xref: /openbmc/linux/mm/vmalloc.c (revision 110e6f26)
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *llnode = llist_del_all(&p->list);
53 	while (llnode) {
54 		void *p = llnode;
55 		llnode = llist_next(llnode);
56 		__vunmap(p, 1);
57 	}
58 }
59 
60 /*** Page table manipulation functions ***/
61 
62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 	pte_t *pte;
65 
66 	pte = pte_offset_kernel(pmd, addr);
67 	do {
68 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 	} while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72 
73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 	pmd_t *pmd;
76 	unsigned long next;
77 
78 	pmd = pmd_offset(pud, addr);
79 	do {
80 		next = pmd_addr_end(addr, end);
81 		if (pmd_clear_huge(pmd))
82 			continue;
83 		if (pmd_none_or_clear_bad(pmd))
84 			continue;
85 		vunmap_pte_range(pmd, addr, next);
86 	} while (pmd++, addr = next, addr != end);
87 }
88 
89 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
90 {
91 	pud_t *pud;
92 	unsigned long next;
93 
94 	pud = pud_offset(pgd, addr);
95 	do {
96 		next = pud_addr_end(addr, end);
97 		if (pud_clear_huge(pud))
98 			continue;
99 		if (pud_none_or_clear_bad(pud))
100 			continue;
101 		vunmap_pmd_range(pud, addr, next);
102 	} while (pud++, addr = next, addr != end);
103 }
104 
105 static void vunmap_page_range(unsigned long addr, unsigned long end)
106 {
107 	pgd_t *pgd;
108 	unsigned long next;
109 
110 	BUG_ON(addr >= end);
111 	pgd = pgd_offset_k(addr);
112 	do {
113 		next = pgd_addr_end(addr, end);
114 		if (pgd_none_or_clear_bad(pgd))
115 			continue;
116 		vunmap_pud_range(pgd, addr, next);
117 	} while (pgd++, addr = next, addr != end);
118 }
119 
120 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
121 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
122 {
123 	pte_t *pte;
124 
125 	/*
126 	 * nr is a running index into the array which helps higher level
127 	 * callers keep track of where we're up to.
128 	 */
129 
130 	pte = pte_alloc_kernel(pmd, addr);
131 	if (!pte)
132 		return -ENOMEM;
133 	do {
134 		struct page *page = pages[*nr];
135 
136 		if (WARN_ON(!pte_none(*pte)))
137 			return -EBUSY;
138 		if (WARN_ON(!page))
139 			return -ENOMEM;
140 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
141 		(*nr)++;
142 	} while (pte++, addr += PAGE_SIZE, addr != end);
143 	return 0;
144 }
145 
146 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
148 {
149 	pmd_t *pmd;
150 	unsigned long next;
151 
152 	pmd = pmd_alloc(&init_mm, pud, addr);
153 	if (!pmd)
154 		return -ENOMEM;
155 	do {
156 		next = pmd_addr_end(addr, end);
157 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
158 			return -ENOMEM;
159 	} while (pmd++, addr = next, addr != end);
160 	return 0;
161 }
162 
163 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 	pud_t *pud;
167 	unsigned long next;
168 
169 	pud = pud_alloc(&init_mm, pgd, addr);
170 	if (!pud)
171 		return -ENOMEM;
172 	do {
173 		next = pud_addr_end(addr, end);
174 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
175 			return -ENOMEM;
176 	} while (pud++, addr = next, addr != end);
177 	return 0;
178 }
179 
180 /*
181  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182  * will have pfns corresponding to the "pages" array.
183  *
184  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185  */
186 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 				   pgprot_t prot, struct page **pages)
188 {
189 	pgd_t *pgd;
190 	unsigned long next;
191 	unsigned long addr = start;
192 	int err = 0;
193 	int nr = 0;
194 
195 	BUG_ON(addr >= end);
196 	pgd = pgd_offset_k(addr);
197 	do {
198 		next = pgd_addr_end(addr, end);
199 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
200 		if (err)
201 			return err;
202 	} while (pgd++, addr = next, addr != end);
203 
204 	return nr;
205 }
206 
207 static int vmap_page_range(unsigned long start, unsigned long end,
208 			   pgprot_t prot, struct page **pages)
209 {
210 	int ret;
211 
212 	ret = vmap_page_range_noflush(start, end, prot, pages);
213 	flush_cache_vmap(start, end);
214 	return ret;
215 }
216 
217 int is_vmalloc_or_module_addr(const void *x)
218 {
219 	/*
220 	 * ARM, x86-64 and sparc64 put modules in a special place,
221 	 * and fall back on vmalloc() if that fails. Others
222 	 * just put it in the vmalloc space.
223 	 */
224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 	unsigned long addr = (unsigned long)x;
226 	if (addr >= MODULES_VADDR && addr < MODULES_END)
227 		return 1;
228 #endif
229 	return is_vmalloc_addr(x);
230 }
231 
232 /*
233  * Walk a vmap address to the struct page it maps.
234  */
235 struct page *vmalloc_to_page(const void *vmalloc_addr)
236 {
237 	unsigned long addr = (unsigned long) vmalloc_addr;
238 	struct page *page = NULL;
239 	pgd_t *pgd = pgd_offset_k(addr);
240 
241 	/*
242 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 	 * architectures that do not vmalloc module space
244 	 */
245 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
246 
247 	if (!pgd_none(*pgd)) {
248 		pud_t *pud = pud_offset(pgd, addr);
249 		if (!pud_none(*pud)) {
250 			pmd_t *pmd = pmd_offset(pud, addr);
251 			if (!pmd_none(*pmd)) {
252 				pte_t *ptep, pte;
253 
254 				ptep = pte_offset_map(pmd, addr);
255 				pte = *ptep;
256 				if (pte_present(pte))
257 					page = pte_page(pte);
258 				pte_unmap(ptep);
259 			}
260 		}
261 	}
262 	return page;
263 }
264 EXPORT_SYMBOL(vmalloc_to_page);
265 
266 /*
267  * Map a vmalloc()-space virtual address to the physical page frame number.
268  */
269 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
270 {
271 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
272 }
273 EXPORT_SYMBOL(vmalloc_to_pfn);
274 
275 
276 /*** Global kva allocator ***/
277 
278 #define VM_LAZY_FREE	0x01
279 #define VM_LAZY_FREEING	0x02
280 #define VM_VM_AREA	0x04
281 
282 static DEFINE_SPINLOCK(vmap_area_lock);
283 /* Export for kexec only */
284 LIST_HEAD(vmap_area_list);
285 static struct rb_root vmap_area_root = RB_ROOT;
286 
287 /* The vmap cache globals are protected by vmap_area_lock */
288 static struct rb_node *free_vmap_cache;
289 static unsigned long cached_hole_size;
290 static unsigned long cached_vstart;
291 static unsigned long cached_align;
292 
293 static unsigned long vmap_area_pcpu_hole;
294 
295 static struct vmap_area *__find_vmap_area(unsigned long addr)
296 {
297 	struct rb_node *n = vmap_area_root.rb_node;
298 
299 	while (n) {
300 		struct vmap_area *va;
301 
302 		va = rb_entry(n, struct vmap_area, rb_node);
303 		if (addr < va->va_start)
304 			n = n->rb_left;
305 		else if (addr >= va->va_end)
306 			n = n->rb_right;
307 		else
308 			return va;
309 	}
310 
311 	return NULL;
312 }
313 
314 static void __insert_vmap_area(struct vmap_area *va)
315 {
316 	struct rb_node **p = &vmap_area_root.rb_node;
317 	struct rb_node *parent = NULL;
318 	struct rb_node *tmp;
319 
320 	while (*p) {
321 		struct vmap_area *tmp_va;
322 
323 		parent = *p;
324 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
325 		if (va->va_start < tmp_va->va_end)
326 			p = &(*p)->rb_left;
327 		else if (va->va_end > tmp_va->va_start)
328 			p = &(*p)->rb_right;
329 		else
330 			BUG();
331 	}
332 
333 	rb_link_node(&va->rb_node, parent, p);
334 	rb_insert_color(&va->rb_node, &vmap_area_root);
335 
336 	/* address-sort this list */
337 	tmp = rb_prev(&va->rb_node);
338 	if (tmp) {
339 		struct vmap_area *prev;
340 		prev = rb_entry(tmp, struct vmap_area, rb_node);
341 		list_add_rcu(&va->list, &prev->list);
342 	} else
343 		list_add_rcu(&va->list, &vmap_area_list);
344 }
345 
346 static void purge_vmap_area_lazy(void);
347 
348 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
349 
350 /*
351  * Allocate a region of KVA of the specified size and alignment, within the
352  * vstart and vend.
353  */
354 static struct vmap_area *alloc_vmap_area(unsigned long size,
355 				unsigned long align,
356 				unsigned long vstart, unsigned long vend,
357 				int node, gfp_t gfp_mask)
358 {
359 	struct vmap_area *va;
360 	struct rb_node *n;
361 	unsigned long addr;
362 	int purged = 0;
363 	struct vmap_area *first;
364 
365 	BUG_ON(!size);
366 	BUG_ON(offset_in_page(size));
367 	BUG_ON(!is_power_of_2(align));
368 
369 	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
370 
371 	va = kmalloc_node(sizeof(struct vmap_area),
372 			gfp_mask & GFP_RECLAIM_MASK, node);
373 	if (unlikely(!va))
374 		return ERR_PTR(-ENOMEM);
375 
376 	/*
377 	 * Only scan the relevant parts containing pointers to other objects
378 	 * to avoid false negatives.
379 	 */
380 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
381 
382 retry:
383 	spin_lock(&vmap_area_lock);
384 	/*
385 	 * Invalidate cache if we have more permissive parameters.
386 	 * cached_hole_size notes the largest hole noticed _below_
387 	 * the vmap_area cached in free_vmap_cache: if size fits
388 	 * into that hole, we want to scan from vstart to reuse
389 	 * the hole instead of allocating above free_vmap_cache.
390 	 * Note that __free_vmap_area may update free_vmap_cache
391 	 * without updating cached_hole_size or cached_align.
392 	 */
393 	if (!free_vmap_cache ||
394 			size < cached_hole_size ||
395 			vstart < cached_vstart ||
396 			align < cached_align) {
397 nocache:
398 		cached_hole_size = 0;
399 		free_vmap_cache = NULL;
400 	}
401 	/* record if we encounter less permissive parameters */
402 	cached_vstart = vstart;
403 	cached_align = align;
404 
405 	/* find starting point for our search */
406 	if (free_vmap_cache) {
407 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
408 		addr = ALIGN(first->va_end, align);
409 		if (addr < vstart)
410 			goto nocache;
411 		if (addr + size < addr)
412 			goto overflow;
413 
414 	} else {
415 		addr = ALIGN(vstart, align);
416 		if (addr + size < addr)
417 			goto overflow;
418 
419 		n = vmap_area_root.rb_node;
420 		first = NULL;
421 
422 		while (n) {
423 			struct vmap_area *tmp;
424 			tmp = rb_entry(n, struct vmap_area, rb_node);
425 			if (tmp->va_end >= addr) {
426 				first = tmp;
427 				if (tmp->va_start <= addr)
428 					break;
429 				n = n->rb_left;
430 			} else
431 				n = n->rb_right;
432 		}
433 
434 		if (!first)
435 			goto found;
436 	}
437 
438 	/* from the starting point, walk areas until a suitable hole is found */
439 	while (addr + size > first->va_start && addr + size <= vend) {
440 		if (addr + cached_hole_size < first->va_start)
441 			cached_hole_size = first->va_start - addr;
442 		addr = ALIGN(first->va_end, align);
443 		if (addr + size < addr)
444 			goto overflow;
445 
446 		if (list_is_last(&first->list, &vmap_area_list))
447 			goto found;
448 
449 		first = list_next_entry(first, list);
450 	}
451 
452 found:
453 	if (addr + size > vend)
454 		goto overflow;
455 
456 	va->va_start = addr;
457 	va->va_end = addr + size;
458 	va->flags = 0;
459 	__insert_vmap_area(va);
460 	free_vmap_cache = &va->rb_node;
461 	spin_unlock(&vmap_area_lock);
462 
463 	BUG_ON(!IS_ALIGNED(va->va_start, align));
464 	BUG_ON(va->va_start < vstart);
465 	BUG_ON(va->va_end > vend);
466 
467 	return va;
468 
469 overflow:
470 	spin_unlock(&vmap_area_lock);
471 	if (!purged) {
472 		purge_vmap_area_lazy();
473 		purged = 1;
474 		goto retry;
475 	}
476 
477 	if (gfpflags_allow_blocking(gfp_mask)) {
478 		unsigned long freed = 0;
479 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
480 		if (freed > 0) {
481 			purged = 0;
482 			goto retry;
483 		}
484 	}
485 
486 	if (printk_ratelimit())
487 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
488 			size);
489 	kfree(va);
490 	return ERR_PTR(-EBUSY);
491 }
492 
493 int register_vmap_purge_notifier(struct notifier_block *nb)
494 {
495 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
496 }
497 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
498 
499 int unregister_vmap_purge_notifier(struct notifier_block *nb)
500 {
501 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
502 }
503 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
504 
505 static void __free_vmap_area(struct vmap_area *va)
506 {
507 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
508 
509 	if (free_vmap_cache) {
510 		if (va->va_end < cached_vstart) {
511 			free_vmap_cache = NULL;
512 		} else {
513 			struct vmap_area *cache;
514 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
515 			if (va->va_start <= cache->va_start) {
516 				free_vmap_cache = rb_prev(&va->rb_node);
517 				/*
518 				 * We don't try to update cached_hole_size or
519 				 * cached_align, but it won't go very wrong.
520 				 */
521 			}
522 		}
523 	}
524 	rb_erase(&va->rb_node, &vmap_area_root);
525 	RB_CLEAR_NODE(&va->rb_node);
526 	list_del_rcu(&va->list);
527 
528 	/*
529 	 * Track the highest possible candidate for pcpu area
530 	 * allocation.  Areas outside of vmalloc area can be returned
531 	 * here too, consider only end addresses which fall inside
532 	 * vmalloc area proper.
533 	 */
534 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
535 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
536 
537 	kfree_rcu(va, rcu_head);
538 }
539 
540 /*
541  * Free a region of KVA allocated by alloc_vmap_area
542  */
543 static void free_vmap_area(struct vmap_area *va)
544 {
545 	spin_lock(&vmap_area_lock);
546 	__free_vmap_area(va);
547 	spin_unlock(&vmap_area_lock);
548 }
549 
550 /*
551  * Clear the pagetable entries of a given vmap_area
552  */
553 static void unmap_vmap_area(struct vmap_area *va)
554 {
555 	vunmap_page_range(va->va_start, va->va_end);
556 }
557 
558 static void vmap_debug_free_range(unsigned long start, unsigned long end)
559 {
560 	/*
561 	 * Unmap page tables and force a TLB flush immediately if pagealloc
562 	 * debugging is enabled.  This catches use after free bugs similarly to
563 	 * those in linear kernel virtual address space after a page has been
564 	 * freed.
565 	 *
566 	 * All the lazy freeing logic is still retained, in order to minimise
567 	 * intrusiveness of this debugging feature.
568 	 *
569 	 * This is going to be *slow* (linear kernel virtual address debugging
570 	 * doesn't do a broadcast TLB flush so it is a lot faster).
571 	 */
572 	if (debug_pagealloc_enabled()) {
573 		vunmap_page_range(start, end);
574 		flush_tlb_kernel_range(start, end);
575 	}
576 }
577 
578 /*
579  * lazy_max_pages is the maximum amount of virtual address space we gather up
580  * before attempting to purge with a TLB flush.
581  *
582  * There is a tradeoff here: a larger number will cover more kernel page tables
583  * and take slightly longer to purge, but it will linearly reduce the number of
584  * global TLB flushes that must be performed. It would seem natural to scale
585  * this number up linearly with the number of CPUs (because vmapping activity
586  * could also scale linearly with the number of CPUs), however it is likely
587  * that in practice, workloads might be constrained in other ways that mean
588  * vmap activity will not scale linearly with CPUs. Also, I want to be
589  * conservative and not introduce a big latency on huge systems, so go with
590  * a less aggressive log scale. It will still be an improvement over the old
591  * code, and it will be simple to change the scale factor if we find that it
592  * becomes a problem on bigger systems.
593  */
594 static unsigned long lazy_max_pages(void)
595 {
596 	unsigned int log;
597 
598 	log = fls(num_online_cpus());
599 
600 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
601 }
602 
603 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
604 
605 /* for per-CPU blocks */
606 static void purge_fragmented_blocks_allcpus(void);
607 
608 /*
609  * called before a call to iounmap() if the caller wants vm_area_struct's
610  * immediately freed.
611  */
612 void set_iounmap_nonlazy(void)
613 {
614 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
615 }
616 
617 /*
618  * Purges all lazily-freed vmap areas.
619  *
620  * If sync is 0 then don't purge if there is already a purge in progress.
621  * If force_flush is 1, then flush kernel TLBs between *start and *end even
622  * if we found no lazy vmap areas to unmap (callers can use this to optimise
623  * their own TLB flushing).
624  * Returns with *start = min(*start, lowest purged address)
625  *              *end = max(*end, highest purged address)
626  */
627 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
628 					int sync, int force_flush)
629 {
630 	static DEFINE_SPINLOCK(purge_lock);
631 	LIST_HEAD(valist);
632 	struct vmap_area *va;
633 	struct vmap_area *n_va;
634 	int nr = 0;
635 
636 	/*
637 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
638 	 * should not expect such behaviour. This just simplifies locking for
639 	 * the case that isn't actually used at the moment anyway.
640 	 */
641 	if (!sync && !force_flush) {
642 		if (!spin_trylock(&purge_lock))
643 			return;
644 	} else
645 		spin_lock(&purge_lock);
646 
647 	if (sync)
648 		purge_fragmented_blocks_allcpus();
649 
650 	rcu_read_lock();
651 	list_for_each_entry_rcu(va, &vmap_area_list, list) {
652 		if (va->flags & VM_LAZY_FREE) {
653 			if (va->va_start < *start)
654 				*start = va->va_start;
655 			if (va->va_end > *end)
656 				*end = va->va_end;
657 			nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
658 			list_add_tail(&va->purge_list, &valist);
659 			va->flags |= VM_LAZY_FREEING;
660 			va->flags &= ~VM_LAZY_FREE;
661 		}
662 	}
663 	rcu_read_unlock();
664 
665 	if (nr)
666 		atomic_sub(nr, &vmap_lazy_nr);
667 
668 	if (nr || force_flush)
669 		flush_tlb_kernel_range(*start, *end);
670 
671 	if (nr) {
672 		spin_lock(&vmap_area_lock);
673 		list_for_each_entry_safe(va, n_va, &valist, purge_list)
674 			__free_vmap_area(va);
675 		spin_unlock(&vmap_area_lock);
676 	}
677 	spin_unlock(&purge_lock);
678 }
679 
680 /*
681  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
682  * is already purging.
683  */
684 static void try_purge_vmap_area_lazy(void)
685 {
686 	unsigned long start = ULONG_MAX, end = 0;
687 
688 	__purge_vmap_area_lazy(&start, &end, 0, 0);
689 }
690 
691 /*
692  * Kick off a purge of the outstanding lazy areas.
693  */
694 static void purge_vmap_area_lazy(void)
695 {
696 	unsigned long start = ULONG_MAX, end = 0;
697 
698 	__purge_vmap_area_lazy(&start, &end, 1, 0);
699 }
700 
701 /*
702  * Free a vmap area, caller ensuring that the area has been unmapped
703  * and flush_cache_vunmap had been called for the correct range
704  * previously.
705  */
706 static void free_vmap_area_noflush(struct vmap_area *va)
707 {
708 	va->flags |= VM_LAZY_FREE;
709 	atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
710 	if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
711 		try_purge_vmap_area_lazy();
712 }
713 
714 /*
715  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
716  * called for the correct range previously.
717  */
718 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
719 {
720 	unmap_vmap_area(va);
721 	free_vmap_area_noflush(va);
722 }
723 
724 /*
725  * Free and unmap a vmap area
726  */
727 static void free_unmap_vmap_area(struct vmap_area *va)
728 {
729 	flush_cache_vunmap(va->va_start, va->va_end);
730 	free_unmap_vmap_area_noflush(va);
731 }
732 
733 static struct vmap_area *find_vmap_area(unsigned long addr)
734 {
735 	struct vmap_area *va;
736 
737 	spin_lock(&vmap_area_lock);
738 	va = __find_vmap_area(addr);
739 	spin_unlock(&vmap_area_lock);
740 
741 	return va;
742 }
743 
744 static void free_unmap_vmap_area_addr(unsigned long addr)
745 {
746 	struct vmap_area *va;
747 
748 	va = find_vmap_area(addr);
749 	BUG_ON(!va);
750 	free_unmap_vmap_area(va);
751 }
752 
753 
754 /*** Per cpu kva allocator ***/
755 
756 /*
757  * vmap space is limited especially on 32 bit architectures. Ensure there is
758  * room for at least 16 percpu vmap blocks per CPU.
759  */
760 /*
761  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
762  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
763  * instead (we just need a rough idea)
764  */
765 #if BITS_PER_LONG == 32
766 #define VMALLOC_SPACE		(128UL*1024*1024)
767 #else
768 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
769 #endif
770 
771 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
772 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
773 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
774 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
775 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
776 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
777 #define VMAP_BBMAP_BITS		\
778 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
779 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
780 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
781 
782 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
783 
784 static bool vmap_initialized __read_mostly = false;
785 
786 struct vmap_block_queue {
787 	spinlock_t lock;
788 	struct list_head free;
789 };
790 
791 struct vmap_block {
792 	spinlock_t lock;
793 	struct vmap_area *va;
794 	unsigned long free, dirty;
795 	unsigned long dirty_min, dirty_max; /*< dirty range */
796 	struct list_head free_list;
797 	struct rcu_head rcu_head;
798 	struct list_head purge;
799 };
800 
801 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
802 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
803 
804 /*
805  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
806  * in the free path. Could get rid of this if we change the API to return a
807  * "cookie" from alloc, to be passed to free. But no big deal yet.
808  */
809 static DEFINE_SPINLOCK(vmap_block_tree_lock);
810 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
811 
812 /*
813  * We should probably have a fallback mechanism to allocate virtual memory
814  * out of partially filled vmap blocks. However vmap block sizing should be
815  * fairly reasonable according to the vmalloc size, so it shouldn't be a
816  * big problem.
817  */
818 
819 static unsigned long addr_to_vb_idx(unsigned long addr)
820 {
821 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
822 	addr /= VMAP_BLOCK_SIZE;
823 	return addr;
824 }
825 
826 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
827 {
828 	unsigned long addr;
829 
830 	addr = va_start + (pages_off << PAGE_SHIFT);
831 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
832 	return (void *)addr;
833 }
834 
835 /**
836  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
837  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
838  * @order:    how many 2^order pages should be occupied in newly allocated block
839  * @gfp_mask: flags for the page level allocator
840  *
841  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
842  */
843 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
844 {
845 	struct vmap_block_queue *vbq;
846 	struct vmap_block *vb;
847 	struct vmap_area *va;
848 	unsigned long vb_idx;
849 	int node, err;
850 	void *vaddr;
851 
852 	node = numa_node_id();
853 
854 	vb = kmalloc_node(sizeof(struct vmap_block),
855 			gfp_mask & GFP_RECLAIM_MASK, node);
856 	if (unlikely(!vb))
857 		return ERR_PTR(-ENOMEM);
858 
859 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
860 					VMALLOC_START, VMALLOC_END,
861 					node, gfp_mask);
862 	if (IS_ERR(va)) {
863 		kfree(vb);
864 		return ERR_CAST(va);
865 	}
866 
867 	err = radix_tree_preload(gfp_mask);
868 	if (unlikely(err)) {
869 		kfree(vb);
870 		free_vmap_area(va);
871 		return ERR_PTR(err);
872 	}
873 
874 	vaddr = vmap_block_vaddr(va->va_start, 0);
875 	spin_lock_init(&vb->lock);
876 	vb->va = va;
877 	/* At least something should be left free */
878 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
879 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
880 	vb->dirty = 0;
881 	vb->dirty_min = VMAP_BBMAP_BITS;
882 	vb->dirty_max = 0;
883 	INIT_LIST_HEAD(&vb->free_list);
884 
885 	vb_idx = addr_to_vb_idx(va->va_start);
886 	spin_lock(&vmap_block_tree_lock);
887 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
888 	spin_unlock(&vmap_block_tree_lock);
889 	BUG_ON(err);
890 	radix_tree_preload_end();
891 
892 	vbq = &get_cpu_var(vmap_block_queue);
893 	spin_lock(&vbq->lock);
894 	list_add_tail_rcu(&vb->free_list, &vbq->free);
895 	spin_unlock(&vbq->lock);
896 	put_cpu_var(vmap_block_queue);
897 
898 	return vaddr;
899 }
900 
901 static void free_vmap_block(struct vmap_block *vb)
902 {
903 	struct vmap_block *tmp;
904 	unsigned long vb_idx;
905 
906 	vb_idx = addr_to_vb_idx(vb->va->va_start);
907 	spin_lock(&vmap_block_tree_lock);
908 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
909 	spin_unlock(&vmap_block_tree_lock);
910 	BUG_ON(tmp != vb);
911 
912 	free_vmap_area_noflush(vb->va);
913 	kfree_rcu(vb, rcu_head);
914 }
915 
916 static void purge_fragmented_blocks(int cpu)
917 {
918 	LIST_HEAD(purge);
919 	struct vmap_block *vb;
920 	struct vmap_block *n_vb;
921 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
922 
923 	rcu_read_lock();
924 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
925 
926 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
927 			continue;
928 
929 		spin_lock(&vb->lock);
930 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
931 			vb->free = 0; /* prevent further allocs after releasing lock */
932 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
933 			vb->dirty_min = 0;
934 			vb->dirty_max = VMAP_BBMAP_BITS;
935 			spin_lock(&vbq->lock);
936 			list_del_rcu(&vb->free_list);
937 			spin_unlock(&vbq->lock);
938 			spin_unlock(&vb->lock);
939 			list_add_tail(&vb->purge, &purge);
940 		} else
941 			spin_unlock(&vb->lock);
942 	}
943 	rcu_read_unlock();
944 
945 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
946 		list_del(&vb->purge);
947 		free_vmap_block(vb);
948 	}
949 }
950 
951 static void purge_fragmented_blocks_allcpus(void)
952 {
953 	int cpu;
954 
955 	for_each_possible_cpu(cpu)
956 		purge_fragmented_blocks(cpu);
957 }
958 
959 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
960 {
961 	struct vmap_block_queue *vbq;
962 	struct vmap_block *vb;
963 	void *vaddr = NULL;
964 	unsigned int order;
965 
966 	BUG_ON(offset_in_page(size));
967 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
968 	if (WARN_ON(size == 0)) {
969 		/*
970 		 * Allocating 0 bytes isn't what caller wants since
971 		 * get_order(0) returns funny result. Just warn and terminate
972 		 * early.
973 		 */
974 		return NULL;
975 	}
976 	order = get_order(size);
977 
978 	rcu_read_lock();
979 	vbq = &get_cpu_var(vmap_block_queue);
980 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
981 		unsigned long pages_off;
982 
983 		spin_lock(&vb->lock);
984 		if (vb->free < (1UL << order)) {
985 			spin_unlock(&vb->lock);
986 			continue;
987 		}
988 
989 		pages_off = VMAP_BBMAP_BITS - vb->free;
990 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
991 		vb->free -= 1UL << order;
992 		if (vb->free == 0) {
993 			spin_lock(&vbq->lock);
994 			list_del_rcu(&vb->free_list);
995 			spin_unlock(&vbq->lock);
996 		}
997 
998 		spin_unlock(&vb->lock);
999 		break;
1000 	}
1001 
1002 	put_cpu_var(vmap_block_queue);
1003 	rcu_read_unlock();
1004 
1005 	/* Allocate new block if nothing was found */
1006 	if (!vaddr)
1007 		vaddr = new_vmap_block(order, gfp_mask);
1008 
1009 	return vaddr;
1010 }
1011 
1012 static void vb_free(const void *addr, unsigned long size)
1013 {
1014 	unsigned long offset;
1015 	unsigned long vb_idx;
1016 	unsigned int order;
1017 	struct vmap_block *vb;
1018 
1019 	BUG_ON(offset_in_page(size));
1020 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1021 
1022 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1023 
1024 	order = get_order(size);
1025 
1026 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1027 	offset >>= PAGE_SHIFT;
1028 
1029 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1030 	rcu_read_lock();
1031 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1032 	rcu_read_unlock();
1033 	BUG_ON(!vb);
1034 
1035 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1036 
1037 	spin_lock(&vb->lock);
1038 
1039 	/* Expand dirty range */
1040 	vb->dirty_min = min(vb->dirty_min, offset);
1041 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1042 
1043 	vb->dirty += 1UL << order;
1044 	if (vb->dirty == VMAP_BBMAP_BITS) {
1045 		BUG_ON(vb->free);
1046 		spin_unlock(&vb->lock);
1047 		free_vmap_block(vb);
1048 	} else
1049 		spin_unlock(&vb->lock);
1050 }
1051 
1052 /**
1053  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1054  *
1055  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1056  * to amortize TLB flushing overheads. What this means is that any page you
1057  * have now, may, in a former life, have been mapped into kernel virtual
1058  * address by the vmap layer and so there might be some CPUs with TLB entries
1059  * still referencing that page (additional to the regular 1:1 kernel mapping).
1060  *
1061  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1062  * be sure that none of the pages we have control over will have any aliases
1063  * from the vmap layer.
1064  */
1065 void vm_unmap_aliases(void)
1066 {
1067 	unsigned long start = ULONG_MAX, end = 0;
1068 	int cpu;
1069 	int flush = 0;
1070 
1071 	if (unlikely(!vmap_initialized))
1072 		return;
1073 
1074 	for_each_possible_cpu(cpu) {
1075 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1076 		struct vmap_block *vb;
1077 
1078 		rcu_read_lock();
1079 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1080 			spin_lock(&vb->lock);
1081 			if (vb->dirty) {
1082 				unsigned long va_start = vb->va->va_start;
1083 				unsigned long s, e;
1084 
1085 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1086 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1087 
1088 				start = min(s, start);
1089 				end   = max(e, end);
1090 
1091 				flush = 1;
1092 			}
1093 			spin_unlock(&vb->lock);
1094 		}
1095 		rcu_read_unlock();
1096 	}
1097 
1098 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1099 }
1100 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1101 
1102 /**
1103  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1104  * @mem: the pointer returned by vm_map_ram
1105  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1106  */
1107 void vm_unmap_ram(const void *mem, unsigned int count)
1108 {
1109 	unsigned long size = count << PAGE_SHIFT;
1110 	unsigned long addr = (unsigned long)mem;
1111 
1112 	BUG_ON(!addr);
1113 	BUG_ON(addr < VMALLOC_START);
1114 	BUG_ON(addr > VMALLOC_END);
1115 	BUG_ON(!PAGE_ALIGNED(addr));
1116 
1117 	debug_check_no_locks_freed(mem, size);
1118 	vmap_debug_free_range(addr, addr+size);
1119 
1120 	if (likely(count <= VMAP_MAX_ALLOC))
1121 		vb_free(mem, size);
1122 	else
1123 		free_unmap_vmap_area_addr(addr);
1124 }
1125 EXPORT_SYMBOL(vm_unmap_ram);
1126 
1127 /**
1128  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1129  * @pages: an array of pointers to the pages to be mapped
1130  * @count: number of pages
1131  * @node: prefer to allocate data structures on this node
1132  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1133  *
1134  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1135  * faster than vmap so it's good.  But if you mix long-life and short-life
1136  * objects with vm_map_ram(), it could consume lots of address space through
1137  * fragmentation (especially on a 32bit machine).  You could see failures in
1138  * the end.  Please use this function for short-lived objects.
1139  *
1140  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1141  */
1142 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1143 {
1144 	unsigned long size = count << PAGE_SHIFT;
1145 	unsigned long addr;
1146 	void *mem;
1147 
1148 	if (likely(count <= VMAP_MAX_ALLOC)) {
1149 		mem = vb_alloc(size, GFP_KERNEL);
1150 		if (IS_ERR(mem))
1151 			return NULL;
1152 		addr = (unsigned long)mem;
1153 	} else {
1154 		struct vmap_area *va;
1155 		va = alloc_vmap_area(size, PAGE_SIZE,
1156 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1157 		if (IS_ERR(va))
1158 			return NULL;
1159 
1160 		addr = va->va_start;
1161 		mem = (void *)addr;
1162 	}
1163 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1164 		vm_unmap_ram(mem, count);
1165 		return NULL;
1166 	}
1167 	return mem;
1168 }
1169 EXPORT_SYMBOL(vm_map_ram);
1170 
1171 static struct vm_struct *vmlist __initdata;
1172 /**
1173  * vm_area_add_early - add vmap area early during boot
1174  * @vm: vm_struct to add
1175  *
1176  * This function is used to add fixed kernel vm area to vmlist before
1177  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1178  * should contain proper values and the other fields should be zero.
1179  *
1180  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1181  */
1182 void __init vm_area_add_early(struct vm_struct *vm)
1183 {
1184 	struct vm_struct *tmp, **p;
1185 
1186 	BUG_ON(vmap_initialized);
1187 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1188 		if (tmp->addr >= vm->addr) {
1189 			BUG_ON(tmp->addr < vm->addr + vm->size);
1190 			break;
1191 		} else
1192 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1193 	}
1194 	vm->next = *p;
1195 	*p = vm;
1196 }
1197 
1198 /**
1199  * vm_area_register_early - register vmap area early during boot
1200  * @vm: vm_struct to register
1201  * @align: requested alignment
1202  *
1203  * This function is used to register kernel vm area before
1204  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1205  * proper values on entry and other fields should be zero.  On return,
1206  * vm->addr contains the allocated address.
1207  *
1208  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1209  */
1210 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1211 {
1212 	static size_t vm_init_off __initdata;
1213 	unsigned long addr;
1214 
1215 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1216 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1217 
1218 	vm->addr = (void *)addr;
1219 
1220 	vm_area_add_early(vm);
1221 }
1222 
1223 void __init vmalloc_init(void)
1224 {
1225 	struct vmap_area *va;
1226 	struct vm_struct *tmp;
1227 	int i;
1228 
1229 	for_each_possible_cpu(i) {
1230 		struct vmap_block_queue *vbq;
1231 		struct vfree_deferred *p;
1232 
1233 		vbq = &per_cpu(vmap_block_queue, i);
1234 		spin_lock_init(&vbq->lock);
1235 		INIT_LIST_HEAD(&vbq->free);
1236 		p = &per_cpu(vfree_deferred, i);
1237 		init_llist_head(&p->list);
1238 		INIT_WORK(&p->wq, free_work);
1239 	}
1240 
1241 	/* Import existing vmlist entries. */
1242 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1243 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1244 		va->flags = VM_VM_AREA;
1245 		va->va_start = (unsigned long)tmp->addr;
1246 		va->va_end = va->va_start + tmp->size;
1247 		va->vm = tmp;
1248 		__insert_vmap_area(va);
1249 	}
1250 
1251 	vmap_area_pcpu_hole = VMALLOC_END;
1252 
1253 	vmap_initialized = true;
1254 }
1255 
1256 /**
1257  * map_kernel_range_noflush - map kernel VM area with the specified pages
1258  * @addr: start of the VM area to map
1259  * @size: size of the VM area to map
1260  * @prot: page protection flags to use
1261  * @pages: pages to map
1262  *
1263  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1264  * specify should have been allocated using get_vm_area() and its
1265  * friends.
1266  *
1267  * NOTE:
1268  * This function does NOT do any cache flushing.  The caller is
1269  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1270  * before calling this function.
1271  *
1272  * RETURNS:
1273  * The number of pages mapped on success, -errno on failure.
1274  */
1275 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1276 			     pgprot_t prot, struct page **pages)
1277 {
1278 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1279 }
1280 
1281 /**
1282  * unmap_kernel_range_noflush - unmap kernel VM area
1283  * @addr: start of the VM area to unmap
1284  * @size: size of the VM area to unmap
1285  *
1286  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1287  * specify should have been allocated using get_vm_area() and its
1288  * friends.
1289  *
1290  * NOTE:
1291  * This function does NOT do any cache flushing.  The caller is
1292  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1293  * before calling this function and flush_tlb_kernel_range() after.
1294  */
1295 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1296 {
1297 	vunmap_page_range(addr, addr + size);
1298 }
1299 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1300 
1301 /**
1302  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1303  * @addr: start of the VM area to unmap
1304  * @size: size of the VM area to unmap
1305  *
1306  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1307  * the unmapping and tlb after.
1308  */
1309 void unmap_kernel_range(unsigned long addr, unsigned long size)
1310 {
1311 	unsigned long end = addr + size;
1312 
1313 	flush_cache_vunmap(addr, end);
1314 	vunmap_page_range(addr, end);
1315 	flush_tlb_kernel_range(addr, end);
1316 }
1317 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1318 
1319 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1320 {
1321 	unsigned long addr = (unsigned long)area->addr;
1322 	unsigned long end = addr + get_vm_area_size(area);
1323 	int err;
1324 
1325 	err = vmap_page_range(addr, end, prot, pages);
1326 
1327 	return err > 0 ? 0 : err;
1328 }
1329 EXPORT_SYMBOL_GPL(map_vm_area);
1330 
1331 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1332 			      unsigned long flags, const void *caller)
1333 {
1334 	spin_lock(&vmap_area_lock);
1335 	vm->flags = flags;
1336 	vm->addr = (void *)va->va_start;
1337 	vm->size = va->va_end - va->va_start;
1338 	vm->caller = caller;
1339 	va->vm = vm;
1340 	va->flags |= VM_VM_AREA;
1341 	spin_unlock(&vmap_area_lock);
1342 }
1343 
1344 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1345 {
1346 	/*
1347 	 * Before removing VM_UNINITIALIZED,
1348 	 * we should make sure that vm has proper values.
1349 	 * Pair with smp_rmb() in show_numa_info().
1350 	 */
1351 	smp_wmb();
1352 	vm->flags &= ~VM_UNINITIALIZED;
1353 }
1354 
1355 static struct vm_struct *__get_vm_area_node(unsigned long size,
1356 		unsigned long align, unsigned long flags, unsigned long start,
1357 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1358 {
1359 	struct vmap_area *va;
1360 	struct vm_struct *area;
1361 
1362 	BUG_ON(in_interrupt());
1363 	if (flags & VM_IOREMAP)
1364 		align = 1ul << clamp_t(int, fls_long(size),
1365 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1366 
1367 	size = PAGE_ALIGN(size);
1368 	if (unlikely(!size))
1369 		return NULL;
1370 
1371 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1372 	if (unlikely(!area))
1373 		return NULL;
1374 
1375 	if (!(flags & VM_NO_GUARD))
1376 		size += PAGE_SIZE;
1377 
1378 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1379 	if (IS_ERR(va)) {
1380 		kfree(area);
1381 		return NULL;
1382 	}
1383 
1384 	setup_vmalloc_vm(area, va, flags, caller);
1385 
1386 	return area;
1387 }
1388 
1389 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1390 				unsigned long start, unsigned long end)
1391 {
1392 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1393 				  GFP_KERNEL, __builtin_return_address(0));
1394 }
1395 EXPORT_SYMBOL_GPL(__get_vm_area);
1396 
1397 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1398 				       unsigned long start, unsigned long end,
1399 				       const void *caller)
1400 {
1401 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1402 				  GFP_KERNEL, caller);
1403 }
1404 
1405 /**
1406  *	get_vm_area  -  reserve a contiguous kernel virtual area
1407  *	@size:		size of the area
1408  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1409  *
1410  *	Search an area of @size in the kernel virtual mapping area,
1411  *	and reserved it for out purposes.  Returns the area descriptor
1412  *	on success or %NULL on failure.
1413  */
1414 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1415 {
1416 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1417 				  NUMA_NO_NODE, GFP_KERNEL,
1418 				  __builtin_return_address(0));
1419 }
1420 
1421 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1422 				const void *caller)
1423 {
1424 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1425 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1426 }
1427 
1428 /**
1429  *	find_vm_area  -  find a continuous kernel virtual area
1430  *	@addr:		base address
1431  *
1432  *	Search for the kernel VM area starting at @addr, and return it.
1433  *	It is up to the caller to do all required locking to keep the returned
1434  *	pointer valid.
1435  */
1436 struct vm_struct *find_vm_area(const void *addr)
1437 {
1438 	struct vmap_area *va;
1439 
1440 	va = find_vmap_area((unsigned long)addr);
1441 	if (va && va->flags & VM_VM_AREA)
1442 		return va->vm;
1443 
1444 	return NULL;
1445 }
1446 
1447 /**
1448  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1449  *	@addr:		base address
1450  *
1451  *	Search for the kernel VM area starting at @addr, and remove it.
1452  *	This function returns the found VM area, but using it is NOT safe
1453  *	on SMP machines, except for its size or flags.
1454  */
1455 struct vm_struct *remove_vm_area(const void *addr)
1456 {
1457 	struct vmap_area *va;
1458 
1459 	va = find_vmap_area((unsigned long)addr);
1460 	if (va && va->flags & VM_VM_AREA) {
1461 		struct vm_struct *vm = va->vm;
1462 
1463 		spin_lock(&vmap_area_lock);
1464 		va->vm = NULL;
1465 		va->flags &= ~VM_VM_AREA;
1466 		spin_unlock(&vmap_area_lock);
1467 
1468 		vmap_debug_free_range(va->va_start, va->va_end);
1469 		kasan_free_shadow(vm);
1470 		free_unmap_vmap_area(va);
1471 
1472 		return vm;
1473 	}
1474 	return NULL;
1475 }
1476 
1477 static void __vunmap(const void *addr, int deallocate_pages)
1478 {
1479 	struct vm_struct *area;
1480 
1481 	if (!addr)
1482 		return;
1483 
1484 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1485 			addr))
1486 		return;
1487 
1488 	area = remove_vm_area(addr);
1489 	if (unlikely(!area)) {
1490 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1491 				addr);
1492 		return;
1493 	}
1494 
1495 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1496 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1497 
1498 	if (deallocate_pages) {
1499 		int i;
1500 
1501 		for (i = 0; i < area->nr_pages; i++) {
1502 			struct page *page = area->pages[i];
1503 
1504 			BUG_ON(!page);
1505 			__free_kmem_pages(page, 0);
1506 		}
1507 
1508 		kvfree(area->pages);
1509 	}
1510 
1511 	kfree(area);
1512 	return;
1513 }
1514 
1515 /**
1516  *	vfree  -  release memory allocated by vmalloc()
1517  *	@addr:		memory base address
1518  *
1519  *	Free the virtually continuous memory area starting at @addr, as
1520  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1521  *	NULL, no operation is performed.
1522  *
1523  *	Must not be called in NMI context (strictly speaking, only if we don't
1524  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1525  *	conventions for vfree() arch-depenedent would be a really bad idea)
1526  *
1527  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1528  */
1529 void vfree(const void *addr)
1530 {
1531 	BUG_ON(in_nmi());
1532 
1533 	kmemleak_free(addr);
1534 
1535 	if (!addr)
1536 		return;
1537 	if (unlikely(in_interrupt())) {
1538 		struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1539 		if (llist_add((struct llist_node *)addr, &p->list))
1540 			schedule_work(&p->wq);
1541 	} else
1542 		__vunmap(addr, 1);
1543 }
1544 EXPORT_SYMBOL(vfree);
1545 
1546 /**
1547  *	vunmap  -  release virtual mapping obtained by vmap()
1548  *	@addr:		memory base address
1549  *
1550  *	Free the virtually contiguous memory area starting at @addr,
1551  *	which was created from the page array passed to vmap().
1552  *
1553  *	Must not be called in interrupt context.
1554  */
1555 void vunmap(const void *addr)
1556 {
1557 	BUG_ON(in_interrupt());
1558 	might_sleep();
1559 	if (addr)
1560 		__vunmap(addr, 0);
1561 }
1562 EXPORT_SYMBOL(vunmap);
1563 
1564 /**
1565  *	vmap  -  map an array of pages into virtually contiguous space
1566  *	@pages:		array of page pointers
1567  *	@count:		number of pages to map
1568  *	@flags:		vm_area->flags
1569  *	@prot:		page protection for the mapping
1570  *
1571  *	Maps @count pages from @pages into contiguous kernel virtual
1572  *	space.
1573  */
1574 void *vmap(struct page **pages, unsigned int count,
1575 		unsigned long flags, pgprot_t prot)
1576 {
1577 	struct vm_struct *area;
1578 
1579 	might_sleep();
1580 
1581 	if (count > totalram_pages)
1582 		return NULL;
1583 
1584 	area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1585 					__builtin_return_address(0));
1586 	if (!area)
1587 		return NULL;
1588 
1589 	if (map_vm_area(area, prot, pages)) {
1590 		vunmap(area->addr);
1591 		return NULL;
1592 	}
1593 
1594 	return area->addr;
1595 }
1596 EXPORT_SYMBOL(vmap);
1597 
1598 static void *__vmalloc_node(unsigned long size, unsigned long align,
1599 			    gfp_t gfp_mask, pgprot_t prot,
1600 			    int node, const void *caller);
1601 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1602 				 pgprot_t prot, int node)
1603 {
1604 	const int order = 0;
1605 	struct page **pages;
1606 	unsigned int nr_pages, array_size, i;
1607 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1608 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1609 
1610 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1611 	array_size = (nr_pages * sizeof(struct page *));
1612 
1613 	area->nr_pages = nr_pages;
1614 	/* Please note that the recursion is strictly bounded. */
1615 	if (array_size > PAGE_SIZE) {
1616 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1617 				PAGE_KERNEL, node, area->caller);
1618 	} else {
1619 		pages = kmalloc_node(array_size, nested_gfp, node);
1620 	}
1621 	area->pages = pages;
1622 	if (!area->pages) {
1623 		remove_vm_area(area->addr);
1624 		kfree(area);
1625 		return NULL;
1626 	}
1627 
1628 	for (i = 0; i < area->nr_pages; i++) {
1629 		struct page *page;
1630 
1631 		if (node == NUMA_NO_NODE)
1632 			page = alloc_kmem_pages(alloc_mask, order);
1633 		else
1634 			page = alloc_kmem_pages_node(node, alloc_mask, order);
1635 
1636 		if (unlikely(!page)) {
1637 			/* Successfully allocated i pages, free them in __vunmap() */
1638 			area->nr_pages = i;
1639 			goto fail;
1640 		}
1641 		area->pages[i] = page;
1642 		if (gfpflags_allow_blocking(gfp_mask))
1643 			cond_resched();
1644 	}
1645 
1646 	if (map_vm_area(area, prot, pages))
1647 		goto fail;
1648 	return area->addr;
1649 
1650 fail:
1651 	warn_alloc_failed(gfp_mask, order,
1652 			  "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1653 			  (area->nr_pages*PAGE_SIZE), area->size);
1654 	vfree(area->addr);
1655 	return NULL;
1656 }
1657 
1658 /**
1659  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1660  *	@size:		allocation size
1661  *	@align:		desired alignment
1662  *	@start:		vm area range start
1663  *	@end:		vm area range end
1664  *	@gfp_mask:	flags for the page level allocator
1665  *	@prot:		protection mask for the allocated pages
1666  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1667  *	@node:		node to use for allocation or NUMA_NO_NODE
1668  *	@caller:	caller's return address
1669  *
1670  *	Allocate enough pages to cover @size from the page level
1671  *	allocator with @gfp_mask flags.  Map them into contiguous
1672  *	kernel virtual space, using a pagetable protection of @prot.
1673  */
1674 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1675 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1676 			pgprot_t prot, unsigned long vm_flags, int node,
1677 			const void *caller)
1678 {
1679 	struct vm_struct *area;
1680 	void *addr;
1681 	unsigned long real_size = size;
1682 
1683 	size = PAGE_ALIGN(size);
1684 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1685 		goto fail;
1686 
1687 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1688 				vm_flags, start, end, node, gfp_mask, caller);
1689 	if (!area)
1690 		goto fail;
1691 
1692 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1693 	if (!addr)
1694 		return NULL;
1695 
1696 	/*
1697 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1698 	 * flag. It means that vm_struct is not fully initialized.
1699 	 * Now, it is fully initialized, so remove this flag here.
1700 	 */
1701 	clear_vm_uninitialized_flag(area);
1702 
1703 	/*
1704 	 * A ref_count = 2 is needed because vm_struct allocated in
1705 	 * __get_vm_area_node() contains a reference to the virtual address of
1706 	 * the vmalloc'ed block.
1707 	 */
1708 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1709 
1710 	return addr;
1711 
1712 fail:
1713 	warn_alloc_failed(gfp_mask, 0,
1714 			  "vmalloc: allocation failure: %lu bytes\n",
1715 			  real_size);
1716 	return NULL;
1717 }
1718 
1719 /**
1720  *	__vmalloc_node  -  allocate virtually contiguous memory
1721  *	@size:		allocation size
1722  *	@align:		desired alignment
1723  *	@gfp_mask:	flags for the page level allocator
1724  *	@prot:		protection mask for the allocated pages
1725  *	@node:		node to use for allocation or NUMA_NO_NODE
1726  *	@caller:	caller's return address
1727  *
1728  *	Allocate enough pages to cover @size from the page level
1729  *	allocator with @gfp_mask flags.  Map them into contiguous
1730  *	kernel virtual space, using a pagetable protection of @prot.
1731  */
1732 static void *__vmalloc_node(unsigned long size, unsigned long align,
1733 			    gfp_t gfp_mask, pgprot_t prot,
1734 			    int node, const void *caller)
1735 {
1736 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1737 				gfp_mask, prot, 0, node, caller);
1738 }
1739 
1740 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1741 {
1742 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1743 				__builtin_return_address(0));
1744 }
1745 EXPORT_SYMBOL(__vmalloc);
1746 
1747 static inline void *__vmalloc_node_flags(unsigned long size,
1748 					int node, gfp_t flags)
1749 {
1750 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1751 					node, __builtin_return_address(0));
1752 }
1753 
1754 /**
1755  *	vmalloc  -  allocate virtually contiguous memory
1756  *	@size:		allocation size
1757  *	Allocate enough pages to cover @size from the page level
1758  *	allocator and map them into contiguous kernel virtual space.
1759  *
1760  *	For tight control over page level allocator and protection flags
1761  *	use __vmalloc() instead.
1762  */
1763 void *vmalloc(unsigned long size)
1764 {
1765 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1766 				    GFP_KERNEL | __GFP_HIGHMEM);
1767 }
1768 EXPORT_SYMBOL(vmalloc);
1769 
1770 /**
1771  *	vzalloc - allocate virtually contiguous memory with zero fill
1772  *	@size:	allocation size
1773  *	Allocate enough pages to cover @size from the page level
1774  *	allocator and map them into contiguous kernel virtual space.
1775  *	The memory allocated is set to zero.
1776  *
1777  *	For tight control over page level allocator and protection flags
1778  *	use __vmalloc() instead.
1779  */
1780 void *vzalloc(unsigned long size)
1781 {
1782 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1783 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1784 }
1785 EXPORT_SYMBOL(vzalloc);
1786 
1787 /**
1788  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1789  * @size: allocation size
1790  *
1791  * The resulting memory area is zeroed so it can be mapped to userspace
1792  * without leaking data.
1793  */
1794 void *vmalloc_user(unsigned long size)
1795 {
1796 	struct vm_struct *area;
1797 	void *ret;
1798 
1799 	ret = __vmalloc_node(size, SHMLBA,
1800 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1801 			     PAGE_KERNEL, NUMA_NO_NODE,
1802 			     __builtin_return_address(0));
1803 	if (ret) {
1804 		area = find_vm_area(ret);
1805 		area->flags |= VM_USERMAP;
1806 	}
1807 	return ret;
1808 }
1809 EXPORT_SYMBOL(vmalloc_user);
1810 
1811 /**
1812  *	vmalloc_node  -  allocate memory on a specific node
1813  *	@size:		allocation size
1814  *	@node:		numa node
1815  *
1816  *	Allocate enough pages to cover @size from the page level
1817  *	allocator and map them into contiguous kernel virtual space.
1818  *
1819  *	For tight control over page level allocator and protection flags
1820  *	use __vmalloc() instead.
1821  */
1822 void *vmalloc_node(unsigned long size, int node)
1823 {
1824 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1825 					node, __builtin_return_address(0));
1826 }
1827 EXPORT_SYMBOL(vmalloc_node);
1828 
1829 /**
1830  * vzalloc_node - allocate memory on a specific node with zero fill
1831  * @size:	allocation size
1832  * @node:	numa node
1833  *
1834  * Allocate enough pages to cover @size from the page level
1835  * allocator and map them into contiguous kernel virtual space.
1836  * The memory allocated is set to zero.
1837  *
1838  * For tight control over page level allocator and protection flags
1839  * use __vmalloc_node() instead.
1840  */
1841 void *vzalloc_node(unsigned long size, int node)
1842 {
1843 	return __vmalloc_node_flags(size, node,
1844 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1845 }
1846 EXPORT_SYMBOL(vzalloc_node);
1847 
1848 #ifndef PAGE_KERNEL_EXEC
1849 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1850 #endif
1851 
1852 /**
1853  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1854  *	@size:		allocation size
1855  *
1856  *	Kernel-internal function to allocate enough pages to cover @size
1857  *	the page level allocator and map them into contiguous and
1858  *	executable kernel virtual space.
1859  *
1860  *	For tight control over page level allocator and protection flags
1861  *	use __vmalloc() instead.
1862  */
1863 
1864 void *vmalloc_exec(unsigned long size)
1865 {
1866 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1867 			      NUMA_NO_NODE, __builtin_return_address(0));
1868 }
1869 
1870 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1871 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1872 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1873 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1874 #else
1875 #define GFP_VMALLOC32 GFP_KERNEL
1876 #endif
1877 
1878 /**
1879  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1880  *	@size:		allocation size
1881  *
1882  *	Allocate enough 32bit PA addressable pages to cover @size from the
1883  *	page level allocator and map them into contiguous kernel virtual space.
1884  */
1885 void *vmalloc_32(unsigned long size)
1886 {
1887 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1888 			      NUMA_NO_NODE, __builtin_return_address(0));
1889 }
1890 EXPORT_SYMBOL(vmalloc_32);
1891 
1892 /**
1893  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1894  *	@size:		allocation size
1895  *
1896  * The resulting memory area is 32bit addressable and zeroed so it can be
1897  * mapped to userspace without leaking data.
1898  */
1899 void *vmalloc_32_user(unsigned long size)
1900 {
1901 	struct vm_struct *area;
1902 	void *ret;
1903 
1904 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1905 			     NUMA_NO_NODE, __builtin_return_address(0));
1906 	if (ret) {
1907 		area = find_vm_area(ret);
1908 		area->flags |= VM_USERMAP;
1909 	}
1910 	return ret;
1911 }
1912 EXPORT_SYMBOL(vmalloc_32_user);
1913 
1914 /*
1915  * small helper routine , copy contents to buf from addr.
1916  * If the page is not present, fill zero.
1917  */
1918 
1919 static int aligned_vread(char *buf, char *addr, unsigned long count)
1920 {
1921 	struct page *p;
1922 	int copied = 0;
1923 
1924 	while (count) {
1925 		unsigned long offset, length;
1926 
1927 		offset = offset_in_page(addr);
1928 		length = PAGE_SIZE - offset;
1929 		if (length > count)
1930 			length = count;
1931 		p = vmalloc_to_page(addr);
1932 		/*
1933 		 * To do safe access to this _mapped_ area, we need
1934 		 * lock. But adding lock here means that we need to add
1935 		 * overhead of vmalloc()/vfree() calles for this _debug_
1936 		 * interface, rarely used. Instead of that, we'll use
1937 		 * kmap() and get small overhead in this access function.
1938 		 */
1939 		if (p) {
1940 			/*
1941 			 * we can expect USER0 is not used (see vread/vwrite's
1942 			 * function description)
1943 			 */
1944 			void *map = kmap_atomic(p);
1945 			memcpy(buf, map + offset, length);
1946 			kunmap_atomic(map);
1947 		} else
1948 			memset(buf, 0, length);
1949 
1950 		addr += length;
1951 		buf += length;
1952 		copied += length;
1953 		count -= length;
1954 	}
1955 	return copied;
1956 }
1957 
1958 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1959 {
1960 	struct page *p;
1961 	int copied = 0;
1962 
1963 	while (count) {
1964 		unsigned long offset, length;
1965 
1966 		offset = offset_in_page(addr);
1967 		length = PAGE_SIZE - offset;
1968 		if (length > count)
1969 			length = count;
1970 		p = vmalloc_to_page(addr);
1971 		/*
1972 		 * To do safe access to this _mapped_ area, we need
1973 		 * lock. But adding lock here means that we need to add
1974 		 * overhead of vmalloc()/vfree() calles for this _debug_
1975 		 * interface, rarely used. Instead of that, we'll use
1976 		 * kmap() and get small overhead in this access function.
1977 		 */
1978 		if (p) {
1979 			/*
1980 			 * we can expect USER0 is not used (see vread/vwrite's
1981 			 * function description)
1982 			 */
1983 			void *map = kmap_atomic(p);
1984 			memcpy(map + offset, buf, length);
1985 			kunmap_atomic(map);
1986 		}
1987 		addr += length;
1988 		buf += length;
1989 		copied += length;
1990 		count -= length;
1991 	}
1992 	return copied;
1993 }
1994 
1995 /**
1996  *	vread() -  read vmalloc area in a safe way.
1997  *	@buf:		buffer for reading data
1998  *	@addr:		vm address.
1999  *	@count:		number of bytes to be read.
2000  *
2001  *	Returns # of bytes which addr and buf should be increased.
2002  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2003  *	includes any intersect with alive vmalloc area.
2004  *
2005  *	This function checks that addr is a valid vmalloc'ed area, and
2006  *	copy data from that area to a given buffer. If the given memory range
2007  *	of [addr...addr+count) includes some valid address, data is copied to
2008  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2009  *	IOREMAP area is treated as memory hole and no copy is done.
2010  *
2011  *	If [addr...addr+count) doesn't includes any intersects with alive
2012  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2013  *
2014  *	Note: In usual ops, vread() is never necessary because the caller
2015  *	should know vmalloc() area is valid and can use memcpy().
2016  *	This is for routines which have to access vmalloc area without
2017  *	any informaion, as /dev/kmem.
2018  *
2019  */
2020 
2021 long vread(char *buf, char *addr, unsigned long count)
2022 {
2023 	struct vmap_area *va;
2024 	struct vm_struct *vm;
2025 	char *vaddr, *buf_start = buf;
2026 	unsigned long buflen = count;
2027 	unsigned long n;
2028 
2029 	/* Don't allow overflow */
2030 	if ((unsigned long) addr + count < count)
2031 		count = -(unsigned long) addr;
2032 
2033 	spin_lock(&vmap_area_lock);
2034 	list_for_each_entry(va, &vmap_area_list, list) {
2035 		if (!count)
2036 			break;
2037 
2038 		if (!(va->flags & VM_VM_AREA))
2039 			continue;
2040 
2041 		vm = va->vm;
2042 		vaddr = (char *) vm->addr;
2043 		if (addr >= vaddr + get_vm_area_size(vm))
2044 			continue;
2045 		while (addr < vaddr) {
2046 			if (count == 0)
2047 				goto finished;
2048 			*buf = '\0';
2049 			buf++;
2050 			addr++;
2051 			count--;
2052 		}
2053 		n = vaddr + get_vm_area_size(vm) - addr;
2054 		if (n > count)
2055 			n = count;
2056 		if (!(vm->flags & VM_IOREMAP))
2057 			aligned_vread(buf, addr, n);
2058 		else /* IOREMAP area is treated as memory hole */
2059 			memset(buf, 0, n);
2060 		buf += n;
2061 		addr += n;
2062 		count -= n;
2063 	}
2064 finished:
2065 	spin_unlock(&vmap_area_lock);
2066 
2067 	if (buf == buf_start)
2068 		return 0;
2069 	/* zero-fill memory holes */
2070 	if (buf != buf_start + buflen)
2071 		memset(buf, 0, buflen - (buf - buf_start));
2072 
2073 	return buflen;
2074 }
2075 
2076 /**
2077  *	vwrite() -  write vmalloc area in a safe way.
2078  *	@buf:		buffer for source data
2079  *	@addr:		vm address.
2080  *	@count:		number of bytes to be read.
2081  *
2082  *	Returns # of bytes which addr and buf should be incresed.
2083  *	(same number to @count).
2084  *	If [addr...addr+count) doesn't includes any intersect with valid
2085  *	vmalloc area, returns 0.
2086  *
2087  *	This function checks that addr is a valid vmalloc'ed area, and
2088  *	copy data from a buffer to the given addr. If specified range of
2089  *	[addr...addr+count) includes some valid address, data is copied from
2090  *	proper area of @buf. If there are memory holes, no copy to hole.
2091  *	IOREMAP area is treated as memory hole and no copy is done.
2092  *
2093  *	If [addr...addr+count) doesn't includes any intersects with alive
2094  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2095  *
2096  *	Note: In usual ops, vwrite() is never necessary because the caller
2097  *	should know vmalloc() area is valid and can use memcpy().
2098  *	This is for routines which have to access vmalloc area without
2099  *	any informaion, as /dev/kmem.
2100  */
2101 
2102 long vwrite(char *buf, char *addr, unsigned long count)
2103 {
2104 	struct vmap_area *va;
2105 	struct vm_struct *vm;
2106 	char *vaddr;
2107 	unsigned long n, buflen;
2108 	int copied = 0;
2109 
2110 	/* Don't allow overflow */
2111 	if ((unsigned long) addr + count < count)
2112 		count = -(unsigned long) addr;
2113 	buflen = count;
2114 
2115 	spin_lock(&vmap_area_lock);
2116 	list_for_each_entry(va, &vmap_area_list, list) {
2117 		if (!count)
2118 			break;
2119 
2120 		if (!(va->flags & VM_VM_AREA))
2121 			continue;
2122 
2123 		vm = va->vm;
2124 		vaddr = (char *) vm->addr;
2125 		if (addr >= vaddr + get_vm_area_size(vm))
2126 			continue;
2127 		while (addr < vaddr) {
2128 			if (count == 0)
2129 				goto finished;
2130 			buf++;
2131 			addr++;
2132 			count--;
2133 		}
2134 		n = vaddr + get_vm_area_size(vm) - addr;
2135 		if (n > count)
2136 			n = count;
2137 		if (!(vm->flags & VM_IOREMAP)) {
2138 			aligned_vwrite(buf, addr, n);
2139 			copied++;
2140 		}
2141 		buf += n;
2142 		addr += n;
2143 		count -= n;
2144 	}
2145 finished:
2146 	spin_unlock(&vmap_area_lock);
2147 	if (!copied)
2148 		return 0;
2149 	return buflen;
2150 }
2151 
2152 /**
2153  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2154  *	@vma:		vma to cover
2155  *	@uaddr:		target user address to start at
2156  *	@kaddr:		virtual address of vmalloc kernel memory
2157  *	@size:		size of map area
2158  *
2159  *	Returns:	0 for success, -Exxx on failure
2160  *
2161  *	This function checks that @kaddr is a valid vmalloc'ed area,
2162  *	and that it is big enough to cover the range starting at
2163  *	@uaddr in @vma. Will return failure if that criteria isn't
2164  *	met.
2165  *
2166  *	Similar to remap_pfn_range() (see mm/memory.c)
2167  */
2168 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2169 				void *kaddr, unsigned long size)
2170 {
2171 	struct vm_struct *area;
2172 
2173 	size = PAGE_ALIGN(size);
2174 
2175 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2176 		return -EINVAL;
2177 
2178 	area = find_vm_area(kaddr);
2179 	if (!area)
2180 		return -EINVAL;
2181 
2182 	if (!(area->flags & VM_USERMAP))
2183 		return -EINVAL;
2184 
2185 	if (kaddr + size > area->addr + area->size)
2186 		return -EINVAL;
2187 
2188 	do {
2189 		struct page *page = vmalloc_to_page(kaddr);
2190 		int ret;
2191 
2192 		ret = vm_insert_page(vma, uaddr, page);
2193 		if (ret)
2194 			return ret;
2195 
2196 		uaddr += PAGE_SIZE;
2197 		kaddr += PAGE_SIZE;
2198 		size -= PAGE_SIZE;
2199 	} while (size > 0);
2200 
2201 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2202 
2203 	return 0;
2204 }
2205 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2206 
2207 /**
2208  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2209  *	@vma:		vma to cover (map full range of vma)
2210  *	@addr:		vmalloc memory
2211  *	@pgoff:		number of pages into addr before first page to map
2212  *
2213  *	Returns:	0 for success, -Exxx on failure
2214  *
2215  *	This function checks that addr is a valid vmalloc'ed area, and
2216  *	that it is big enough to cover the vma. Will return failure if
2217  *	that criteria isn't met.
2218  *
2219  *	Similar to remap_pfn_range() (see mm/memory.c)
2220  */
2221 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2222 						unsigned long pgoff)
2223 {
2224 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2225 					   addr + (pgoff << PAGE_SHIFT),
2226 					   vma->vm_end - vma->vm_start);
2227 }
2228 EXPORT_SYMBOL(remap_vmalloc_range);
2229 
2230 /*
2231  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2232  * have one.
2233  */
2234 void __weak vmalloc_sync_all(void)
2235 {
2236 }
2237 
2238 
2239 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2240 {
2241 	pte_t ***p = data;
2242 
2243 	if (p) {
2244 		*(*p) = pte;
2245 		(*p)++;
2246 	}
2247 	return 0;
2248 }
2249 
2250 /**
2251  *	alloc_vm_area - allocate a range of kernel address space
2252  *	@size:		size of the area
2253  *	@ptes:		returns the PTEs for the address space
2254  *
2255  *	Returns:	NULL on failure, vm_struct on success
2256  *
2257  *	This function reserves a range of kernel address space, and
2258  *	allocates pagetables to map that range.  No actual mappings
2259  *	are created.
2260  *
2261  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2262  *	allocated for the VM area are returned.
2263  */
2264 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2265 {
2266 	struct vm_struct *area;
2267 
2268 	area = get_vm_area_caller(size, VM_IOREMAP,
2269 				__builtin_return_address(0));
2270 	if (area == NULL)
2271 		return NULL;
2272 
2273 	/*
2274 	 * This ensures that page tables are constructed for this region
2275 	 * of kernel virtual address space and mapped into init_mm.
2276 	 */
2277 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2278 				size, f, ptes ? &ptes : NULL)) {
2279 		free_vm_area(area);
2280 		return NULL;
2281 	}
2282 
2283 	return area;
2284 }
2285 EXPORT_SYMBOL_GPL(alloc_vm_area);
2286 
2287 void free_vm_area(struct vm_struct *area)
2288 {
2289 	struct vm_struct *ret;
2290 	ret = remove_vm_area(area->addr);
2291 	BUG_ON(ret != area);
2292 	kfree(area);
2293 }
2294 EXPORT_SYMBOL_GPL(free_vm_area);
2295 
2296 #ifdef CONFIG_SMP
2297 static struct vmap_area *node_to_va(struct rb_node *n)
2298 {
2299 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2300 }
2301 
2302 /**
2303  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2304  * @end: target address
2305  * @pnext: out arg for the next vmap_area
2306  * @pprev: out arg for the previous vmap_area
2307  *
2308  * Returns: %true if either or both of next and prev are found,
2309  *	    %false if no vmap_area exists
2310  *
2311  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2312  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2313  */
2314 static bool pvm_find_next_prev(unsigned long end,
2315 			       struct vmap_area **pnext,
2316 			       struct vmap_area **pprev)
2317 {
2318 	struct rb_node *n = vmap_area_root.rb_node;
2319 	struct vmap_area *va = NULL;
2320 
2321 	while (n) {
2322 		va = rb_entry(n, struct vmap_area, rb_node);
2323 		if (end < va->va_end)
2324 			n = n->rb_left;
2325 		else if (end > va->va_end)
2326 			n = n->rb_right;
2327 		else
2328 			break;
2329 	}
2330 
2331 	if (!va)
2332 		return false;
2333 
2334 	if (va->va_end > end) {
2335 		*pnext = va;
2336 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2337 	} else {
2338 		*pprev = va;
2339 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2340 	}
2341 	return true;
2342 }
2343 
2344 /**
2345  * pvm_determine_end - find the highest aligned address between two vmap_areas
2346  * @pnext: in/out arg for the next vmap_area
2347  * @pprev: in/out arg for the previous vmap_area
2348  * @align: alignment
2349  *
2350  * Returns: determined end address
2351  *
2352  * Find the highest aligned address between *@pnext and *@pprev below
2353  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2354  * down address is between the end addresses of the two vmap_areas.
2355  *
2356  * Please note that the address returned by this function may fall
2357  * inside *@pnext vmap_area.  The caller is responsible for checking
2358  * that.
2359  */
2360 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2361 				       struct vmap_area **pprev,
2362 				       unsigned long align)
2363 {
2364 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2365 	unsigned long addr;
2366 
2367 	if (*pnext)
2368 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2369 	else
2370 		addr = vmalloc_end;
2371 
2372 	while (*pprev && (*pprev)->va_end > addr) {
2373 		*pnext = *pprev;
2374 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2375 	}
2376 
2377 	return addr;
2378 }
2379 
2380 /**
2381  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2382  * @offsets: array containing offset of each area
2383  * @sizes: array containing size of each area
2384  * @nr_vms: the number of areas to allocate
2385  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2386  *
2387  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2388  *	    vm_structs on success, %NULL on failure
2389  *
2390  * Percpu allocator wants to use congruent vm areas so that it can
2391  * maintain the offsets among percpu areas.  This function allocates
2392  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2393  * be scattered pretty far, distance between two areas easily going up
2394  * to gigabytes.  To avoid interacting with regular vmallocs, these
2395  * areas are allocated from top.
2396  *
2397  * Despite its complicated look, this allocator is rather simple.  It
2398  * does everything top-down and scans areas from the end looking for
2399  * matching slot.  While scanning, if any of the areas overlaps with
2400  * existing vmap_area, the base address is pulled down to fit the
2401  * area.  Scanning is repeated till all the areas fit and then all
2402  * necessary data structres are inserted and the result is returned.
2403  */
2404 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2405 				     const size_t *sizes, int nr_vms,
2406 				     size_t align)
2407 {
2408 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2409 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2410 	struct vmap_area **vas, *prev, *next;
2411 	struct vm_struct **vms;
2412 	int area, area2, last_area, term_area;
2413 	unsigned long base, start, end, last_end;
2414 	bool purged = false;
2415 
2416 	/* verify parameters and allocate data structures */
2417 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2418 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2419 		start = offsets[area];
2420 		end = start + sizes[area];
2421 
2422 		/* is everything aligned properly? */
2423 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2424 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2425 
2426 		/* detect the area with the highest address */
2427 		if (start > offsets[last_area])
2428 			last_area = area;
2429 
2430 		for (area2 = 0; area2 < nr_vms; area2++) {
2431 			unsigned long start2 = offsets[area2];
2432 			unsigned long end2 = start2 + sizes[area2];
2433 
2434 			if (area2 == area)
2435 				continue;
2436 
2437 			BUG_ON(start2 >= start && start2 < end);
2438 			BUG_ON(end2 <= end && end2 > start);
2439 		}
2440 	}
2441 	last_end = offsets[last_area] + sizes[last_area];
2442 
2443 	if (vmalloc_end - vmalloc_start < last_end) {
2444 		WARN_ON(true);
2445 		return NULL;
2446 	}
2447 
2448 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2449 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2450 	if (!vas || !vms)
2451 		goto err_free2;
2452 
2453 	for (area = 0; area < nr_vms; area++) {
2454 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2455 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2456 		if (!vas[area] || !vms[area])
2457 			goto err_free;
2458 	}
2459 retry:
2460 	spin_lock(&vmap_area_lock);
2461 
2462 	/* start scanning - we scan from the top, begin with the last area */
2463 	area = term_area = last_area;
2464 	start = offsets[area];
2465 	end = start + sizes[area];
2466 
2467 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2468 		base = vmalloc_end - last_end;
2469 		goto found;
2470 	}
2471 	base = pvm_determine_end(&next, &prev, align) - end;
2472 
2473 	while (true) {
2474 		BUG_ON(next && next->va_end <= base + end);
2475 		BUG_ON(prev && prev->va_end > base + end);
2476 
2477 		/*
2478 		 * base might have underflowed, add last_end before
2479 		 * comparing.
2480 		 */
2481 		if (base + last_end < vmalloc_start + last_end) {
2482 			spin_unlock(&vmap_area_lock);
2483 			if (!purged) {
2484 				purge_vmap_area_lazy();
2485 				purged = true;
2486 				goto retry;
2487 			}
2488 			goto err_free;
2489 		}
2490 
2491 		/*
2492 		 * If next overlaps, move base downwards so that it's
2493 		 * right below next and then recheck.
2494 		 */
2495 		if (next && next->va_start < base + end) {
2496 			base = pvm_determine_end(&next, &prev, align) - end;
2497 			term_area = area;
2498 			continue;
2499 		}
2500 
2501 		/*
2502 		 * If prev overlaps, shift down next and prev and move
2503 		 * base so that it's right below new next and then
2504 		 * recheck.
2505 		 */
2506 		if (prev && prev->va_end > base + start)  {
2507 			next = prev;
2508 			prev = node_to_va(rb_prev(&next->rb_node));
2509 			base = pvm_determine_end(&next, &prev, align) - end;
2510 			term_area = area;
2511 			continue;
2512 		}
2513 
2514 		/*
2515 		 * This area fits, move on to the previous one.  If
2516 		 * the previous one is the terminal one, we're done.
2517 		 */
2518 		area = (area + nr_vms - 1) % nr_vms;
2519 		if (area == term_area)
2520 			break;
2521 		start = offsets[area];
2522 		end = start + sizes[area];
2523 		pvm_find_next_prev(base + end, &next, &prev);
2524 	}
2525 found:
2526 	/* we've found a fitting base, insert all va's */
2527 	for (area = 0; area < nr_vms; area++) {
2528 		struct vmap_area *va = vas[area];
2529 
2530 		va->va_start = base + offsets[area];
2531 		va->va_end = va->va_start + sizes[area];
2532 		__insert_vmap_area(va);
2533 	}
2534 
2535 	vmap_area_pcpu_hole = base + offsets[last_area];
2536 
2537 	spin_unlock(&vmap_area_lock);
2538 
2539 	/* insert all vm's */
2540 	for (area = 0; area < nr_vms; area++)
2541 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2542 				 pcpu_get_vm_areas);
2543 
2544 	kfree(vas);
2545 	return vms;
2546 
2547 err_free:
2548 	for (area = 0; area < nr_vms; area++) {
2549 		kfree(vas[area]);
2550 		kfree(vms[area]);
2551 	}
2552 err_free2:
2553 	kfree(vas);
2554 	kfree(vms);
2555 	return NULL;
2556 }
2557 
2558 /**
2559  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2560  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2561  * @nr_vms: the number of allocated areas
2562  *
2563  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2564  */
2565 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2566 {
2567 	int i;
2568 
2569 	for (i = 0; i < nr_vms; i++)
2570 		free_vm_area(vms[i]);
2571 	kfree(vms);
2572 }
2573 #endif	/* CONFIG_SMP */
2574 
2575 #ifdef CONFIG_PROC_FS
2576 static void *s_start(struct seq_file *m, loff_t *pos)
2577 	__acquires(&vmap_area_lock)
2578 {
2579 	loff_t n = *pos;
2580 	struct vmap_area *va;
2581 
2582 	spin_lock(&vmap_area_lock);
2583 	va = list_first_entry(&vmap_area_list, typeof(*va), list);
2584 	while (n > 0 && &va->list != &vmap_area_list) {
2585 		n--;
2586 		va = list_next_entry(va, list);
2587 	}
2588 	if (!n && &va->list != &vmap_area_list)
2589 		return va;
2590 
2591 	return NULL;
2592 
2593 }
2594 
2595 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2596 {
2597 	struct vmap_area *va = p, *next;
2598 
2599 	++*pos;
2600 	next = list_next_entry(va, list);
2601 	if (&next->list != &vmap_area_list)
2602 		return next;
2603 
2604 	return NULL;
2605 }
2606 
2607 static void s_stop(struct seq_file *m, void *p)
2608 	__releases(&vmap_area_lock)
2609 {
2610 	spin_unlock(&vmap_area_lock);
2611 }
2612 
2613 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2614 {
2615 	if (IS_ENABLED(CONFIG_NUMA)) {
2616 		unsigned int nr, *counters = m->private;
2617 
2618 		if (!counters)
2619 			return;
2620 
2621 		if (v->flags & VM_UNINITIALIZED)
2622 			return;
2623 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2624 		smp_rmb();
2625 
2626 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2627 
2628 		for (nr = 0; nr < v->nr_pages; nr++)
2629 			counters[page_to_nid(v->pages[nr])]++;
2630 
2631 		for_each_node_state(nr, N_HIGH_MEMORY)
2632 			if (counters[nr])
2633 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2634 	}
2635 }
2636 
2637 static int s_show(struct seq_file *m, void *p)
2638 {
2639 	struct vmap_area *va = p;
2640 	struct vm_struct *v;
2641 
2642 	/*
2643 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2644 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2645 	 */
2646 	if (!(va->flags & VM_VM_AREA))
2647 		return 0;
2648 
2649 	v = va->vm;
2650 
2651 	seq_printf(m, "0x%pK-0x%pK %7ld",
2652 		v->addr, v->addr + v->size, v->size);
2653 
2654 	if (v->caller)
2655 		seq_printf(m, " %pS", v->caller);
2656 
2657 	if (v->nr_pages)
2658 		seq_printf(m, " pages=%d", v->nr_pages);
2659 
2660 	if (v->phys_addr)
2661 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2662 
2663 	if (v->flags & VM_IOREMAP)
2664 		seq_puts(m, " ioremap");
2665 
2666 	if (v->flags & VM_ALLOC)
2667 		seq_puts(m, " vmalloc");
2668 
2669 	if (v->flags & VM_MAP)
2670 		seq_puts(m, " vmap");
2671 
2672 	if (v->flags & VM_USERMAP)
2673 		seq_puts(m, " user");
2674 
2675 	if (is_vmalloc_addr(v->pages))
2676 		seq_puts(m, " vpages");
2677 
2678 	show_numa_info(m, v);
2679 	seq_putc(m, '\n');
2680 	return 0;
2681 }
2682 
2683 static const struct seq_operations vmalloc_op = {
2684 	.start = s_start,
2685 	.next = s_next,
2686 	.stop = s_stop,
2687 	.show = s_show,
2688 };
2689 
2690 static int vmalloc_open(struct inode *inode, struct file *file)
2691 {
2692 	if (IS_ENABLED(CONFIG_NUMA))
2693 		return seq_open_private(file, &vmalloc_op,
2694 					nr_node_ids * sizeof(unsigned int));
2695 	else
2696 		return seq_open(file, &vmalloc_op);
2697 }
2698 
2699 static const struct file_operations proc_vmalloc_operations = {
2700 	.open		= vmalloc_open,
2701 	.read		= seq_read,
2702 	.llseek		= seq_lseek,
2703 	.release	= seq_release_private,
2704 };
2705 
2706 static int __init proc_vmalloc_init(void)
2707 {
2708 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2709 	return 0;
2710 }
2711 module_init(proc_vmalloc_init);
2712 
2713 #endif
2714 
2715