xref: /openbmc/linux/mm/vmalloc.c (revision 0eb76ba2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1993  Linus Torvalds
4  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7  *  Numa awareness, Christoph Lameter, SGI, June 2005
8  *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/rcupdate.h>
29 #include <linux/pfn.h>
30 #include <linux/kmemleak.h>
31 #include <linux/atomic.h>
32 #include <linux/compiler.h>
33 #include <linux/llist.h>
34 #include <linux/bitops.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/overflow.h>
37 
38 #include <linux/uaccess.h>
39 #include <asm/tlbflush.h>
40 #include <asm/shmparam.h>
41 
42 #include "internal.h"
43 #include "pgalloc-track.h"
44 
45 bool is_vmalloc_addr(const void *x)
46 {
47 	unsigned long addr = (unsigned long)x;
48 
49 	return addr >= VMALLOC_START && addr < VMALLOC_END;
50 }
51 EXPORT_SYMBOL(is_vmalloc_addr);
52 
53 struct vfree_deferred {
54 	struct llist_head list;
55 	struct work_struct wq;
56 };
57 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
58 
59 static void __vunmap(const void *, int);
60 
61 static void free_work(struct work_struct *w)
62 {
63 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
64 	struct llist_node *t, *llnode;
65 
66 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
67 		__vunmap((void *)llnode, 1);
68 }
69 
70 /*** Page table manipulation functions ***/
71 
72 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
73 			     pgtbl_mod_mask *mask)
74 {
75 	pte_t *pte;
76 
77 	pte = pte_offset_kernel(pmd, addr);
78 	do {
79 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
80 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
81 	} while (pte++, addr += PAGE_SIZE, addr != end);
82 	*mask |= PGTBL_PTE_MODIFIED;
83 }
84 
85 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
86 			     pgtbl_mod_mask *mask)
87 {
88 	pmd_t *pmd;
89 	unsigned long next;
90 	int cleared;
91 
92 	pmd = pmd_offset(pud, addr);
93 	do {
94 		next = pmd_addr_end(addr, end);
95 
96 		cleared = pmd_clear_huge(pmd);
97 		if (cleared || pmd_bad(*pmd))
98 			*mask |= PGTBL_PMD_MODIFIED;
99 
100 		if (cleared)
101 			continue;
102 		if (pmd_none_or_clear_bad(pmd))
103 			continue;
104 		vunmap_pte_range(pmd, addr, next, mask);
105 
106 		cond_resched();
107 	} while (pmd++, addr = next, addr != end);
108 }
109 
110 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
111 			     pgtbl_mod_mask *mask)
112 {
113 	pud_t *pud;
114 	unsigned long next;
115 	int cleared;
116 
117 	pud = pud_offset(p4d, addr);
118 	do {
119 		next = pud_addr_end(addr, end);
120 
121 		cleared = pud_clear_huge(pud);
122 		if (cleared || pud_bad(*pud))
123 			*mask |= PGTBL_PUD_MODIFIED;
124 
125 		if (cleared)
126 			continue;
127 		if (pud_none_or_clear_bad(pud))
128 			continue;
129 		vunmap_pmd_range(pud, addr, next, mask);
130 	} while (pud++, addr = next, addr != end);
131 }
132 
133 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
134 			     pgtbl_mod_mask *mask)
135 {
136 	p4d_t *p4d;
137 	unsigned long next;
138 	int cleared;
139 
140 	p4d = p4d_offset(pgd, addr);
141 	do {
142 		next = p4d_addr_end(addr, end);
143 
144 		cleared = p4d_clear_huge(p4d);
145 		if (cleared || p4d_bad(*p4d))
146 			*mask |= PGTBL_P4D_MODIFIED;
147 
148 		if (cleared)
149 			continue;
150 		if (p4d_none_or_clear_bad(p4d))
151 			continue;
152 		vunmap_pud_range(p4d, addr, next, mask);
153 	} while (p4d++, addr = next, addr != end);
154 }
155 
156 /**
157  * unmap_kernel_range_noflush - unmap kernel VM area
158  * @start: start of the VM area to unmap
159  * @size: size of the VM area to unmap
160  *
161  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
162  * should have been allocated using get_vm_area() and its friends.
163  *
164  * NOTE:
165  * This function does NOT do any cache flushing.  The caller is responsible
166  * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
167  * function and flush_tlb_kernel_range() after.
168  */
169 void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
170 {
171 	unsigned long end = start + size;
172 	unsigned long next;
173 	pgd_t *pgd;
174 	unsigned long addr = start;
175 	pgtbl_mod_mask mask = 0;
176 
177 	BUG_ON(addr >= end);
178 	pgd = pgd_offset_k(addr);
179 	do {
180 		next = pgd_addr_end(addr, end);
181 		if (pgd_bad(*pgd))
182 			mask |= PGTBL_PGD_MODIFIED;
183 		if (pgd_none_or_clear_bad(pgd))
184 			continue;
185 		vunmap_p4d_range(pgd, addr, next, &mask);
186 	} while (pgd++, addr = next, addr != end);
187 
188 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
189 		arch_sync_kernel_mappings(start, end);
190 }
191 
192 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
193 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
194 		pgtbl_mod_mask *mask)
195 {
196 	pte_t *pte;
197 
198 	/*
199 	 * nr is a running index into the array which helps higher level
200 	 * callers keep track of where we're up to.
201 	 */
202 
203 	pte = pte_alloc_kernel_track(pmd, addr, mask);
204 	if (!pte)
205 		return -ENOMEM;
206 	do {
207 		struct page *page = pages[*nr];
208 
209 		if (WARN_ON(!pte_none(*pte)))
210 			return -EBUSY;
211 		if (WARN_ON(!page))
212 			return -ENOMEM;
213 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
214 		(*nr)++;
215 	} while (pte++, addr += PAGE_SIZE, addr != end);
216 	*mask |= PGTBL_PTE_MODIFIED;
217 	return 0;
218 }
219 
220 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
221 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
222 		pgtbl_mod_mask *mask)
223 {
224 	pmd_t *pmd;
225 	unsigned long next;
226 
227 	pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
228 	if (!pmd)
229 		return -ENOMEM;
230 	do {
231 		next = pmd_addr_end(addr, end);
232 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
233 			return -ENOMEM;
234 	} while (pmd++, addr = next, addr != end);
235 	return 0;
236 }
237 
238 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
239 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
240 		pgtbl_mod_mask *mask)
241 {
242 	pud_t *pud;
243 	unsigned long next;
244 
245 	pud = pud_alloc_track(&init_mm, p4d, addr, mask);
246 	if (!pud)
247 		return -ENOMEM;
248 	do {
249 		next = pud_addr_end(addr, end);
250 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
251 			return -ENOMEM;
252 	} while (pud++, addr = next, addr != end);
253 	return 0;
254 }
255 
256 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
257 		unsigned long end, pgprot_t prot, struct page **pages, int *nr,
258 		pgtbl_mod_mask *mask)
259 {
260 	p4d_t *p4d;
261 	unsigned long next;
262 
263 	p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
264 	if (!p4d)
265 		return -ENOMEM;
266 	do {
267 		next = p4d_addr_end(addr, end);
268 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
269 			return -ENOMEM;
270 	} while (p4d++, addr = next, addr != end);
271 	return 0;
272 }
273 
274 /**
275  * map_kernel_range_noflush - map kernel VM area with the specified pages
276  * @addr: start of the VM area to map
277  * @size: size of the VM area to map
278  * @prot: page protection flags to use
279  * @pages: pages to map
280  *
281  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
282  * have been allocated using get_vm_area() and its friends.
283  *
284  * NOTE:
285  * This function does NOT do any cache flushing.  The caller is responsible for
286  * calling flush_cache_vmap() on to-be-mapped areas before calling this
287  * function.
288  *
289  * RETURNS:
290  * 0 on success, -errno on failure.
291  */
292 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
293 			     pgprot_t prot, struct page **pages)
294 {
295 	unsigned long start = addr;
296 	unsigned long end = addr + size;
297 	unsigned long next;
298 	pgd_t *pgd;
299 	int err = 0;
300 	int nr = 0;
301 	pgtbl_mod_mask mask = 0;
302 
303 	BUG_ON(addr >= end);
304 	pgd = pgd_offset_k(addr);
305 	do {
306 		next = pgd_addr_end(addr, end);
307 		if (pgd_bad(*pgd))
308 			mask |= PGTBL_PGD_MODIFIED;
309 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
310 		if (err)
311 			return err;
312 	} while (pgd++, addr = next, addr != end);
313 
314 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
315 		arch_sync_kernel_mappings(start, end);
316 
317 	return 0;
318 }
319 
320 int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
321 		struct page **pages)
322 {
323 	int ret;
324 
325 	ret = map_kernel_range_noflush(start, size, prot, pages);
326 	flush_cache_vmap(start, start + size);
327 	return ret;
328 }
329 
330 int is_vmalloc_or_module_addr(const void *x)
331 {
332 	/*
333 	 * ARM, x86-64 and sparc64 put modules in a special place,
334 	 * and fall back on vmalloc() if that fails. Others
335 	 * just put it in the vmalloc space.
336 	 */
337 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
338 	unsigned long addr = (unsigned long)x;
339 	if (addr >= MODULES_VADDR && addr < MODULES_END)
340 		return 1;
341 #endif
342 	return is_vmalloc_addr(x);
343 }
344 
345 /*
346  * Walk a vmap address to the struct page it maps.
347  */
348 struct page *vmalloc_to_page(const void *vmalloc_addr)
349 {
350 	unsigned long addr = (unsigned long) vmalloc_addr;
351 	struct page *page = NULL;
352 	pgd_t *pgd = pgd_offset_k(addr);
353 	p4d_t *p4d;
354 	pud_t *pud;
355 	pmd_t *pmd;
356 	pte_t *ptep, pte;
357 
358 	/*
359 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
360 	 * architectures that do not vmalloc module space
361 	 */
362 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
363 
364 	if (pgd_none(*pgd))
365 		return NULL;
366 	p4d = p4d_offset(pgd, addr);
367 	if (p4d_none(*p4d))
368 		return NULL;
369 	pud = pud_offset(p4d, addr);
370 
371 	/*
372 	 * Don't dereference bad PUD or PMD (below) entries. This will also
373 	 * identify huge mappings, which we may encounter on architectures
374 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
375 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
376 	 * not [unambiguously] associated with a struct page, so there is
377 	 * no correct value to return for them.
378 	 */
379 	WARN_ON_ONCE(pud_bad(*pud));
380 	if (pud_none(*pud) || pud_bad(*pud))
381 		return NULL;
382 	pmd = pmd_offset(pud, addr);
383 	WARN_ON_ONCE(pmd_bad(*pmd));
384 	if (pmd_none(*pmd) || pmd_bad(*pmd))
385 		return NULL;
386 
387 	ptep = pte_offset_map(pmd, addr);
388 	pte = *ptep;
389 	if (pte_present(pte))
390 		page = pte_page(pte);
391 	pte_unmap(ptep);
392 	return page;
393 }
394 EXPORT_SYMBOL(vmalloc_to_page);
395 
396 /*
397  * Map a vmalloc()-space virtual address to the physical page frame number.
398  */
399 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
400 {
401 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
402 }
403 EXPORT_SYMBOL(vmalloc_to_pfn);
404 
405 
406 /*** Global kva allocator ***/
407 
408 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
409 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
410 
411 
412 static DEFINE_SPINLOCK(vmap_area_lock);
413 static DEFINE_SPINLOCK(free_vmap_area_lock);
414 /* Export for kexec only */
415 LIST_HEAD(vmap_area_list);
416 static struct rb_root vmap_area_root = RB_ROOT;
417 static bool vmap_initialized __read_mostly;
418 
419 static struct rb_root purge_vmap_area_root = RB_ROOT;
420 static LIST_HEAD(purge_vmap_area_list);
421 static DEFINE_SPINLOCK(purge_vmap_area_lock);
422 
423 /*
424  * This kmem_cache is used for vmap_area objects. Instead of
425  * allocating from slab we reuse an object from this cache to
426  * make things faster. Especially in "no edge" splitting of
427  * free block.
428  */
429 static struct kmem_cache *vmap_area_cachep;
430 
431 /*
432  * This linked list is used in pair with free_vmap_area_root.
433  * It gives O(1) access to prev/next to perform fast coalescing.
434  */
435 static LIST_HEAD(free_vmap_area_list);
436 
437 /*
438  * This augment red-black tree represents the free vmap space.
439  * All vmap_area objects in this tree are sorted by va->va_start
440  * address. It is used for allocation and merging when a vmap
441  * object is released.
442  *
443  * Each vmap_area node contains a maximum available free block
444  * of its sub-tree, right or left. Therefore it is possible to
445  * find a lowest match of free area.
446  */
447 static struct rb_root free_vmap_area_root = RB_ROOT;
448 
449 /*
450  * Preload a CPU with one object for "no edge" split case. The
451  * aim is to get rid of allocations from the atomic context, thus
452  * to use more permissive allocation masks.
453  */
454 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
455 
456 static __always_inline unsigned long
457 va_size(struct vmap_area *va)
458 {
459 	return (va->va_end - va->va_start);
460 }
461 
462 static __always_inline unsigned long
463 get_subtree_max_size(struct rb_node *node)
464 {
465 	struct vmap_area *va;
466 
467 	va = rb_entry_safe(node, struct vmap_area, rb_node);
468 	return va ? va->subtree_max_size : 0;
469 }
470 
471 /*
472  * Gets called when remove the node and rotate.
473  */
474 static __always_inline unsigned long
475 compute_subtree_max_size(struct vmap_area *va)
476 {
477 	return max3(va_size(va),
478 		get_subtree_max_size(va->rb_node.rb_left),
479 		get_subtree_max_size(va->rb_node.rb_right));
480 }
481 
482 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
483 	struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
484 
485 static void purge_vmap_area_lazy(void);
486 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
487 static unsigned long lazy_max_pages(void);
488 
489 static atomic_long_t nr_vmalloc_pages;
490 
491 unsigned long vmalloc_nr_pages(void)
492 {
493 	return atomic_long_read(&nr_vmalloc_pages);
494 }
495 
496 static struct vmap_area *__find_vmap_area(unsigned long addr)
497 {
498 	struct rb_node *n = vmap_area_root.rb_node;
499 
500 	while (n) {
501 		struct vmap_area *va;
502 
503 		va = rb_entry(n, struct vmap_area, rb_node);
504 		if (addr < va->va_start)
505 			n = n->rb_left;
506 		else if (addr >= va->va_end)
507 			n = n->rb_right;
508 		else
509 			return va;
510 	}
511 
512 	return NULL;
513 }
514 
515 /*
516  * This function returns back addresses of parent node
517  * and its left or right link for further processing.
518  *
519  * Otherwise NULL is returned. In that case all further
520  * steps regarding inserting of conflicting overlap range
521  * have to be declined and actually considered as a bug.
522  */
523 static __always_inline struct rb_node **
524 find_va_links(struct vmap_area *va,
525 	struct rb_root *root, struct rb_node *from,
526 	struct rb_node **parent)
527 {
528 	struct vmap_area *tmp_va;
529 	struct rb_node **link;
530 
531 	if (root) {
532 		link = &root->rb_node;
533 		if (unlikely(!*link)) {
534 			*parent = NULL;
535 			return link;
536 		}
537 	} else {
538 		link = &from;
539 	}
540 
541 	/*
542 	 * Go to the bottom of the tree. When we hit the last point
543 	 * we end up with parent rb_node and correct direction, i name
544 	 * it link, where the new va->rb_node will be attached to.
545 	 */
546 	do {
547 		tmp_va = rb_entry(*link, struct vmap_area, rb_node);
548 
549 		/*
550 		 * During the traversal we also do some sanity check.
551 		 * Trigger the BUG() if there are sides(left/right)
552 		 * or full overlaps.
553 		 */
554 		if (va->va_start < tmp_va->va_end &&
555 				va->va_end <= tmp_va->va_start)
556 			link = &(*link)->rb_left;
557 		else if (va->va_end > tmp_va->va_start &&
558 				va->va_start >= tmp_va->va_end)
559 			link = &(*link)->rb_right;
560 		else {
561 			WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
562 				va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
563 
564 			return NULL;
565 		}
566 	} while (*link);
567 
568 	*parent = &tmp_va->rb_node;
569 	return link;
570 }
571 
572 static __always_inline struct list_head *
573 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
574 {
575 	struct list_head *list;
576 
577 	if (unlikely(!parent))
578 		/*
579 		 * The red-black tree where we try to find VA neighbors
580 		 * before merging or inserting is empty, i.e. it means
581 		 * there is no free vmap space. Normally it does not
582 		 * happen but we handle this case anyway.
583 		 */
584 		return NULL;
585 
586 	list = &rb_entry(parent, struct vmap_area, rb_node)->list;
587 	return (&parent->rb_right == link ? list->next : list);
588 }
589 
590 static __always_inline void
591 link_va(struct vmap_area *va, struct rb_root *root,
592 	struct rb_node *parent, struct rb_node **link, struct list_head *head)
593 {
594 	/*
595 	 * VA is still not in the list, but we can
596 	 * identify its future previous list_head node.
597 	 */
598 	if (likely(parent)) {
599 		head = &rb_entry(parent, struct vmap_area, rb_node)->list;
600 		if (&parent->rb_right != link)
601 			head = head->prev;
602 	}
603 
604 	/* Insert to the rb-tree */
605 	rb_link_node(&va->rb_node, parent, link);
606 	if (root == &free_vmap_area_root) {
607 		/*
608 		 * Some explanation here. Just perform simple insertion
609 		 * to the tree. We do not set va->subtree_max_size to
610 		 * its current size before calling rb_insert_augmented().
611 		 * It is because of we populate the tree from the bottom
612 		 * to parent levels when the node _is_ in the tree.
613 		 *
614 		 * Therefore we set subtree_max_size to zero after insertion,
615 		 * to let __augment_tree_propagate_from() puts everything to
616 		 * the correct order later on.
617 		 */
618 		rb_insert_augmented(&va->rb_node,
619 			root, &free_vmap_area_rb_augment_cb);
620 		va->subtree_max_size = 0;
621 	} else {
622 		rb_insert_color(&va->rb_node, root);
623 	}
624 
625 	/* Address-sort this list */
626 	list_add(&va->list, head);
627 }
628 
629 static __always_inline void
630 unlink_va(struct vmap_area *va, struct rb_root *root)
631 {
632 	if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
633 		return;
634 
635 	if (root == &free_vmap_area_root)
636 		rb_erase_augmented(&va->rb_node,
637 			root, &free_vmap_area_rb_augment_cb);
638 	else
639 		rb_erase(&va->rb_node, root);
640 
641 	list_del(&va->list);
642 	RB_CLEAR_NODE(&va->rb_node);
643 }
644 
645 #if DEBUG_AUGMENT_PROPAGATE_CHECK
646 static void
647 augment_tree_propagate_check(void)
648 {
649 	struct vmap_area *va;
650 	unsigned long computed_size;
651 
652 	list_for_each_entry(va, &free_vmap_area_list, list) {
653 		computed_size = compute_subtree_max_size(va);
654 		if (computed_size != va->subtree_max_size)
655 			pr_emerg("tree is corrupted: %lu, %lu\n",
656 				va_size(va), va->subtree_max_size);
657 	}
658 }
659 #endif
660 
661 /*
662  * This function populates subtree_max_size from bottom to upper
663  * levels starting from VA point. The propagation must be done
664  * when VA size is modified by changing its va_start/va_end. Or
665  * in case of newly inserting of VA to the tree.
666  *
667  * It means that __augment_tree_propagate_from() must be called:
668  * - After VA has been inserted to the tree(free path);
669  * - After VA has been shrunk(allocation path);
670  * - After VA has been increased(merging path).
671  *
672  * Please note that, it does not mean that upper parent nodes
673  * and their subtree_max_size are recalculated all the time up
674  * to the root node.
675  *
676  *       4--8
677  *        /\
678  *       /  \
679  *      /    \
680  *    2--2  8--8
681  *
682  * For example if we modify the node 4, shrinking it to 2, then
683  * no any modification is required. If we shrink the node 2 to 1
684  * its subtree_max_size is updated only, and set to 1. If we shrink
685  * the node 8 to 6, then its subtree_max_size is set to 6 and parent
686  * node becomes 4--6.
687  */
688 static __always_inline void
689 augment_tree_propagate_from(struct vmap_area *va)
690 {
691 	/*
692 	 * Populate the tree from bottom towards the root until
693 	 * the calculated maximum available size of checked node
694 	 * is equal to its current one.
695 	 */
696 	free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
697 
698 #if DEBUG_AUGMENT_PROPAGATE_CHECK
699 	augment_tree_propagate_check();
700 #endif
701 }
702 
703 static void
704 insert_vmap_area(struct vmap_area *va,
705 	struct rb_root *root, struct list_head *head)
706 {
707 	struct rb_node **link;
708 	struct rb_node *parent;
709 
710 	link = find_va_links(va, root, NULL, &parent);
711 	if (link)
712 		link_va(va, root, parent, link, head);
713 }
714 
715 static void
716 insert_vmap_area_augment(struct vmap_area *va,
717 	struct rb_node *from, struct rb_root *root,
718 	struct list_head *head)
719 {
720 	struct rb_node **link;
721 	struct rb_node *parent;
722 
723 	if (from)
724 		link = find_va_links(va, NULL, from, &parent);
725 	else
726 		link = find_va_links(va, root, NULL, &parent);
727 
728 	if (link) {
729 		link_va(va, root, parent, link, head);
730 		augment_tree_propagate_from(va);
731 	}
732 }
733 
734 /*
735  * Merge de-allocated chunk of VA memory with previous
736  * and next free blocks. If coalesce is not done a new
737  * free area is inserted. If VA has been merged, it is
738  * freed.
739  *
740  * Please note, it can return NULL in case of overlap
741  * ranges, followed by WARN() report. Despite it is a
742  * buggy behaviour, a system can be alive and keep
743  * ongoing.
744  */
745 static __always_inline struct vmap_area *
746 merge_or_add_vmap_area(struct vmap_area *va,
747 	struct rb_root *root, struct list_head *head)
748 {
749 	struct vmap_area *sibling;
750 	struct list_head *next;
751 	struct rb_node **link;
752 	struct rb_node *parent;
753 	bool merged = false;
754 
755 	/*
756 	 * Find a place in the tree where VA potentially will be
757 	 * inserted, unless it is merged with its sibling/siblings.
758 	 */
759 	link = find_va_links(va, root, NULL, &parent);
760 	if (!link)
761 		return NULL;
762 
763 	/*
764 	 * Get next node of VA to check if merging can be done.
765 	 */
766 	next = get_va_next_sibling(parent, link);
767 	if (unlikely(next == NULL))
768 		goto insert;
769 
770 	/*
771 	 * start            end
772 	 * |                |
773 	 * |<------VA------>|<-----Next----->|
774 	 *                  |                |
775 	 *                  start            end
776 	 */
777 	if (next != head) {
778 		sibling = list_entry(next, struct vmap_area, list);
779 		if (sibling->va_start == va->va_end) {
780 			sibling->va_start = va->va_start;
781 
782 			/* Free vmap_area object. */
783 			kmem_cache_free(vmap_area_cachep, va);
784 
785 			/* Point to the new merged area. */
786 			va = sibling;
787 			merged = true;
788 		}
789 	}
790 
791 	/*
792 	 * start            end
793 	 * |                |
794 	 * |<-----Prev----->|<------VA------>|
795 	 *                  |                |
796 	 *                  start            end
797 	 */
798 	if (next->prev != head) {
799 		sibling = list_entry(next->prev, struct vmap_area, list);
800 		if (sibling->va_end == va->va_start) {
801 			/*
802 			 * If both neighbors are coalesced, it is important
803 			 * to unlink the "next" node first, followed by merging
804 			 * with "previous" one. Otherwise the tree might not be
805 			 * fully populated if a sibling's augmented value is
806 			 * "normalized" because of rotation operations.
807 			 */
808 			if (merged)
809 				unlink_va(va, root);
810 
811 			sibling->va_end = va->va_end;
812 
813 			/* Free vmap_area object. */
814 			kmem_cache_free(vmap_area_cachep, va);
815 
816 			/* Point to the new merged area. */
817 			va = sibling;
818 			merged = true;
819 		}
820 	}
821 
822 insert:
823 	if (!merged)
824 		link_va(va, root, parent, link, head);
825 
826 	return va;
827 }
828 
829 static __always_inline struct vmap_area *
830 merge_or_add_vmap_area_augment(struct vmap_area *va,
831 	struct rb_root *root, struct list_head *head)
832 {
833 	va = merge_or_add_vmap_area(va, root, head);
834 	if (va)
835 		augment_tree_propagate_from(va);
836 
837 	return va;
838 }
839 
840 static __always_inline bool
841 is_within_this_va(struct vmap_area *va, unsigned long size,
842 	unsigned long align, unsigned long vstart)
843 {
844 	unsigned long nva_start_addr;
845 
846 	if (va->va_start > vstart)
847 		nva_start_addr = ALIGN(va->va_start, align);
848 	else
849 		nva_start_addr = ALIGN(vstart, align);
850 
851 	/* Can be overflowed due to big size or alignment. */
852 	if (nva_start_addr + size < nva_start_addr ||
853 			nva_start_addr < vstart)
854 		return false;
855 
856 	return (nva_start_addr + size <= va->va_end);
857 }
858 
859 /*
860  * Find the first free block(lowest start address) in the tree,
861  * that will accomplish the request corresponding to passing
862  * parameters.
863  */
864 static __always_inline struct vmap_area *
865 find_vmap_lowest_match(unsigned long size,
866 	unsigned long align, unsigned long vstart)
867 {
868 	struct vmap_area *va;
869 	struct rb_node *node;
870 	unsigned long length;
871 
872 	/* Start from the root. */
873 	node = free_vmap_area_root.rb_node;
874 
875 	/* Adjust the search size for alignment overhead. */
876 	length = size + align - 1;
877 
878 	while (node) {
879 		va = rb_entry(node, struct vmap_area, rb_node);
880 
881 		if (get_subtree_max_size(node->rb_left) >= length &&
882 				vstart < va->va_start) {
883 			node = node->rb_left;
884 		} else {
885 			if (is_within_this_va(va, size, align, vstart))
886 				return va;
887 
888 			/*
889 			 * Does not make sense to go deeper towards the right
890 			 * sub-tree if it does not have a free block that is
891 			 * equal or bigger to the requested search length.
892 			 */
893 			if (get_subtree_max_size(node->rb_right) >= length) {
894 				node = node->rb_right;
895 				continue;
896 			}
897 
898 			/*
899 			 * OK. We roll back and find the first right sub-tree,
900 			 * that will satisfy the search criteria. It can happen
901 			 * only once due to "vstart" restriction.
902 			 */
903 			while ((node = rb_parent(node))) {
904 				va = rb_entry(node, struct vmap_area, rb_node);
905 				if (is_within_this_va(va, size, align, vstart))
906 					return va;
907 
908 				if (get_subtree_max_size(node->rb_right) >= length &&
909 						vstart <= va->va_start) {
910 					node = node->rb_right;
911 					break;
912 				}
913 			}
914 		}
915 	}
916 
917 	return NULL;
918 }
919 
920 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
921 #include <linux/random.h>
922 
923 static struct vmap_area *
924 find_vmap_lowest_linear_match(unsigned long size,
925 	unsigned long align, unsigned long vstart)
926 {
927 	struct vmap_area *va;
928 
929 	list_for_each_entry(va, &free_vmap_area_list, list) {
930 		if (!is_within_this_va(va, size, align, vstart))
931 			continue;
932 
933 		return va;
934 	}
935 
936 	return NULL;
937 }
938 
939 static void
940 find_vmap_lowest_match_check(unsigned long size)
941 {
942 	struct vmap_area *va_1, *va_2;
943 	unsigned long vstart;
944 	unsigned int rnd;
945 
946 	get_random_bytes(&rnd, sizeof(rnd));
947 	vstart = VMALLOC_START + rnd;
948 
949 	va_1 = find_vmap_lowest_match(size, 1, vstart);
950 	va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
951 
952 	if (va_1 != va_2)
953 		pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
954 			va_1, va_2, vstart);
955 }
956 #endif
957 
958 enum fit_type {
959 	NOTHING_FIT = 0,
960 	FL_FIT_TYPE = 1,	/* full fit */
961 	LE_FIT_TYPE = 2,	/* left edge fit */
962 	RE_FIT_TYPE = 3,	/* right edge fit */
963 	NE_FIT_TYPE = 4		/* no edge fit */
964 };
965 
966 static __always_inline enum fit_type
967 classify_va_fit_type(struct vmap_area *va,
968 	unsigned long nva_start_addr, unsigned long size)
969 {
970 	enum fit_type type;
971 
972 	/* Check if it is within VA. */
973 	if (nva_start_addr < va->va_start ||
974 			nva_start_addr + size > va->va_end)
975 		return NOTHING_FIT;
976 
977 	/* Now classify. */
978 	if (va->va_start == nva_start_addr) {
979 		if (va->va_end == nva_start_addr + size)
980 			type = FL_FIT_TYPE;
981 		else
982 			type = LE_FIT_TYPE;
983 	} else if (va->va_end == nva_start_addr + size) {
984 		type = RE_FIT_TYPE;
985 	} else {
986 		type = NE_FIT_TYPE;
987 	}
988 
989 	return type;
990 }
991 
992 static __always_inline int
993 adjust_va_to_fit_type(struct vmap_area *va,
994 	unsigned long nva_start_addr, unsigned long size,
995 	enum fit_type type)
996 {
997 	struct vmap_area *lva = NULL;
998 
999 	if (type == FL_FIT_TYPE) {
1000 		/*
1001 		 * No need to split VA, it fully fits.
1002 		 *
1003 		 * |               |
1004 		 * V      NVA      V
1005 		 * |---------------|
1006 		 */
1007 		unlink_va(va, &free_vmap_area_root);
1008 		kmem_cache_free(vmap_area_cachep, va);
1009 	} else if (type == LE_FIT_TYPE) {
1010 		/*
1011 		 * Split left edge of fit VA.
1012 		 *
1013 		 * |       |
1014 		 * V  NVA  V   R
1015 		 * |-------|-------|
1016 		 */
1017 		va->va_start += size;
1018 	} else if (type == RE_FIT_TYPE) {
1019 		/*
1020 		 * Split right edge of fit VA.
1021 		 *
1022 		 *         |       |
1023 		 *     L   V  NVA  V
1024 		 * |-------|-------|
1025 		 */
1026 		va->va_end = nva_start_addr;
1027 	} else if (type == NE_FIT_TYPE) {
1028 		/*
1029 		 * Split no edge of fit VA.
1030 		 *
1031 		 *     |       |
1032 		 *   L V  NVA  V R
1033 		 * |---|-------|---|
1034 		 */
1035 		lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1036 		if (unlikely(!lva)) {
1037 			/*
1038 			 * For percpu allocator we do not do any pre-allocation
1039 			 * and leave it as it is. The reason is it most likely
1040 			 * never ends up with NE_FIT_TYPE splitting. In case of
1041 			 * percpu allocations offsets and sizes are aligned to
1042 			 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1043 			 * are its main fitting cases.
1044 			 *
1045 			 * There are a few exceptions though, as an example it is
1046 			 * a first allocation (early boot up) when we have "one"
1047 			 * big free space that has to be split.
1048 			 *
1049 			 * Also we can hit this path in case of regular "vmap"
1050 			 * allocations, if "this" current CPU was not preloaded.
1051 			 * See the comment in alloc_vmap_area() why. If so, then
1052 			 * GFP_NOWAIT is used instead to get an extra object for
1053 			 * split purpose. That is rare and most time does not
1054 			 * occur.
1055 			 *
1056 			 * What happens if an allocation gets failed. Basically,
1057 			 * an "overflow" path is triggered to purge lazily freed
1058 			 * areas to free some memory, then, the "retry" path is
1059 			 * triggered to repeat one more time. See more details
1060 			 * in alloc_vmap_area() function.
1061 			 */
1062 			lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1063 			if (!lva)
1064 				return -1;
1065 		}
1066 
1067 		/*
1068 		 * Build the remainder.
1069 		 */
1070 		lva->va_start = va->va_start;
1071 		lva->va_end = nva_start_addr;
1072 
1073 		/*
1074 		 * Shrink this VA to remaining size.
1075 		 */
1076 		va->va_start = nva_start_addr + size;
1077 	} else {
1078 		return -1;
1079 	}
1080 
1081 	if (type != FL_FIT_TYPE) {
1082 		augment_tree_propagate_from(va);
1083 
1084 		if (lva)	/* type == NE_FIT_TYPE */
1085 			insert_vmap_area_augment(lva, &va->rb_node,
1086 				&free_vmap_area_root, &free_vmap_area_list);
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 /*
1093  * Returns a start address of the newly allocated area, if success.
1094  * Otherwise a vend is returned that indicates failure.
1095  */
1096 static __always_inline unsigned long
1097 __alloc_vmap_area(unsigned long size, unsigned long align,
1098 	unsigned long vstart, unsigned long vend)
1099 {
1100 	unsigned long nva_start_addr;
1101 	struct vmap_area *va;
1102 	enum fit_type type;
1103 	int ret;
1104 
1105 	va = find_vmap_lowest_match(size, align, vstart);
1106 	if (unlikely(!va))
1107 		return vend;
1108 
1109 	if (va->va_start > vstart)
1110 		nva_start_addr = ALIGN(va->va_start, align);
1111 	else
1112 		nva_start_addr = ALIGN(vstart, align);
1113 
1114 	/* Check the "vend" restriction. */
1115 	if (nva_start_addr + size > vend)
1116 		return vend;
1117 
1118 	/* Classify what we have found. */
1119 	type = classify_va_fit_type(va, nva_start_addr, size);
1120 	if (WARN_ON_ONCE(type == NOTHING_FIT))
1121 		return vend;
1122 
1123 	/* Update the free vmap_area. */
1124 	ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1125 	if (ret)
1126 		return vend;
1127 
1128 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1129 	find_vmap_lowest_match_check(size);
1130 #endif
1131 
1132 	return nva_start_addr;
1133 }
1134 
1135 /*
1136  * Free a region of KVA allocated by alloc_vmap_area
1137  */
1138 static void free_vmap_area(struct vmap_area *va)
1139 {
1140 	/*
1141 	 * Remove from the busy tree/list.
1142 	 */
1143 	spin_lock(&vmap_area_lock);
1144 	unlink_va(va, &vmap_area_root);
1145 	spin_unlock(&vmap_area_lock);
1146 
1147 	/*
1148 	 * Insert/Merge it back to the free tree/list.
1149 	 */
1150 	spin_lock(&free_vmap_area_lock);
1151 	merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1152 	spin_unlock(&free_vmap_area_lock);
1153 }
1154 
1155 /*
1156  * Allocate a region of KVA of the specified size and alignment, within the
1157  * vstart and vend.
1158  */
1159 static struct vmap_area *alloc_vmap_area(unsigned long size,
1160 				unsigned long align,
1161 				unsigned long vstart, unsigned long vend,
1162 				int node, gfp_t gfp_mask)
1163 {
1164 	struct vmap_area *va, *pva;
1165 	unsigned long addr;
1166 	int purged = 0;
1167 	int ret;
1168 
1169 	BUG_ON(!size);
1170 	BUG_ON(offset_in_page(size));
1171 	BUG_ON(!is_power_of_2(align));
1172 
1173 	if (unlikely(!vmap_initialized))
1174 		return ERR_PTR(-EBUSY);
1175 
1176 	might_sleep();
1177 	gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1178 
1179 	va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1180 	if (unlikely(!va))
1181 		return ERR_PTR(-ENOMEM);
1182 
1183 	/*
1184 	 * Only scan the relevant parts containing pointers to other objects
1185 	 * to avoid false negatives.
1186 	 */
1187 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1188 
1189 retry:
1190 	/*
1191 	 * Preload this CPU with one extra vmap_area object. It is used
1192 	 * when fit type of free area is NE_FIT_TYPE. Please note, it
1193 	 * does not guarantee that an allocation occurs on a CPU that
1194 	 * is preloaded, instead we minimize the case when it is not.
1195 	 * It can happen because of cpu migration, because there is a
1196 	 * race until the below spinlock is taken.
1197 	 *
1198 	 * The preload is done in non-atomic context, thus it allows us
1199 	 * to use more permissive allocation masks to be more stable under
1200 	 * low memory condition and high memory pressure. In rare case,
1201 	 * if not preloaded, GFP_NOWAIT is used.
1202 	 *
1203 	 * Set "pva" to NULL here, because of "retry" path.
1204 	 */
1205 	pva = NULL;
1206 
1207 	if (!this_cpu_read(ne_fit_preload_node))
1208 		/*
1209 		 * Even if it fails we do not really care about that.
1210 		 * Just proceed as it is. If needed "overflow" path
1211 		 * will refill the cache we allocate from.
1212 		 */
1213 		pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1214 
1215 	spin_lock(&free_vmap_area_lock);
1216 
1217 	if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1218 		kmem_cache_free(vmap_area_cachep, pva);
1219 
1220 	/*
1221 	 * If an allocation fails, the "vend" address is
1222 	 * returned. Therefore trigger the overflow path.
1223 	 */
1224 	addr = __alloc_vmap_area(size, align, vstart, vend);
1225 	spin_unlock(&free_vmap_area_lock);
1226 
1227 	if (unlikely(addr == vend))
1228 		goto overflow;
1229 
1230 	va->va_start = addr;
1231 	va->va_end = addr + size;
1232 	va->vm = NULL;
1233 
1234 
1235 	spin_lock(&vmap_area_lock);
1236 	insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1237 	spin_unlock(&vmap_area_lock);
1238 
1239 	BUG_ON(!IS_ALIGNED(va->va_start, align));
1240 	BUG_ON(va->va_start < vstart);
1241 	BUG_ON(va->va_end > vend);
1242 
1243 	ret = kasan_populate_vmalloc(addr, size);
1244 	if (ret) {
1245 		free_vmap_area(va);
1246 		return ERR_PTR(ret);
1247 	}
1248 
1249 	return va;
1250 
1251 overflow:
1252 	if (!purged) {
1253 		purge_vmap_area_lazy();
1254 		purged = 1;
1255 		goto retry;
1256 	}
1257 
1258 	if (gfpflags_allow_blocking(gfp_mask)) {
1259 		unsigned long freed = 0;
1260 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1261 		if (freed > 0) {
1262 			purged = 0;
1263 			goto retry;
1264 		}
1265 	}
1266 
1267 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1268 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1269 			size);
1270 
1271 	kmem_cache_free(vmap_area_cachep, va);
1272 	return ERR_PTR(-EBUSY);
1273 }
1274 
1275 int register_vmap_purge_notifier(struct notifier_block *nb)
1276 {
1277 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
1278 }
1279 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1280 
1281 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1282 {
1283 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1284 }
1285 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1286 
1287 /*
1288  * lazy_max_pages is the maximum amount of virtual address space we gather up
1289  * before attempting to purge with a TLB flush.
1290  *
1291  * There is a tradeoff here: a larger number will cover more kernel page tables
1292  * and take slightly longer to purge, but it will linearly reduce the number of
1293  * global TLB flushes that must be performed. It would seem natural to scale
1294  * this number up linearly with the number of CPUs (because vmapping activity
1295  * could also scale linearly with the number of CPUs), however it is likely
1296  * that in practice, workloads might be constrained in other ways that mean
1297  * vmap activity will not scale linearly with CPUs. Also, I want to be
1298  * conservative and not introduce a big latency on huge systems, so go with
1299  * a less aggressive log scale. It will still be an improvement over the old
1300  * code, and it will be simple to change the scale factor if we find that it
1301  * becomes a problem on bigger systems.
1302  */
1303 static unsigned long lazy_max_pages(void)
1304 {
1305 	unsigned int log;
1306 
1307 	log = fls(num_online_cpus());
1308 
1309 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1310 }
1311 
1312 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1313 
1314 /*
1315  * Serialize vmap purging.  There is no actual criticial section protected
1316  * by this look, but we want to avoid concurrent calls for performance
1317  * reasons and to make the pcpu_get_vm_areas more deterministic.
1318  */
1319 static DEFINE_MUTEX(vmap_purge_lock);
1320 
1321 /* for per-CPU blocks */
1322 static void purge_fragmented_blocks_allcpus(void);
1323 
1324 /*
1325  * called before a call to iounmap() if the caller wants vm_area_struct's
1326  * immediately freed.
1327  */
1328 void set_iounmap_nonlazy(void)
1329 {
1330 	atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1331 }
1332 
1333 /*
1334  * Purges all lazily-freed vmap areas.
1335  */
1336 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1337 {
1338 	unsigned long resched_threshold;
1339 	struct list_head local_pure_list;
1340 	struct vmap_area *va, *n_va;
1341 
1342 	lockdep_assert_held(&vmap_purge_lock);
1343 
1344 	spin_lock(&purge_vmap_area_lock);
1345 	purge_vmap_area_root = RB_ROOT;
1346 	list_replace_init(&purge_vmap_area_list, &local_pure_list);
1347 	spin_unlock(&purge_vmap_area_lock);
1348 
1349 	if (unlikely(list_empty(&local_pure_list)))
1350 		return false;
1351 
1352 	start = min(start,
1353 		list_first_entry(&local_pure_list,
1354 			struct vmap_area, list)->va_start);
1355 
1356 	end = max(end,
1357 		list_last_entry(&local_pure_list,
1358 			struct vmap_area, list)->va_end);
1359 
1360 	flush_tlb_kernel_range(start, end);
1361 	resched_threshold = lazy_max_pages() << 1;
1362 
1363 	spin_lock(&free_vmap_area_lock);
1364 	list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1365 		unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1366 		unsigned long orig_start = va->va_start;
1367 		unsigned long orig_end = va->va_end;
1368 
1369 		/*
1370 		 * Finally insert or merge lazily-freed area. It is
1371 		 * detached and there is no need to "unlink" it from
1372 		 * anything.
1373 		 */
1374 		va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1375 				&free_vmap_area_list);
1376 
1377 		if (!va)
1378 			continue;
1379 
1380 		if (is_vmalloc_or_module_addr((void *)orig_start))
1381 			kasan_release_vmalloc(orig_start, orig_end,
1382 					      va->va_start, va->va_end);
1383 
1384 		atomic_long_sub(nr, &vmap_lazy_nr);
1385 
1386 		if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1387 			cond_resched_lock(&free_vmap_area_lock);
1388 	}
1389 	spin_unlock(&free_vmap_area_lock);
1390 	return true;
1391 }
1392 
1393 /*
1394  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1395  * is already purging.
1396  */
1397 static void try_purge_vmap_area_lazy(void)
1398 {
1399 	if (mutex_trylock(&vmap_purge_lock)) {
1400 		__purge_vmap_area_lazy(ULONG_MAX, 0);
1401 		mutex_unlock(&vmap_purge_lock);
1402 	}
1403 }
1404 
1405 /*
1406  * Kick off a purge of the outstanding lazy areas.
1407  */
1408 static void purge_vmap_area_lazy(void)
1409 {
1410 	mutex_lock(&vmap_purge_lock);
1411 	purge_fragmented_blocks_allcpus();
1412 	__purge_vmap_area_lazy(ULONG_MAX, 0);
1413 	mutex_unlock(&vmap_purge_lock);
1414 }
1415 
1416 /*
1417  * Free a vmap area, caller ensuring that the area has been unmapped
1418  * and flush_cache_vunmap had been called for the correct range
1419  * previously.
1420  */
1421 static void free_vmap_area_noflush(struct vmap_area *va)
1422 {
1423 	unsigned long nr_lazy;
1424 
1425 	spin_lock(&vmap_area_lock);
1426 	unlink_va(va, &vmap_area_root);
1427 	spin_unlock(&vmap_area_lock);
1428 
1429 	nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1430 				PAGE_SHIFT, &vmap_lazy_nr);
1431 
1432 	/*
1433 	 * Merge or place it to the purge tree/list.
1434 	 */
1435 	spin_lock(&purge_vmap_area_lock);
1436 	merge_or_add_vmap_area(va,
1437 		&purge_vmap_area_root, &purge_vmap_area_list);
1438 	spin_unlock(&purge_vmap_area_lock);
1439 
1440 	/* After this point, we may free va at any time */
1441 	if (unlikely(nr_lazy > lazy_max_pages()))
1442 		try_purge_vmap_area_lazy();
1443 }
1444 
1445 /*
1446  * Free and unmap a vmap area
1447  */
1448 static void free_unmap_vmap_area(struct vmap_area *va)
1449 {
1450 	flush_cache_vunmap(va->va_start, va->va_end);
1451 	unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1452 	if (debug_pagealloc_enabled_static())
1453 		flush_tlb_kernel_range(va->va_start, va->va_end);
1454 
1455 	free_vmap_area_noflush(va);
1456 }
1457 
1458 static struct vmap_area *find_vmap_area(unsigned long addr)
1459 {
1460 	struct vmap_area *va;
1461 
1462 	spin_lock(&vmap_area_lock);
1463 	va = __find_vmap_area(addr);
1464 	spin_unlock(&vmap_area_lock);
1465 
1466 	return va;
1467 }
1468 
1469 /*** Per cpu kva allocator ***/
1470 
1471 /*
1472  * vmap space is limited especially on 32 bit architectures. Ensure there is
1473  * room for at least 16 percpu vmap blocks per CPU.
1474  */
1475 /*
1476  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1477  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
1478  * instead (we just need a rough idea)
1479  */
1480 #if BITS_PER_LONG == 32
1481 #define VMALLOC_SPACE		(128UL*1024*1024)
1482 #else
1483 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
1484 #endif
1485 
1486 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
1487 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
1488 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
1489 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
1490 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
1491 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
1492 #define VMAP_BBMAP_BITS		\
1493 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
1494 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
1495 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1496 
1497 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
1498 
1499 struct vmap_block_queue {
1500 	spinlock_t lock;
1501 	struct list_head free;
1502 };
1503 
1504 struct vmap_block {
1505 	spinlock_t lock;
1506 	struct vmap_area *va;
1507 	unsigned long free, dirty;
1508 	unsigned long dirty_min, dirty_max; /*< dirty range */
1509 	struct list_head free_list;
1510 	struct rcu_head rcu_head;
1511 	struct list_head purge;
1512 };
1513 
1514 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1515 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1516 
1517 /*
1518  * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1519  * in the free path. Could get rid of this if we change the API to return a
1520  * "cookie" from alloc, to be passed to free. But no big deal yet.
1521  */
1522 static DEFINE_XARRAY(vmap_blocks);
1523 
1524 /*
1525  * We should probably have a fallback mechanism to allocate virtual memory
1526  * out of partially filled vmap blocks. However vmap block sizing should be
1527  * fairly reasonable according to the vmalloc size, so it shouldn't be a
1528  * big problem.
1529  */
1530 
1531 static unsigned long addr_to_vb_idx(unsigned long addr)
1532 {
1533 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1534 	addr /= VMAP_BLOCK_SIZE;
1535 	return addr;
1536 }
1537 
1538 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1539 {
1540 	unsigned long addr;
1541 
1542 	addr = va_start + (pages_off << PAGE_SHIFT);
1543 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1544 	return (void *)addr;
1545 }
1546 
1547 /**
1548  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1549  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1550  * @order:    how many 2^order pages should be occupied in newly allocated block
1551  * @gfp_mask: flags for the page level allocator
1552  *
1553  * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1554  */
1555 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1556 {
1557 	struct vmap_block_queue *vbq;
1558 	struct vmap_block *vb;
1559 	struct vmap_area *va;
1560 	unsigned long vb_idx;
1561 	int node, err;
1562 	void *vaddr;
1563 
1564 	node = numa_node_id();
1565 
1566 	vb = kmalloc_node(sizeof(struct vmap_block),
1567 			gfp_mask & GFP_RECLAIM_MASK, node);
1568 	if (unlikely(!vb))
1569 		return ERR_PTR(-ENOMEM);
1570 
1571 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1572 					VMALLOC_START, VMALLOC_END,
1573 					node, gfp_mask);
1574 	if (IS_ERR(va)) {
1575 		kfree(vb);
1576 		return ERR_CAST(va);
1577 	}
1578 
1579 	vaddr = vmap_block_vaddr(va->va_start, 0);
1580 	spin_lock_init(&vb->lock);
1581 	vb->va = va;
1582 	/* At least something should be left free */
1583 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1584 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
1585 	vb->dirty = 0;
1586 	vb->dirty_min = VMAP_BBMAP_BITS;
1587 	vb->dirty_max = 0;
1588 	INIT_LIST_HEAD(&vb->free_list);
1589 
1590 	vb_idx = addr_to_vb_idx(va->va_start);
1591 	err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1592 	if (err) {
1593 		kfree(vb);
1594 		free_vmap_area(va);
1595 		return ERR_PTR(err);
1596 	}
1597 
1598 	vbq = &get_cpu_var(vmap_block_queue);
1599 	spin_lock(&vbq->lock);
1600 	list_add_tail_rcu(&vb->free_list, &vbq->free);
1601 	spin_unlock(&vbq->lock);
1602 	put_cpu_var(vmap_block_queue);
1603 
1604 	return vaddr;
1605 }
1606 
1607 static void free_vmap_block(struct vmap_block *vb)
1608 {
1609 	struct vmap_block *tmp;
1610 
1611 	tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1612 	BUG_ON(tmp != vb);
1613 
1614 	free_vmap_area_noflush(vb->va);
1615 	kfree_rcu(vb, rcu_head);
1616 }
1617 
1618 static void purge_fragmented_blocks(int cpu)
1619 {
1620 	LIST_HEAD(purge);
1621 	struct vmap_block *vb;
1622 	struct vmap_block *n_vb;
1623 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1624 
1625 	rcu_read_lock();
1626 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1627 
1628 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1629 			continue;
1630 
1631 		spin_lock(&vb->lock);
1632 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1633 			vb->free = 0; /* prevent further allocs after releasing lock */
1634 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1635 			vb->dirty_min = 0;
1636 			vb->dirty_max = VMAP_BBMAP_BITS;
1637 			spin_lock(&vbq->lock);
1638 			list_del_rcu(&vb->free_list);
1639 			spin_unlock(&vbq->lock);
1640 			spin_unlock(&vb->lock);
1641 			list_add_tail(&vb->purge, &purge);
1642 		} else
1643 			spin_unlock(&vb->lock);
1644 	}
1645 	rcu_read_unlock();
1646 
1647 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1648 		list_del(&vb->purge);
1649 		free_vmap_block(vb);
1650 	}
1651 }
1652 
1653 static void purge_fragmented_blocks_allcpus(void)
1654 {
1655 	int cpu;
1656 
1657 	for_each_possible_cpu(cpu)
1658 		purge_fragmented_blocks(cpu);
1659 }
1660 
1661 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1662 {
1663 	struct vmap_block_queue *vbq;
1664 	struct vmap_block *vb;
1665 	void *vaddr = NULL;
1666 	unsigned int order;
1667 
1668 	BUG_ON(offset_in_page(size));
1669 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1670 	if (WARN_ON(size == 0)) {
1671 		/*
1672 		 * Allocating 0 bytes isn't what caller wants since
1673 		 * get_order(0) returns funny result. Just warn and terminate
1674 		 * early.
1675 		 */
1676 		return NULL;
1677 	}
1678 	order = get_order(size);
1679 
1680 	rcu_read_lock();
1681 	vbq = &get_cpu_var(vmap_block_queue);
1682 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1683 		unsigned long pages_off;
1684 
1685 		spin_lock(&vb->lock);
1686 		if (vb->free < (1UL << order)) {
1687 			spin_unlock(&vb->lock);
1688 			continue;
1689 		}
1690 
1691 		pages_off = VMAP_BBMAP_BITS - vb->free;
1692 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1693 		vb->free -= 1UL << order;
1694 		if (vb->free == 0) {
1695 			spin_lock(&vbq->lock);
1696 			list_del_rcu(&vb->free_list);
1697 			spin_unlock(&vbq->lock);
1698 		}
1699 
1700 		spin_unlock(&vb->lock);
1701 		break;
1702 	}
1703 
1704 	put_cpu_var(vmap_block_queue);
1705 	rcu_read_unlock();
1706 
1707 	/* Allocate new block if nothing was found */
1708 	if (!vaddr)
1709 		vaddr = new_vmap_block(order, gfp_mask);
1710 
1711 	return vaddr;
1712 }
1713 
1714 static void vb_free(unsigned long addr, unsigned long size)
1715 {
1716 	unsigned long offset;
1717 	unsigned int order;
1718 	struct vmap_block *vb;
1719 
1720 	BUG_ON(offset_in_page(size));
1721 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1722 
1723 	flush_cache_vunmap(addr, addr + size);
1724 
1725 	order = get_order(size);
1726 	offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1727 	vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1728 
1729 	unmap_kernel_range_noflush(addr, size);
1730 
1731 	if (debug_pagealloc_enabled_static())
1732 		flush_tlb_kernel_range(addr, addr + size);
1733 
1734 	spin_lock(&vb->lock);
1735 
1736 	/* Expand dirty range */
1737 	vb->dirty_min = min(vb->dirty_min, offset);
1738 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1739 
1740 	vb->dirty += 1UL << order;
1741 	if (vb->dirty == VMAP_BBMAP_BITS) {
1742 		BUG_ON(vb->free);
1743 		spin_unlock(&vb->lock);
1744 		free_vmap_block(vb);
1745 	} else
1746 		spin_unlock(&vb->lock);
1747 }
1748 
1749 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1750 {
1751 	int cpu;
1752 
1753 	if (unlikely(!vmap_initialized))
1754 		return;
1755 
1756 	might_sleep();
1757 
1758 	for_each_possible_cpu(cpu) {
1759 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1760 		struct vmap_block *vb;
1761 
1762 		rcu_read_lock();
1763 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1764 			spin_lock(&vb->lock);
1765 			if (vb->dirty) {
1766 				unsigned long va_start = vb->va->va_start;
1767 				unsigned long s, e;
1768 
1769 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1770 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1771 
1772 				start = min(s, start);
1773 				end   = max(e, end);
1774 
1775 				flush = 1;
1776 			}
1777 			spin_unlock(&vb->lock);
1778 		}
1779 		rcu_read_unlock();
1780 	}
1781 
1782 	mutex_lock(&vmap_purge_lock);
1783 	purge_fragmented_blocks_allcpus();
1784 	if (!__purge_vmap_area_lazy(start, end) && flush)
1785 		flush_tlb_kernel_range(start, end);
1786 	mutex_unlock(&vmap_purge_lock);
1787 }
1788 
1789 /**
1790  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1791  *
1792  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1793  * to amortize TLB flushing overheads. What this means is that any page you
1794  * have now, may, in a former life, have been mapped into kernel virtual
1795  * address by the vmap layer and so there might be some CPUs with TLB entries
1796  * still referencing that page (additional to the regular 1:1 kernel mapping).
1797  *
1798  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1799  * be sure that none of the pages we have control over will have any aliases
1800  * from the vmap layer.
1801  */
1802 void vm_unmap_aliases(void)
1803 {
1804 	unsigned long start = ULONG_MAX, end = 0;
1805 	int flush = 0;
1806 
1807 	_vm_unmap_aliases(start, end, flush);
1808 }
1809 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1810 
1811 /**
1812  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1813  * @mem: the pointer returned by vm_map_ram
1814  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1815  */
1816 void vm_unmap_ram(const void *mem, unsigned int count)
1817 {
1818 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1819 	unsigned long addr = (unsigned long)mem;
1820 	struct vmap_area *va;
1821 
1822 	might_sleep();
1823 	BUG_ON(!addr);
1824 	BUG_ON(addr < VMALLOC_START);
1825 	BUG_ON(addr > VMALLOC_END);
1826 	BUG_ON(!PAGE_ALIGNED(addr));
1827 
1828 	kasan_poison_vmalloc(mem, size);
1829 
1830 	if (likely(count <= VMAP_MAX_ALLOC)) {
1831 		debug_check_no_locks_freed(mem, size);
1832 		vb_free(addr, size);
1833 		return;
1834 	}
1835 
1836 	va = find_vmap_area(addr);
1837 	BUG_ON(!va);
1838 	debug_check_no_locks_freed((void *)va->va_start,
1839 				    (va->va_end - va->va_start));
1840 	free_unmap_vmap_area(va);
1841 }
1842 EXPORT_SYMBOL(vm_unmap_ram);
1843 
1844 /**
1845  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1846  * @pages: an array of pointers to the pages to be mapped
1847  * @count: number of pages
1848  * @node: prefer to allocate data structures on this node
1849  *
1850  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1851  * faster than vmap so it's good.  But if you mix long-life and short-life
1852  * objects with vm_map_ram(), it could consume lots of address space through
1853  * fragmentation (especially on a 32bit machine).  You could see failures in
1854  * the end.  Please use this function for short-lived objects.
1855  *
1856  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1857  */
1858 void *vm_map_ram(struct page **pages, unsigned int count, int node)
1859 {
1860 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1861 	unsigned long addr;
1862 	void *mem;
1863 
1864 	if (likely(count <= VMAP_MAX_ALLOC)) {
1865 		mem = vb_alloc(size, GFP_KERNEL);
1866 		if (IS_ERR(mem))
1867 			return NULL;
1868 		addr = (unsigned long)mem;
1869 	} else {
1870 		struct vmap_area *va;
1871 		va = alloc_vmap_area(size, PAGE_SIZE,
1872 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1873 		if (IS_ERR(va))
1874 			return NULL;
1875 
1876 		addr = va->va_start;
1877 		mem = (void *)addr;
1878 	}
1879 
1880 	kasan_unpoison_vmalloc(mem, size);
1881 
1882 	if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1883 		vm_unmap_ram(mem, count);
1884 		return NULL;
1885 	}
1886 	return mem;
1887 }
1888 EXPORT_SYMBOL(vm_map_ram);
1889 
1890 static struct vm_struct *vmlist __initdata;
1891 
1892 /**
1893  * vm_area_add_early - add vmap area early during boot
1894  * @vm: vm_struct to add
1895  *
1896  * This function is used to add fixed kernel vm area to vmlist before
1897  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1898  * should contain proper values and the other fields should be zero.
1899  *
1900  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1901  */
1902 void __init vm_area_add_early(struct vm_struct *vm)
1903 {
1904 	struct vm_struct *tmp, **p;
1905 
1906 	BUG_ON(vmap_initialized);
1907 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1908 		if (tmp->addr >= vm->addr) {
1909 			BUG_ON(tmp->addr < vm->addr + vm->size);
1910 			break;
1911 		} else
1912 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1913 	}
1914 	vm->next = *p;
1915 	*p = vm;
1916 }
1917 
1918 /**
1919  * vm_area_register_early - register vmap area early during boot
1920  * @vm: vm_struct to register
1921  * @align: requested alignment
1922  *
1923  * This function is used to register kernel vm area before
1924  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1925  * proper values on entry and other fields should be zero.  On return,
1926  * vm->addr contains the allocated address.
1927  *
1928  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1929  */
1930 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1931 {
1932 	static size_t vm_init_off __initdata;
1933 	unsigned long addr;
1934 
1935 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1936 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1937 
1938 	vm->addr = (void *)addr;
1939 
1940 	vm_area_add_early(vm);
1941 }
1942 
1943 static void vmap_init_free_space(void)
1944 {
1945 	unsigned long vmap_start = 1;
1946 	const unsigned long vmap_end = ULONG_MAX;
1947 	struct vmap_area *busy, *free;
1948 
1949 	/*
1950 	 *     B     F     B     B     B     F
1951 	 * -|-----|.....|-----|-----|-----|.....|-
1952 	 *  |           The KVA space           |
1953 	 *  |<--------------------------------->|
1954 	 */
1955 	list_for_each_entry(busy, &vmap_area_list, list) {
1956 		if (busy->va_start - vmap_start > 0) {
1957 			free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1958 			if (!WARN_ON_ONCE(!free)) {
1959 				free->va_start = vmap_start;
1960 				free->va_end = busy->va_start;
1961 
1962 				insert_vmap_area_augment(free, NULL,
1963 					&free_vmap_area_root,
1964 						&free_vmap_area_list);
1965 			}
1966 		}
1967 
1968 		vmap_start = busy->va_end;
1969 	}
1970 
1971 	if (vmap_end - vmap_start > 0) {
1972 		free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1973 		if (!WARN_ON_ONCE(!free)) {
1974 			free->va_start = vmap_start;
1975 			free->va_end = vmap_end;
1976 
1977 			insert_vmap_area_augment(free, NULL,
1978 				&free_vmap_area_root,
1979 					&free_vmap_area_list);
1980 		}
1981 	}
1982 }
1983 
1984 void __init vmalloc_init(void)
1985 {
1986 	struct vmap_area *va;
1987 	struct vm_struct *tmp;
1988 	int i;
1989 
1990 	/*
1991 	 * Create the cache for vmap_area objects.
1992 	 */
1993 	vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1994 
1995 	for_each_possible_cpu(i) {
1996 		struct vmap_block_queue *vbq;
1997 		struct vfree_deferred *p;
1998 
1999 		vbq = &per_cpu(vmap_block_queue, i);
2000 		spin_lock_init(&vbq->lock);
2001 		INIT_LIST_HEAD(&vbq->free);
2002 		p = &per_cpu(vfree_deferred, i);
2003 		init_llist_head(&p->list);
2004 		INIT_WORK(&p->wq, free_work);
2005 	}
2006 
2007 	/* Import existing vmlist entries. */
2008 	for (tmp = vmlist; tmp; tmp = tmp->next) {
2009 		va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2010 		if (WARN_ON_ONCE(!va))
2011 			continue;
2012 
2013 		va->va_start = (unsigned long)tmp->addr;
2014 		va->va_end = va->va_start + tmp->size;
2015 		va->vm = tmp;
2016 		insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2017 	}
2018 
2019 	/*
2020 	 * Now we can initialize a free vmap space.
2021 	 */
2022 	vmap_init_free_space();
2023 	vmap_initialized = true;
2024 }
2025 
2026 /**
2027  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2028  * @addr: start of the VM area to unmap
2029  * @size: size of the VM area to unmap
2030  *
2031  * Similar to unmap_kernel_range_noflush() but flushes vcache before
2032  * the unmapping and tlb after.
2033  */
2034 void unmap_kernel_range(unsigned long addr, unsigned long size)
2035 {
2036 	unsigned long end = addr + size;
2037 
2038 	flush_cache_vunmap(addr, end);
2039 	unmap_kernel_range_noflush(addr, size);
2040 	flush_tlb_kernel_range(addr, end);
2041 }
2042 
2043 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2044 	struct vmap_area *va, unsigned long flags, const void *caller)
2045 {
2046 	vm->flags = flags;
2047 	vm->addr = (void *)va->va_start;
2048 	vm->size = va->va_end - va->va_start;
2049 	vm->caller = caller;
2050 	va->vm = vm;
2051 }
2052 
2053 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2054 			      unsigned long flags, const void *caller)
2055 {
2056 	spin_lock(&vmap_area_lock);
2057 	setup_vmalloc_vm_locked(vm, va, flags, caller);
2058 	spin_unlock(&vmap_area_lock);
2059 }
2060 
2061 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2062 {
2063 	/*
2064 	 * Before removing VM_UNINITIALIZED,
2065 	 * we should make sure that vm has proper values.
2066 	 * Pair with smp_rmb() in show_numa_info().
2067 	 */
2068 	smp_wmb();
2069 	vm->flags &= ~VM_UNINITIALIZED;
2070 }
2071 
2072 static struct vm_struct *__get_vm_area_node(unsigned long size,
2073 		unsigned long align, unsigned long flags, unsigned long start,
2074 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2075 {
2076 	struct vmap_area *va;
2077 	struct vm_struct *area;
2078 	unsigned long requested_size = size;
2079 
2080 	BUG_ON(in_interrupt());
2081 	size = PAGE_ALIGN(size);
2082 	if (unlikely(!size))
2083 		return NULL;
2084 
2085 	if (flags & VM_IOREMAP)
2086 		align = 1ul << clamp_t(int, get_count_order_long(size),
2087 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2088 
2089 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2090 	if (unlikely(!area))
2091 		return NULL;
2092 
2093 	if (!(flags & VM_NO_GUARD))
2094 		size += PAGE_SIZE;
2095 
2096 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2097 	if (IS_ERR(va)) {
2098 		kfree(area);
2099 		return NULL;
2100 	}
2101 
2102 	kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2103 
2104 	setup_vmalloc_vm(area, va, flags, caller);
2105 
2106 	return area;
2107 }
2108 
2109 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2110 				       unsigned long start, unsigned long end,
2111 				       const void *caller)
2112 {
2113 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2114 				  GFP_KERNEL, caller);
2115 }
2116 
2117 /**
2118  * get_vm_area - reserve a contiguous kernel virtual area
2119  * @size:	 size of the area
2120  * @flags:	 %VM_IOREMAP for I/O mappings or VM_ALLOC
2121  *
2122  * Search an area of @size in the kernel virtual mapping area,
2123  * and reserved it for out purposes.  Returns the area descriptor
2124  * on success or %NULL on failure.
2125  *
2126  * Return: the area descriptor on success or %NULL on failure.
2127  */
2128 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2129 {
2130 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2131 				  NUMA_NO_NODE, GFP_KERNEL,
2132 				  __builtin_return_address(0));
2133 }
2134 
2135 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2136 				const void *caller)
2137 {
2138 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2139 				  NUMA_NO_NODE, GFP_KERNEL, caller);
2140 }
2141 
2142 /**
2143  * find_vm_area - find a continuous kernel virtual area
2144  * @addr:	  base address
2145  *
2146  * Search for the kernel VM area starting at @addr, and return it.
2147  * It is up to the caller to do all required locking to keep the returned
2148  * pointer valid.
2149  *
2150  * Return: the area descriptor on success or %NULL on failure.
2151  */
2152 struct vm_struct *find_vm_area(const void *addr)
2153 {
2154 	struct vmap_area *va;
2155 
2156 	va = find_vmap_area((unsigned long)addr);
2157 	if (!va)
2158 		return NULL;
2159 
2160 	return va->vm;
2161 }
2162 
2163 /**
2164  * remove_vm_area - find and remove a continuous kernel virtual area
2165  * @addr:	    base address
2166  *
2167  * Search for the kernel VM area starting at @addr, and remove it.
2168  * This function returns the found VM area, but using it is NOT safe
2169  * on SMP machines, except for its size or flags.
2170  *
2171  * Return: the area descriptor on success or %NULL on failure.
2172  */
2173 struct vm_struct *remove_vm_area(const void *addr)
2174 {
2175 	struct vmap_area *va;
2176 
2177 	might_sleep();
2178 
2179 	spin_lock(&vmap_area_lock);
2180 	va = __find_vmap_area((unsigned long)addr);
2181 	if (va && va->vm) {
2182 		struct vm_struct *vm = va->vm;
2183 
2184 		va->vm = NULL;
2185 		spin_unlock(&vmap_area_lock);
2186 
2187 		kasan_free_shadow(vm);
2188 		free_unmap_vmap_area(va);
2189 
2190 		return vm;
2191 	}
2192 
2193 	spin_unlock(&vmap_area_lock);
2194 	return NULL;
2195 }
2196 
2197 static inline void set_area_direct_map(const struct vm_struct *area,
2198 				       int (*set_direct_map)(struct page *page))
2199 {
2200 	int i;
2201 
2202 	for (i = 0; i < area->nr_pages; i++)
2203 		if (page_address(area->pages[i]))
2204 			set_direct_map(area->pages[i]);
2205 }
2206 
2207 /* Handle removing and resetting vm mappings related to the vm_struct. */
2208 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2209 {
2210 	unsigned long start = ULONG_MAX, end = 0;
2211 	int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2212 	int flush_dmap = 0;
2213 	int i;
2214 
2215 	remove_vm_area(area->addr);
2216 
2217 	/* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2218 	if (!flush_reset)
2219 		return;
2220 
2221 	/*
2222 	 * If not deallocating pages, just do the flush of the VM area and
2223 	 * return.
2224 	 */
2225 	if (!deallocate_pages) {
2226 		vm_unmap_aliases();
2227 		return;
2228 	}
2229 
2230 	/*
2231 	 * If execution gets here, flush the vm mapping and reset the direct
2232 	 * map. Find the start and end range of the direct mappings to make sure
2233 	 * the vm_unmap_aliases() flush includes the direct map.
2234 	 */
2235 	for (i = 0; i < area->nr_pages; i++) {
2236 		unsigned long addr = (unsigned long)page_address(area->pages[i]);
2237 		if (addr) {
2238 			start = min(addr, start);
2239 			end = max(addr + PAGE_SIZE, end);
2240 			flush_dmap = 1;
2241 		}
2242 	}
2243 
2244 	/*
2245 	 * Set direct map to something invalid so that it won't be cached if
2246 	 * there are any accesses after the TLB flush, then flush the TLB and
2247 	 * reset the direct map permissions to the default.
2248 	 */
2249 	set_area_direct_map(area, set_direct_map_invalid_noflush);
2250 	_vm_unmap_aliases(start, end, flush_dmap);
2251 	set_area_direct_map(area, set_direct_map_default_noflush);
2252 }
2253 
2254 static void __vunmap(const void *addr, int deallocate_pages)
2255 {
2256 	struct vm_struct *area;
2257 
2258 	if (!addr)
2259 		return;
2260 
2261 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2262 			addr))
2263 		return;
2264 
2265 	area = find_vm_area(addr);
2266 	if (unlikely(!area)) {
2267 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2268 				addr);
2269 		return;
2270 	}
2271 
2272 	debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2273 	debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2274 
2275 	kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2276 
2277 	vm_remove_mappings(area, deallocate_pages);
2278 
2279 	if (deallocate_pages) {
2280 		int i;
2281 
2282 		for (i = 0; i < area->nr_pages; i++) {
2283 			struct page *page = area->pages[i];
2284 
2285 			BUG_ON(!page);
2286 			__free_pages(page, 0);
2287 		}
2288 		atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2289 
2290 		kvfree(area->pages);
2291 	}
2292 
2293 	kfree(area);
2294 }
2295 
2296 static inline void __vfree_deferred(const void *addr)
2297 {
2298 	/*
2299 	 * Use raw_cpu_ptr() because this can be called from preemptible
2300 	 * context. Preemption is absolutely fine here, because the llist_add()
2301 	 * implementation is lockless, so it works even if we are adding to
2302 	 * another cpu's list. schedule_work() should be fine with this too.
2303 	 */
2304 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2305 
2306 	if (llist_add((struct llist_node *)addr, &p->list))
2307 		schedule_work(&p->wq);
2308 }
2309 
2310 /**
2311  * vfree_atomic - release memory allocated by vmalloc()
2312  * @addr:	  memory base address
2313  *
2314  * This one is just like vfree() but can be called in any atomic context
2315  * except NMIs.
2316  */
2317 void vfree_atomic(const void *addr)
2318 {
2319 	BUG_ON(in_nmi());
2320 
2321 	kmemleak_free(addr);
2322 
2323 	if (!addr)
2324 		return;
2325 	__vfree_deferred(addr);
2326 }
2327 
2328 static void __vfree(const void *addr)
2329 {
2330 	if (unlikely(in_interrupt()))
2331 		__vfree_deferred(addr);
2332 	else
2333 		__vunmap(addr, 1);
2334 }
2335 
2336 /**
2337  * vfree - Release memory allocated by vmalloc()
2338  * @addr:  Memory base address
2339  *
2340  * Free the virtually continuous memory area starting at @addr, as obtained
2341  * from one of the vmalloc() family of APIs.  This will usually also free the
2342  * physical memory underlying the virtual allocation, but that memory is
2343  * reference counted, so it will not be freed until the last user goes away.
2344  *
2345  * If @addr is NULL, no operation is performed.
2346  *
2347  * Context:
2348  * May sleep if called *not* from interrupt context.
2349  * Must not be called in NMI context (strictly speaking, it could be
2350  * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2351  * conventions for vfree() arch-depenedent would be a really bad idea).
2352  */
2353 void vfree(const void *addr)
2354 {
2355 	BUG_ON(in_nmi());
2356 
2357 	kmemleak_free(addr);
2358 
2359 	might_sleep_if(!in_interrupt());
2360 
2361 	if (!addr)
2362 		return;
2363 
2364 	__vfree(addr);
2365 }
2366 EXPORT_SYMBOL(vfree);
2367 
2368 /**
2369  * vunmap - release virtual mapping obtained by vmap()
2370  * @addr:   memory base address
2371  *
2372  * Free the virtually contiguous memory area starting at @addr,
2373  * which was created from the page array passed to vmap().
2374  *
2375  * Must not be called in interrupt context.
2376  */
2377 void vunmap(const void *addr)
2378 {
2379 	BUG_ON(in_interrupt());
2380 	might_sleep();
2381 	if (addr)
2382 		__vunmap(addr, 0);
2383 }
2384 EXPORT_SYMBOL(vunmap);
2385 
2386 /**
2387  * vmap - map an array of pages into virtually contiguous space
2388  * @pages: array of page pointers
2389  * @count: number of pages to map
2390  * @flags: vm_area->flags
2391  * @prot: page protection for the mapping
2392  *
2393  * Maps @count pages from @pages into contiguous kernel virtual space.
2394  * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2395  * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2396  * are transferred from the caller to vmap(), and will be freed / dropped when
2397  * vfree() is called on the return value.
2398  *
2399  * Return: the address of the area or %NULL on failure
2400  */
2401 void *vmap(struct page **pages, unsigned int count,
2402 	   unsigned long flags, pgprot_t prot)
2403 {
2404 	struct vm_struct *area;
2405 	unsigned long size;		/* In bytes */
2406 
2407 	might_sleep();
2408 
2409 	if (count > totalram_pages())
2410 		return NULL;
2411 
2412 	size = (unsigned long)count << PAGE_SHIFT;
2413 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2414 	if (!area)
2415 		return NULL;
2416 
2417 	if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2418 			pages) < 0) {
2419 		vunmap(area->addr);
2420 		return NULL;
2421 	}
2422 
2423 	if (flags & VM_MAP_PUT_PAGES)
2424 		area->pages = pages;
2425 	return area->addr;
2426 }
2427 EXPORT_SYMBOL(vmap);
2428 
2429 #ifdef CONFIG_VMAP_PFN
2430 struct vmap_pfn_data {
2431 	unsigned long	*pfns;
2432 	pgprot_t	prot;
2433 	unsigned int	idx;
2434 };
2435 
2436 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2437 {
2438 	struct vmap_pfn_data *data = private;
2439 
2440 	if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2441 		return -EINVAL;
2442 	*pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2443 	return 0;
2444 }
2445 
2446 /**
2447  * vmap_pfn - map an array of PFNs into virtually contiguous space
2448  * @pfns: array of PFNs
2449  * @count: number of pages to map
2450  * @prot: page protection for the mapping
2451  *
2452  * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2453  * the start address of the mapping.
2454  */
2455 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2456 {
2457 	struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2458 	struct vm_struct *area;
2459 
2460 	area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2461 			__builtin_return_address(0));
2462 	if (!area)
2463 		return NULL;
2464 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2465 			count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2466 		free_vm_area(area);
2467 		return NULL;
2468 	}
2469 	return area->addr;
2470 }
2471 EXPORT_SYMBOL_GPL(vmap_pfn);
2472 #endif /* CONFIG_VMAP_PFN */
2473 
2474 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2475 				 pgprot_t prot, int node)
2476 {
2477 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2478 	unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2479 	unsigned long array_size;
2480 	unsigned int i;
2481 	struct page **pages;
2482 
2483 	array_size = (unsigned long)nr_pages * sizeof(struct page *);
2484 	gfp_mask |= __GFP_NOWARN;
2485 	if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2486 		gfp_mask |= __GFP_HIGHMEM;
2487 
2488 	/* Please note that the recursion is strictly bounded. */
2489 	if (array_size > PAGE_SIZE) {
2490 		pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2491 					area->caller);
2492 	} else {
2493 		pages = kmalloc_node(array_size, nested_gfp, node);
2494 	}
2495 
2496 	if (!pages) {
2497 		free_vm_area(area);
2498 		return NULL;
2499 	}
2500 
2501 	area->pages = pages;
2502 	area->nr_pages = nr_pages;
2503 
2504 	for (i = 0; i < area->nr_pages; i++) {
2505 		struct page *page;
2506 
2507 		if (node == NUMA_NO_NODE)
2508 			page = alloc_page(gfp_mask);
2509 		else
2510 			page = alloc_pages_node(node, gfp_mask, 0);
2511 
2512 		if (unlikely(!page)) {
2513 			/* Successfully allocated i pages, free them in __vfree() */
2514 			area->nr_pages = i;
2515 			atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2516 			goto fail;
2517 		}
2518 		area->pages[i] = page;
2519 		if (gfpflags_allow_blocking(gfp_mask))
2520 			cond_resched();
2521 	}
2522 	atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2523 
2524 	if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2525 			prot, pages) < 0)
2526 		goto fail;
2527 
2528 	return area->addr;
2529 
2530 fail:
2531 	warn_alloc(gfp_mask, NULL,
2532 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
2533 			  (area->nr_pages*PAGE_SIZE), area->size);
2534 	__vfree(area->addr);
2535 	return NULL;
2536 }
2537 
2538 /**
2539  * __vmalloc_node_range - allocate virtually contiguous memory
2540  * @size:		  allocation size
2541  * @align:		  desired alignment
2542  * @start:		  vm area range start
2543  * @end:		  vm area range end
2544  * @gfp_mask:		  flags for the page level allocator
2545  * @prot:		  protection mask for the allocated pages
2546  * @vm_flags:		  additional vm area flags (e.g. %VM_NO_GUARD)
2547  * @node:		  node to use for allocation or NUMA_NO_NODE
2548  * @caller:		  caller's return address
2549  *
2550  * Allocate enough pages to cover @size from the page level
2551  * allocator with @gfp_mask flags.  Map them into contiguous
2552  * kernel virtual space, using a pagetable protection of @prot.
2553  *
2554  * Return: the address of the area or %NULL on failure
2555  */
2556 void *__vmalloc_node_range(unsigned long size, unsigned long align,
2557 			unsigned long start, unsigned long end, gfp_t gfp_mask,
2558 			pgprot_t prot, unsigned long vm_flags, int node,
2559 			const void *caller)
2560 {
2561 	struct vm_struct *area;
2562 	void *addr;
2563 	unsigned long real_size = size;
2564 
2565 	size = PAGE_ALIGN(size);
2566 	if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2567 		goto fail;
2568 
2569 	area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2570 				vm_flags, start, end, node, gfp_mask, caller);
2571 	if (!area)
2572 		goto fail;
2573 
2574 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2575 	if (!addr)
2576 		return NULL;
2577 
2578 	/*
2579 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2580 	 * flag. It means that vm_struct is not fully initialized.
2581 	 * Now, it is fully initialized, so remove this flag here.
2582 	 */
2583 	clear_vm_uninitialized_flag(area);
2584 
2585 	kmemleak_vmalloc(area, size, gfp_mask);
2586 
2587 	return addr;
2588 
2589 fail:
2590 	warn_alloc(gfp_mask, NULL,
2591 			  "vmalloc: allocation failure: %lu bytes", real_size);
2592 	return NULL;
2593 }
2594 
2595 /**
2596  * __vmalloc_node - allocate virtually contiguous memory
2597  * @size:	    allocation size
2598  * @align:	    desired alignment
2599  * @gfp_mask:	    flags for the page level allocator
2600  * @node:	    node to use for allocation or NUMA_NO_NODE
2601  * @caller:	    caller's return address
2602  *
2603  * Allocate enough pages to cover @size from the page level allocator with
2604  * @gfp_mask flags.  Map them into contiguous kernel virtual space.
2605  *
2606  * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2607  * and __GFP_NOFAIL are not supported
2608  *
2609  * Any use of gfp flags outside of GFP_KERNEL should be consulted
2610  * with mm people.
2611  *
2612  * Return: pointer to the allocated memory or %NULL on error
2613  */
2614 void *__vmalloc_node(unsigned long size, unsigned long align,
2615 			    gfp_t gfp_mask, int node, const void *caller)
2616 {
2617 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2618 				gfp_mask, PAGE_KERNEL, 0, node, caller);
2619 }
2620 /*
2621  * This is only for performance analysis of vmalloc and stress purpose.
2622  * It is required by vmalloc test module, therefore do not use it other
2623  * than that.
2624  */
2625 #ifdef CONFIG_TEST_VMALLOC_MODULE
2626 EXPORT_SYMBOL_GPL(__vmalloc_node);
2627 #endif
2628 
2629 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2630 {
2631 	return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2632 				__builtin_return_address(0));
2633 }
2634 EXPORT_SYMBOL(__vmalloc);
2635 
2636 /**
2637  * vmalloc - allocate virtually contiguous memory
2638  * @size:    allocation size
2639  *
2640  * Allocate enough pages to cover @size from the page level
2641  * allocator and map them into contiguous kernel virtual space.
2642  *
2643  * For tight control over page level allocator and protection flags
2644  * use __vmalloc() instead.
2645  *
2646  * Return: pointer to the allocated memory or %NULL on error
2647  */
2648 void *vmalloc(unsigned long size)
2649 {
2650 	return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2651 				__builtin_return_address(0));
2652 }
2653 EXPORT_SYMBOL(vmalloc);
2654 
2655 /**
2656  * vzalloc - allocate virtually contiguous memory with zero fill
2657  * @size:    allocation size
2658  *
2659  * Allocate enough pages to cover @size from the page level
2660  * allocator and map them into contiguous kernel virtual space.
2661  * The memory allocated is set to zero.
2662  *
2663  * For tight control over page level allocator and protection flags
2664  * use __vmalloc() instead.
2665  *
2666  * Return: pointer to the allocated memory or %NULL on error
2667  */
2668 void *vzalloc(unsigned long size)
2669 {
2670 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2671 				__builtin_return_address(0));
2672 }
2673 EXPORT_SYMBOL(vzalloc);
2674 
2675 /**
2676  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2677  * @size: allocation size
2678  *
2679  * The resulting memory area is zeroed so it can be mapped to userspace
2680  * without leaking data.
2681  *
2682  * Return: pointer to the allocated memory or %NULL on error
2683  */
2684 void *vmalloc_user(unsigned long size)
2685 {
2686 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2687 				    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2688 				    VM_USERMAP, NUMA_NO_NODE,
2689 				    __builtin_return_address(0));
2690 }
2691 EXPORT_SYMBOL(vmalloc_user);
2692 
2693 /**
2694  * vmalloc_node - allocate memory on a specific node
2695  * @size:	  allocation size
2696  * @node:	  numa node
2697  *
2698  * Allocate enough pages to cover @size from the page level
2699  * allocator and map them into contiguous kernel virtual space.
2700  *
2701  * For tight control over page level allocator and protection flags
2702  * use __vmalloc() instead.
2703  *
2704  * Return: pointer to the allocated memory or %NULL on error
2705  */
2706 void *vmalloc_node(unsigned long size, int node)
2707 {
2708 	return __vmalloc_node(size, 1, GFP_KERNEL, node,
2709 			__builtin_return_address(0));
2710 }
2711 EXPORT_SYMBOL(vmalloc_node);
2712 
2713 /**
2714  * vzalloc_node - allocate memory on a specific node with zero fill
2715  * @size:	allocation size
2716  * @node:	numa node
2717  *
2718  * Allocate enough pages to cover @size from the page level
2719  * allocator and map them into contiguous kernel virtual space.
2720  * The memory allocated is set to zero.
2721  *
2722  * Return: pointer to the allocated memory or %NULL on error
2723  */
2724 void *vzalloc_node(unsigned long size, int node)
2725 {
2726 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2727 				__builtin_return_address(0));
2728 }
2729 EXPORT_SYMBOL(vzalloc_node);
2730 
2731 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2732 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2733 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2734 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2735 #else
2736 /*
2737  * 64b systems should always have either DMA or DMA32 zones. For others
2738  * GFP_DMA32 should do the right thing and use the normal zone.
2739  */
2740 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2741 #endif
2742 
2743 /**
2744  * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2745  * @size:	allocation size
2746  *
2747  * Allocate enough 32bit PA addressable pages to cover @size from the
2748  * page level allocator and map them into contiguous kernel virtual space.
2749  *
2750  * Return: pointer to the allocated memory or %NULL on error
2751  */
2752 void *vmalloc_32(unsigned long size)
2753 {
2754 	return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2755 			__builtin_return_address(0));
2756 }
2757 EXPORT_SYMBOL(vmalloc_32);
2758 
2759 /**
2760  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2761  * @size:	     allocation size
2762  *
2763  * The resulting memory area is 32bit addressable and zeroed so it can be
2764  * mapped to userspace without leaking data.
2765  *
2766  * Return: pointer to the allocated memory or %NULL on error
2767  */
2768 void *vmalloc_32_user(unsigned long size)
2769 {
2770 	return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2771 				    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2772 				    VM_USERMAP, NUMA_NO_NODE,
2773 				    __builtin_return_address(0));
2774 }
2775 EXPORT_SYMBOL(vmalloc_32_user);
2776 
2777 /*
2778  * small helper routine , copy contents to buf from addr.
2779  * If the page is not present, fill zero.
2780  */
2781 
2782 static int aligned_vread(char *buf, char *addr, unsigned long count)
2783 {
2784 	struct page *p;
2785 	int copied = 0;
2786 
2787 	while (count) {
2788 		unsigned long offset, length;
2789 
2790 		offset = offset_in_page(addr);
2791 		length = PAGE_SIZE - offset;
2792 		if (length > count)
2793 			length = count;
2794 		p = vmalloc_to_page(addr);
2795 		/*
2796 		 * To do safe access to this _mapped_ area, we need
2797 		 * lock. But adding lock here means that we need to add
2798 		 * overhead of vmalloc()/vfree() calles for this _debug_
2799 		 * interface, rarely used. Instead of that, we'll use
2800 		 * kmap() and get small overhead in this access function.
2801 		 */
2802 		if (p) {
2803 			/*
2804 			 * we can expect USER0 is not used (see vread/vwrite's
2805 			 * function description)
2806 			 */
2807 			void *map = kmap_atomic(p);
2808 			memcpy(buf, map + offset, length);
2809 			kunmap_atomic(map);
2810 		} else
2811 			memset(buf, 0, length);
2812 
2813 		addr += length;
2814 		buf += length;
2815 		copied += length;
2816 		count -= length;
2817 	}
2818 	return copied;
2819 }
2820 
2821 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2822 {
2823 	struct page *p;
2824 	int copied = 0;
2825 
2826 	while (count) {
2827 		unsigned long offset, length;
2828 
2829 		offset = offset_in_page(addr);
2830 		length = PAGE_SIZE - offset;
2831 		if (length > count)
2832 			length = count;
2833 		p = vmalloc_to_page(addr);
2834 		/*
2835 		 * To do safe access to this _mapped_ area, we need
2836 		 * lock. But adding lock here means that we need to add
2837 		 * overhead of vmalloc()/vfree() calles for this _debug_
2838 		 * interface, rarely used. Instead of that, we'll use
2839 		 * kmap() and get small overhead in this access function.
2840 		 */
2841 		if (p) {
2842 			/*
2843 			 * we can expect USER0 is not used (see vread/vwrite's
2844 			 * function description)
2845 			 */
2846 			void *map = kmap_atomic(p);
2847 			memcpy(map + offset, buf, length);
2848 			kunmap_atomic(map);
2849 		}
2850 		addr += length;
2851 		buf += length;
2852 		copied += length;
2853 		count -= length;
2854 	}
2855 	return copied;
2856 }
2857 
2858 /**
2859  * vread() - read vmalloc area in a safe way.
2860  * @buf:     buffer for reading data
2861  * @addr:    vm address.
2862  * @count:   number of bytes to be read.
2863  *
2864  * This function checks that addr is a valid vmalloc'ed area, and
2865  * copy data from that area to a given buffer. If the given memory range
2866  * of [addr...addr+count) includes some valid address, data is copied to
2867  * proper area of @buf. If there are memory holes, they'll be zero-filled.
2868  * IOREMAP area is treated as memory hole and no copy is done.
2869  *
2870  * If [addr...addr+count) doesn't includes any intersects with alive
2871  * vm_struct area, returns 0. @buf should be kernel's buffer.
2872  *
2873  * Note: In usual ops, vread() is never necessary because the caller
2874  * should know vmalloc() area is valid and can use memcpy().
2875  * This is for routines which have to access vmalloc area without
2876  * any information, as /dev/kmem.
2877  *
2878  * Return: number of bytes for which addr and buf should be increased
2879  * (same number as @count) or %0 if [addr...addr+count) doesn't
2880  * include any intersection with valid vmalloc area
2881  */
2882 long vread(char *buf, char *addr, unsigned long count)
2883 {
2884 	struct vmap_area *va;
2885 	struct vm_struct *vm;
2886 	char *vaddr, *buf_start = buf;
2887 	unsigned long buflen = count;
2888 	unsigned long n;
2889 
2890 	/* Don't allow overflow */
2891 	if ((unsigned long) addr + count < count)
2892 		count = -(unsigned long) addr;
2893 
2894 	spin_lock(&vmap_area_lock);
2895 	list_for_each_entry(va, &vmap_area_list, list) {
2896 		if (!count)
2897 			break;
2898 
2899 		if (!va->vm)
2900 			continue;
2901 
2902 		vm = va->vm;
2903 		vaddr = (char *) vm->addr;
2904 		if (addr >= vaddr + get_vm_area_size(vm))
2905 			continue;
2906 		while (addr < vaddr) {
2907 			if (count == 0)
2908 				goto finished;
2909 			*buf = '\0';
2910 			buf++;
2911 			addr++;
2912 			count--;
2913 		}
2914 		n = vaddr + get_vm_area_size(vm) - addr;
2915 		if (n > count)
2916 			n = count;
2917 		if (!(vm->flags & VM_IOREMAP))
2918 			aligned_vread(buf, addr, n);
2919 		else /* IOREMAP area is treated as memory hole */
2920 			memset(buf, 0, n);
2921 		buf += n;
2922 		addr += n;
2923 		count -= n;
2924 	}
2925 finished:
2926 	spin_unlock(&vmap_area_lock);
2927 
2928 	if (buf == buf_start)
2929 		return 0;
2930 	/* zero-fill memory holes */
2931 	if (buf != buf_start + buflen)
2932 		memset(buf, 0, buflen - (buf - buf_start));
2933 
2934 	return buflen;
2935 }
2936 
2937 /**
2938  * vwrite() - write vmalloc area in a safe way.
2939  * @buf:      buffer for source data
2940  * @addr:     vm address.
2941  * @count:    number of bytes to be read.
2942  *
2943  * This function checks that addr is a valid vmalloc'ed area, and
2944  * copy data from a buffer to the given addr. If specified range of
2945  * [addr...addr+count) includes some valid address, data is copied from
2946  * proper area of @buf. If there are memory holes, no copy to hole.
2947  * IOREMAP area is treated as memory hole and no copy is done.
2948  *
2949  * If [addr...addr+count) doesn't includes any intersects with alive
2950  * vm_struct area, returns 0. @buf should be kernel's buffer.
2951  *
2952  * Note: In usual ops, vwrite() is never necessary because the caller
2953  * should know vmalloc() area is valid and can use memcpy().
2954  * This is for routines which have to access vmalloc area without
2955  * any information, as /dev/kmem.
2956  *
2957  * Return: number of bytes for which addr and buf should be
2958  * increased (same number as @count) or %0 if [addr...addr+count)
2959  * doesn't include any intersection with valid vmalloc area
2960  */
2961 long vwrite(char *buf, char *addr, unsigned long count)
2962 {
2963 	struct vmap_area *va;
2964 	struct vm_struct *vm;
2965 	char *vaddr;
2966 	unsigned long n, buflen;
2967 	int copied = 0;
2968 
2969 	/* Don't allow overflow */
2970 	if ((unsigned long) addr + count < count)
2971 		count = -(unsigned long) addr;
2972 	buflen = count;
2973 
2974 	spin_lock(&vmap_area_lock);
2975 	list_for_each_entry(va, &vmap_area_list, list) {
2976 		if (!count)
2977 			break;
2978 
2979 		if (!va->vm)
2980 			continue;
2981 
2982 		vm = va->vm;
2983 		vaddr = (char *) vm->addr;
2984 		if (addr >= vaddr + get_vm_area_size(vm))
2985 			continue;
2986 		while (addr < vaddr) {
2987 			if (count == 0)
2988 				goto finished;
2989 			buf++;
2990 			addr++;
2991 			count--;
2992 		}
2993 		n = vaddr + get_vm_area_size(vm) - addr;
2994 		if (n > count)
2995 			n = count;
2996 		if (!(vm->flags & VM_IOREMAP)) {
2997 			aligned_vwrite(buf, addr, n);
2998 			copied++;
2999 		}
3000 		buf += n;
3001 		addr += n;
3002 		count -= n;
3003 	}
3004 finished:
3005 	spin_unlock(&vmap_area_lock);
3006 	if (!copied)
3007 		return 0;
3008 	return buflen;
3009 }
3010 
3011 /**
3012  * remap_vmalloc_range_partial - map vmalloc pages to userspace
3013  * @vma:		vma to cover
3014  * @uaddr:		target user address to start at
3015  * @kaddr:		virtual address of vmalloc kernel memory
3016  * @pgoff:		offset from @kaddr to start at
3017  * @size:		size of map area
3018  *
3019  * Returns:	0 for success, -Exxx on failure
3020  *
3021  * This function checks that @kaddr is a valid vmalloc'ed area,
3022  * and that it is big enough to cover the range starting at
3023  * @uaddr in @vma. Will return failure if that criteria isn't
3024  * met.
3025  *
3026  * Similar to remap_pfn_range() (see mm/memory.c)
3027  */
3028 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3029 				void *kaddr, unsigned long pgoff,
3030 				unsigned long size)
3031 {
3032 	struct vm_struct *area;
3033 	unsigned long off;
3034 	unsigned long end_index;
3035 
3036 	if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3037 		return -EINVAL;
3038 
3039 	size = PAGE_ALIGN(size);
3040 
3041 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3042 		return -EINVAL;
3043 
3044 	area = find_vm_area(kaddr);
3045 	if (!area)
3046 		return -EINVAL;
3047 
3048 	if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3049 		return -EINVAL;
3050 
3051 	if (check_add_overflow(size, off, &end_index) ||
3052 	    end_index > get_vm_area_size(area))
3053 		return -EINVAL;
3054 	kaddr += off;
3055 
3056 	do {
3057 		struct page *page = vmalloc_to_page(kaddr);
3058 		int ret;
3059 
3060 		ret = vm_insert_page(vma, uaddr, page);
3061 		if (ret)
3062 			return ret;
3063 
3064 		uaddr += PAGE_SIZE;
3065 		kaddr += PAGE_SIZE;
3066 		size -= PAGE_SIZE;
3067 	} while (size > 0);
3068 
3069 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3070 
3071 	return 0;
3072 }
3073 EXPORT_SYMBOL(remap_vmalloc_range_partial);
3074 
3075 /**
3076  * remap_vmalloc_range - map vmalloc pages to userspace
3077  * @vma:		vma to cover (map full range of vma)
3078  * @addr:		vmalloc memory
3079  * @pgoff:		number of pages into addr before first page to map
3080  *
3081  * Returns:	0 for success, -Exxx on failure
3082  *
3083  * This function checks that addr is a valid vmalloc'ed area, and
3084  * that it is big enough to cover the vma. Will return failure if
3085  * that criteria isn't met.
3086  *
3087  * Similar to remap_pfn_range() (see mm/memory.c)
3088  */
3089 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3090 						unsigned long pgoff)
3091 {
3092 	return remap_vmalloc_range_partial(vma, vma->vm_start,
3093 					   addr, pgoff,
3094 					   vma->vm_end - vma->vm_start);
3095 }
3096 EXPORT_SYMBOL(remap_vmalloc_range);
3097 
3098 void free_vm_area(struct vm_struct *area)
3099 {
3100 	struct vm_struct *ret;
3101 	ret = remove_vm_area(area->addr);
3102 	BUG_ON(ret != area);
3103 	kfree(area);
3104 }
3105 EXPORT_SYMBOL_GPL(free_vm_area);
3106 
3107 #ifdef CONFIG_SMP
3108 static struct vmap_area *node_to_va(struct rb_node *n)
3109 {
3110 	return rb_entry_safe(n, struct vmap_area, rb_node);
3111 }
3112 
3113 /**
3114  * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3115  * @addr: target address
3116  *
3117  * Returns: vmap_area if it is found. If there is no such area
3118  *   the first highest(reverse order) vmap_area is returned
3119  *   i.e. va->va_start < addr && va->va_end < addr or NULL
3120  *   if there are no any areas before @addr.
3121  */
3122 static struct vmap_area *
3123 pvm_find_va_enclose_addr(unsigned long addr)
3124 {
3125 	struct vmap_area *va, *tmp;
3126 	struct rb_node *n;
3127 
3128 	n = free_vmap_area_root.rb_node;
3129 	va = NULL;
3130 
3131 	while (n) {
3132 		tmp = rb_entry(n, struct vmap_area, rb_node);
3133 		if (tmp->va_start <= addr) {
3134 			va = tmp;
3135 			if (tmp->va_end >= addr)
3136 				break;
3137 
3138 			n = n->rb_right;
3139 		} else {
3140 			n = n->rb_left;
3141 		}
3142 	}
3143 
3144 	return va;
3145 }
3146 
3147 /**
3148  * pvm_determine_end_from_reverse - find the highest aligned address
3149  * of free block below VMALLOC_END
3150  * @va:
3151  *   in - the VA we start the search(reverse order);
3152  *   out - the VA with the highest aligned end address.
3153  * @align: alignment for required highest address
3154  *
3155  * Returns: determined end address within vmap_area
3156  */
3157 static unsigned long
3158 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3159 {
3160 	unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3161 	unsigned long addr;
3162 
3163 	if (likely(*va)) {
3164 		list_for_each_entry_from_reverse((*va),
3165 				&free_vmap_area_list, list) {
3166 			addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3167 			if ((*va)->va_start < addr)
3168 				return addr;
3169 		}
3170 	}
3171 
3172 	return 0;
3173 }
3174 
3175 /**
3176  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3177  * @offsets: array containing offset of each area
3178  * @sizes: array containing size of each area
3179  * @nr_vms: the number of areas to allocate
3180  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3181  *
3182  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3183  *	    vm_structs on success, %NULL on failure
3184  *
3185  * Percpu allocator wants to use congruent vm areas so that it can
3186  * maintain the offsets among percpu areas.  This function allocates
3187  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3188  * be scattered pretty far, distance between two areas easily going up
3189  * to gigabytes.  To avoid interacting with regular vmallocs, these
3190  * areas are allocated from top.
3191  *
3192  * Despite its complicated look, this allocator is rather simple. It
3193  * does everything top-down and scans free blocks from the end looking
3194  * for matching base. While scanning, if any of the areas do not fit the
3195  * base address is pulled down to fit the area. Scanning is repeated till
3196  * all the areas fit and then all necessary data structures are inserted
3197  * and the result is returned.
3198  */
3199 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3200 				     const size_t *sizes, int nr_vms,
3201 				     size_t align)
3202 {
3203 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3204 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3205 	struct vmap_area **vas, *va;
3206 	struct vm_struct **vms;
3207 	int area, area2, last_area, term_area;
3208 	unsigned long base, start, size, end, last_end, orig_start, orig_end;
3209 	bool purged = false;
3210 	enum fit_type type;
3211 
3212 	/* verify parameters and allocate data structures */
3213 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3214 	for (last_area = 0, area = 0; area < nr_vms; area++) {
3215 		start = offsets[area];
3216 		end = start + sizes[area];
3217 
3218 		/* is everything aligned properly? */
3219 		BUG_ON(!IS_ALIGNED(offsets[area], align));
3220 		BUG_ON(!IS_ALIGNED(sizes[area], align));
3221 
3222 		/* detect the area with the highest address */
3223 		if (start > offsets[last_area])
3224 			last_area = area;
3225 
3226 		for (area2 = area + 1; area2 < nr_vms; area2++) {
3227 			unsigned long start2 = offsets[area2];
3228 			unsigned long end2 = start2 + sizes[area2];
3229 
3230 			BUG_ON(start2 < end && start < end2);
3231 		}
3232 	}
3233 	last_end = offsets[last_area] + sizes[last_area];
3234 
3235 	if (vmalloc_end - vmalloc_start < last_end) {
3236 		WARN_ON(true);
3237 		return NULL;
3238 	}
3239 
3240 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3241 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3242 	if (!vas || !vms)
3243 		goto err_free2;
3244 
3245 	for (area = 0; area < nr_vms; area++) {
3246 		vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3247 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3248 		if (!vas[area] || !vms[area])
3249 			goto err_free;
3250 	}
3251 retry:
3252 	spin_lock(&free_vmap_area_lock);
3253 
3254 	/* start scanning - we scan from the top, begin with the last area */
3255 	area = term_area = last_area;
3256 	start = offsets[area];
3257 	end = start + sizes[area];
3258 
3259 	va = pvm_find_va_enclose_addr(vmalloc_end);
3260 	base = pvm_determine_end_from_reverse(&va, align) - end;
3261 
3262 	while (true) {
3263 		/*
3264 		 * base might have underflowed, add last_end before
3265 		 * comparing.
3266 		 */
3267 		if (base + last_end < vmalloc_start + last_end)
3268 			goto overflow;
3269 
3270 		/*
3271 		 * Fitting base has not been found.
3272 		 */
3273 		if (va == NULL)
3274 			goto overflow;
3275 
3276 		/*
3277 		 * If required width exceeds current VA block, move
3278 		 * base downwards and then recheck.
3279 		 */
3280 		if (base + end > va->va_end) {
3281 			base = pvm_determine_end_from_reverse(&va, align) - end;
3282 			term_area = area;
3283 			continue;
3284 		}
3285 
3286 		/*
3287 		 * If this VA does not fit, move base downwards and recheck.
3288 		 */
3289 		if (base + start < va->va_start) {
3290 			va = node_to_va(rb_prev(&va->rb_node));
3291 			base = pvm_determine_end_from_reverse(&va, align) - end;
3292 			term_area = area;
3293 			continue;
3294 		}
3295 
3296 		/*
3297 		 * This area fits, move on to the previous one.  If
3298 		 * the previous one is the terminal one, we're done.
3299 		 */
3300 		area = (area + nr_vms - 1) % nr_vms;
3301 		if (area == term_area)
3302 			break;
3303 
3304 		start = offsets[area];
3305 		end = start + sizes[area];
3306 		va = pvm_find_va_enclose_addr(base + end);
3307 	}
3308 
3309 	/* we've found a fitting base, insert all va's */
3310 	for (area = 0; area < nr_vms; area++) {
3311 		int ret;
3312 
3313 		start = base + offsets[area];
3314 		size = sizes[area];
3315 
3316 		va = pvm_find_va_enclose_addr(start);
3317 		if (WARN_ON_ONCE(va == NULL))
3318 			/* It is a BUG(), but trigger recovery instead. */
3319 			goto recovery;
3320 
3321 		type = classify_va_fit_type(va, start, size);
3322 		if (WARN_ON_ONCE(type == NOTHING_FIT))
3323 			/* It is a BUG(), but trigger recovery instead. */
3324 			goto recovery;
3325 
3326 		ret = adjust_va_to_fit_type(va, start, size, type);
3327 		if (unlikely(ret))
3328 			goto recovery;
3329 
3330 		/* Allocated area. */
3331 		va = vas[area];
3332 		va->va_start = start;
3333 		va->va_end = start + size;
3334 	}
3335 
3336 	spin_unlock(&free_vmap_area_lock);
3337 
3338 	/* populate the kasan shadow space */
3339 	for (area = 0; area < nr_vms; area++) {
3340 		if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3341 			goto err_free_shadow;
3342 
3343 		kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3344 				       sizes[area]);
3345 	}
3346 
3347 	/* insert all vm's */
3348 	spin_lock(&vmap_area_lock);
3349 	for (area = 0; area < nr_vms; area++) {
3350 		insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3351 
3352 		setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3353 				 pcpu_get_vm_areas);
3354 	}
3355 	spin_unlock(&vmap_area_lock);
3356 
3357 	kfree(vas);
3358 	return vms;
3359 
3360 recovery:
3361 	/*
3362 	 * Remove previously allocated areas. There is no
3363 	 * need in removing these areas from the busy tree,
3364 	 * because they are inserted only on the final step
3365 	 * and when pcpu_get_vm_areas() is success.
3366 	 */
3367 	while (area--) {
3368 		orig_start = vas[area]->va_start;
3369 		orig_end = vas[area]->va_end;
3370 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3371 				&free_vmap_area_list);
3372 		if (va)
3373 			kasan_release_vmalloc(orig_start, orig_end,
3374 				va->va_start, va->va_end);
3375 		vas[area] = NULL;
3376 	}
3377 
3378 overflow:
3379 	spin_unlock(&free_vmap_area_lock);
3380 	if (!purged) {
3381 		purge_vmap_area_lazy();
3382 		purged = true;
3383 
3384 		/* Before "retry", check if we recover. */
3385 		for (area = 0; area < nr_vms; area++) {
3386 			if (vas[area])
3387 				continue;
3388 
3389 			vas[area] = kmem_cache_zalloc(
3390 				vmap_area_cachep, GFP_KERNEL);
3391 			if (!vas[area])
3392 				goto err_free;
3393 		}
3394 
3395 		goto retry;
3396 	}
3397 
3398 err_free:
3399 	for (area = 0; area < nr_vms; area++) {
3400 		if (vas[area])
3401 			kmem_cache_free(vmap_area_cachep, vas[area]);
3402 
3403 		kfree(vms[area]);
3404 	}
3405 err_free2:
3406 	kfree(vas);
3407 	kfree(vms);
3408 	return NULL;
3409 
3410 err_free_shadow:
3411 	spin_lock(&free_vmap_area_lock);
3412 	/*
3413 	 * We release all the vmalloc shadows, even the ones for regions that
3414 	 * hadn't been successfully added. This relies on kasan_release_vmalloc
3415 	 * being able to tolerate this case.
3416 	 */
3417 	for (area = 0; area < nr_vms; area++) {
3418 		orig_start = vas[area]->va_start;
3419 		orig_end = vas[area]->va_end;
3420 		va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3421 				&free_vmap_area_list);
3422 		if (va)
3423 			kasan_release_vmalloc(orig_start, orig_end,
3424 				va->va_start, va->va_end);
3425 		vas[area] = NULL;
3426 		kfree(vms[area]);
3427 	}
3428 	spin_unlock(&free_vmap_area_lock);
3429 	kfree(vas);
3430 	kfree(vms);
3431 	return NULL;
3432 }
3433 
3434 /**
3435  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3436  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3437  * @nr_vms: the number of allocated areas
3438  *
3439  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3440  */
3441 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3442 {
3443 	int i;
3444 
3445 	for (i = 0; i < nr_vms; i++)
3446 		free_vm_area(vms[i]);
3447 	kfree(vms);
3448 }
3449 #endif	/* CONFIG_SMP */
3450 
3451 #ifdef CONFIG_PROC_FS
3452 static void *s_start(struct seq_file *m, loff_t *pos)
3453 	__acquires(&vmap_purge_lock)
3454 	__acquires(&vmap_area_lock)
3455 {
3456 	mutex_lock(&vmap_purge_lock);
3457 	spin_lock(&vmap_area_lock);
3458 
3459 	return seq_list_start(&vmap_area_list, *pos);
3460 }
3461 
3462 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3463 {
3464 	return seq_list_next(p, &vmap_area_list, pos);
3465 }
3466 
3467 static void s_stop(struct seq_file *m, void *p)
3468 	__releases(&vmap_area_lock)
3469 	__releases(&vmap_purge_lock)
3470 {
3471 	spin_unlock(&vmap_area_lock);
3472 	mutex_unlock(&vmap_purge_lock);
3473 }
3474 
3475 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3476 {
3477 	if (IS_ENABLED(CONFIG_NUMA)) {
3478 		unsigned int nr, *counters = m->private;
3479 
3480 		if (!counters)
3481 			return;
3482 
3483 		if (v->flags & VM_UNINITIALIZED)
3484 			return;
3485 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3486 		smp_rmb();
3487 
3488 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3489 
3490 		for (nr = 0; nr < v->nr_pages; nr++)
3491 			counters[page_to_nid(v->pages[nr])]++;
3492 
3493 		for_each_node_state(nr, N_HIGH_MEMORY)
3494 			if (counters[nr])
3495 				seq_printf(m, " N%u=%u", nr, counters[nr]);
3496 	}
3497 }
3498 
3499 static void show_purge_info(struct seq_file *m)
3500 {
3501 	struct vmap_area *va;
3502 
3503 	spin_lock(&purge_vmap_area_lock);
3504 	list_for_each_entry(va, &purge_vmap_area_list, list) {
3505 		seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3506 			(void *)va->va_start, (void *)va->va_end,
3507 			va->va_end - va->va_start);
3508 	}
3509 	spin_unlock(&purge_vmap_area_lock);
3510 }
3511 
3512 static int s_show(struct seq_file *m, void *p)
3513 {
3514 	struct vmap_area *va;
3515 	struct vm_struct *v;
3516 
3517 	va = list_entry(p, struct vmap_area, list);
3518 
3519 	/*
3520 	 * s_show can encounter race with remove_vm_area, !vm on behalf
3521 	 * of vmap area is being tear down or vm_map_ram allocation.
3522 	 */
3523 	if (!va->vm) {
3524 		seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3525 			(void *)va->va_start, (void *)va->va_end,
3526 			va->va_end - va->va_start);
3527 
3528 		return 0;
3529 	}
3530 
3531 	v = va->vm;
3532 
3533 	seq_printf(m, "0x%pK-0x%pK %7ld",
3534 		v->addr, v->addr + v->size, v->size);
3535 
3536 	if (v->caller)
3537 		seq_printf(m, " %pS", v->caller);
3538 
3539 	if (v->nr_pages)
3540 		seq_printf(m, " pages=%d", v->nr_pages);
3541 
3542 	if (v->phys_addr)
3543 		seq_printf(m, " phys=%pa", &v->phys_addr);
3544 
3545 	if (v->flags & VM_IOREMAP)
3546 		seq_puts(m, " ioremap");
3547 
3548 	if (v->flags & VM_ALLOC)
3549 		seq_puts(m, " vmalloc");
3550 
3551 	if (v->flags & VM_MAP)
3552 		seq_puts(m, " vmap");
3553 
3554 	if (v->flags & VM_USERMAP)
3555 		seq_puts(m, " user");
3556 
3557 	if (v->flags & VM_DMA_COHERENT)
3558 		seq_puts(m, " dma-coherent");
3559 
3560 	if (is_vmalloc_addr(v->pages))
3561 		seq_puts(m, " vpages");
3562 
3563 	show_numa_info(m, v);
3564 	seq_putc(m, '\n');
3565 
3566 	/*
3567 	 * As a final step, dump "unpurged" areas.
3568 	 */
3569 	if (list_is_last(&va->list, &vmap_area_list))
3570 		show_purge_info(m);
3571 
3572 	return 0;
3573 }
3574 
3575 static const struct seq_operations vmalloc_op = {
3576 	.start = s_start,
3577 	.next = s_next,
3578 	.stop = s_stop,
3579 	.show = s_show,
3580 };
3581 
3582 static int __init proc_vmalloc_init(void)
3583 {
3584 	if (IS_ENABLED(CONFIG_NUMA))
3585 		proc_create_seq_private("vmallocinfo", 0400, NULL,
3586 				&vmalloc_op,
3587 				nr_node_ids * sizeof(unsigned int), NULL);
3588 	else
3589 		proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3590 	return 0;
3591 }
3592 module_init(proc_vmalloc_init);
3593 
3594 #endif
3595