if (page_address(area->pages[i]))
2622 			set_direct_map(area->pages[i]);
2623 }
2624 
2625 /* Handle removing and resetting vm mappings related to the vm_struct. */
2626 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2627 {
2628 	unsigned long start = ULONG_MAX, end = 0;
2629 	unsigned int page_order = vm_area_page_order(area);
2630 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2631 	int flush_dmap = 0;
2632 	int i;
2633 
2634 	remove_vm_area(area->addr);
2635 
2636 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2637 	if (!flush_reset)
2638 		return;
2639 
2640 	/*
2641 	 * If not deallocating pages, just do the flush of the VM area and
2642 	 * return.
2643 	 */
2644 	if (!deallocate_pages) {
2645 		vm_unmap_aliases();
2646 		return;
2647 	}
2648 
2649 	/*
2650 	 * If execution gets here, flush the vm mapping and reset the direct
2651 	 * map. Find the start and end range of the direct mappings to make sure
2652 	 * the vm_unmap_aliases() flush includes the direct map.
2653 	 */
2654 	for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2655 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2656 		if (addr) {
2657 			unsigned long page_size;
2658 
2659 			page_size = PAGE_SIZE << page_order;
2660 			start = min(addr, start);
2661 			end = max(addr + page_size, end);
2662 			flush_dmap = 1;
2663 		}
2664 	}
2665 
2666 	/*
2667 	 * Set direct map to something invalid so that it won't be cached if
2668 	 * there are any accesses after the TLB flush, then flush the TLB and
2669 	 * reset the direct map permissions to the default.
2670 	 */
2671 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2672 	_vm_unmap_aliases(start, end, flush_dmap);
2673 	set_area_direct_map(area, set_direct_map_default_noflush);
2674 }
2675 
2676 static void __vunmap(const void *addr, int deallocate_pages)
2677 {
2678 	struct vm_struct *area;
2679 
2680 	if (!addr)
2681 		return;
2682 
2683 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2684 			addr))
2685 		return;
2686 
2687 	area = find_vm_area(addr);
2688 	if (unlikely(!area)) {
2689 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2690 				addr);
2691 		return;
2692 	}
2693 
2694 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2695 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2696 
2697 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2698 
2699 	vm_remove_mappings(area, deallocate_pages);
2700 
2701 	if (deallocate_pages) {
2702 		int i;
2703 
2704 		for (i = 0; i < area->nr_pages; i++) {
2705 			struct page *page = area->pages[i];
2706 
2707 			BUG_ON(!page);
2708 			mod_memcg_page_state(page, MEMCG_VMALLOC, -1);
2709 			/*
2710 			 * High-order allocs for huge vmallocs are split, so
2711 			 * can be freed as an array of order-0 allocations
2712 			 */
2713 			__free_pages(page, 0);
2714 			cond_resched();
2715 		}
2716 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2717 
2718 		kvfree(area->pages);
2719 	}
2720 
2721 	kfree(area);
2722 }
2723 
2724 static inline void __vfree_deferred(const void *addr)
2725 {
2726 	/*
2727 	 * Use raw_cpu_ptr() because this can be called from preemptible
2728 	 * context. Preemption is absolutely fine here, because the llist_add()
2729 	 * implementation is lockless, so it works even if we are adding to
2730 	 * another cpu's list. schedule_work() should be fine with this too.
2731 	 */
2732 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2733 
2734 	if (llist_add((struct llist_node *)addr, &p->list))
2735 		schedule_work(&p->wq);
2736 }
2737 
2738 /**
2739  * vfree_atomic - release memory allocated by vmalloc()
2740  * @addr:	  memory base address
2741  *
2742  * This one is just like vfree() but can be called in any atomic context
2743  * except NMIs.
2744  */
2745 void vfree_atomic(const void *addr)
2746 {
2747 	BUG_ON(in_nmi());
2748 
2749 	kmemleak_free(addr);
2750 
2751 	if (!addr)
2752 		return;
2753 	__vfree_deferred(addr);
2754 }
2755 
2756 static void __vfree(const void *addr)
2757 {
2758 	if (unlikely(in_interrupt()))
2759 		__vfree_deferred(addr);
2760 	else
2761 		__vunmap(addr, 1);
2762 }
2763 
2764 /**
2765  * vfree - Release memory allocated by vmalloc()
2766  * @addr:  Memory base address
2767  *
2768  * Free the virtually continuous memory area starting at @addr, as obtained
2769  * from one of the vmalloc() family of APIs.  This will usually also free the
2770  * physical memory underlying the virtual allocation, but that memory is
2771  * reference counted, so it will not be freed until the last user goes away.
2772  *
2773  * If @addr is NULL, no operation is performed.
2774  *
2775  * Context:
2776  * May sleep if called *not* from interrupt context.
2777  * Must not be called in NMI context (strictly speaking, it could be
2778  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2779  * conventions for vfree() arch-dependent would be a really bad idea).
2780  */
2781 void vfree(const void *addr)
2782 {
2783 	BUG_ON(in_nmi());
2784 
2785 	kmemleak_free(addr);
2786 
2787 	might_sleep_if(!in_interrupt());
2788 
2789 	if (!addr)
2790 		return;
2791 
2792 	__vfree(addr);
2793 }
2794 EXPORT_SYMBOL(vfree);
2795 
2796 /**
2797  * vunmap - release virtual mapping obtained by vmap()
2798  * @addr:   memory base address
2799  *
2800  * Free the virtually contiguous memory area starting at @addr,
2801  * which was created from the page array passed to vmap().
2802  *
2803  * Must not be called in interrupt context.
2804  */
2805 void vunmap(const void *addr)
2806 {
2807 	BUG_ON(in_interrupt());
2808 	might_sleep();
2809 	if (addr)
2810 		__vunmap(addr, 0);
2811 }
2812 EXPORT_SYMBOL(vunmap);
2813 
2814 /**
2815  * vmap - map an array of pages into virtually contiguous space
2816  * @pages: array of page pointers
2817  * @count: number of pages to map
2818  * @flags: vm_area->flags
2819  * @prot: page protection for the mapping
2820  *
2821  * Maps @count pages from @pages into contiguous kernel virtual space.
2822  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2823  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2824  * are transferred from the caller to vmap(), and will be freed / dropped when
2825  * vfree() is called on the return value.
2826  *
2827  * Return: the address of the area or %NULL on failure
2828  */
2829 void *vmap(struct page **pages, unsigned int count,
2830 	   unsigned long flags, pgprot_t prot)
2831 {
2832 	struct vm_struct *area;
2833 	unsigned long addr;
2834 	unsigned long size;		/* In bytes */
2835 
2836 	might_sleep();
2837 
2838 	/*
2839 	 * Your top guard is someone else's bottom guard. Not having a top
2840 	 * guard compromises someone else's mappings too.
2841 	 */
2842 	if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2843 		flags &= ~VM_NO_GUARD;
2844 
2845 	if (count > totalram_pages())
2846 		return NULL;
2847 
2848 	size = (unsigned long)count << PAGE_SHIFT;
2849 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2850 	if (!area)
2851 		return NULL;
2852 
2853 	addr = (unsigned long)area->addr;
2854 	if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2855 				pages, PAGE_SHIFT) < 0) {
2856 		vunmap(area->addr);
2857 		return NULL;
2858 	}
2859 
2860 	if (flags & VM_MAP_PUT_PAGES) {
2861 		area->pages = pages;
2862 		area->nr_pages = count;
2863 	}
2864 	return area->addr;
2865 }
2866 EXPORT_SYMBOL(vmap);
2867 
2868 #ifdef CONFIG_VMAP_PFN
2869 struct vmap_pfn_data {
2870 	unsigned long	*pfns;
2871 	pgprot_t	prot;
2872 	unsigned int	idx;
2873 };
2874 
2875 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2876 {
2877 	struct vmap_pfn_data *data = private;
2878 
2879 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2880 		return -EINVAL;
2881 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2882 	return 0;
2883 }
2884 
2885 /**
2886  * vmap_pfn - map an array of PFNs into virtually contiguous space
2887  * @pfns: array of PFNs
2888  * @count: number of pages to map
2889  * @prot: page protection for the mapping
2890  *
2891  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2892  * the start address of the mapping.
2893  */
2894 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2895 {
2896 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2897 	struct vm_struct *area;
2898 
2899 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2900 			__builtin_return_address(0));
2901 	if (!area)
2902 		return NULL;
2903 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2904 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2905 		free_vm_area(area);
2906 		return NULL;
2907 	}
2908 	return area->addr;
2909 }
2910 EXPORT_SYMBOL_GPL(vmap_pfn);
2911 #endif /* CONFIG_VMAP_PFN */
2912 
2913 static inline unsigned int
2914 vm_area_alloc_pages(gfp_t gfp, int nid,
2915 		unsigned int order, unsigned int nr_pages, struct page **pages)
2916 {
2917 	unsigned int nr_allocated = 0;
2918 	struct page *page;
2919 	int i;
2920 
2921 	/*
2922 	 * For order-0 pages we make use of bulk allocator, if
2923 	 * the page array is partly or not at all populated due
2924 	 * to fails, fallback to a single page allocator that is
2925 	 * more permissive.
2926 	 */
2927 	if (!order) {
2928 		gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
2929 
2930 		while (nr_allocated < nr_pages) {
2931 			unsigned int nr, nr_pages_request;
2932 
2933 			/*
2934 			 * A maximum allowed request is hard-coded and is 100
2935 			 * pages per call. That is done in order to prevent a
2936 			 * long preemption off scenario in the bulk-allocator
2937 			 * so the range is [1:100].
2938 			 */
2939 			nr_pages_request = min(100U, nr_pages - nr_allocated);
2940 
2941 			/* memory allocation should consider mempolicy, we can't
2942 			 * wrongly use nearest node when nid == NUMA_NO_NODE,
2943 			 * otherwise memory may be allocated in only one node,
2944 			 * but mempolicy wants to alloc memory by interleaving.
2945 			 */
2946 			if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2947 				nr = alloc_pages_bulk_array_mempolicy(bulk_gfp,
2948 							nr_pages_request,
2949 							pages + nr_allocated);
2950 
2951 			else
2952 				nr = alloc_pages_bulk_array_node(bulk_gfp, nid,
2953 							nr_pages_request,
2954 							pages + nr_allocated);
2955 
2956 			nr_allocated += nr;
2957 			cond_resched();
2958 
2959 			/*
2960 			 * If zero or pages were obtained partly,
2961 			 * fallback to a single page allocator.
2962 			 */
2963 			if (nr != nr_pages_request)
2964 				break;
2965 		}
2966 	}
2967 
2968 	/* High-order pages or fallback path if "bulk" fails. */
2969 
2970 	while (nr_allocated < nr_pages) {
2971 		if (fatal_signal_pending(current))
2972 			break;
2973 
2974 		if (nid == NUMA_NO_NODE)
2975 			page = alloc_pages(gfp, order);
2976 		else
2977 			page = alloc_pages_node(nid, gfp, order);
2978 		if (unlikely(!page))
2979 			break;
2980 		/*
2981 		 * Higher order allocations must be able to be treated as
2982 		 * indepdenent small pages by callers (as they can with
2983 		 * small-page vmallocs). Some drivers do their own refcounting
2984 		 * on vmalloc_to_page() pages, some use page->mapping,
2985 		 * page->lru, etc.
2986 		 */
2987 		if (order)
2988 			split_page(page, order);
2989 
2990 		/*
2991 		 * Careful, we allocate and map page-order pages, but
2992 		 * tracking is done per PAGE_SIZE page so as to keep the
2993 		 * vm_struct APIs independent of the physical/mapped size.
2994 		 */
2995 		for (i = 0; i < (1U << order); i++)
2996 			pages[nr_allocated + i] = page + i;
2997 
2998 		cond_resched();
2999 		nr_allocated += 1U << order;
3000 	}
3001 
3002 	return nr_allocated;
3003 }
3004 
3005 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
3006 				 pgprot_t prot, unsigned int page_shift,
3007 				 int node)
3008 {
3009 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
3010 	bool nofail = gfp_mask & __GFP_NOFAIL;
3011 	unsigned long addr = (unsigned long)area->addr;
3012 	unsigned long size = get_vm_area_size(area);
3013 	unsigned long array_size;
3014 	unsigned int nr_small_pages = size >> PAGE_SHIFT;
3015 	unsigned int page_order;
3016 	unsigned int flags;
3017 	int ret;
3018 
3019 	array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
3020 	gfp_mask |= __GFP_NOWARN;
3021 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
3022 		gfp_mask |= __GFP_HIGHMEM;
3023 
3024 	/* Please note that the recursion is strictly bounded. */
3025 	if (array_size > PAGE_SIZE) {
3026 		area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
3027 					area->caller);
3028 	} else {
3029 		area->pages = kmalloc_node(array_size, nested_gfp, node);
3030 	}
3031 
3032 	if (!area->pages) {
3033 		warn_alloc(gfp_mask, NULL,
3034 			"vmalloc error: size %lu, failed to allocated page array size %lu",
3035 			nr_small_pages * PAGE_SIZE, array_size);
3036 		free_vm_area(area);
3037 		return NULL;
3038 	}
3039 
3040 	set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
3041 	page_order = vm_area_page_order(area);
3042 
3043 	area->nr_pages = vm_area_alloc_pages(gfp_mask | __GFP_NOWARN,
3044 		node, page_order, nr_small_pages, area->pages);
3045 
3046 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
3047 	if (gfp_mask & __GFP_ACCOUNT) {
3048 		int i;
3049 
3050 		for (i = 0; i < area->nr_pages; i++)
3051 			mod_memcg_page_state(area->pages[i], MEMCG_VMALLOC, 1);
3052 	}
3053 
3054 	/*
3055 	 * If not enough pages were obtained to accomplish an
3056 	 * allocation request, free them via __vfree() if any.
3057 	 */
3058 	if (area->nr_pages != nr_small_pages) {
3059 		warn_alloc(gfp_mask, NULL,
3060 			"vmalloc error: size %lu, page order %u, failed to allocate pages",
3061 			area->nr_pages * PAGE_SIZE, page_order);
3062 		goto fail;
3063 	}
3064 
3065 	/*
3066 	 * page tables allocations ignore external gfp mask, enforce it
3067 	 * by the scope API
3068 	 */
3069 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3070 		flags = memalloc_nofs_save();
3071 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3072 		flags = memalloc_noio_save();
3073 
3074 	do {
3075 		ret = vmap_pages_range(addr, addr + size, prot, area->pages,
3076 			page_shift);
3077 		if (nofail && (ret < 0))
3078 			schedule_timeout_uninterruptible(1);
3079 	} while (nofail && (ret < 0));
3080 
3081 	if ((gfp_mask & (__GFP_FS | __GFP_IO)) == __GFP_IO)
3082 		memalloc_nofs_restore(flags);
3083 	else if ((gfp_mask & (__GFP_FS | __GFP_IO)) == 0)
3084 		memalloc_noio_restore(flags);
3085 
3086 	if (ret < 0) {
3087 		warn_alloc(gfp_mask, NULL,
3088 			"vmalloc error: size %lu, failed to map pages",
3089 			area->nr_pages * PAGE_SIZE);
3090 		goto fail;
3091 	}
3092 
3093 	return area->addr;
3094 
3095 fail:
3096 	__vfree(area->addr);
3097 	return NULL;
3098 }
3099 
3100 /**
3101  * __vmalloc_node_range - allocate virtually contiguous memory
3102  * @size:		  allocation size
3103  * @align:		  desired alignment
3104  * @start:		  vm area range start
3105  * @end:		  vm area range end
3106  * @gfp_mask:		  flags for the page level allocator
3107  * @prot:		  protection mask for the allocated pages
3108  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
3109  * @node:		  node to use for allocation or NUMA_NO_NODE
3110  * @caller:		  caller's return address
3111  *
3112  * Allocate enough pages to cover @size from the page level
3113  * allocator with @gfp_mask flags. Please note that the full set of gfp
3114  * flags are not supported. GFP_KERNEL, GFP_NOFS and GFP_NOIO are all
3115  * supported.
3116  * Zone modifiers are not supported. From the reclaim modifiers
3117  * __GFP_DIRECT_RECLAIM is required (aka GFP_NOWAIT is not supported)
3118  * and only __GFP_NOFAIL is supported (i.e. __GFP_NORETRY and
3119  * __GFP_RETRY_MAYFAIL are not supported).
3120  *
3121  * __GFP_NOWARN can be used to suppress failures messages.
3122  *
3123  * Map them into contiguous kernel virtual space, using a pagetable
3124  * protection of @prot.
3125  *
3126  * Return: the address of the area or %NULL on failure
3127  */
3128 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3129 			unsigned long start, unsigned long end, gfp_t gfp_mask,
3130 			pgprot_t prot, unsigned long vm_flags, int node,
3131 			const void *caller)
3132 {
3133 	struct vm_struct *area;
3134 	void *ret;
3135 	kasan_vmalloc_flags_t kasan_flags = KASAN_VMALLOC_NONE;
3136 	unsigned long real_size = size;
3137 	unsigned long real_align = align;
3138 	unsigned int shift = PAGE_SHIFT;
3139 
3140 	if (WARN_ON_ONCE(!size))
3141 		return NULL;
3142 
3143 	if ((size >> PAGE_SHIFT) > totalram_pages()) {
3144 		warn_alloc(gfp_mask, NULL,
3145 			"vmalloc error: size %lu, exceeds total pages",
3146 			real_size);
3147 		return NULL;
3148 	}
3149 
3150 	if (vmap_allow_huge && (vm_flags & VM_ALLOW_HUGE_VMAP)) {
3151 		unsigned long size_per_node;
3152 
3153 		/*
3154 		 * Try huge pages. Only try for PAGE_KERNEL allocations,
3155 		 * others like modules don't yet expect huge pages in
3156 		 * their allocations due to apply_to_page_range not
3157 		 * supporting them.
3158 		 */
3159 
3160 		size_per_node = size;
3161 		if (node == NUMA_NO_NODE)
3162 			size_per_node /= num_online_nodes();
3163 		if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3164 			shift = PMD_SHIFT;
3165 		else
3166 			shift = arch_vmap_pte_supported_shift(size_per_node);
3167 
3168 		align = max(real_align, 1UL << shift);
3169 		size = ALIGN(real_size, 1UL << shift);
3170 	}
3171 
3172 again:
3173 	area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3174 				  VM_UNINITIALIZED | vm_flags, start, end, node,
3175 				  gfp_mask, caller);
3176 	if (!area) {
3177 		bool nofail = gfp_mask & __GFP_NOFAIL;
3178 		warn_alloc(gfp_mask, NULL,
3179 			"vmalloc error: size %lu, vm_struct allocation failed%s",
3180 			real_size, (nofail) ? ". Retrying." : "");
3181 		if (nofail) {
3182 			schedule_timeout_uninterruptible(1);
3183 			goto again;
3184 		}
3185 		goto fail;
3186 	}
3187 
3188 	/*
3189 	 * Prepare arguments for __vmalloc_area_node() and
3190 	 * kasan_unpoison_vmalloc().
3191 	 */
3192 	if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) {
3193 		if (kasan_hw_tags_enabled()) {
3194 			/*
3195 			 * Modify protection bits to allow tagging.
3196 			 * This must be done before mapping.
3197 			 */
3198 			prot = arch_vmap_pgprot_tagged(prot);
3199 
3200 			/*
3201 			 * Skip page_alloc poisoning and zeroing for physical
3202 			 * pages backing VM_ALLOC mapping. Memory is instead
3203 			 * poisoned and zeroed by kasan_unpoison_vmalloc().
3204 			 */
3205 			gfp_mask |= __GFP_SKIP_KASAN_UNPOISON | __GFP_SKIP_ZERO;
3206 		}
3207 
3208 		/* Take note that the mapping is PAGE_KERNEL. */
3209 		kasan_flags |= KASAN_VMALLOC_PROT_NORMAL;
3210 	}
3211 
3212 	/* Allocate physical pages and map them into vmalloc space. */
3213 	ret = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3214 	if (!ret)
3215 		goto fail;
3216 
3217 	/*
3218 	 * Mark the pages as accessible, now that they are mapped.
3219 	 * The condition for setting KASAN_VMALLOC_INIT should complement the
3220 	 * one in post_alloc_hook() with regards to the __GFP_SKIP_ZERO check
3221 	 * to make sure that memory is initialized under the same conditions.
3222 	 * Tag-based KASAN modes only assign tags to normal non-executable
3223 	 * allocations, see __kasan_unpoison_vmalloc().
3224 	 */
3225 	kasan_flags |= KASAN_VMALLOC_VM_ALLOC;
3226 	if (!want_init_on_free() && want_init_on_alloc(gfp_mask) &&
3227 	    (gfp_mask & __GFP_SKIP_ZERO))
3228 		kasan_flags |= KASAN_VMALLOC_INIT;
3229 	/* KASAN_VMALLOC_PROT_NORMAL already set if required. */
3230 	area->addr = kasan_unpoison_vmalloc(area->addr, real_size, kasan_flags);
3231 
3232 	/*
3233 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3234 	 * flag. It means that vm_struct is not fully initialized.
3235 	 * Now, it is fully initialized, so remove this flag here.
3236 	 */
3237 	clear_vm_uninitialized_flag(area);
3238 
3239 	size = PAGE_ALIGN(size);
3240 	if (!(vm_flags & VM_DEFER_KMEMLEAK))
3241 		kmemleak_vmalloc(area, size, gfp_mask);
3242 
3243 	return area->addr;
3244 
3245 fail:
3246 	if (shift > PAGE_SHIFT) {
3247 		shift = PAGE_SHIFT;
3248 		align = real_align;
3249 		size = real_size;
3250 		goto again;
3251 	}
3252 
3253 	return NULL;
3254 }
3255 
3256 /**
3257  * __vmalloc_node - allocate virtually contiguous memory
3258  * @size:	    allocation size
3259  * @align:	    desired alignment
3260  * @gfp_mask:	    flags for the page level allocator
3261  * @node:	    node to use for allocation or NUMA_NO_NODE
3262  * @caller:	    caller's return address
3263  *
3264  * Allocate enough pages to cover @size from the page level allocator with
3265  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
3266  *
3267  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3268  * and __GFP_NOFAIL are not supported
3269  *
3270  * Any use of gfp flags outside of GFP_KERNEL should be consulted
3271  * with mm people.
3272  *
3273  * Return: pointer to the allocated memory or %NULL on error
3274  */
3275 void *__vmalloc_node(unsigned long size, unsigned long align,
3276 			    gfp_t gfp_mask, int node, const void *caller)
3277 {
3278 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3279 				gfp_mask, PAGE_KERNEL, 0, node, caller);
3280 }
3281 /*
3282  * This is only for performance analysis of vmalloc and stress purpose.
3283  * It is required by vmalloc test module, therefore do not use it other
3284  * than that.
3285  */
3286 #ifdef CONFIG_TEST_VMALLOC_MODULE
3287 EXPORT_SYMBOL_GPL(__vmalloc_node);
3288 #endif
3289 
3290 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3291 {
3292 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3293 				__builtin_return_address(0));
3294 }
3295 EXPORT_SYMBOL(__vmalloc);
3296 
3297 /**
3298  * vmalloc - allocate virtually contiguous memory
3299  * @size:    allocation size
3300  *
3301  * Allocate enough pages to cover @size from the page level
3302  * allocator and map them into contiguous kernel virtual space.
3303  *
3304  * For tight control over page level allocator and protection flags
3305  * use __vmalloc() instead.
3306  *
3307  * Return: pointer to the allocated memory or %NULL on error
3308  */
3309 void *vmalloc(unsigned long size)
3310 {
3311 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3312 				__builtin_return_address(0));
3313 }
3314 EXPORT_SYMBOL(vmalloc);
3315 
3316 /**
3317  * vmalloc_huge - allocate virtually contiguous memory, allow huge pages
3318  * @size:      allocation size
3319  * @gfp_mask:  flags for the page level allocator
3320  *
3321  * Allocate enough pages to cover @size from the page level
3322  * allocator and map them into contiguous kernel virtual space.
3323  * If @size is greater than or equal to PMD_SIZE, allow using
3324  * huge pages for the memory
3325  *
3326  * Return: pointer to the allocated memory or %NULL on error
3327  */
3328 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask)
3329 {
3330 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3331 				    gfp_mask, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
3332 				    NUMA_NO_NODE, __builtin_return_address(0));
3333 }
3334 EXPORT_SYMBOL_GPL(vmalloc_huge);
3335 
3336 /**
3337  * vzalloc - allocate virtually contiguous memory with zero fill
3338  * @size:    allocation size
3339  *
3340  * Allocate enough pages to cover @size from the page level
3341  * allocator and map them into contiguous kernel virtual space.
3342  * The memory allocated is set to zero.
3343  *
3344  * For tight control over page level allocator and protection flags
3345  * use __vmalloc() instead.
3346  *
3347  * Return: pointer to the allocated memory or %NULL on error
3348  */
3349 void *vzalloc(unsigned long size)
3350 {
3351 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3352 				__builtin_return_address(0));
3353 }
3354 EXPORT_SYMBOL(vzalloc);
3355 
3356 /**
3357  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3358  * @size: allocation size
3359  *
3360  * The resulting memory area is zeroed so it can be mapped to userspace
3361  * without leaking data.
3362  *
3363  * Return: pointer to the allocated memory or %NULL on error
3364  */
3365 void *vmalloc_user(unsigned long size)
3366 {
3367 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3368 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3369 				    VM_USERMAP, NUMA_NO_NODE,
3370 				    __builtin_return_address(0));
3371 }
3372 EXPORT_SYMBOL(vmalloc_user);
3373 
3374 /**
3375  * vmalloc_node - allocate memory on a specific node
3376  * @size:	  allocation size
3377  * @node:	  numa node
3378  *
3379  * Allocate enough pages to cover @size from the page level
3380  * allocator and map them into contiguous kernel virtual space.
3381  *
3382  * For tight control over page level allocator and protection flags
3383  * use __vmalloc() instead.
3384  *
3385  * Return: pointer to the allocated memory or %NULL on error
3386  */
3387 void *vmalloc_node(unsigned long size, int node)
3388 {
3389 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
3390 			__builtin_return_address(0));
3391 }
3392 EXPORT_SYMBOL(vmalloc_node);
3393 
3394 /**
3395  * vzalloc_node - allocate memory on a specific node with zero fill
3396  * @size:	allocation size
3397  * @node:	numa node
3398  *
3399  * Allocate enough pages to cover @size from the page level
3400  * allocator and map them into contiguous kernel virtual space.
3401  * The memory allocated is set to zero.
3402  *
3403  * Return: pointer to the allocated memory or %NULL on error
3404  */
3405 void *vzalloc_node(unsigned long size, int node)
3406 {
3407 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3408 				__builtin_return_address(0));
3409 }
3410 EXPORT_SYMBOL(vzalloc_node);
3411 
3412 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3413 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3414 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3415 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3416 #else
3417 /*
3418  * 64b systems should always have either DMA or DMA32 zones. For others
3419  * GFP_DMA32 should do the right thing and use the normal zone.
3420  */
3421 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3422 #endif
3423 
3424 /**
3425  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3426  * @size:	allocation size
3427  *
3428  * Allocate enough 32bit PA addressable pages to cover @size from the
3429  * page level allocator and map them into contiguous kernel virtual space.
3430  *
3431  * Return: pointer to the allocated memory or %NULL on error
3432  */
3433 void *vmalloc_32(unsigned long size)
3434 {
3435 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3436 			__builtin_return_address(0));
3437 }
3438 EXPORT_SYMBOL(vmalloc_32);
3439 
3440 /**
3441  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3442  * @size:	     allocation size
3443  *
3444  * The resulting memory area is 32bit addressable and zeroed so it can be
3445  * mapped to userspace without leaking data.
3446  *
3447  * Return: pointer to the allocated memory or %NULL on error
3448  */
3449 void *vmalloc_32_user(unsigned long size)
3450 {
3451 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
3452 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3453 				    VM_USERMAP, NUMA_NO_NODE,
3454 				    __builtin_return_address(0));
3455 }
3456 EXPORT_SYMBOL(vmalloc_32_user);
3457 
3458 /*
3459  * small helper routine , copy contents to buf from addr.
3460  * If the page is not present, fill zero.
3461  */
3462 
3463 static int aligned_vread(char *buf, char *addr, unsigned long count)
3464 {
3465 	struct page *p;
3466 	int copied = 0;
3467 
3468 	while (count) {
3469 		unsigned long offset, length;
3470 
3471 		offset = offset_in_page(addr);
3472 		length = PAGE_SIZE - offset;
3473 		if (length > count)
3474 			length = count;
3475 		p = vmalloc_to_page(addr);
3476 		/*
3477 		 * To do safe access to this _mapped_ area, we need
3478 		 * lock. But adding lock here means that we need to add
3479 		 * overhead of vmalloc()/vfree() calls for this _debug_
3480 		 * interface, rarely used. Instead of that, we'll use
3481 		 * kmap() and get small overhead in this access function.
3482 		 */
3483 		if (p) {
3484 			/* We can expect USER0 is not used -- see vread() */
3485 			void *map = kmap_atomic(p);
3486 			memcpy(buf, map + offset, length);
3487 			kunmap_atomic(map);
3488 		} else
3489 			memset(buf, 0, length);
3490 
3491 		addr += length;
3492 		buf += length;
3493 		copied += length;
3494 		count -= length;
3495 	}
3496 	return copied;
3497 }
3498 
3499 /**
3500  * vread() - read vmalloc area in a safe way.
3501  * @buf:     buffer for reading data
3502  * @addr:    vm address.
3503  * @count:   number of bytes to be read.
3504  *
3505  * This function checks that addr is a valid vmalloc'ed area, and
3506  * copy data from that area to a given buffer. If the given memory range
3507  * of [addr...addr+count) includes some valid address, data is copied to
3508  * proper area of @buf. If there are memory holes, they'll be zero-filled.
3509  * IOREMAP area is treated as memory hole and no copy is done.
3510  *
3511  * If [addr...addr+count) doesn't includes any intersects with alive
3512  * vm_struct area, returns 0. @buf should be kernel's buffer.
3513  *
3514  * Note: In usual ops, vread() is never necessary because the caller
3515  * should know vmalloc() area is valid and can use memcpy().
3516  * This is for routines which have to access vmalloc area without
3517  * any information, as /proc/kcore.
3518  *
3519  * Return: number of bytes for which addr and buf should be increased
3520  * (same number as @count) or %0 if [addr...addr+count) doesn't
3521  * include any intersection with valid vmalloc area
3522  */
3523 long vread(char *buf, char *addr, unsigned long count)
3524 {
3525 	struct vmap_area *va;
3526 	struct vm_struct *vm;
3527 	char *vaddr, *buf_start = buf;
3528 	unsigned long buflen = count;
3529 	unsigned long n;
3530 
3531 	addr = kasan_reset_tag(addr);
3532 
3533 	/* Don't allow overflow */
3534 	if ((unsigned long) addr + count < count)
3535 		count = -(unsigned long) addr;
3536 
3537 	spin_lock(&vmap_area_lock);
3538 	va = find_vmap_area_exceed_addr((unsigned long)addr);
3539 	if (!va)
3540 		goto finished;
3541 
3542 	/* no intersects with alive vmap_area */
3543 	if ((unsigned long)addr + count <= va->va_start)
3544 		goto finished;
3545 
3546 	list_for_each_entry_from(va, &vmap_area_list, list) {
3547 		if (!count)
3548 			break;
3549 
3550 		if (!va->vm)
3551 			continue;
3552 
3553 		vm = va->vm;
3554 		vaddr = (char *) vm->addr;
3555 		if (addr >= vaddr + get_vm_area_size(vm))
3556 			continue;
3557 		while (addr < vaddr) {
3558 			if (count == 0)
3559 				goto finished;
3560 			*buf = '\0';
3561 			buf++;
3562 			addr++;
3563 			count--;
3564 		}
3565 		n = vaddr + get_vm_area_size(vm) - addr;
3566 		if (n > count)
3567 			n = count;
3568 		if (!(vm->flags & VM_IOREMAP))
3569 			aligned_vread(buf, addr, n);
3570 		else /* IOREMAP area is treated as memory hole */
3571 			memset(buf, 0, n);
3572 		buf += n;
3573 		addr += n;
3574 		count -= n;
3575 	}
3576 finished:
3577 	spin_unlock(&vmap_area_lock);
3578 
3579 	if (buf == buf_start)
3580 		return 0;
3581 	/* zero-fill memory holes */
3582 	if (buf != buf_start + buflen)
3583 		memset(buf, 0, buflen - (buf - buf_start));
3584 
3585 	return buflen;
3586 }
3587 
3588 /**
3589  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3590  * @vma:		vma to cover
3591  * @uaddr:		target user address to start at
3592  * @kaddr:		virtual address of vmalloc kernel memory
3593  * @pgoff:		offset from @kaddr to start at
3594  * @size:		size of map area
3595  *
3596  * Returns:	0 for success, -Exxx on failure
3597  *
3598  * This function checks that @kaddr is a valid vmalloc'ed area,
3599  * and that it is big enough to cover the range starting at
3600  * @uaddr in @vma. Will return failure if that criteria isn't
3601  * met.
3602  *
3603  * Similar to remap_pfn_range() (see mm/memory.c)
3604  */
3605 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3606 				void *kaddr, unsigned long pgoff,
3607 				unsigned long size)
3608 {
3609 	struct vm_struct *area;
3610 	unsigned long off;
3611 	unsigned long end_index;
3612 
3613 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3614 		return -EINVAL;
3615 
3616 	size = PAGE_ALIGN(size);
3617 
3618 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3619 		return -EINVAL;
3620 
3621 	area = find_vm_area(kaddr);
3622 	if (!area)
3623 		return -EINVAL;
3624 
3625 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3626 		return -EINVAL;
3627 
3628 	if (check_add_overflow(size, off, &end_index) ||
3629 	    end_index > get_vm_area_size(area))
3630 		return -EINVAL;
3631 	kaddr += off;
3632 
3633 	do {
3634 		struct page *page = vmalloc_to_page(kaddr);
3635 		int ret;
3636 
3637 		ret = vm_insert_page(vma, uaddr, page);
3638 		if (ret)
3639 			return ret;
3640 
3641 		uaddr += PAGE_SIZE;
3642 		kaddr += PAGE_SIZE;
3643 		size -= PAGE_SIZE;
3644 	} while (size > 0);
3645 
3646 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3647 
3648 	return 0;
3649 }
3650 
3651 /**
3652  * remap_vmalloc_range - map vmalloc pages to userspace
3653  * @vma:		vma to cover (map full range of vma)
3654  * @addr:		vmalloc memory
3655  * @pgoff:		number of pages into addr before first page to map
3656  *
3657  * Returns:	0 for success, -Exxx on failure
3658  *
3659  * This function checks that addr is a valid vmalloc'ed area, and
3660  * that it is big enough to cover the vma. Will return failure if
3661  * that criteria isn't met.
3662  *
3663  * Similar to remap_pfn_range() (see mm/memory.c)
3664  */
3665 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3666 						unsigned long pgoff)
3667 {
3668 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3669 					   addr, pgoff,
3670 					   vma->vm_end - vma->vm_start);
3671 }
3672 EXPORT_SYMBOL(remap_vmalloc_range);
3673 
3674 void free_vm_area(struct vm_struct *area)
3675 {
3676 	struct vm_struct *ret;
3677 	ret = remove_vm_area(area->addr);
3678 	BUG_ON(ret != area);
3679 	kfree(area);
3680 }
3681 EXPORT_SYMBOL_GPL(free_vm_area);
3682 
3683 #ifdef CONFIG_SMP
3684 static struct vmap_area *node_to_va(struct rb_node *n)
3685 {
3686 	return rb_entry_safe(n, struct vmap_area, rb_node);
3687 }
3688 
3689 /**
3690  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3691  * @addr: target address
3692  *
3693  * Returns: vmap_area if it is found. If there is no such area
3694  *   the first highest(reverse order) vmap_area is returned
3695  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3696  *   if there are no any areas before @addr.
3697  */
3698 static struct vmap_area *
3699 pvm_find_va_enclose_addr(unsigned long addr)
3700 {
3701 	struct vmap_area *va, *tmp;
3702 	struct rb_node *n;
3703 
3704 	n = free_vmap_area_root.rb_node;
3705 	va = NULL;
3706 
3707 	while (n) {
3708 		tmp = rb_entry(n, struct vmap_area, rb_node);
3709 		if (tmp->va_start <= addr) {
3710 			va = tmp;
3711 			if (tmp->va_end >= addr)
3712 				break;
3713 
3714 			n = n->rb_right;
3715 		} else {
3716 			n = n->rb_left;
3717 		}
3718 	}
3719 
3720 	return va;
3721 }
3722 
3723 /**
3724  * pvm_determine_end_from_reverse - find the highest aligned address
3725  * of free block below VMALLOC_END
3726  * @va:
3727  *   in - the VA we start the search(reverse order);
3728  *   out - the VA with the highest aligned end address.
3729  * @align: alignment for required highest address
3730  *
3731  * Returns: determined end address within vmap_area
3732  */
3733 static unsigned long
3734 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3735 {
3736 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3737 	unsigned long addr;
3738 
3739 	if (likely(*va)) {
3740 		list_for_each_entry_from_reverse((*va),
3741 				&free_vmap_area_list, list) {
3742 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3743 			if ((*va)->va_start < addr)
3744 				return addr;
3745 		}
3746 	}
3747 
3748 	return 0;
3749 }
3750 
3751 /**
3752  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3753  * @offsets: array containing offset of each area
3754  * @sizes: array containing size of each area
3755  * @nr_vms: the number of areas to allocate
3756  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3757  *
3758  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3759  *	    vm_structs on success, %NULL on failure
3760  *
3761  * Percpu allocator wants to use congruent vm areas so that it can
3762  * maintain the offsets among percpu areas.  This function allocates
3763  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3764  * be scattered pretty far, distance between two areas easily going up
3765  * to gigabytes.  To avoid interacting with regular vmallocs, these
3766  * areas are allocated from top.
3767  *
3768  * Despite its complicated look, this allocator is rather simple. It
3769  * does everything top-down and scans free blocks from the end looking
3770  * for matching base. While scanning, if any of the areas do not fit the
3771  * base address is pulled down to fit the area. Scanning is repeated till
3772  * all the areas fit and then all necessary data structures are inserted
3773  * and the result is returned.
3774  */
3775 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3776 				     const size_t *sizes, int nr_vms,
3777 				     size_t align)
3778 {
3779 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3780 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3781 	struct vmap_area **vas, *va;
3782 	struct vm_struct **vms;
3783 	int area, area2, last_area, term_area;
3784 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3785 	bool purged = false;
3786 
3787 	/* verify parameters and allocate data structures */
3788 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3789 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3790 		start = offsets[area];
3791 		end = start + sizes[area];
3792 
3793 		/* is everything aligned properly? */
3794 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3795 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3796 
3797 		/* detect the area with the highest address */
3798 		if (start > offsets[last_area])
3799 			last_area = area;
3800 
3801 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3802 			unsigned long start2 = offsets[area2];
3803 			unsigned long end2 = start2 + sizes[area2];
3804 
3805 			BUG_ON(start2 < end && start < end2);
3806 		}
3807 	}
3808 	last_end = offsets[last_area] + sizes[last_area];
3809 
3810 	if (vmalloc_end - vmalloc_start < last_end) {
3811 		WARN_ON(true);
3812 		return NULL;
3813 	}
3814 
3815 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3816 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3817 	if (!vas || !vms)
3818 		goto err_free2;
3819 
3820 	for (area = 0; area < nr_vms; area++) {
3821 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3822 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3823 		if (!vas[area] || !vms[area])
3824 			goto err_free;
3825 	}
3826 retry:
3827 	spin_lock(&free_vmap_area_lock);
3828 
3829 	/* start scanning - we scan from the top, begin with the last area */
3830 	area = term_area = last_area;
3831 	start = offsets[area];
3832 	end = start + sizes[area];
3833 
3834 	va = pvm_find_va_enclose_addr(vmalloc_end);
3835 	base = pvm_determine_end_from_reverse(&va, align) - end;
3836 
3837 	while (true) {
3838 		/*
3839 		 * base might have underflowed, add last_end before
3840 		 * comparing.
3841 		 */
3842 		if (base + last_end < vmalloc_start + last_end)
3843 			goto overflow;
3844 
3845 		/*
3846 		 * Fitting base has not been found.
3847 		 */
3848 		if (va == NULL)
3849 			goto overflow;
3850 
3851 		/*
3852 		 * If required width exceeds current VA block, move
3853 		 * base downwards and then recheck.
3854 		 */
3855 		if (base + end > va->va_end) {
3856 			base = pvm_determine_end_from_reverse(&va, align) - end;
3857 			term_area = area;
3858 			continue;
3859 		}
3860 
3861 		/*
3862 		 * If this VA does not fit, move base downwards and recheck.
3863 		 */
3864 		if (base + start < va->va_start) {
3865 			va = node_to_va(rb_prev(&va->rb_node));
3866 			base = pvm_determine_end_from_reverse(&va, align) - end;
3867 			term_area = area;
3868 			continue;
3869 		}
3870 
3871 		/*
3872 		 * This area fits, move on to the previous one.  If
3873 		 * the previous one is the terminal one, we're done.
3874 		 */
3875 		area = (area + nr_vms - 1) % nr_vms;
3876 		if (area == term_area)
3877 			break;
3878 
3879 		start = offsets[area];
3880 		end = start + sizes[area];
3881 		va = pvm_find_va_enclose_addr(base + end);
3882 	}
3883 
3884 	/* we've found a fitting base, insert all va's */
3885 	for (area = 0; area < nr_vms; area++) {
3886 		int ret;
3887 
3888 		start = base + offsets[area];
3889 		size = sizes[area];
3890 
3891 		va = pvm_find_va_enclose_addr(start);
3892 		if (WARN_ON_ONCE(va == NULL))
3893 			/* It is a BUG(), but trigger recovery instead. */
3894 			goto recovery;
3895 
3896 		ret = adjust_va_to_fit_type(&free_vmap_area_root,
3897 					    &free_vmap_area_list,
3898 					    va, start, size);
3899 		if (WARN_ON_ONCE(unlikely(ret)))
3900 			/* It is a BUG(), but trigger recovery instead. */
3901 			goto recovery;
3902 
3903 		/* Allocated area. */
3904 		va = vas[area];
3905 		va->va_start = start;
3906 		va->va_end = start + size;
3907 	}
3908 
3909 	spin_unlock(&free_vmap_area_lock);
3910 
3911 	/* populate the kasan shadow space */
3912 	for (area = 0; area < nr_vms; area++) {
3913 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3914 			goto err_free_shadow;
3915 	}
3916 
3917 	/* insert all vm's */
3918 	spin_lock(&vmap_area_lock);
3919 	for (area = 0; area < nr_vms; area++) {
3920 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3921 
3922 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3923 				 pcpu_get_vm_areas);
3924 	}
3925 	spin_unlock(&vmap_area_lock);
3926 
3927 	/*
3928 	 * Mark allocated areas as accessible. Do it now as a best-effort
3929 	 * approach, as they can be mapped outside of vmalloc code.
3930 	 * With hardware tag-based KASAN, marking is skipped for
3931 	 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc().
3932 	 */
3933 	for (area = 0; area < nr_vms; area++)
3934 		vms[area]->addr = kasan_unpoison_vmalloc(vms[area]->addr,
3935 				vms[area]->size, KASAN_VMALLOC_PROT_NORMAL);
3936 
3937 	kfree(vas);
3938 	return vms;
3939 
3940 recovery:
3941 	/*
3942 	 * Remove previously allocated areas. There is no
3943 	 * need in removing these areas from the busy tree,
3944 	 * because they are inserted only on the final step
3945 	 * and when pcpu_get_vm_areas() is success.
3946 	 */
3947 	while (area--) {
3948 		orig_start = vas[area]->va_start;
3949 		orig_end = vas[area]->va_end;
3950 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3951 				&free_vmap_area_list);
3952 		if (va)
3953 			kasan_release_vmalloc(orig_start, orig_end,
3954 				va->va_start, va->va_end);
3955 		vas[area] = NULL;
3956 	}
3957 
3958 overflow:
3959 	spin_unlock(&free_vmap_area_lock);
3960 	if (!purged) {
3961 		purge_vmap_area_lazy();
3962 		purged = true;
3963 
3964 		/* Before "retry", check if we recover. */
3965 		for (area = 0; area < nr_vms; area++) {
3966 			if (vas[area])
3967 				continue;
3968 
3969 			vas[area] = kmem_cache_zalloc(
3970 				vmap_area_cachep, GFP_KERNEL);
3971 			if (!vas[area])
3972 				goto err_free;
3973 		}
3974 
3975 		goto retry;
3976 	}
3977 
3978 err_free:
3979 	for (area = 0; area < nr_vms; area++) {
3980 		if (vas[area])
3981 			kmem_cache_free(vmap_area_cachep, vas[area]);
3982 
3983 		kfree(vms[area]);
3984 	}
3985 err_free2:
3986 	kfree(vas);
3987 	kfree(vms);
3988 	return NULL;
3989 
3990 err_free_shadow:
3991 	spin_lock(&free_vmap_area_lock);
3992 	/*
3993 	 * We release all the vmalloc shadows, even the ones for regions that
3994 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3995 	 * being able to tolerate this case.
3996 	 */
3997 	for (area = 0; area < nr_vms; area++) {
3998 		orig_start = vas[area]->va_start;
3999 		orig_end = vas[area]->va_end;
4000 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
4001 				&free_vmap_area_list);
4002 		if (va)
4003 			kasan_release_vmalloc(orig_start, orig_end,
4004 				va->va_start, va->va_end);
4005 		vas[area] = NULL;
4006 		kfree(vms[area]);
4007 	}
4008 	spin_unlock(&free_vmap_area_lock);
4009 	kfree(vas);
4010 	kfree(vms);
4011 	return NULL;
4012 }
4013 
4014 /**
4015  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
4016  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
4017  * @nr_vms: the number of allocated areas
4018  *
4019  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
4020  */
4021 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
4022 {
4023 	int i;
4024 
4025 	for (i = 0; i < nr_vms; i++)
4026 		free_vm_area(vms[i]);
4027 	kfree(vms);
4028 }
4029 #endif	/* CONFIG_SMP */
4030 
4031 #ifdef CONFIG_PRINTK
4032 bool vmalloc_dump_obj(void *object)
4033 {
4034 	struct vm_struct *vm;
4035 	void *objp = (void *)PAGE_ALIGN((unsigned long)object);
4036 
4037 	vm = find_vm_area(objp);
4038 	if (!vm)
4039 		return false;
4040 	pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
4041 		vm->nr_pages, (unsigned long)vm->addr, vm->caller);
4042 	return true;
4043 }
4044 #endif
4045 
4046 #ifdef CONFIG_PROC_FS
4047 static void *s_start(struct seq_file *m, loff_t *pos)
4048 	__acquires(&vmap_purge_lock)
4049 	__acquires(&vmap_area_lock)
4050 {
4051 	mutex_lock(&vmap_purge_lock);
4052 	spin_lock(&vmap_area_lock);
4053 
4054 	return seq_list_start(&vmap_area_list, *pos);
4055 }
4056 
4057 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4058 {
4059 	return seq_list_next(p, &vmap_area_list, pos);
4060 }
4061 
4062 static void s_stop(struct seq_file *m, void *p)
4063 	__releases(&vmap_area_lock)
4064 	__releases(&vmap_purge_lock)
4065 {
4066 	spin_unlock(&vmap_area_lock);
4067 	mutex_unlock(&vmap_purge_lock);
4068 }
4069 
4070 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
4071 {
4072 	if (IS_ENABLED(CONFIG_NUMA)) {
4073 		unsigned int nr, *counters = m->private;
4074 		unsigned int step = 1U << vm_area_page_order(v);
4075 
4076 		if (!counters)
4077 			return;
4078 
4079 		if (v->flags & VM_UNINITIALIZED)
4080 			return;
4081 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
4082 		smp_rmb();
4083 
4084 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
4085 
4086 		for (nr = 0; nr < v->nr_pages; nr += step)
4087 			counters[page_to_nid(v->pages[nr])] += step;
4088 		for_each_node_state(nr, N_HIGH_MEMORY)
4089 			if (counters[nr])
4090 				seq_printf(m, " N%u=%u", nr, counters[nr]);
4091 	}
4092 }
4093 
4094 static void show_purge_info(struct seq_file *m)
4095 {
4096 	struct vmap_area *va;
4097 
4098 	spin_lock(&purge_vmap_area_lock);
4099 	list_for_each_entry(va, &purge_vmap_area_list, list) {
4100 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
4101 			(void *)va->va_start, (void *)va->va_end,
4102 			va->va_end - va->va_start);
4103 	}
4104 	spin_unlock(&purge_vmap_area_lock);
4105 }
4106 
4107 static int s_show(struct seq_file *m, void *p)
4108 {
4109 	struct vmap_area *va;
4110 	struct vm_struct *v;
4111 
4112 	va = list_entry(p, struct vmap_area, list);
4113 
4114 	/*
4115 	 * s_show can encounter race with remove_vm_area, !vm on behalf
4116 	 * of vmap area is being tear down or vm_map_ram allocation.
4117 	 */
4118 	if (!va->vm) {
4119 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
4120 			(void *)va->va_start, (void *)va->va_end,
4121 			va->va_end - va->va_start);
4122 
4123 		goto final;
4124 	}
4125 
4126 	v = va->vm;
4127 
4128 	seq_printf(m, "0x%pK-0x%pK %7ld",
4129 		v->addr, v->addr + v->size, v->size);
4130 
4131 	if (v->caller)
4132 		seq_printf(m, " %pS", v->caller);
4133 
4134 	if (v->nr_pages)
4135 		seq_printf(m, " pages=%d", v->nr_pages);
4136 
4137 	if (v->phys_addr)
4138 		seq_printf(m, " phys=%pa", &v->phys_addr);
4139 
4140 	if (v->flags & VM_IOREMAP)
4141 		seq_puts(m, " ioremap");
4142 
4143 	if (v->flags & VM_ALLOC)
4144 		seq_puts(m, " vmalloc");
4145 
4146 	if (v->flags & VM_MAP)
4147 		seq_puts(m, " vmap");
4148 
4149 	if (v->flags & VM_USERMAP)
4150 		seq_puts(m, " user");
4151 
4152 	if (v->flags & VM_DMA_COHERENT)
4153 		seq_puts(m, " dma-coherent");
4154 
4155 	if (is_vmalloc_addr(v->pages))
4156 		seq_puts(m, " vpages");
4157 
4158 	show_numa_info(m, v);
4159 	seq_putc(m, '\n');
4160 
4161 	/*
4162 	 * As a final step, dump "unpurged" areas.
4163 	 */
4164 final:
4165 	if (list_is_last(&va->list, &vmap_area_list))
4166 		show_purge_info(m);
4167 
4168 	return 0;
4169 }
4170 
4171 static const struct seq_operations vmalloc_op = {
4172 	.start = s_start,
4173 	.next = s_next,
4174 	.stop = s_stop,
4175 	.show = s_show,
4176 };
4177 
4178 static int __init proc_vmalloc_init(void)
4179 {
4180 	if (IS_ENABLED(CONFIG_NUMA))
4181 		proc_create_seq_private("vmallocinfo", 0400, NULL,
4182 				&vmalloc_op,
4183 				nr_node_ids * sizeof(unsigned int), NULL);
4184 	else
4185 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4186 	return 0;
4187 }
4188 module_init(proc_vmalloc_init);
4189 
4190 #endif
4191