xref: /openbmc/linux/mm/vmalloc.c (revision 12eb4683)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/llist.h>
31 #include <asm/uaccess.h>
32 #include <asm/tlbflush.h>
33 #include <asm/shmparam.h>
34 
35 struct vfree_deferred {
36 	struct llist_head list;
37 	struct work_struct wq;
38 };
39 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
40 
41 static void __vunmap(const void *, int);
42 
43 static void free_work(struct work_struct *w)
44 {
45 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
46 	struct llist_node *llnode = llist_del_all(&p->list);
47 	while (llnode) {
48 		void *p = llnode;
49 		llnode = llist_next(llnode);
50 		__vunmap(p, 1);
51 	}
52 }
53 
54 /*** Page table manipulation functions ***/
55 
56 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
57 {
58 	pte_t *pte;
59 
60 	pte = pte_offset_kernel(pmd, addr);
61 	do {
62 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
63 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
64 	} while (pte++, addr += PAGE_SIZE, addr != end);
65 }
66 
67 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
68 {
69 	pmd_t *pmd;
70 	unsigned long next;
71 
72 	pmd = pmd_offset(pud, addr);
73 	do {
74 		next = pmd_addr_end(addr, end);
75 		if (pmd_none_or_clear_bad(pmd))
76 			continue;
77 		vunmap_pte_range(pmd, addr, next);
78 	} while (pmd++, addr = next, addr != end);
79 }
80 
81 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
82 {
83 	pud_t *pud;
84 	unsigned long next;
85 
86 	pud = pud_offset(pgd, addr);
87 	do {
88 		next = pud_addr_end(addr, end);
89 		if (pud_none_or_clear_bad(pud))
90 			continue;
91 		vunmap_pmd_range(pud, addr, next);
92 	} while (pud++, addr = next, addr != end);
93 }
94 
95 static void vunmap_page_range(unsigned long addr, unsigned long end)
96 {
97 	pgd_t *pgd;
98 	unsigned long next;
99 
100 	BUG_ON(addr >= end);
101 	pgd = pgd_offset_k(addr);
102 	do {
103 		next = pgd_addr_end(addr, end);
104 		if (pgd_none_or_clear_bad(pgd))
105 			continue;
106 		vunmap_pud_range(pgd, addr, next);
107 	} while (pgd++, addr = next, addr != end);
108 }
109 
110 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
111 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
112 {
113 	pte_t *pte;
114 
115 	/*
116 	 * nr is a running index into the array which helps higher level
117 	 * callers keep track of where we're up to.
118 	 */
119 
120 	pte = pte_alloc_kernel(pmd, addr);
121 	if (!pte)
122 		return -ENOMEM;
123 	do {
124 		struct page *page = pages[*nr];
125 
126 		if (WARN_ON(!pte_none(*pte)))
127 			return -EBUSY;
128 		if (WARN_ON(!page))
129 			return -ENOMEM;
130 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
131 		(*nr)++;
132 	} while (pte++, addr += PAGE_SIZE, addr != end);
133 	return 0;
134 }
135 
136 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
137 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
138 {
139 	pmd_t *pmd;
140 	unsigned long next;
141 
142 	pmd = pmd_alloc(&init_mm, pud, addr);
143 	if (!pmd)
144 		return -ENOMEM;
145 	do {
146 		next = pmd_addr_end(addr, end);
147 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
148 			return -ENOMEM;
149 	} while (pmd++, addr = next, addr != end);
150 	return 0;
151 }
152 
153 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
154 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
155 {
156 	pud_t *pud;
157 	unsigned long next;
158 
159 	pud = pud_alloc(&init_mm, pgd, addr);
160 	if (!pud)
161 		return -ENOMEM;
162 	do {
163 		next = pud_addr_end(addr, end);
164 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
165 			return -ENOMEM;
166 	} while (pud++, addr = next, addr != end);
167 	return 0;
168 }
169 
170 /*
171  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172  * will have pfns corresponding to the "pages" array.
173  *
174  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
175  */
176 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
177 				   pgprot_t prot, struct page **pages)
178 {
179 	pgd_t *pgd;
180 	unsigned long next;
181 	unsigned long addr = start;
182 	int err = 0;
183 	int nr = 0;
184 
185 	BUG_ON(addr >= end);
186 	pgd = pgd_offset_k(addr);
187 	do {
188 		next = pgd_addr_end(addr, end);
189 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
190 		if (err)
191 			return err;
192 	} while (pgd++, addr = next, addr != end);
193 
194 	return nr;
195 }
196 
197 static int vmap_page_range(unsigned long start, unsigned long end,
198 			   pgprot_t prot, struct page **pages)
199 {
200 	int ret;
201 
202 	ret = vmap_page_range_noflush(start, end, prot, pages);
203 	flush_cache_vmap(start, end);
204 	return ret;
205 }
206 
207 int is_vmalloc_or_module_addr(const void *x)
208 {
209 	/*
210 	 * ARM, x86-64 and sparc64 put modules in a special place,
211 	 * and fall back on vmalloc() if that fails. Others
212 	 * just put it in the vmalloc space.
213 	 */
214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 	unsigned long addr = (unsigned long)x;
216 	if (addr >= MODULES_VADDR && addr < MODULES_END)
217 		return 1;
218 #endif
219 	return is_vmalloc_addr(x);
220 }
221 
222 /*
223  * Walk a vmap address to the struct page it maps.
224  */
225 struct page *vmalloc_to_page(const void *vmalloc_addr)
226 {
227 	unsigned long addr = (unsigned long) vmalloc_addr;
228 	struct page *page = NULL;
229 	pgd_t *pgd = pgd_offset_k(addr);
230 
231 	/*
232 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 	 * architectures that do not vmalloc module space
234 	 */
235 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
236 
237 	if (!pgd_none(*pgd)) {
238 		pud_t *pud = pud_offset(pgd, addr);
239 		if (!pud_none(*pud)) {
240 			pmd_t *pmd = pmd_offset(pud, addr);
241 			if (!pmd_none(*pmd)) {
242 				pte_t *ptep, pte;
243 
244 				ptep = pte_offset_map(pmd, addr);
245 				pte = *ptep;
246 				if (pte_present(pte))
247 					page = pte_page(pte);
248 				pte_unmap(ptep);
249 			}
250 		}
251 	}
252 	return page;
253 }
254 EXPORT_SYMBOL(vmalloc_to_page);
255 
256 /*
257  * Map a vmalloc()-space virtual address to the physical page frame number.
258  */
259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
260 {
261 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
262 }
263 EXPORT_SYMBOL(vmalloc_to_pfn);
264 
265 
266 /*** Global kva allocator ***/
267 
268 #define VM_LAZY_FREE	0x01
269 #define VM_LAZY_FREEING	0x02
270 #define VM_VM_AREA	0x04
271 
272 static DEFINE_SPINLOCK(vmap_area_lock);
273 /* Export for kexec only */
274 LIST_HEAD(vmap_area_list);
275 static struct rb_root vmap_area_root = RB_ROOT;
276 
277 /* The vmap cache globals are protected by vmap_area_lock */
278 static struct rb_node *free_vmap_cache;
279 static unsigned long cached_hole_size;
280 static unsigned long cached_vstart;
281 static unsigned long cached_align;
282 
283 static unsigned long vmap_area_pcpu_hole;
284 
285 static struct vmap_area *__find_vmap_area(unsigned long addr)
286 {
287 	struct rb_node *n = vmap_area_root.rb_node;
288 
289 	while (n) {
290 		struct vmap_area *va;
291 
292 		va = rb_entry(n, struct vmap_area, rb_node);
293 		if (addr < va->va_start)
294 			n = n->rb_left;
295 		else if (addr >= va->va_end)
296 			n = n->rb_right;
297 		else
298 			return va;
299 	}
300 
301 	return NULL;
302 }
303 
304 static void __insert_vmap_area(struct vmap_area *va)
305 {
306 	struct rb_node **p = &vmap_area_root.rb_node;
307 	struct rb_node *parent = NULL;
308 	struct rb_node *tmp;
309 
310 	while (*p) {
311 		struct vmap_area *tmp_va;
312 
313 		parent = *p;
314 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
315 		if (va->va_start < tmp_va->va_end)
316 			p = &(*p)->rb_left;
317 		else if (va->va_end > tmp_va->va_start)
318 			p = &(*p)->rb_right;
319 		else
320 			BUG();
321 	}
322 
323 	rb_link_node(&va->rb_node, parent, p);
324 	rb_insert_color(&va->rb_node, &vmap_area_root);
325 
326 	/* address-sort this list */
327 	tmp = rb_prev(&va->rb_node);
328 	if (tmp) {
329 		struct vmap_area *prev;
330 		prev = rb_entry(tmp, struct vmap_area, rb_node);
331 		list_add_rcu(&va->list, &prev->list);
332 	} else
333 		list_add_rcu(&va->list, &vmap_area_list);
334 }
335 
336 static void purge_vmap_area_lazy(void);
337 
338 /*
339  * Allocate a region of KVA of the specified size and alignment, within the
340  * vstart and vend.
341  */
342 static struct vmap_area *alloc_vmap_area(unsigned long size,
343 				unsigned long align,
344 				unsigned long vstart, unsigned long vend,
345 				int node, gfp_t gfp_mask)
346 {
347 	struct vmap_area *va;
348 	struct rb_node *n;
349 	unsigned long addr;
350 	int purged = 0;
351 	struct vmap_area *first;
352 
353 	BUG_ON(!size);
354 	BUG_ON(size & ~PAGE_MASK);
355 	BUG_ON(!is_power_of_2(align));
356 
357 	va = kmalloc_node(sizeof(struct vmap_area),
358 			gfp_mask & GFP_RECLAIM_MASK, node);
359 	if (unlikely(!va))
360 		return ERR_PTR(-ENOMEM);
361 
362 	/*
363 	 * Only scan the relevant parts containing pointers to other objects
364 	 * to avoid false negatives.
365 	 */
366 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
367 
368 retry:
369 	spin_lock(&vmap_area_lock);
370 	/*
371 	 * Invalidate cache if we have more permissive parameters.
372 	 * cached_hole_size notes the largest hole noticed _below_
373 	 * the vmap_area cached in free_vmap_cache: if size fits
374 	 * into that hole, we want to scan from vstart to reuse
375 	 * the hole instead of allocating above free_vmap_cache.
376 	 * Note that __free_vmap_area may update free_vmap_cache
377 	 * without updating cached_hole_size or cached_align.
378 	 */
379 	if (!free_vmap_cache ||
380 			size < cached_hole_size ||
381 			vstart < cached_vstart ||
382 			align < cached_align) {
383 nocache:
384 		cached_hole_size = 0;
385 		free_vmap_cache = NULL;
386 	}
387 	/* record if we encounter less permissive parameters */
388 	cached_vstart = vstart;
389 	cached_align = align;
390 
391 	/* find starting point for our search */
392 	if (free_vmap_cache) {
393 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
394 		addr = ALIGN(first->va_end, align);
395 		if (addr < vstart)
396 			goto nocache;
397 		if (addr + size < addr)
398 			goto overflow;
399 
400 	} else {
401 		addr = ALIGN(vstart, align);
402 		if (addr + size < addr)
403 			goto overflow;
404 
405 		n = vmap_area_root.rb_node;
406 		first = NULL;
407 
408 		while (n) {
409 			struct vmap_area *tmp;
410 			tmp = rb_entry(n, struct vmap_area, rb_node);
411 			if (tmp->va_end >= addr) {
412 				first = tmp;
413 				if (tmp->va_start <= addr)
414 					break;
415 				n = n->rb_left;
416 			} else
417 				n = n->rb_right;
418 		}
419 
420 		if (!first)
421 			goto found;
422 	}
423 
424 	/* from the starting point, walk areas until a suitable hole is found */
425 	while (addr + size > first->va_start && addr + size <= vend) {
426 		if (addr + cached_hole_size < first->va_start)
427 			cached_hole_size = first->va_start - addr;
428 		addr = ALIGN(first->va_end, align);
429 		if (addr + size < addr)
430 			goto overflow;
431 
432 		if (list_is_last(&first->list, &vmap_area_list))
433 			goto found;
434 
435 		first = list_entry(first->list.next,
436 				struct vmap_area, list);
437 	}
438 
439 found:
440 	if (addr + size > vend)
441 		goto overflow;
442 
443 	va->va_start = addr;
444 	va->va_end = addr + size;
445 	va->flags = 0;
446 	__insert_vmap_area(va);
447 	free_vmap_cache = &va->rb_node;
448 	spin_unlock(&vmap_area_lock);
449 
450 	BUG_ON(va->va_start & (align-1));
451 	BUG_ON(va->va_start < vstart);
452 	BUG_ON(va->va_end > vend);
453 
454 	return va;
455 
456 overflow:
457 	spin_unlock(&vmap_area_lock);
458 	if (!purged) {
459 		purge_vmap_area_lazy();
460 		purged = 1;
461 		goto retry;
462 	}
463 	if (printk_ratelimit())
464 		printk(KERN_WARNING
465 			"vmap allocation for size %lu failed: "
466 			"use vmalloc=<size> to increase size.\n", size);
467 	kfree(va);
468 	return ERR_PTR(-EBUSY);
469 }
470 
471 static void __free_vmap_area(struct vmap_area *va)
472 {
473 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
474 
475 	if (free_vmap_cache) {
476 		if (va->va_end < cached_vstart) {
477 			free_vmap_cache = NULL;
478 		} else {
479 			struct vmap_area *cache;
480 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
481 			if (va->va_start <= cache->va_start) {
482 				free_vmap_cache = rb_prev(&va->rb_node);
483 				/*
484 				 * We don't try to update cached_hole_size or
485 				 * cached_align, but it won't go very wrong.
486 				 */
487 			}
488 		}
489 	}
490 	rb_erase(&va->rb_node, &vmap_area_root);
491 	RB_CLEAR_NODE(&va->rb_node);
492 	list_del_rcu(&va->list);
493 
494 	/*
495 	 * Track the highest possible candidate for pcpu area
496 	 * allocation.  Areas outside of vmalloc area can be returned
497 	 * here too, consider only end addresses which fall inside
498 	 * vmalloc area proper.
499 	 */
500 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
501 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
502 
503 	kfree_rcu(va, rcu_head);
504 }
505 
506 /*
507  * Free a region of KVA allocated by alloc_vmap_area
508  */
509 static void free_vmap_area(struct vmap_area *va)
510 {
511 	spin_lock(&vmap_area_lock);
512 	__free_vmap_area(va);
513 	spin_unlock(&vmap_area_lock);
514 }
515 
516 /*
517  * Clear the pagetable entries of a given vmap_area
518  */
519 static void unmap_vmap_area(struct vmap_area *va)
520 {
521 	vunmap_page_range(va->va_start, va->va_end);
522 }
523 
524 static void vmap_debug_free_range(unsigned long start, unsigned long end)
525 {
526 	/*
527 	 * Unmap page tables and force a TLB flush immediately if
528 	 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
529 	 * bugs similarly to those in linear kernel virtual address
530 	 * space after a page has been freed.
531 	 *
532 	 * All the lazy freeing logic is still retained, in order to
533 	 * minimise intrusiveness of this debugging feature.
534 	 *
535 	 * This is going to be *slow* (linear kernel virtual address
536 	 * debugging doesn't do a broadcast TLB flush so it is a lot
537 	 * faster).
538 	 */
539 #ifdef CONFIG_DEBUG_PAGEALLOC
540 	vunmap_page_range(start, end);
541 	flush_tlb_kernel_range(start, end);
542 #endif
543 }
544 
545 /*
546  * lazy_max_pages is the maximum amount of virtual address space we gather up
547  * before attempting to purge with a TLB flush.
548  *
549  * There is a tradeoff here: a larger number will cover more kernel page tables
550  * and take slightly longer to purge, but it will linearly reduce the number of
551  * global TLB flushes that must be performed. It would seem natural to scale
552  * this number up linearly with the number of CPUs (because vmapping activity
553  * could also scale linearly with the number of CPUs), however it is likely
554  * that in practice, workloads might be constrained in other ways that mean
555  * vmap activity will not scale linearly with CPUs. Also, I want to be
556  * conservative and not introduce a big latency on huge systems, so go with
557  * a less aggressive log scale. It will still be an improvement over the old
558  * code, and it will be simple to change the scale factor if we find that it
559  * becomes a problem on bigger systems.
560  */
561 static unsigned long lazy_max_pages(void)
562 {
563 	unsigned int log;
564 
565 	log = fls(num_online_cpus());
566 
567 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
568 }
569 
570 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
571 
572 /* for per-CPU blocks */
573 static void purge_fragmented_blocks_allcpus(void);
574 
575 /*
576  * called before a call to iounmap() if the caller wants vm_area_struct's
577  * immediately freed.
578  */
579 void set_iounmap_nonlazy(void)
580 {
581 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
582 }
583 
584 /*
585  * Purges all lazily-freed vmap areas.
586  *
587  * If sync is 0 then don't purge if there is already a purge in progress.
588  * If force_flush is 1, then flush kernel TLBs between *start and *end even
589  * if we found no lazy vmap areas to unmap (callers can use this to optimise
590  * their own TLB flushing).
591  * Returns with *start = min(*start, lowest purged address)
592  *              *end = max(*end, highest purged address)
593  */
594 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
595 					int sync, int force_flush)
596 {
597 	static DEFINE_SPINLOCK(purge_lock);
598 	LIST_HEAD(valist);
599 	struct vmap_area *va;
600 	struct vmap_area *n_va;
601 	int nr = 0;
602 
603 	/*
604 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
605 	 * should not expect such behaviour. This just simplifies locking for
606 	 * the case that isn't actually used at the moment anyway.
607 	 */
608 	if (!sync && !force_flush) {
609 		if (!spin_trylock(&purge_lock))
610 			return;
611 	} else
612 		spin_lock(&purge_lock);
613 
614 	if (sync)
615 		purge_fragmented_blocks_allcpus();
616 
617 	rcu_read_lock();
618 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
619 		if (va->flags & VM_LAZY_FREE) {
620 			if (va->va_start < *start)
621 				*start = va->va_start;
622 			if (va->va_end > *end)
623 				*end = va->va_end;
624 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
625 			list_add_tail(&va->purge_list, &valist);
626 			va->flags |= VM_LAZY_FREEING;
627 			va->flags &= ~VM_LAZY_FREE;
628 		}
629 	}
630 	rcu_read_unlock();
631 
632 	if (nr)
633 		atomic_sub(nr, &vmap_lazy_nr);
634 
635 	if (nr || force_flush)
636 		flush_tlb_kernel_range(*start, *end);
637 
638 	if (nr) {
639 		spin_lock(&vmap_area_lock);
640 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
641 			__free_vmap_area(va);
642 		spin_unlock(&vmap_area_lock);
643 	}
644 	spin_unlock(&purge_lock);
645 }
646 
647 /*
648  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
649  * is already purging.
650  */
651 static void try_purge_vmap_area_lazy(void)
652 {
653 	unsigned long start = ULONG_MAX, end = 0;
654 
655 	__purge_vmap_area_lazy(&start, &end, 0, 0);
656 }
657 
658 /*
659  * Kick off a purge of the outstanding lazy areas.
660  */
661 static void purge_vmap_area_lazy(void)
662 {
663 	unsigned long start = ULONG_MAX, end = 0;
664 
665 	__purge_vmap_area_lazy(&start, &end, 1, 0);
666 }
667 
668 /*
669  * Free a vmap area, caller ensuring that the area has been unmapped
670  * and flush_cache_vunmap had been called for the correct range
671  * previously.
672  */
673 static void free_vmap_area_noflush(struct vmap_area *va)
674 {
675 	va->flags |= VM_LAZY_FREE;
676 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
677 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
678 		try_purge_vmap_area_lazy();
679 }
680 
681 /*
682  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
683  * called for the correct range previously.
684  */
685 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
686 {
687 	unmap_vmap_area(va);
688 	free_vmap_area_noflush(va);
689 }
690 
691 /*
692  * Free and unmap a vmap area
693  */
694 static void free_unmap_vmap_area(struct vmap_area *va)
695 {
696 	flush_cache_vunmap(va->va_start, va->va_end);
697 	free_unmap_vmap_area_noflush(va);
698 }
699 
700 static struct vmap_area *find_vmap_area(unsigned long addr)
701 {
702 	struct vmap_area *va;
703 
704 	spin_lock(&vmap_area_lock);
705 	va = __find_vmap_area(addr);
706 	spin_unlock(&vmap_area_lock);
707 
708 	return va;
709 }
710 
711 static void free_unmap_vmap_area_addr(unsigned long addr)
712 {
713 	struct vmap_area *va;
714 
715 	va = find_vmap_area(addr);
716 	BUG_ON(!va);
717 	free_unmap_vmap_area(va);
718 }
719 
720 
721 /*** Per cpu kva allocator ***/
722 
723 /*
724  * vmap space is limited especially on 32 bit architectures. Ensure there is
725  * room for at least 16 percpu vmap blocks per CPU.
726  */
727 /*
728  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
729  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
730  * instead (we just need a rough idea)
731  */
732 #if BITS_PER_LONG == 32
733 #define VMALLOC_SPACE		(128UL*1024*1024)
734 #else
735 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
736 #endif
737 
738 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
739 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
740 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
741 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
742 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
743 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
744 #define VMAP_BBMAP_BITS		\
745 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
746 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
747 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
748 
749 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
750 
751 static bool vmap_initialized __read_mostly = false;
752 
753 struct vmap_block_queue {
754 	spinlock_t lock;
755 	struct list_head free;
756 };
757 
758 struct vmap_block {
759 	spinlock_t lock;
760 	struct vmap_area *va;
761 	unsigned long free, dirty;
762 	DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
763 	struct list_head free_list;
764 	struct rcu_head rcu_head;
765 	struct list_head purge;
766 };
767 
768 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
769 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
770 
771 /*
772  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
773  * in the free path. Could get rid of this if we change the API to return a
774  * "cookie" from alloc, to be passed to free. But no big deal yet.
775  */
776 static DEFINE_SPINLOCK(vmap_block_tree_lock);
777 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
778 
779 /*
780  * We should probably have a fallback mechanism to allocate virtual memory
781  * out of partially filled vmap blocks. However vmap block sizing should be
782  * fairly reasonable according to the vmalloc size, so it shouldn't be a
783  * big problem.
784  */
785 
786 static unsigned long addr_to_vb_idx(unsigned long addr)
787 {
788 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
789 	addr /= VMAP_BLOCK_SIZE;
790 	return addr;
791 }
792 
793 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
794 {
795 	struct vmap_block_queue *vbq;
796 	struct vmap_block *vb;
797 	struct vmap_area *va;
798 	unsigned long vb_idx;
799 	int node, err;
800 
801 	node = numa_node_id();
802 
803 	vb = kmalloc_node(sizeof(struct vmap_block),
804 			gfp_mask & GFP_RECLAIM_MASK, node);
805 	if (unlikely(!vb))
806 		return ERR_PTR(-ENOMEM);
807 
808 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
809 					VMALLOC_START, VMALLOC_END,
810 					node, gfp_mask);
811 	if (IS_ERR(va)) {
812 		kfree(vb);
813 		return ERR_CAST(va);
814 	}
815 
816 	err = radix_tree_preload(gfp_mask);
817 	if (unlikely(err)) {
818 		kfree(vb);
819 		free_vmap_area(va);
820 		return ERR_PTR(err);
821 	}
822 
823 	spin_lock_init(&vb->lock);
824 	vb->va = va;
825 	vb->free = VMAP_BBMAP_BITS;
826 	vb->dirty = 0;
827 	bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
828 	INIT_LIST_HEAD(&vb->free_list);
829 
830 	vb_idx = addr_to_vb_idx(va->va_start);
831 	spin_lock(&vmap_block_tree_lock);
832 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
833 	spin_unlock(&vmap_block_tree_lock);
834 	BUG_ON(err);
835 	radix_tree_preload_end();
836 
837 	vbq = &get_cpu_var(vmap_block_queue);
838 	spin_lock(&vbq->lock);
839 	list_add_rcu(&vb->free_list, &vbq->free);
840 	spin_unlock(&vbq->lock);
841 	put_cpu_var(vmap_block_queue);
842 
843 	return vb;
844 }
845 
846 static void free_vmap_block(struct vmap_block *vb)
847 {
848 	struct vmap_block *tmp;
849 	unsigned long vb_idx;
850 
851 	vb_idx = addr_to_vb_idx(vb->va->va_start);
852 	spin_lock(&vmap_block_tree_lock);
853 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
854 	spin_unlock(&vmap_block_tree_lock);
855 	BUG_ON(tmp != vb);
856 
857 	free_vmap_area_noflush(vb->va);
858 	kfree_rcu(vb, rcu_head);
859 }
860 
861 static void purge_fragmented_blocks(int cpu)
862 {
863 	LIST_HEAD(purge);
864 	struct vmap_block *vb;
865 	struct vmap_block *n_vb;
866 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
867 
868 	rcu_read_lock();
869 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
870 
871 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
872 			continue;
873 
874 		spin_lock(&vb->lock);
875 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
876 			vb->free = 0; /* prevent further allocs after releasing lock */
877 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
878 			bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
879 			spin_lock(&vbq->lock);
880 			list_del_rcu(&vb->free_list);
881 			spin_unlock(&vbq->lock);
882 			spin_unlock(&vb->lock);
883 			list_add_tail(&vb->purge, &purge);
884 		} else
885 			spin_unlock(&vb->lock);
886 	}
887 	rcu_read_unlock();
888 
889 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
890 		list_del(&vb->purge);
891 		free_vmap_block(vb);
892 	}
893 }
894 
895 static void purge_fragmented_blocks_allcpus(void)
896 {
897 	int cpu;
898 
899 	for_each_possible_cpu(cpu)
900 		purge_fragmented_blocks(cpu);
901 }
902 
903 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
904 {
905 	struct vmap_block_queue *vbq;
906 	struct vmap_block *vb;
907 	unsigned long addr = 0;
908 	unsigned int order;
909 
910 	BUG_ON(size & ~PAGE_MASK);
911 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
912 	if (WARN_ON(size == 0)) {
913 		/*
914 		 * Allocating 0 bytes isn't what caller wants since
915 		 * get_order(0) returns funny result. Just warn and terminate
916 		 * early.
917 		 */
918 		return NULL;
919 	}
920 	order = get_order(size);
921 
922 again:
923 	rcu_read_lock();
924 	vbq = &get_cpu_var(vmap_block_queue);
925 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
926 		int i;
927 
928 		spin_lock(&vb->lock);
929 		if (vb->free < 1UL << order)
930 			goto next;
931 
932 		i = VMAP_BBMAP_BITS - vb->free;
933 		addr = vb->va->va_start + (i << PAGE_SHIFT);
934 		BUG_ON(addr_to_vb_idx(addr) !=
935 				addr_to_vb_idx(vb->va->va_start));
936 		vb->free -= 1UL << order;
937 		if (vb->free == 0) {
938 			spin_lock(&vbq->lock);
939 			list_del_rcu(&vb->free_list);
940 			spin_unlock(&vbq->lock);
941 		}
942 		spin_unlock(&vb->lock);
943 		break;
944 next:
945 		spin_unlock(&vb->lock);
946 	}
947 
948 	put_cpu_var(vmap_block_queue);
949 	rcu_read_unlock();
950 
951 	if (!addr) {
952 		vb = new_vmap_block(gfp_mask);
953 		if (IS_ERR(vb))
954 			return vb;
955 		goto again;
956 	}
957 
958 	return (void *)addr;
959 }
960 
961 static void vb_free(const void *addr, unsigned long size)
962 {
963 	unsigned long offset;
964 	unsigned long vb_idx;
965 	unsigned int order;
966 	struct vmap_block *vb;
967 
968 	BUG_ON(size & ~PAGE_MASK);
969 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
970 
971 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
972 
973 	order = get_order(size);
974 
975 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
976 
977 	vb_idx = addr_to_vb_idx((unsigned long)addr);
978 	rcu_read_lock();
979 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
980 	rcu_read_unlock();
981 	BUG_ON(!vb);
982 
983 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
984 
985 	spin_lock(&vb->lock);
986 	BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
987 
988 	vb->dirty += 1UL << order;
989 	if (vb->dirty == VMAP_BBMAP_BITS) {
990 		BUG_ON(vb->free);
991 		spin_unlock(&vb->lock);
992 		free_vmap_block(vb);
993 	} else
994 		spin_unlock(&vb->lock);
995 }
996 
997 /**
998  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
999  *
1000  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1001  * to amortize TLB flushing overheads. What this means is that any page you
1002  * have now, may, in a former life, have been mapped into kernel virtual
1003  * address by the vmap layer and so there might be some CPUs with TLB entries
1004  * still referencing that page (additional to the regular 1:1 kernel mapping).
1005  *
1006  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1007  * be sure that none of the pages we have control over will have any aliases
1008  * from the vmap layer.
1009  */
1010 void vm_unmap_aliases(void)
1011 {
1012 	unsigned long start = ULONG_MAX, end = 0;
1013 	int cpu;
1014 	int flush = 0;
1015 
1016 	if (unlikely(!vmap_initialized))
1017 		return;
1018 
1019 	for_each_possible_cpu(cpu) {
1020 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1021 		struct vmap_block *vb;
1022 
1023 		rcu_read_lock();
1024 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1025 			int i, j;
1026 
1027 			spin_lock(&vb->lock);
1028 			i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1029 			if (i < VMAP_BBMAP_BITS) {
1030 				unsigned long s, e;
1031 
1032 				j = find_last_bit(vb->dirty_map,
1033 							VMAP_BBMAP_BITS);
1034 				j = j + 1; /* need exclusive index */
1035 
1036 				s = vb->va->va_start + (i << PAGE_SHIFT);
1037 				e = vb->va->va_start + (j << PAGE_SHIFT);
1038 				flush = 1;
1039 
1040 				if (s < start)
1041 					start = s;
1042 				if (e > end)
1043 					end = e;
1044 			}
1045 			spin_unlock(&vb->lock);
1046 		}
1047 		rcu_read_unlock();
1048 	}
1049 
1050 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1051 }
1052 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1053 
1054 /**
1055  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1056  * @mem: the pointer returned by vm_map_ram
1057  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1058  */
1059 void vm_unmap_ram(const void *mem, unsigned int count)
1060 {
1061 	unsigned long size = count << PAGE_SHIFT;
1062 	unsigned long addr = (unsigned long)mem;
1063 
1064 	BUG_ON(!addr);
1065 	BUG_ON(addr < VMALLOC_START);
1066 	BUG_ON(addr > VMALLOC_END);
1067 	BUG_ON(addr & (PAGE_SIZE-1));
1068 
1069 	debug_check_no_locks_freed(mem, size);
1070 	vmap_debug_free_range(addr, addr+size);
1071 
1072 	if (likely(count <= VMAP_MAX_ALLOC))
1073 		vb_free(mem, size);
1074 	else
1075 		free_unmap_vmap_area_addr(addr);
1076 }
1077 EXPORT_SYMBOL(vm_unmap_ram);
1078 
1079 /**
1080  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1081  * @pages: an array of pointers to the pages to be mapped
1082  * @count: number of pages
1083  * @node: prefer to allocate data structures on this node
1084  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1085  *
1086  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1087  */
1088 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1089 {
1090 	unsigned long size = count << PAGE_SHIFT;
1091 	unsigned long addr;
1092 	void *mem;
1093 
1094 	if (likely(count <= VMAP_MAX_ALLOC)) {
1095 		mem = vb_alloc(size, GFP_KERNEL);
1096 		if (IS_ERR(mem))
1097 			return NULL;
1098 		addr = (unsigned long)mem;
1099 	} else {
1100 		struct vmap_area *va;
1101 		va = alloc_vmap_area(size, PAGE_SIZE,
1102 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1103 		if (IS_ERR(va))
1104 			return NULL;
1105 
1106 		addr = va->va_start;
1107 		mem = (void *)addr;
1108 	}
1109 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1110 		vm_unmap_ram(mem, count);
1111 		return NULL;
1112 	}
1113 	return mem;
1114 }
1115 EXPORT_SYMBOL(vm_map_ram);
1116 
1117 static struct vm_struct *vmlist __initdata;
1118 /**
1119  * vm_area_add_early - add vmap area early during boot
1120  * @vm: vm_struct to add
1121  *
1122  * This function is used to add fixed kernel vm area to vmlist before
1123  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1124  * should contain proper values and the other fields should be zero.
1125  *
1126  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1127  */
1128 void __init vm_area_add_early(struct vm_struct *vm)
1129 {
1130 	struct vm_struct *tmp, **p;
1131 
1132 	BUG_ON(vmap_initialized);
1133 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1134 		if (tmp->addr >= vm->addr) {
1135 			BUG_ON(tmp->addr < vm->addr + vm->size);
1136 			break;
1137 		} else
1138 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1139 	}
1140 	vm->next = *p;
1141 	*p = vm;
1142 }
1143 
1144 /**
1145  * vm_area_register_early - register vmap area early during boot
1146  * @vm: vm_struct to register
1147  * @align: requested alignment
1148  *
1149  * This function is used to register kernel vm area before
1150  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1151  * proper values on entry and other fields should be zero.  On return,
1152  * vm->addr contains the allocated address.
1153  *
1154  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1155  */
1156 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1157 {
1158 	static size_t vm_init_off __initdata;
1159 	unsigned long addr;
1160 
1161 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1162 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1163 
1164 	vm->addr = (void *)addr;
1165 
1166 	vm_area_add_early(vm);
1167 }
1168 
1169 void __init vmalloc_init(void)
1170 {
1171 	struct vmap_area *va;
1172 	struct vm_struct *tmp;
1173 	int i;
1174 
1175 	for_each_possible_cpu(i) {
1176 		struct vmap_block_queue *vbq;
1177 		struct vfree_deferred *p;
1178 
1179 		vbq = &per_cpu(vmap_block_queue, i);
1180 		spin_lock_init(&vbq->lock);
1181 		INIT_LIST_HEAD(&vbq->free);
1182 		p = &per_cpu(vfree_deferred, i);
1183 		init_llist_head(&p->list);
1184 		INIT_WORK(&p->wq, free_work);
1185 	}
1186 
1187 	/* Import existing vmlist entries. */
1188 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1189 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1190 		va->flags = VM_VM_AREA;
1191 		va->va_start = (unsigned long)tmp->addr;
1192 		va->va_end = va->va_start + tmp->size;
1193 		va->vm = tmp;
1194 		__insert_vmap_area(va);
1195 	}
1196 
1197 	vmap_area_pcpu_hole = VMALLOC_END;
1198 
1199 	vmap_initialized = true;
1200 }
1201 
1202 /**
1203  * map_kernel_range_noflush - map kernel VM area with the specified pages
1204  * @addr: start of the VM area to map
1205  * @size: size of the VM area to map
1206  * @prot: page protection flags to use
1207  * @pages: pages to map
1208  *
1209  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1210  * specify should have been allocated using get_vm_area() and its
1211  * friends.
1212  *
1213  * NOTE:
1214  * This function does NOT do any cache flushing.  The caller is
1215  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1216  * before calling this function.
1217  *
1218  * RETURNS:
1219  * The number of pages mapped on success, -errno on failure.
1220  */
1221 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1222 			     pgprot_t prot, struct page **pages)
1223 {
1224 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1225 }
1226 
1227 /**
1228  * unmap_kernel_range_noflush - unmap kernel VM area
1229  * @addr: start of the VM area to unmap
1230  * @size: size of the VM area to unmap
1231  *
1232  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1233  * specify should have been allocated using get_vm_area() and its
1234  * friends.
1235  *
1236  * NOTE:
1237  * This function does NOT do any cache flushing.  The caller is
1238  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1239  * before calling this function and flush_tlb_kernel_range() after.
1240  */
1241 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1242 {
1243 	vunmap_page_range(addr, addr + size);
1244 }
1245 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1246 
1247 /**
1248  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1249  * @addr: start of the VM area to unmap
1250  * @size: size of the VM area to unmap
1251  *
1252  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1253  * the unmapping and tlb after.
1254  */
1255 void unmap_kernel_range(unsigned long addr, unsigned long size)
1256 {
1257 	unsigned long end = addr + size;
1258 
1259 	flush_cache_vunmap(addr, end);
1260 	vunmap_page_range(addr, end);
1261 	flush_tlb_kernel_range(addr, end);
1262 }
1263 
1264 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1265 {
1266 	unsigned long addr = (unsigned long)area->addr;
1267 	unsigned long end = addr + get_vm_area_size(area);
1268 	int err;
1269 
1270 	err = vmap_page_range(addr, end, prot, *pages);
1271 	if (err > 0) {
1272 		*pages += err;
1273 		err = 0;
1274 	}
1275 
1276 	return err;
1277 }
1278 EXPORT_SYMBOL_GPL(map_vm_area);
1279 
1280 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1281 			      unsigned long flags, const void *caller)
1282 {
1283 	spin_lock(&vmap_area_lock);
1284 	vm->flags = flags;
1285 	vm->addr = (void *)va->va_start;
1286 	vm->size = va->va_end - va->va_start;
1287 	vm->caller = caller;
1288 	va->vm = vm;
1289 	va->flags |= VM_VM_AREA;
1290 	spin_unlock(&vmap_area_lock);
1291 }
1292 
1293 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1294 {
1295 	/*
1296 	 * Before removing VM_UNINITIALIZED,
1297 	 * we should make sure that vm has proper values.
1298 	 * Pair with smp_rmb() in show_numa_info().
1299 	 */
1300 	smp_wmb();
1301 	vm->flags &= ~VM_UNINITIALIZED;
1302 }
1303 
1304 static struct vm_struct *__get_vm_area_node(unsigned long size,
1305 		unsigned long align, unsigned long flags, unsigned long start,
1306 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1307 {
1308 	struct vmap_area *va;
1309 	struct vm_struct *area;
1310 
1311 	BUG_ON(in_interrupt());
1312 	if (flags & VM_IOREMAP)
1313 		align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1314 
1315 	size = PAGE_ALIGN(size);
1316 	if (unlikely(!size))
1317 		return NULL;
1318 
1319 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1320 	if (unlikely(!area))
1321 		return NULL;
1322 
1323 	/*
1324 	 * We always allocate a guard page.
1325 	 */
1326 	size += PAGE_SIZE;
1327 
1328 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1329 	if (IS_ERR(va)) {
1330 		kfree(area);
1331 		return NULL;
1332 	}
1333 
1334 	setup_vmalloc_vm(area, va, flags, caller);
1335 
1336 	return area;
1337 }
1338 
1339 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1340 				unsigned long start, unsigned long end)
1341 {
1342 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1343 				  GFP_KERNEL, __builtin_return_address(0));
1344 }
1345 EXPORT_SYMBOL_GPL(__get_vm_area);
1346 
1347 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1348 				       unsigned long start, unsigned long end,
1349 				       const void *caller)
1350 {
1351 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1352 				  GFP_KERNEL, caller);
1353 }
1354 
1355 /**
1356  *	get_vm_area  -  reserve a contiguous kernel virtual area
1357  *	@size:		size of the area
1358  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1359  *
1360  *	Search an area of @size in the kernel virtual mapping area,
1361  *	and reserved it for out purposes.  Returns the area descriptor
1362  *	on success or %NULL on failure.
1363  */
1364 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1365 {
1366 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1367 				  NUMA_NO_NODE, GFP_KERNEL,
1368 				  __builtin_return_address(0));
1369 }
1370 
1371 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1372 				const void *caller)
1373 {
1374 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1375 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1376 }
1377 
1378 /**
1379  *	find_vm_area  -  find a continuous kernel virtual area
1380  *	@addr:		base address
1381  *
1382  *	Search for the kernel VM area starting at @addr, and return it.
1383  *	It is up to the caller to do all required locking to keep the returned
1384  *	pointer valid.
1385  */
1386 struct vm_struct *find_vm_area(const void *addr)
1387 {
1388 	struct vmap_area *va;
1389 
1390 	va = find_vmap_area((unsigned long)addr);
1391 	if (va && va->flags & VM_VM_AREA)
1392 		return va->vm;
1393 
1394 	return NULL;
1395 }
1396 
1397 /**
1398  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1399  *	@addr:		base address
1400  *
1401  *	Search for the kernel VM area starting at @addr, and remove it.
1402  *	This function returns the found VM area, but using it is NOT safe
1403  *	on SMP machines, except for its size or flags.
1404  */
1405 struct vm_struct *remove_vm_area(const void *addr)
1406 {
1407 	struct vmap_area *va;
1408 
1409 	va = find_vmap_area((unsigned long)addr);
1410 	if (va && va->flags & VM_VM_AREA) {
1411 		struct vm_struct *vm = va->vm;
1412 
1413 		spin_lock(&vmap_area_lock);
1414 		va->vm = NULL;
1415 		va->flags &= ~VM_VM_AREA;
1416 		spin_unlock(&vmap_area_lock);
1417 
1418 		vmap_debug_free_range(va->va_start, va->va_end);
1419 		free_unmap_vmap_area(va);
1420 		vm->size -= PAGE_SIZE;
1421 
1422 		return vm;
1423 	}
1424 	return NULL;
1425 }
1426 
1427 static void __vunmap(const void *addr, int deallocate_pages)
1428 {
1429 	struct vm_struct *area;
1430 
1431 	if (!addr)
1432 		return;
1433 
1434 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1435 			addr))
1436 		return;
1437 
1438 	area = remove_vm_area(addr);
1439 	if (unlikely(!area)) {
1440 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1441 				addr);
1442 		return;
1443 	}
1444 
1445 	debug_check_no_locks_freed(addr, area->size);
1446 	debug_check_no_obj_freed(addr, area->size);
1447 
1448 	if (deallocate_pages) {
1449 		int i;
1450 
1451 		for (i = 0; i < area->nr_pages; i++) {
1452 			struct page *page = area->pages[i];
1453 
1454 			BUG_ON(!page);
1455 			__free_page(page);
1456 		}
1457 
1458 		if (area->flags & VM_VPAGES)
1459 			vfree(area->pages);
1460 		else
1461 			kfree(area->pages);
1462 	}
1463 
1464 	kfree(area);
1465 	return;
1466 }
1467 
1468 /**
1469  *	vfree  -  release memory allocated by vmalloc()
1470  *	@addr:		memory base address
1471  *
1472  *	Free the virtually continuous memory area starting at @addr, as
1473  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1474  *	NULL, no operation is performed.
1475  *
1476  *	Must not be called in NMI context (strictly speaking, only if we don't
1477  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1478  *	conventions for vfree() arch-depenedent would be a really bad idea)
1479  *
1480  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1481  */
1482 void vfree(const void *addr)
1483 {
1484 	BUG_ON(in_nmi());
1485 
1486 	kmemleak_free(addr);
1487 
1488 	if (!addr)
1489 		return;
1490 	if (unlikely(in_interrupt())) {
1491 		struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1492 		if (llist_add((struct llist_node *)addr, &p->list))
1493 			schedule_work(&p->wq);
1494 	} else
1495 		__vunmap(addr, 1);
1496 }
1497 EXPORT_SYMBOL(vfree);
1498 
1499 /**
1500  *	vunmap  -  release virtual mapping obtained by vmap()
1501  *	@addr:		memory base address
1502  *
1503  *	Free the virtually contiguous memory area starting at @addr,
1504  *	which was created from the page array passed to vmap().
1505  *
1506  *	Must not be called in interrupt context.
1507  */
1508 void vunmap(const void *addr)
1509 {
1510 	BUG_ON(in_interrupt());
1511 	might_sleep();
1512 	if (addr)
1513 		__vunmap(addr, 0);
1514 }
1515 EXPORT_SYMBOL(vunmap);
1516 
1517 /**
1518  *	vmap  -  map an array of pages into virtually contiguous space
1519  *	@pages:		array of page pointers
1520  *	@count:		number of pages to map
1521  *	@flags:		vm_area->flags
1522  *	@prot:		page protection for the mapping
1523  *
1524  *	Maps @count pages from @pages into contiguous kernel virtual
1525  *	space.
1526  */
1527 void *vmap(struct page **pages, unsigned int count,
1528 		unsigned long flags, pgprot_t prot)
1529 {
1530 	struct vm_struct *area;
1531 
1532 	might_sleep();
1533 
1534 	if (count > totalram_pages)
1535 		return NULL;
1536 
1537 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1538 					__builtin_return_address(0));
1539 	if (!area)
1540 		return NULL;
1541 
1542 	if (map_vm_area(area, prot, &pages)) {
1543 		vunmap(area->addr);
1544 		return NULL;
1545 	}
1546 
1547 	return area->addr;
1548 }
1549 EXPORT_SYMBOL(vmap);
1550 
1551 static void *__vmalloc_node(unsigned long size, unsigned long align,
1552 			    gfp_t gfp_mask, pgprot_t prot,
1553 			    int node, const void *caller);
1554 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1555 				 pgprot_t prot, int node)
1556 {
1557 	const int order = 0;
1558 	struct page **pages;
1559 	unsigned int nr_pages, array_size, i;
1560 	gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1561 
1562 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1563 	array_size = (nr_pages * sizeof(struct page *));
1564 
1565 	area->nr_pages = nr_pages;
1566 	/* Please note that the recursion is strictly bounded. */
1567 	if (array_size > PAGE_SIZE) {
1568 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1569 				PAGE_KERNEL, node, area->caller);
1570 		area->flags |= VM_VPAGES;
1571 	} else {
1572 		pages = kmalloc_node(array_size, nested_gfp, node);
1573 	}
1574 	area->pages = pages;
1575 	if (!area->pages) {
1576 		remove_vm_area(area->addr);
1577 		kfree(area);
1578 		return NULL;
1579 	}
1580 
1581 	for (i = 0; i < area->nr_pages; i++) {
1582 		struct page *page;
1583 		gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1584 
1585 		if (node == NUMA_NO_NODE)
1586 			page = alloc_page(tmp_mask);
1587 		else
1588 			page = alloc_pages_node(node, tmp_mask, order);
1589 
1590 		if (unlikely(!page)) {
1591 			/* Successfully allocated i pages, free them in __vunmap() */
1592 			area->nr_pages = i;
1593 			goto fail;
1594 		}
1595 		area->pages[i] = page;
1596 	}
1597 
1598 	if (map_vm_area(area, prot, &pages))
1599 		goto fail;
1600 	return area->addr;
1601 
1602 fail:
1603 	warn_alloc_failed(gfp_mask, order,
1604 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1605 			  (area->nr_pages*PAGE_SIZE), area->size);
1606 	vfree(area->addr);
1607 	return NULL;
1608 }
1609 
1610 /**
1611  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1612  *	@size:		allocation size
1613  *	@align:		desired alignment
1614  *	@start:		vm area range start
1615  *	@end:		vm area range end
1616  *	@gfp_mask:	flags for the page level allocator
1617  *	@prot:		protection mask for the allocated pages
1618  *	@node:		node to use for allocation or NUMA_NO_NODE
1619  *	@caller:	caller's return address
1620  *
1621  *	Allocate enough pages to cover @size from the page level
1622  *	allocator with @gfp_mask flags.  Map them into contiguous
1623  *	kernel virtual space, using a pagetable protection of @prot.
1624  */
1625 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1626 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1627 			pgprot_t prot, int node, const void *caller)
1628 {
1629 	struct vm_struct *area;
1630 	void *addr;
1631 	unsigned long real_size = size;
1632 
1633 	size = PAGE_ALIGN(size);
1634 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1635 		goto fail;
1636 
1637 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
1638 				  start, end, node, gfp_mask, caller);
1639 	if (!area)
1640 		goto fail;
1641 
1642 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1643 	if (!addr)
1644 		return NULL;
1645 
1646 	/*
1647 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1648 	 * flag. It means that vm_struct is not fully initialized.
1649 	 * Now, it is fully initialized, so remove this flag here.
1650 	 */
1651 	clear_vm_uninitialized_flag(area);
1652 
1653 	/*
1654 	 * A ref_count = 2 is needed because vm_struct allocated in
1655 	 * __get_vm_area_node() contains a reference to the virtual address of
1656 	 * the vmalloc'ed block.
1657 	 */
1658 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1659 
1660 	return addr;
1661 
1662 fail:
1663 	warn_alloc_failed(gfp_mask, 0,
1664 			  "vmalloc: allocation failure: %lu bytes\n",
1665 			  real_size);
1666 	return NULL;
1667 }
1668 
1669 /**
1670  *	__vmalloc_node  -  allocate virtually contiguous memory
1671  *	@size:		allocation size
1672  *	@align:		desired alignment
1673  *	@gfp_mask:	flags for the page level allocator
1674  *	@prot:		protection mask for the allocated pages
1675  *	@node:		node to use for allocation or NUMA_NO_NODE
1676  *	@caller:	caller's return address
1677  *
1678  *	Allocate enough pages to cover @size from the page level
1679  *	allocator with @gfp_mask flags.  Map them into contiguous
1680  *	kernel virtual space, using a pagetable protection of @prot.
1681  */
1682 static void *__vmalloc_node(unsigned long size, unsigned long align,
1683 			    gfp_t gfp_mask, pgprot_t prot,
1684 			    int node, const void *caller)
1685 {
1686 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1687 				gfp_mask, prot, node, caller);
1688 }
1689 
1690 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1691 {
1692 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1693 				__builtin_return_address(0));
1694 }
1695 EXPORT_SYMBOL(__vmalloc);
1696 
1697 static inline void *__vmalloc_node_flags(unsigned long size,
1698 					int node, gfp_t flags)
1699 {
1700 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1701 					node, __builtin_return_address(0));
1702 }
1703 
1704 /**
1705  *	vmalloc  -  allocate virtually contiguous memory
1706  *	@size:		allocation size
1707  *	Allocate enough pages to cover @size from the page level
1708  *	allocator and map them into contiguous kernel virtual space.
1709  *
1710  *	For tight control over page level allocator and protection flags
1711  *	use __vmalloc() instead.
1712  */
1713 void *vmalloc(unsigned long size)
1714 {
1715 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1716 				    GFP_KERNEL | __GFP_HIGHMEM);
1717 }
1718 EXPORT_SYMBOL(vmalloc);
1719 
1720 /**
1721  *	vzalloc - allocate virtually contiguous memory with zero fill
1722  *	@size:	allocation size
1723  *	Allocate enough pages to cover @size from the page level
1724  *	allocator and map them into contiguous kernel virtual space.
1725  *	The memory allocated is set to zero.
1726  *
1727  *	For tight control over page level allocator and protection flags
1728  *	use __vmalloc() instead.
1729  */
1730 void *vzalloc(unsigned long size)
1731 {
1732 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1733 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1734 }
1735 EXPORT_SYMBOL(vzalloc);
1736 
1737 /**
1738  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1739  * @size: allocation size
1740  *
1741  * The resulting memory area is zeroed so it can be mapped to userspace
1742  * without leaking data.
1743  */
1744 void *vmalloc_user(unsigned long size)
1745 {
1746 	struct vm_struct *area;
1747 	void *ret;
1748 
1749 	ret = __vmalloc_node(size, SHMLBA,
1750 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1751 			     PAGE_KERNEL, NUMA_NO_NODE,
1752 			     __builtin_return_address(0));
1753 	if (ret) {
1754 		area = find_vm_area(ret);
1755 		area->flags |= VM_USERMAP;
1756 	}
1757 	return ret;
1758 }
1759 EXPORT_SYMBOL(vmalloc_user);
1760 
1761 /**
1762  *	vmalloc_node  -  allocate memory on a specific node
1763  *	@size:		allocation size
1764  *	@node:		numa node
1765  *
1766  *	Allocate enough pages to cover @size from the page level
1767  *	allocator and map them into contiguous kernel virtual space.
1768  *
1769  *	For tight control over page level allocator and protection flags
1770  *	use __vmalloc() instead.
1771  */
1772 void *vmalloc_node(unsigned long size, int node)
1773 {
1774 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1775 					node, __builtin_return_address(0));
1776 }
1777 EXPORT_SYMBOL(vmalloc_node);
1778 
1779 /**
1780  * vzalloc_node - allocate memory on a specific node with zero fill
1781  * @size:	allocation size
1782  * @node:	numa node
1783  *
1784  * Allocate enough pages to cover @size from the page level
1785  * allocator and map them into contiguous kernel virtual space.
1786  * The memory allocated is set to zero.
1787  *
1788  * For tight control over page level allocator and protection flags
1789  * use __vmalloc_node() instead.
1790  */
1791 void *vzalloc_node(unsigned long size, int node)
1792 {
1793 	return __vmalloc_node_flags(size, node,
1794 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1795 }
1796 EXPORT_SYMBOL(vzalloc_node);
1797 
1798 #ifndef PAGE_KERNEL_EXEC
1799 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1800 #endif
1801 
1802 /**
1803  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1804  *	@size:		allocation size
1805  *
1806  *	Kernel-internal function to allocate enough pages to cover @size
1807  *	the page level allocator and map them into contiguous and
1808  *	executable kernel virtual space.
1809  *
1810  *	For tight control over page level allocator and protection flags
1811  *	use __vmalloc() instead.
1812  */
1813 
1814 void *vmalloc_exec(unsigned long size)
1815 {
1816 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1817 			      NUMA_NO_NODE, __builtin_return_address(0));
1818 }
1819 
1820 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1821 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1822 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1823 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1824 #else
1825 #define GFP_VMALLOC32 GFP_KERNEL
1826 #endif
1827 
1828 /**
1829  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1830  *	@size:		allocation size
1831  *
1832  *	Allocate enough 32bit PA addressable pages to cover @size from the
1833  *	page level allocator and map them into contiguous kernel virtual space.
1834  */
1835 void *vmalloc_32(unsigned long size)
1836 {
1837 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1838 			      NUMA_NO_NODE, __builtin_return_address(0));
1839 }
1840 EXPORT_SYMBOL(vmalloc_32);
1841 
1842 /**
1843  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1844  *	@size:		allocation size
1845  *
1846  * The resulting memory area is 32bit addressable and zeroed so it can be
1847  * mapped to userspace without leaking data.
1848  */
1849 void *vmalloc_32_user(unsigned long size)
1850 {
1851 	struct vm_struct *area;
1852 	void *ret;
1853 
1854 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1855 			     NUMA_NO_NODE, __builtin_return_address(0));
1856 	if (ret) {
1857 		area = find_vm_area(ret);
1858 		area->flags |= VM_USERMAP;
1859 	}
1860 	return ret;
1861 }
1862 EXPORT_SYMBOL(vmalloc_32_user);
1863 
1864 /*
1865  * small helper routine , copy contents to buf from addr.
1866  * If the page is not present, fill zero.
1867  */
1868 
1869 static int aligned_vread(char *buf, char *addr, unsigned long count)
1870 {
1871 	struct page *p;
1872 	int copied = 0;
1873 
1874 	while (count) {
1875 		unsigned long offset, length;
1876 
1877 		offset = (unsigned long)addr & ~PAGE_MASK;
1878 		length = PAGE_SIZE - offset;
1879 		if (length > count)
1880 			length = count;
1881 		p = vmalloc_to_page(addr);
1882 		/*
1883 		 * To do safe access to this _mapped_ area, we need
1884 		 * lock. But adding lock here means that we need to add
1885 		 * overhead of vmalloc()/vfree() calles for this _debug_
1886 		 * interface, rarely used. Instead of that, we'll use
1887 		 * kmap() and get small overhead in this access function.
1888 		 */
1889 		if (p) {
1890 			/*
1891 			 * we can expect USER0 is not used (see vread/vwrite's
1892 			 * function description)
1893 			 */
1894 			void *map = kmap_atomic(p);
1895 			memcpy(buf, map + offset, length);
1896 			kunmap_atomic(map);
1897 		} else
1898 			memset(buf, 0, length);
1899 
1900 		addr += length;
1901 		buf += length;
1902 		copied += length;
1903 		count -= length;
1904 	}
1905 	return copied;
1906 }
1907 
1908 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1909 {
1910 	struct page *p;
1911 	int copied = 0;
1912 
1913 	while (count) {
1914 		unsigned long offset, length;
1915 
1916 		offset = (unsigned long)addr & ~PAGE_MASK;
1917 		length = PAGE_SIZE - offset;
1918 		if (length > count)
1919 			length = count;
1920 		p = vmalloc_to_page(addr);
1921 		/*
1922 		 * To do safe access to this _mapped_ area, we need
1923 		 * lock. But adding lock here means that we need to add
1924 		 * overhead of vmalloc()/vfree() calles for this _debug_
1925 		 * interface, rarely used. Instead of that, we'll use
1926 		 * kmap() and get small overhead in this access function.
1927 		 */
1928 		if (p) {
1929 			/*
1930 			 * we can expect USER0 is not used (see vread/vwrite's
1931 			 * function description)
1932 			 */
1933 			void *map = kmap_atomic(p);
1934 			memcpy(map + offset, buf, length);
1935 			kunmap_atomic(map);
1936 		}
1937 		addr += length;
1938 		buf += length;
1939 		copied += length;
1940 		count -= length;
1941 	}
1942 	return copied;
1943 }
1944 
1945 /**
1946  *	vread() -  read vmalloc area in a safe way.
1947  *	@buf:		buffer for reading data
1948  *	@addr:		vm address.
1949  *	@count:		number of bytes to be read.
1950  *
1951  *	Returns # of bytes which addr and buf should be increased.
1952  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
1953  *	includes any intersect with alive vmalloc area.
1954  *
1955  *	This function checks that addr is a valid vmalloc'ed area, and
1956  *	copy data from that area to a given buffer. If the given memory range
1957  *	of [addr...addr+count) includes some valid address, data is copied to
1958  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
1959  *	IOREMAP area is treated as memory hole and no copy is done.
1960  *
1961  *	If [addr...addr+count) doesn't includes any intersects with alive
1962  *	vm_struct area, returns 0. @buf should be kernel's buffer.
1963  *
1964  *	Note: In usual ops, vread() is never necessary because the caller
1965  *	should know vmalloc() area is valid and can use memcpy().
1966  *	This is for routines which have to access vmalloc area without
1967  *	any informaion, as /dev/kmem.
1968  *
1969  */
1970 
1971 long vread(char *buf, char *addr, unsigned long count)
1972 {
1973 	struct vmap_area *va;
1974 	struct vm_struct *vm;
1975 	char *vaddr, *buf_start = buf;
1976 	unsigned long buflen = count;
1977 	unsigned long n;
1978 
1979 	/* Don't allow overflow */
1980 	if ((unsigned long) addr + count < count)
1981 		count = -(unsigned long) addr;
1982 
1983 	spin_lock(&vmap_area_lock);
1984 	list_for_each_entry(va, &vmap_area_list, list) {
1985 		if (!count)
1986 			break;
1987 
1988 		if (!(va->flags & VM_VM_AREA))
1989 			continue;
1990 
1991 		vm = va->vm;
1992 		vaddr = (char *) vm->addr;
1993 		if (addr >= vaddr + get_vm_area_size(vm))
1994 			continue;
1995 		while (addr < vaddr) {
1996 			if (count == 0)
1997 				goto finished;
1998 			*buf = '\0';
1999 			buf++;
2000 			addr++;
2001 			count--;
2002 		}
2003 		n = vaddr + get_vm_area_size(vm) - addr;
2004 		if (n > count)
2005 			n = count;
2006 		if (!(vm->flags & VM_IOREMAP))
2007 			aligned_vread(buf, addr, n);
2008 		else /* IOREMAP area is treated as memory hole */
2009 			memset(buf, 0, n);
2010 		buf += n;
2011 		addr += n;
2012 		count -= n;
2013 	}
2014 finished:
2015 	spin_unlock(&vmap_area_lock);
2016 
2017 	if (buf == buf_start)
2018 		return 0;
2019 	/* zero-fill memory holes */
2020 	if (buf != buf_start + buflen)
2021 		memset(buf, 0, buflen - (buf - buf_start));
2022 
2023 	return buflen;
2024 }
2025 
2026 /**
2027  *	vwrite() -  write vmalloc area in a safe way.
2028  *	@buf:		buffer for source data
2029  *	@addr:		vm address.
2030  *	@count:		number of bytes to be read.
2031  *
2032  *	Returns # of bytes which addr and buf should be incresed.
2033  *	(same number to @count).
2034  *	If [addr...addr+count) doesn't includes any intersect with valid
2035  *	vmalloc area, returns 0.
2036  *
2037  *	This function checks that addr is a valid vmalloc'ed area, and
2038  *	copy data from a buffer to the given addr. If specified range of
2039  *	[addr...addr+count) includes some valid address, data is copied from
2040  *	proper area of @buf. If there are memory holes, no copy to hole.
2041  *	IOREMAP area is treated as memory hole and no copy is done.
2042  *
2043  *	If [addr...addr+count) doesn't includes any intersects with alive
2044  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2045  *
2046  *	Note: In usual ops, vwrite() is never necessary because the caller
2047  *	should know vmalloc() area is valid and can use memcpy().
2048  *	This is for routines which have to access vmalloc area without
2049  *	any informaion, as /dev/kmem.
2050  */
2051 
2052 long vwrite(char *buf, char *addr, unsigned long count)
2053 {
2054 	struct vmap_area *va;
2055 	struct vm_struct *vm;
2056 	char *vaddr;
2057 	unsigned long n, buflen;
2058 	int copied = 0;
2059 
2060 	/* Don't allow overflow */
2061 	if ((unsigned long) addr + count < count)
2062 		count = -(unsigned long) addr;
2063 	buflen = count;
2064 
2065 	spin_lock(&vmap_area_lock);
2066 	list_for_each_entry(va, &vmap_area_list, list) {
2067 		if (!count)
2068 			break;
2069 
2070 		if (!(va->flags & VM_VM_AREA))
2071 			continue;
2072 
2073 		vm = va->vm;
2074 		vaddr = (char *) vm->addr;
2075 		if (addr >= vaddr + get_vm_area_size(vm))
2076 			continue;
2077 		while (addr < vaddr) {
2078 			if (count == 0)
2079 				goto finished;
2080 			buf++;
2081 			addr++;
2082 			count--;
2083 		}
2084 		n = vaddr + get_vm_area_size(vm) - addr;
2085 		if (n > count)
2086 			n = count;
2087 		if (!(vm->flags & VM_IOREMAP)) {
2088 			aligned_vwrite(buf, addr, n);
2089 			copied++;
2090 		}
2091 		buf += n;
2092 		addr += n;
2093 		count -= n;
2094 	}
2095 finished:
2096 	spin_unlock(&vmap_area_lock);
2097 	if (!copied)
2098 		return 0;
2099 	return buflen;
2100 }
2101 
2102 /**
2103  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2104  *	@vma:		vma to cover
2105  *	@uaddr:		target user address to start at
2106  *	@kaddr:		virtual address of vmalloc kernel memory
2107  *	@size:		size of map area
2108  *
2109  *	Returns:	0 for success, -Exxx on failure
2110  *
2111  *	This function checks that @kaddr is a valid vmalloc'ed area,
2112  *	and that it is big enough to cover the range starting at
2113  *	@uaddr in @vma. Will return failure if that criteria isn't
2114  *	met.
2115  *
2116  *	Similar to remap_pfn_range() (see mm/memory.c)
2117  */
2118 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2119 				void *kaddr, unsigned long size)
2120 {
2121 	struct vm_struct *area;
2122 
2123 	size = PAGE_ALIGN(size);
2124 
2125 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2126 		return -EINVAL;
2127 
2128 	area = find_vm_area(kaddr);
2129 	if (!area)
2130 		return -EINVAL;
2131 
2132 	if (!(area->flags & VM_USERMAP))
2133 		return -EINVAL;
2134 
2135 	if (kaddr + size > area->addr + area->size)
2136 		return -EINVAL;
2137 
2138 	do {
2139 		struct page *page = vmalloc_to_page(kaddr);
2140 		int ret;
2141 
2142 		ret = vm_insert_page(vma, uaddr, page);
2143 		if (ret)
2144 			return ret;
2145 
2146 		uaddr += PAGE_SIZE;
2147 		kaddr += PAGE_SIZE;
2148 		size -= PAGE_SIZE;
2149 	} while (size > 0);
2150 
2151 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2152 
2153 	return 0;
2154 }
2155 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2156 
2157 /**
2158  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2159  *	@vma:		vma to cover (map full range of vma)
2160  *	@addr:		vmalloc memory
2161  *	@pgoff:		number of pages into addr before first page to map
2162  *
2163  *	Returns:	0 for success, -Exxx on failure
2164  *
2165  *	This function checks that addr is a valid vmalloc'ed area, and
2166  *	that it is big enough to cover the vma. Will return failure if
2167  *	that criteria isn't met.
2168  *
2169  *	Similar to remap_pfn_range() (see mm/memory.c)
2170  */
2171 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2172 						unsigned long pgoff)
2173 {
2174 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2175 					   addr + (pgoff << PAGE_SHIFT),
2176 					   vma->vm_end - vma->vm_start);
2177 }
2178 EXPORT_SYMBOL(remap_vmalloc_range);
2179 
2180 /*
2181  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2182  * have one.
2183  */
2184 void  __attribute__((weak)) vmalloc_sync_all(void)
2185 {
2186 }
2187 
2188 
2189 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2190 {
2191 	pte_t ***p = data;
2192 
2193 	if (p) {
2194 		*(*p) = pte;
2195 		(*p)++;
2196 	}
2197 	return 0;
2198 }
2199 
2200 /**
2201  *	alloc_vm_area - allocate a range of kernel address space
2202  *	@size:		size of the area
2203  *	@ptes:		returns the PTEs for the address space
2204  *
2205  *	Returns:	NULL on failure, vm_struct on success
2206  *
2207  *	This function reserves a range of kernel address space, and
2208  *	allocates pagetables to map that range.  No actual mappings
2209  *	are created.
2210  *
2211  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2212  *	allocated for the VM area are returned.
2213  */
2214 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2215 {
2216 	struct vm_struct *area;
2217 
2218 	area = get_vm_area_caller(size, VM_IOREMAP,
2219 				__builtin_return_address(0));
2220 	if (area == NULL)
2221 		return NULL;
2222 
2223 	/*
2224 	 * This ensures that page tables are constructed for this region
2225 	 * of kernel virtual address space and mapped into init_mm.
2226 	 */
2227 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2228 				size, f, ptes ? &ptes : NULL)) {
2229 		free_vm_area(area);
2230 		return NULL;
2231 	}
2232 
2233 	return area;
2234 }
2235 EXPORT_SYMBOL_GPL(alloc_vm_area);
2236 
2237 void free_vm_area(struct vm_struct *area)
2238 {
2239 	struct vm_struct *ret;
2240 	ret = remove_vm_area(area->addr);
2241 	BUG_ON(ret != area);
2242 	kfree(area);
2243 }
2244 EXPORT_SYMBOL_GPL(free_vm_area);
2245 
2246 #ifdef CONFIG_SMP
2247 static struct vmap_area *node_to_va(struct rb_node *n)
2248 {
2249 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2250 }
2251 
2252 /**
2253  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2254  * @end: target address
2255  * @pnext: out arg for the next vmap_area
2256  * @pprev: out arg for the previous vmap_area
2257  *
2258  * Returns: %true if either or both of next and prev are found,
2259  *	    %false if no vmap_area exists
2260  *
2261  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2262  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2263  */
2264 static bool pvm_find_next_prev(unsigned long end,
2265 			       struct vmap_area **pnext,
2266 			       struct vmap_area **pprev)
2267 {
2268 	struct rb_node *n = vmap_area_root.rb_node;
2269 	struct vmap_area *va = NULL;
2270 
2271 	while (n) {
2272 		va = rb_entry(n, struct vmap_area, rb_node);
2273 		if (end < va->va_end)
2274 			n = n->rb_left;
2275 		else if (end > va->va_end)
2276 			n = n->rb_right;
2277 		else
2278 			break;
2279 	}
2280 
2281 	if (!va)
2282 		return false;
2283 
2284 	if (va->va_end > end) {
2285 		*pnext = va;
2286 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2287 	} else {
2288 		*pprev = va;
2289 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2290 	}
2291 	return true;
2292 }
2293 
2294 /**
2295  * pvm_determine_end - find the highest aligned address between two vmap_areas
2296  * @pnext: in/out arg for the next vmap_area
2297  * @pprev: in/out arg for the previous vmap_area
2298  * @align: alignment
2299  *
2300  * Returns: determined end address
2301  *
2302  * Find the highest aligned address between *@pnext and *@pprev below
2303  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2304  * down address is between the end addresses of the two vmap_areas.
2305  *
2306  * Please note that the address returned by this function may fall
2307  * inside *@pnext vmap_area.  The caller is responsible for checking
2308  * that.
2309  */
2310 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2311 				       struct vmap_area **pprev,
2312 				       unsigned long align)
2313 {
2314 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2315 	unsigned long addr;
2316 
2317 	if (*pnext)
2318 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2319 	else
2320 		addr = vmalloc_end;
2321 
2322 	while (*pprev && (*pprev)->va_end > addr) {
2323 		*pnext = *pprev;
2324 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2325 	}
2326 
2327 	return addr;
2328 }
2329 
2330 /**
2331  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2332  * @offsets: array containing offset of each area
2333  * @sizes: array containing size of each area
2334  * @nr_vms: the number of areas to allocate
2335  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2336  *
2337  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2338  *	    vm_structs on success, %NULL on failure
2339  *
2340  * Percpu allocator wants to use congruent vm areas so that it can
2341  * maintain the offsets among percpu areas.  This function allocates
2342  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2343  * be scattered pretty far, distance between two areas easily going up
2344  * to gigabytes.  To avoid interacting with regular vmallocs, these
2345  * areas are allocated from top.
2346  *
2347  * Despite its complicated look, this allocator is rather simple.  It
2348  * does everything top-down and scans areas from the end looking for
2349  * matching slot.  While scanning, if any of the areas overlaps with
2350  * existing vmap_area, the base address is pulled down to fit the
2351  * area.  Scanning is repeated till all the areas fit and then all
2352  * necessary data structres are inserted and the result is returned.
2353  */
2354 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2355 				     const size_t *sizes, int nr_vms,
2356 				     size_t align)
2357 {
2358 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2359 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2360 	struct vmap_area **vas, *prev, *next;
2361 	struct vm_struct **vms;
2362 	int area, area2, last_area, term_area;
2363 	unsigned long base, start, end, last_end;
2364 	bool purged = false;
2365 
2366 	/* verify parameters and allocate data structures */
2367 	BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2368 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2369 		start = offsets[area];
2370 		end = start + sizes[area];
2371 
2372 		/* is everything aligned properly? */
2373 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2374 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2375 
2376 		/* detect the area with the highest address */
2377 		if (start > offsets[last_area])
2378 			last_area = area;
2379 
2380 		for (area2 = 0; area2 < nr_vms; area2++) {
2381 			unsigned long start2 = offsets[area2];
2382 			unsigned long end2 = start2 + sizes[area2];
2383 
2384 			if (area2 == area)
2385 				continue;
2386 
2387 			BUG_ON(start2 >= start && start2 < end);
2388 			BUG_ON(end2 <= end && end2 > start);
2389 		}
2390 	}
2391 	last_end = offsets[last_area] + sizes[last_area];
2392 
2393 	if (vmalloc_end - vmalloc_start < last_end) {
2394 		WARN_ON(true);
2395 		return NULL;
2396 	}
2397 
2398 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2399 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2400 	if (!vas || !vms)
2401 		goto err_free2;
2402 
2403 	for (area = 0; area < nr_vms; area++) {
2404 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2405 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2406 		if (!vas[area] || !vms[area])
2407 			goto err_free;
2408 	}
2409 retry:
2410 	spin_lock(&vmap_area_lock);
2411 
2412 	/* start scanning - we scan from the top, begin with the last area */
2413 	area = term_area = last_area;
2414 	start = offsets[area];
2415 	end = start + sizes[area];
2416 
2417 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2418 		base = vmalloc_end - last_end;
2419 		goto found;
2420 	}
2421 	base = pvm_determine_end(&next, &prev, align) - end;
2422 
2423 	while (true) {
2424 		BUG_ON(next && next->va_end <= base + end);
2425 		BUG_ON(prev && prev->va_end > base + end);
2426 
2427 		/*
2428 		 * base might have underflowed, add last_end before
2429 		 * comparing.
2430 		 */
2431 		if (base + last_end < vmalloc_start + last_end) {
2432 			spin_unlock(&vmap_area_lock);
2433 			if (!purged) {
2434 				purge_vmap_area_lazy();
2435 				purged = true;
2436 				goto retry;
2437 			}
2438 			goto err_free;
2439 		}
2440 
2441 		/*
2442 		 * If next overlaps, move base downwards so that it's
2443 		 * right below next and then recheck.
2444 		 */
2445 		if (next && next->va_start < base + end) {
2446 			base = pvm_determine_end(&next, &prev, align) - end;
2447 			term_area = area;
2448 			continue;
2449 		}
2450 
2451 		/*
2452 		 * If prev overlaps, shift down next and prev and move
2453 		 * base so that it's right below new next and then
2454 		 * recheck.
2455 		 */
2456 		if (prev && prev->va_end > base + start)  {
2457 			next = prev;
2458 			prev = node_to_va(rb_prev(&next->rb_node));
2459 			base = pvm_determine_end(&next, &prev, align) - end;
2460 			term_area = area;
2461 			continue;
2462 		}
2463 
2464 		/*
2465 		 * This area fits, move on to the previous one.  If
2466 		 * the previous one is the terminal one, we're done.
2467 		 */
2468 		area = (area + nr_vms - 1) % nr_vms;
2469 		if (area == term_area)
2470 			break;
2471 		start = offsets[area];
2472 		end = start + sizes[area];
2473 		pvm_find_next_prev(base + end, &next, &prev);
2474 	}
2475 found:
2476 	/* we've found a fitting base, insert all va's */
2477 	for (area = 0; area < nr_vms; area++) {
2478 		struct vmap_area *va = vas[area];
2479 
2480 		va->va_start = base + offsets[area];
2481 		va->va_end = va->va_start + sizes[area];
2482 		__insert_vmap_area(va);
2483 	}
2484 
2485 	vmap_area_pcpu_hole = base + offsets[last_area];
2486 
2487 	spin_unlock(&vmap_area_lock);
2488 
2489 	/* insert all vm's */
2490 	for (area = 0; area < nr_vms; area++)
2491 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2492 				 pcpu_get_vm_areas);
2493 
2494 	kfree(vas);
2495 	return vms;
2496 
2497 err_free:
2498 	for (area = 0; area < nr_vms; area++) {
2499 		kfree(vas[area]);
2500 		kfree(vms[area]);
2501 	}
2502 err_free2:
2503 	kfree(vas);
2504 	kfree(vms);
2505 	return NULL;
2506 }
2507 
2508 /**
2509  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2510  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2511  * @nr_vms: the number of allocated areas
2512  *
2513  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2514  */
2515 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2516 {
2517 	int i;
2518 
2519 	for (i = 0; i < nr_vms; i++)
2520 		free_vm_area(vms[i]);
2521 	kfree(vms);
2522 }
2523 #endif	/* CONFIG_SMP */
2524 
2525 #ifdef CONFIG_PROC_FS
2526 static void *s_start(struct seq_file *m, loff_t *pos)
2527 	__acquires(&vmap_area_lock)
2528 {
2529 	loff_t n = *pos;
2530 	struct vmap_area *va;
2531 
2532 	spin_lock(&vmap_area_lock);
2533 	va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2534 	while (n > 0 && &va->list != &vmap_area_list) {
2535 		n--;
2536 		va = list_entry(va->list.next, typeof(*va), list);
2537 	}
2538 	if (!n && &va->list != &vmap_area_list)
2539 		return va;
2540 
2541 	return NULL;
2542 
2543 }
2544 
2545 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2546 {
2547 	struct vmap_area *va = p, *next;
2548 
2549 	++*pos;
2550 	next = list_entry(va->list.next, typeof(*va), list);
2551 	if (&next->list != &vmap_area_list)
2552 		return next;
2553 
2554 	return NULL;
2555 }
2556 
2557 static void s_stop(struct seq_file *m, void *p)
2558 	__releases(&vmap_area_lock)
2559 {
2560 	spin_unlock(&vmap_area_lock);
2561 }
2562 
2563 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2564 {
2565 	if (IS_ENABLED(CONFIG_NUMA)) {
2566 		unsigned int nr, *counters = m->private;
2567 
2568 		if (!counters)
2569 			return;
2570 
2571 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2572 		smp_rmb();
2573 		if (v->flags & VM_UNINITIALIZED)
2574 			return;
2575 
2576 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2577 
2578 		for (nr = 0; nr < v->nr_pages; nr++)
2579 			counters[page_to_nid(v->pages[nr])]++;
2580 
2581 		for_each_node_state(nr, N_HIGH_MEMORY)
2582 			if (counters[nr])
2583 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2584 	}
2585 }
2586 
2587 static int s_show(struct seq_file *m, void *p)
2588 {
2589 	struct vmap_area *va = p;
2590 	struct vm_struct *v;
2591 
2592 	/*
2593 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2594 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2595 	 */
2596 	if (!(va->flags & VM_VM_AREA))
2597 		return 0;
2598 
2599 	v = va->vm;
2600 
2601 	seq_printf(m, "0x%pK-0x%pK %7ld",
2602 		v->addr, v->addr + v->size, v->size);
2603 
2604 	if (v->caller)
2605 		seq_printf(m, " %pS", v->caller);
2606 
2607 	if (v->nr_pages)
2608 		seq_printf(m, " pages=%d", v->nr_pages);
2609 
2610 	if (v->phys_addr)
2611 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2612 
2613 	if (v->flags & VM_IOREMAP)
2614 		seq_printf(m, " ioremap");
2615 
2616 	if (v->flags & VM_ALLOC)
2617 		seq_printf(m, " vmalloc");
2618 
2619 	if (v->flags & VM_MAP)
2620 		seq_printf(m, " vmap");
2621 
2622 	if (v->flags & VM_USERMAP)
2623 		seq_printf(m, " user");
2624 
2625 	if (v->flags & VM_VPAGES)
2626 		seq_printf(m, " vpages");
2627 
2628 	show_numa_info(m, v);
2629 	seq_putc(m, '\n');
2630 	return 0;
2631 }
2632 
2633 static const struct seq_operations vmalloc_op = {
2634 	.start = s_start,
2635 	.next = s_next,
2636 	.stop = s_stop,
2637 	.show = s_show,
2638 };
2639 
2640 static int vmalloc_open(struct inode *inode, struct file *file)
2641 {
2642 	unsigned int *ptr = NULL;
2643 	int ret;
2644 
2645 	if (IS_ENABLED(CONFIG_NUMA)) {
2646 		ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2647 		if (ptr == NULL)
2648 			return -ENOMEM;
2649 	}
2650 	ret = seq_open(file, &vmalloc_op);
2651 	if (!ret) {
2652 		struct seq_file *m = file->private_data;
2653 		m->private = ptr;
2654 	} else
2655 		kfree(ptr);
2656 	return ret;
2657 }
2658 
2659 static const struct file_operations proc_vmalloc_operations = {
2660 	.open		= vmalloc_open,
2661 	.read		= seq_read,
2662 	.llseek		= seq_lseek,
2663 	.release	= seq_release_private,
2664 };
2665 
2666 static int __init proc_vmalloc_init(void)
2667 {
2668 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2669 	return 0;
2670 }
2671 module_init(proc_vmalloc_init);
2672 
2673 void get_vmalloc_info(struct vmalloc_info *vmi)
2674 {
2675 	struct vmap_area *va;
2676 	unsigned long free_area_size;
2677 	unsigned long prev_end;
2678 
2679 	vmi->used = 0;
2680 	vmi->largest_chunk = 0;
2681 
2682 	prev_end = VMALLOC_START;
2683 
2684 	spin_lock(&vmap_area_lock);
2685 
2686 	if (list_empty(&vmap_area_list)) {
2687 		vmi->largest_chunk = VMALLOC_TOTAL;
2688 		goto out;
2689 	}
2690 
2691 	list_for_each_entry(va, &vmap_area_list, list) {
2692 		unsigned long addr = va->va_start;
2693 
2694 		/*
2695 		 * Some archs keep another range for modules in vmalloc space
2696 		 */
2697 		if (addr < VMALLOC_START)
2698 			continue;
2699 		if (addr >= VMALLOC_END)
2700 			break;
2701 
2702 		if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2703 			continue;
2704 
2705 		vmi->used += (va->va_end - va->va_start);
2706 
2707 		free_area_size = addr - prev_end;
2708 		if (vmi->largest_chunk < free_area_size)
2709 			vmi->largest_chunk = free_area_size;
2710 
2711 		prev_end = va->va_end;
2712 	}
2713 
2714 	if (VMALLOC_END - prev_end > vmi->largest_chunk)
2715 		vmi->largest_chunk = VMALLOC_END - prev_end;
2716 
2717 out:
2718 	spin_unlock(&vmap_area_lock);
2719 }
2720 #endif
2721 
2722