1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/vmalloc.h> 12 #include <linux/mm.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/interrupt.h> 19 #include <linux/proc_fs.h> 20 #include <linux/seq_file.h> 21 #include <linux/debugobjects.h> 22 #include <linux/kallsyms.h> 23 #include <linux/list.h> 24 #include <linux/rbtree.h> 25 #include <linux/radix-tree.h> 26 #include <linux/rcupdate.h> 27 #include <linux/pfn.h> 28 #include <linux/kmemleak.h> 29 #include <linux/atomic.h> 30 #include <linux/compiler.h> 31 #include <linux/llist.h> 32 33 #include <asm/uaccess.h> 34 #include <asm/tlbflush.h> 35 #include <asm/shmparam.h> 36 37 struct vfree_deferred { 38 struct llist_head list; 39 struct work_struct wq; 40 }; 41 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); 42 43 static void __vunmap(const void *, int); 44 45 static void free_work(struct work_struct *w) 46 { 47 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); 48 struct llist_node *llnode = llist_del_all(&p->list); 49 while (llnode) { 50 void *p = llnode; 51 llnode = llist_next(llnode); 52 __vunmap(p, 1); 53 } 54 } 55 56 /*** Page table manipulation functions ***/ 57 58 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 59 { 60 pte_t *pte; 61 62 pte = pte_offset_kernel(pmd, addr); 63 do { 64 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 65 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 66 } while (pte++, addr += PAGE_SIZE, addr != end); 67 } 68 69 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) 70 { 71 pmd_t *pmd; 72 unsigned long next; 73 74 pmd = pmd_offset(pud, addr); 75 do { 76 next = pmd_addr_end(addr, end); 77 if (pmd_none_or_clear_bad(pmd)) 78 continue; 79 vunmap_pte_range(pmd, addr, next); 80 } while (pmd++, addr = next, addr != end); 81 } 82 83 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) 84 { 85 pud_t *pud; 86 unsigned long next; 87 88 pud = pud_offset(pgd, addr); 89 do { 90 next = pud_addr_end(addr, end); 91 if (pud_none_or_clear_bad(pud)) 92 continue; 93 vunmap_pmd_range(pud, addr, next); 94 } while (pud++, addr = next, addr != end); 95 } 96 97 static void vunmap_page_range(unsigned long addr, unsigned long end) 98 { 99 pgd_t *pgd; 100 unsigned long next; 101 102 BUG_ON(addr >= end); 103 pgd = pgd_offset_k(addr); 104 do { 105 next = pgd_addr_end(addr, end); 106 if (pgd_none_or_clear_bad(pgd)) 107 continue; 108 vunmap_pud_range(pgd, addr, next); 109 } while (pgd++, addr = next, addr != end); 110 } 111 112 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 113 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 114 { 115 pte_t *pte; 116 117 /* 118 * nr is a running index into the array which helps higher level 119 * callers keep track of where we're up to. 120 */ 121 122 pte = pte_alloc_kernel(pmd, addr); 123 if (!pte) 124 return -ENOMEM; 125 do { 126 struct page *page = pages[*nr]; 127 128 if (WARN_ON(!pte_none(*pte))) 129 return -EBUSY; 130 if (WARN_ON(!page)) 131 return -ENOMEM; 132 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 133 (*nr)++; 134 } while (pte++, addr += PAGE_SIZE, addr != end); 135 return 0; 136 } 137 138 static int vmap_pmd_range(pud_t *pud, unsigned long addr, 139 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 140 { 141 pmd_t *pmd; 142 unsigned long next; 143 144 pmd = pmd_alloc(&init_mm, pud, addr); 145 if (!pmd) 146 return -ENOMEM; 147 do { 148 next = pmd_addr_end(addr, end); 149 if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) 150 return -ENOMEM; 151 } while (pmd++, addr = next, addr != end); 152 return 0; 153 } 154 155 static int vmap_pud_range(pgd_t *pgd, unsigned long addr, 156 unsigned long end, pgprot_t prot, struct page **pages, int *nr) 157 { 158 pud_t *pud; 159 unsigned long next; 160 161 pud = pud_alloc(&init_mm, pgd, addr); 162 if (!pud) 163 return -ENOMEM; 164 do { 165 next = pud_addr_end(addr, end); 166 if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) 167 return -ENOMEM; 168 } while (pud++, addr = next, addr != end); 169 return 0; 170 } 171 172 /* 173 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and 174 * will have pfns corresponding to the "pages" array. 175 * 176 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] 177 */ 178 static int vmap_page_range_noflush(unsigned long start, unsigned long end, 179 pgprot_t prot, struct page **pages) 180 { 181 pgd_t *pgd; 182 unsigned long next; 183 unsigned long addr = start; 184 int err = 0; 185 int nr = 0; 186 187 BUG_ON(addr >= end); 188 pgd = pgd_offset_k(addr); 189 do { 190 next = pgd_addr_end(addr, end); 191 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); 192 if (err) 193 return err; 194 } while (pgd++, addr = next, addr != end); 195 196 return nr; 197 } 198 199 static int vmap_page_range(unsigned long start, unsigned long end, 200 pgprot_t prot, struct page **pages) 201 { 202 int ret; 203 204 ret = vmap_page_range_noflush(start, end, prot, pages); 205 flush_cache_vmap(start, end); 206 return ret; 207 } 208 209 int is_vmalloc_or_module_addr(const void *x) 210 { 211 /* 212 * ARM, x86-64 and sparc64 put modules in a special place, 213 * and fall back on vmalloc() if that fails. Others 214 * just put it in the vmalloc space. 215 */ 216 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) 217 unsigned long addr = (unsigned long)x; 218 if (addr >= MODULES_VADDR && addr < MODULES_END) 219 return 1; 220 #endif 221 return is_vmalloc_addr(x); 222 } 223 224 /* 225 * Walk a vmap address to the struct page it maps. 226 */ 227 struct page *vmalloc_to_page(const void *vmalloc_addr) 228 { 229 unsigned long addr = (unsigned long) vmalloc_addr; 230 struct page *page = NULL; 231 pgd_t *pgd = pgd_offset_k(addr); 232 233 /* 234 * XXX we might need to change this if we add VIRTUAL_BUG_ON for 235 * architectures that do not vmalloc module space 236 */ 237 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); 238 239 if (!pgd_none(*pgd)) { 240 pud_t *pud = pud_offset(pgd, addr); 241 if (!pud_none(*pud)) { 242 pmd_t *pmd = pmd_offset(pud, addr); 243 if (!pmd_none(*pmd)) { 244 pte_t *ptep, pte; 245 246 ptep = pte_offset_map(pmd, addr); 247 pte = *ptep; 248 if (pte_present(pte)) 249 page = pte_page(pte); 250 pte_unmap(ptep); 251 } 252 } 253 } 254 return page; 255 } 256 EXPORT_SYMBOL(vmalloc_to_page); 257 258 /* 259 * Map a vmalloc()-space virtual address to the physical page frame number. 260 */ 261 unsigned long vmalloc_to_pfn(const void *vmalloc_addr) 262 { 263 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 264 } 265 EXPORT_SYMBOL(vmalloc_to_pfn); 266 267 268 /*** Global kva allocator ***/ 269 270 #define VM_LAZY_FREE 0x01 271 #define VM_LAZY_FREEING 0x02 272 #define VM_VM_AREA 0x04 273 274 static DEFINE_SPINLOCK(vmap_area_lock); 275 /* Export for kexec only */ 276 LIST_HEAD(vmap_area_list); 277 static struct rb_root vmap_area_root = RB_ROOT; 278 279 /* The vmap cache globals are protected by vmap_area_lock */ 280 static struct rb_node *free_vmap_cache; 281 static unsigned long cached_hole_size; 282 static unsigned long cached_vstart; 283 static unsigned long cached_align; 284 285 static unsigned long vmap_area_pcpu_hole; 286 287 static struct vmap_area *__find_vmap_area(unsigned long addr) 288 { 289 struct rb_node *n = vmap_area_root.rb_node; 290 291 while (n) { 292 struct vmap_area *va; 293 294 va = rb_entry(n, struct vmap_area, rb_node); 295 if (addr < va->va_start) 296 n = n->rb_left; 297 else if (addr >= va->va_end) 298 n = n->rb_right; 299 else 300 return va; 301 } 302 303 return NULL; 304 } 305 306 static void __insert_vmap_area(struct vmap_area *va) 307 { 308 struct rb_node **p = &vmap_area_root.rb_node; 309 struct rb_node *parent = NULL; 310 struct rb_node *tmp; 311 312 while (*p) { 313 struct vmap_area *tmp_va; 314 315 parent = *p; 316 tmp_va = rb_entry(parent, struct vmap_area, rb_node); 317 if (va->va_start < tmp_va->va_end) 318 p = &(*p)->rb_left; 319 else if (va->va_end > tmp_va->va_start) 320 p = &(*p)->rb_right; 321 else 322 BUG(); 323 } 324 325 rb_link_node(&va->rb_node, parent, p); 326 rb_insert_color(&va->rb_node, &vmap_area_root); 327 328 /* address-sort this list */ 329 tmp = rb_prev(&va->rb_node); 330 if (tmp) { 331 struct vmap_area *prev; 332 prev = rb_entry(tmp, struct vmap_area, rb_node); 333 list_add_rcu(&va->list, &prev->list); 334 } else 335 list_add_rcu(&va->list, &vmap_area_list); 336 } 337 338 static void purge_vmap_area_lazy(void); 339 340 /* 341 * Allocate a region of KVA of the specified size and alignment, within the 342 * vstart and vend. 343 */ 344 static struct vmap_area *alloc_vmap_area(unsigned long size, 345 unsigned long align, 346 unsigned long vstart, unsigned long vend, 347 int node, gfp_t gfp_mask) 348 { 349 struct vmap_area *va; 350 struct rb_node *n; 351 unsigned long addr; 352 int purged = 0; 353 struct vmap_area *first; 354 355 BUG_ON(!size); 356 BUG_ON(size & ~PAGE_MASK); 357 BUG_ON(!is_power_of_2(align)); 358 359 va = kmalloc_node(sizeof(struct vmap_area), 360 gfp_mask & GFP_RECLAIM_MASK, node); 361 if (unlikely(!va)) 362 return ERR_PTR(-ENOMEM); 363 364 /* 365 * Only scan the relevant parts containing pointers to other objects 366 * to avoid false negatives. 367 */ 368 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); 369 370 retry: 371 spin_lock(&vmap_area_lock); 372 /* 373 * Invalidate cache if we have more permissive parameters. 374 * cached_hole_size notes the largest hole noticed _below_ 375 * the vmap_area cached in free_vmap_cache: if size fits 376 * into that hole, we want to scan from vstart to reuse 377 * the hole instead of allocating above free_vmap_cache. 378 * Note that __free_vmap_area may update free_vmap_cache 379 * without updating cached_hole_size or cached_align. 380 */ 381 if (!free_vmap_cache || 382 size < cached_hole_size || 383 vstart < cached_vstart || 384 align < cached_align) { 385 nocache: 386 cached_hole_size = 0; 387 free_vmap_cache = NULL; 388 } 389 /* record if we encounter less permissive parameters */ 390 cached_vstart = vstart; 391 cached_align = align; 392 393 /* find starting point for our search */ 394 if (free_vmap_cache) { 395 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 396 addr = ALIGN(first->va_end, align); 397 if (addr < vstart) 398 goto nocache; 399 if (addr + size < addr) 400 goto overflow; 401 402 } else { 403 addr = ALIGN(vstart, align); 404 if (addr + size < addr) 405 goto overflow; 406 407 n = vmap_area_root.rb_node; 408 first = NULL; 409 410 while (n) { 411 struct vmap_area *tmp; 412 tmp = rb_entry(n, struct vmap_area, rb_node); 413 if (tmp->va_end >= addr) { 414 first = tmp; 415 if (tmp->va_start <= addr) 416 break; 417 n = n->rb_left; 418 } else 419 n = n->rb_right; 420 } 421 422 if (!first) 423 goto found; 424 } 425 426 /* from the starting point, walk areas until a suitable hole is found */ 427 while (addr + size > first->va_start && addr + size <= vend) { 428 if (addr + cached_hole_size < first->va_start) 429 cached_hole_size = first->va_start - addr; 430 addr = ALIGN(first->va_end, align); 431 if (addr + size < addr) 432 goto overflow; 433 434 if (list_is_last(&first->list, &vmap_area_list)) 435 goto found; 436 437 first = list_entry(first->list.next, 438 struct vmap_area, list); 439 } 440 441 found: 442 if (addr + size > vend) 443 goto overflow; 444 445 va->va_start = addr; 446 va->va_end = addr + size; 447 va->flags = 0; 448 __insert_vmap_area(va); 449 free_vmap_cache = &va->rb_node; 450 spin_unlock(&vmap_area_lock); 451 452 BUG_ON(va->va_start & (align-1)); 453 BUG_ON(va->va_start < vstart); 454 BUG_ON(va->va_end > vend); 455 456 return va; 457 458 overflow: 459 spin_unlock(&vmap_area_lock); 460 if (!purged) { 461 purge_vmap_area_lazy(); 462 purged = 1; 463 goto retry; 464 } 465 if (printk_ratelimit()) 466 pr_warn("vmap allocation for size %lu failed: " 467 "use vmalloc=<size> to increase size.\n", size); 468 kfree(va); 469 return ERR_PTR(-EBUSY); 470 } 471 472 static void __free_vmap_area(struct vmap_area *va) 473 { 474 BUG_ON(RB_EMPTY_NODE(&va->rb_node)); 475 476 if (free_vmap_cache) { 477 if (va->va_end < cached_vstart) { 478 free_vmap_cache = NULL; 479 } else { 480 struct vmap_area *cache; 481 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); 482 if (va->va_start <= cache->va_start) { 483 free_vmap_cache = rb_prev(&va->rb_node); 484 /* 485 * We don't try to update cached_hole_size or 486 * cached_align, but it won't go very wrong. 487 */ 488 } 489 } 490 } 491 rb_erase(&va->rb_node, &vmap_area_root); 492 RB_CLEAR_NODE(&va->rb_node); 493 list_del_rcu(&va->list); 494 495 /* 496 * Track the highest possible candidate for pcpu area 497 * allocation. Areas outside of vmalloc area can be returned 498 * here too, consider only end addresses which fall inside 499 * vmalloc area proper. 500 */ 501 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) 502 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); 503 504 kfree_rcu(va, rcu_head); 505 } 506 507 /* 508 * Free a region of KVA allocated by alloc_vmap_area 509 */ 510 static void free_vmap_area(struct vmap_area *va) 511 { 512 spin_lock(&vmap_area_lock); 513 __free_vmap_area(va); 514 spin_unlock(&vmap_area_lock); 515 } 516 517 /* 518 * Clear the pagetable entries of a given vmap_area 519 */ 520 static void unmap_vmap_area(struct vmap_area *va) 521 { 522 vunmap_page_range(va->va_start, va->va_end); 523 } 524 525 static void vmap_debug_free_range(unsigned long start, unsigned long end) 526 { 527 /* 528 * Unmap page tables and force a TLB flush immediately if 529 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free 530 * bugs similarly to those in linear kernel virtual address 531 * space after a page has been freed. 532 * 533 * All the lazy freeing logic is still retained, in order to 534 * minimise intrusiveness of this debugging feature. 535 * 536 * This is going to be *slow* (linear kernel virtual address 537 * debugging doesn't do a broadcast TLB flush so it is a lot 538 * faster). 539 */ 540 #ifdef CONFIG_DEBUG_PAGEALLOC 541 vunmap_page_range(start, end); 542 flush_tlb_kernel_range(start, end); 543 #endif 544 } 545 546 /* 547 * lazy_max_pages is the maximum amount of virtual address space we gather up 548 * before attempting to purge with a TLB flush. 549 * 550 * There is a tradeoff here: a larger number will cover more kernel page tables 551 * and take slightly longer to purge, but it will linearly reduce the number of 552 * global TLB flushes that must be performed. It would seem natural to scale 553 * this number up linearly with the number of CPUs (because vmapping activity 554 * could also scale linearly with the number of CPUs), however it is likely 555 * that in practice, workloads might be constrained in other ways that mean 556 * vmap activity will not scale linearly with CPUs. Also, I want to be 557 * conservative and not introduce a big latency on huge systems, so go with 558 * a less aggressive log scale. It will still be an improvement over the old 559 * code, and it will be simple to change the scale factor if we find that it 560 * becomes a problem on bigger systems. 561 */ 562 static unsigned long lazy_max_pages(void) 563 { 564 unsigned int log; 565 566 log = fls(num_online_cpus()); 567 568 return log * (32UL * 1024 * 1024 / PAGE_SIZE); 569 } 570 571 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); 572 573 /* for per-CPU blocks */ 574 static void purge_fragmented_blocks_allcpus(void); 575 576 /* 577 * called before a call to iounmap() if the caller wants vm_area_struct's 578 * immediately freed. 579 */ 580 void set_iounmap_nonlazy(void) 581 { 582 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); 583 } 584 585 /* 586 * Purges all lazily-freed vmap areas. 587 * 588 * If sync is 0 then don't purge if there is already a purge in progress. 589 * If force_flush is 1, then flush kernel TLBs between *start and *end even 590 * if we found no lazy vmap areas to unmap (callers can use this to optimise 591 * their own TLB flushing). 592 * Returns with *start = min(*start, lowest purged address) 593 * *end = max(*end, highest purged address) 594 */ 595 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, 596 int sync, int force_flush) 597 { 598 static DEFINE_SPINLOCK(purge_lock); 599 LIST_HEAD(valist); 600 struct vmap_area *va; 601 struct vmap_area *n_va; 602 int nr = 0; 603 604 /* 605 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers 606 * should not expect such behaviour. This just simplifies locking for 607 * the case that isn't actually used at the moment anyway. 608 */ 609 if (!sync && !force_flush) { 610 if (!spin_trylock(&purge_lock)) 611 return; 612 } else 613 spin_lock(&purge_lock); 614 615 if (sync) 616 purge_fragmented_blocks_allcpus(); 617 618 rcu_read_lock(); 619 list_for_each_entry_rcu(va, &vmap_area_list, list) { 620 if (va->flags & VM_LAZY_FREE) { 621 if (va->va_start < *start) 622 *start = va->va_start; 623 if (va->va_end > *end) 624 *end = va->va_end; 625 nr += (va->va_end - va->va_start) >> PAGE_SHIFT; 626 list_add_tail(&va->purge_list, &valist); 627 va->flags |= VM_LAZY_FREEING; 628 va->flags &= ~VM_LAZY_FREE; 629 } 630 } 631 rcu_read_unlock(); 632 633 if (nr) 634 atomic_sub(nr, &vmap_lazy_nr); 635 636 if (nr || force_flush) 637 flush_tlb_kernel_range(*start, *end); 638 639 if (nr) { 640 spin_lock(&vmap_area_lock); 641 list_for_each_entry_safe(va, n_va, &valist, purge_list) 642 __free_vmap_area(va); 643 spin_unlock(&vmap_area_lock); 644 } 645 spin_unlock(&purge_lock); 646 } 647 648 /* 649 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody 650 * is already purging. 651 */ 652 static void try_purge_vmap_area_lazy(void) 653 { 654 unsigned long start = ULONG_MAX, end = 0; 655 656 __purge_vmap_area_lazy(&start, &end, 0, 0); 657 } 658 659 /* 660 * Kick off a purge of the outstanding lazy areas. 661 */ 662 static void purge_vmap_area_lazy(void) 663 { 664 unsigned long start = ULONG_MAX, end = 0; 665 666 __purge_vmap_area_lazy(&start, &end, 1, 0); 667 } 668 669 /* 670 * Free a vmap area, caller ensuring that the area has been unmapped 671 * and flush_cache_vunmap had been called for the correct range 672 * previously. 673 */ 674 static void free_vmap_area_noflush(struct vmap_area *va) 675 { 676 va->flags |= VM_LAZY_FREE; 677 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); 678 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) 679 try_purge_vmap_area_lazy(); 680 } 681 682 /* 683 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been 684 * called for the correct range previously. 685 */ 686 static void free_unmap_vmap_area_noflush(struct vmap_area *va) 687 { 688 unmap_vmap_area(va); 689 free_vmap_area_noflush(va); 690 } 691 692 /* 693 * Free and unmap a vmap area 694 */ 695 static void free_unmap_vmap_area(struct vmap_area *va) 696 { 697 flush_cache_vunmap(va->va_start, va->va_end); 698 free_unmap_vmap_area_noflush(va); 699 } 700 701 static struct vmap_area *find_vmap_area(unsigned long addr) 702 { 703 struct vmap_area *va; 704 705 spin_lock(&vmap_area_lock); 706 va = __find_vmap_area(addr); 707 spin_unlock(&vmap_area_lock); 708 709 return va; 710 } 711 712 static void free_unmap_vmap_area_addr(unsigned long addr) 713 { 714 struct vmap_area *va; 715 716 va = find_vmap_area(addr); 717 BUG_ON(!va); 718 free_unmap_vmap_area(va); 719 } 720 721 722 /*** Per cpu kva allocator ***/ 723 724 /* 725 * vmap space is limited especially on 32 bit architectures. Ensure there is 726 * room for at least 16 percpu vmap blocks per CPU. 727 */ 728 /* 729 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able 730 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess 731 * instead (we just need a rough idea) 732 */ 733 #if BITS_PER_LONG == 32 734 #define VMALLOC_SPACE (128UL*1024*1024) 735 #else 736 #define VMALLOC_SPACE (128UL*1024*1024*1024) 737 #endif 738 739 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) 740 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ 741 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ 742 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) 743 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ 744 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ 745 #define VMAP_BBMAP_BITS \ 746 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ 747 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ 748 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) 749 750 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) 751 752 static bool vmap_initialized __read_mostly = false; 753 754 struct vmap_block_queue { 755 spinlock_t lock; 756 struct list_head free; 757 }; 758 759 struct vmap_block { 760 spinlock_t lock; 761 struct vmap_area *va; 762 unsigned long free, dirty; 763 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); 764 struct list_head free_list; 765 struct rcu_head rcu_head; 766 struct list_head purge; 767 }; 768 769 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ 770 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); 771 772 /* 773 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block 774 * in the free path. Could get rid of this if we change the API to return a 775 * "cookie" from alloc, to be passed to free. But no big deal yet. 776 */ 777 static DEFINE_SPINLOCK(vmap_block_tree_lock); 778 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); 779 780 /* 781 * We should probably have a fallback mechanism to allocate virtual memory 782 * out of partially filled vmap blocks. However vmap block sizing should be 783 * fairly reasonable according to the vmalloc size, so it shouldn't be a 784 * big problem. 785 */ 786 787 static unsigned long addr_to_vb_idx(unsigned long addr) 788 { 789 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); 790 addr /= VMAP_BLOCK_SIZE; 791 return addr; 792 } 793 794 static struct vmap_block *new_vmap_block(gfp_t gfp_mask) 795 { 796 struct vmap_block_queue *vbq; 797 struct vmap_block *vb; 798 struct vmap_area *va; 799 unsigned long vb_idx; 800 int node, err; 801 802 node = numa_node_id(); 803 804 vb = kmalloc_node(sizeof(struct vmap_block), 805 gfp_mask & GFP_RECLAIM_MASK, node); 806 if (unlikely(!vb)) 807 return ERR_PTR(-ENOMEM); 808 809 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, 810 VMALLOC_START, VMALLOC_END, 811 node, gfp_mask); 812 if (IS_ERR(va)) { 813 kfree(vb); 814 return ERR_CAST(va); 815 } 816 817 err = radix_tree_preload(gfp_mask); 818 if (unlikely(err)) { 819 kfree(vb); 820 free_vmap_area(va); 821 return ERR_PTR(err); 822 } 823 824 spin_lock_init(&vb->lock); 825 vb->va = va; 826 vb->free = VMAP_BBMAP_BITS; 827 vb->dirty = 0; 828 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); 829 INIT_LIST_HEAD(&vb->free_list); 830 831 vb_idx = addr_to_vb_idx(va->va_start); 832 spin_lock(&vmap_block_tree_lock); 833 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); 834 spin_unlock(&vmap_block_tree_lock); 835 BUG_ON(err); 836 radix_tree_preload_end(); 837 838 vbq = &get_cpu_var(vmap_block_queue); 839 spin_lock(&vbq->lock); 840 list_add_rcu(&vb->free_list, &vbq->free); 841 spin_unlock(&vbq->lock); 842 put_cpu_var(vmap_block_queue); 843 844 return vb; 845 } 846 847 static void free_vmap_block(struct vmap_block *vb) 848 { 849 struct vmap_block *tmp; 850 unsigned long vb_idx; 851 852 vb_idx = addr_to_vb_idx(vb->va->va_start); 853 spin_lock(&vmap_block_tree_lock); 854 tmp = radix_tree_delete(&vmap_block_tree, vb_idx); 855 spin_unlock(&vmap_block_tree_lock); 856 BUG_ON(tmp != vb); 857 858 free_vmap_area_noflush(vb->va); 859 kfree_rcu(vb, rcu_head); 860 } 861 862 static void purge_fragmented_blocks(int cpu) 863 { 864 LIST_HEAD(purge); 865 struct vmap_block *vb; 866 struct vmap_block *n_vb; 867 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 868 869 rcu_read_lock(); 870 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 871 872 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) 873 continue; 874 875 spin_lock(&vb->lock); 876 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { 877 vb->free = 0; /* prevent further allocs after releasing lock */ 878 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ 879 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); 880 spin_lock(&vbq->lock); 881 list_del_rcu(&vb->free_list); 882 spin_unlock(&vbq->lock); 883 spin_unlock(&vb->lock); 884 list_add_tail(&vb->purge, &purge); 885 } else 886 spin_unlock(&vb->lock); 887 } 888 rcu_read_unlock(); 889 890 list_for_each_entry_safe(vb, n_vb, &purge, purge) { 891 list_del(&vb->purge); 892 free_vmap_block(vb); 893 } 894 } 895 896 static void purge_fragmented_blocks_allcpus(void) 897 { 898 int cpu; 899 900 for_each_possible_cpu(cpu) 901 purge_fragmented_blocks(cpu); 902 } 903 904 static void *vb_alloc(unsigned long size, gfp_t gfp_mask) 905 { 906 struct vmap_block_queue *vbq; 907 struct vmap_block *vb; 908 unsigned long addr = 0; 909 unsigned int order; 910 911 BUG_ON(size & ~PAGE_MASK); 912 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 913 if (WARN_ON(size == 0)) { 914 /* 915 * Allocating 0 bytes isn't what caller wants since 916 * get_order(0) returns funny result. Just warn and terminate 917 * early. 918 */ 919 return NULL; 920 } 921 order = get_order(size); 922 923 again: 924 rcu_read_lock(); 925 vbq = &get_cpu_var(vmap_block_queue); 926 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 927 int i; 928 929 spin_lock(&vb->lock); 930 if (vb->free < 1UL << order) 931 goto next; 932 933 i = VMAP_BBMAP_BITS - vb->free; 934 addr = vb->va->va_start + (i << PAGE_SHIFT); 935 BUG_ON(addr_to_vb_idx(addr) != 936 addr_to_vb_idx(vb->va->va_start)); 937 vb->free -= 1UL << order; 938 if (vb->free == 0) { 939 spin_lock(&vbq->lock); 940 list_del_rcu(&vb->free_list); 941 spin_unlock(&vbq->lock); 942 } 943 spin_unlock(&vb->lock); 944 break; 945 next: 946 spin_unlock(&vb->lock); 947 } 948 949 put_cpu_var(vmap_block_queue); 950 rcu_read_unlock(); 951 952 if (!addr) { 953 vb = new_vmap_block(gfp_mask); 954 if (IS_ERR(vb)) 955 return vb; 956 goto again; 957 } 958 959 return (void *)addr; 960 } 961 962 static void vb_free(const void *addr, unsigned long size) 963 { 964 unsigned long offset; 965 unsigned long vb_idx; 966 unsigned int order; 967 struct vmap_block *vb; 968 969 BUG_ON(size & ~PAGE_MASK); 970 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); 971 972 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); 973 974 order = get_order(size); 975 976 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); 977 978 vb_idx = addr_to_vb_idx((unsigned long)addr); 979 rcu_read_lock(); 980 vb = radix_tree_lookup(&vmap_block_tree, vb_idx); 981 rcu_read_unlock(); 982 BUG_ON(!vb); 983 984 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); 985 986 spin_lock(&vb->lock); 987 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); 988 989 vb->dirty += 1UL << order; 990 if (vb->dirty == VMAP_BBMAP_BITS) { 991 BUG_ON(vb->free); 992 spin_unlock(&vb->lock); 993 free_vmap_block(vb); 994 } else 995 spin_unlock(&vb->lock); 996 } 997 998 /** 999 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer 1000 * 1001 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily 1002 * to amortize TLB flushing overheads. What this means is that any page you 1003 * have now, may, in a former life, have been mapped into kernel virtual 1004 * address by the vmap layer and so there might be some CPUs with TLB entries 1005 * still referencing that page (additional to the regular 1:1 kernel mapping). 1006 * 1007 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can 1008 * be sure that none of the pages we have control over will have any aliases 1009 * from the vmap layer. 1010 */ 1011 void vm_unmap_aliases(void) 1012 { 1013 unsigned long start = ULONG_MAX, end = 0; 1014 int cpu; 1015 int flush = 0; 1016 1017 if (unlikely(!vmap_initialized)) 1018 return; 1019 1020 for_each_possible_cpu(cpu) { 1021 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); 1022 struct vmap_block *vb; 1023 1024 rcu_read_lock(); 1025 list_for_each_entry_rcu(vb, &vbq->free, free_list) { 1026 int i, j; 1027 1028 spin_lock(&vb->lock); 1029 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); 1030 if (i < VMAP_BBMAP_BITS) { 1031 unsigned long s, e; 1032 1033 j = find_last_bit(vb->dirty_map, 1034 VMAP_BBMAP_BITS); 1035 j = j + 1; /* need exclusive index */ 1036 1037 s = vb->va->va_start + (i << PAGE_SHIFT); 1038 e = vb->va->va_start + (j << PAGE_SHIFT); 1039 flush = 1; 1040 1041 if (s < start) 1042 start = s; 1043 if (e > end) 1044 end = e; 1045 } 1046 spin_unlock(&vb->lock); 1047 } 1048 rcu_read_unlock(); 1049 } 1050 1051 __purge_vmap_area_lazy(&start, &end, 1, flush); 1052 } 1053 EXPORT_SYMBOL_GPL(vm_unmap_aliases); 1054 1055 /** 1056 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram 1057 * @mem: the pointer returned by vm_map_ram 1058 * @count: the count passed to that vm_map_ram call (cannot unmap partial) 1059 */ 1060 void vm_unmap_ram(const void *mem, unsigned int count) 1061 { 1062 unsigned long size = count << PAGE_SHIFT; 1063 unsigned long addr = (unsigned long)mem; 1064 1065 BUG_ON(!addr); 1066 BUG_ON(addr < VMALLOC_START); 1067 BUG_ON(addr > VMALLOC_END); 1068 BUG_ON(addr & (PAGE_SIZE-1)); 1069 1070 debug_check_no_locks_freed(mem, size); 1071 vmap_debug_free_range(addr, addr+size); 1072 1073 if (likely(count <= VMAP_MAX_ALLOC)) 1074 vb_free(mem, size); 1075 else 1076 free_unmap_vmap_area_addr(addr); 1077 } 1078 EXPORT_SYMBOL(vm_unmap_ram); 1079 1080 /** 1081 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) 1082 * @pages: an array of pointers to the pages to be mapped 1083 * @count: number of pages 1084 * @node: prefer to allocate data structures on this node 1085 * @prot: memory protection to use. PAGE_KERNEL for regular RAM 1086 * 1087 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be 1088 * faster than vmap so it's good. But if you mix long-life and short-life 1089 * objects with vm_map_ram(), it could consume lots of address space through 1090 * fragmentation (especially on a 32bit machine). You could see failures in 1091 * the end. Please use this function for short-lived objects. 1092 * 1093 * Returns: a pointer to the address that has been mapped, or %NULL on failure 1094 */ 1095 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) 1096 { 1097 unsigned long size = count << PAGE_SHIFT; 1098 unsigned long addr; 1099 void *mem; 1100 1101 if (likely(count <= VMAP_MAX_ALLOC)) { 1102 mem = vb_alloc(size, GFP_KERNEL); 1103 if (IS_ERR(mem)) 1104 return NULL; 1105 addr = (unsigned long)mem; 1106 } else { 1107 struct vmap_area *va; 1108 va = alloc_vmap_area(size, PAGE_SIZE, 1109 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); 1110 if (IS_ERR(va)) 1111 return NULL; 1112 1113 addr = va->va_start; 1114 mem = (void *)addr; 1115 } 1116 if (vmap_page_range(addr, addr + size, prot, pages) < 0) { 1117 vm_unmap_ram(mem, count); 1118 return NULL; 1119 } 1120 return mem; 1121 } 1122 EXPORT_SYMBOL(vm_map_ram); 1123 1124 static struct vm_struct *vmlist __initdata; 1125 /** 1126 * vm_area_add_early - add vmap area early during boot 1127 * @vm: vm_struct to add 1128 * 1129 * This function is used to add fixed kernel vm area to vmlist before 1130 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags 1131 * should contain proper values and the other fields should be zero. 1132 * 1133 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1134 */ 1135 void __init vm_area_add_early(struct vm_struct *vm) 1136 { 1137 struct vm_struct *tmp, **p; 1138 1139 BUG_ON(vmap_initialized); 1140 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { 1141 if (tmp->addr >= vm->addr) { 1142 BUG_ON(tmp->addr < vm->addr + vm->size); 1143 break; 1144 } else 1145 BUG_ON(tmp->addr + tmp->size > vm->addr); 1146 } 1147 vm->next = *p; 1148 *p = vm; 1149 } 1150 1151 /** 1152 * vm_area_register_early - register vmap area early during boot 1153 * @vm: vm_struct to register 1154 * @align: requested alignment 1155 * 1156 * This function is used to register kernel vm area before 1157 * vmalloc_init() is called. @vm->size and @vm->flags should contain 1158 * proper values on entry and other fields should be zero. On return, 1159 * vm->addr contains the allocated address. 1160 * 1161 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. 1162 */ 1163 void __init vm_area_register_early(struct vm_struct *vm, size_t align) 1164 { 1165 static size_t vm_init_off __initdata; 1166 unsigned long addr; 1167 1168 addr = ALIGN(VMALLOC_START + vm_init_off, align); 1169 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; 1170 1171 vm->addr = (void *)addr; 1172 1173 vm_area_add_early(vm); 1174 } 1175 1176 void __init vmalloc_init(void) 1177 { 1178 struct vmap_area *va; 1179 struct vm_struct *tmp; 1180 int i; 1181 1182 for_each_possible_cpu(i) { 1183 struct vmap_block_queue *vbq; 1184 struct vfree_deferred *p; 1185 1186 vbq = &per_cpu(vmap_block_queue, i); 1187 spin_lock_init(&vbq->lock); 1188 INIT_LIST_HEAD(&vbq->free); 1189 p = &per_cpu(vfree_deferred, i); 1190 init_llist_head(&p->list); 1191 INIT_WORK(&p->wq, free_work); 1192 } 1193 1194 /* Import existing vmlist entries. */ 1195 for (tmp = vmlist; tmp; tmp = tmp->next) { 1196 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); 1197 va->flags = VM_VM_AREA; 1198 va->va_start = (unsigned long)tmp->addr; 1199 va->va_end = va->va_start + tmp->size; 1200 va->vm = tmp; 1201 __insert_vmap_area(va); 1202 } 1203 1204 vmap_area_pcpu_hole = VMALLOC_END; 1205 1206 vmap_initialized = true; 1207 } 1208 1209 /** 1210 * map_kernel_range_noflush - map kernel VM area with the specified pages 1211 * @addr: start of the VM area to map 1212 * @size: size of the VM area to map 1213 * @prot: page protection flags to use 1214 * @pages: pages to map 1215 * 1216 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size 1217 * specify should have been allocated using get_vm_area() and its 1218 * friends. 1219 * 1220 * NOTE: 1221 * This function does NOT do any cache flushing. The caller is 1222 * responsible for calling flush_cache_vmap() on to-be-mapped areas 1223 * before calling this function. 1224 * 1225 * RETURNS: 1226 * The number of pages mapped on success, -errno on failure. 1227 */ 1228 int map_kernel_range_noflush(unsigned long addr, unsigned long size, 1229 pgprot_t prot, struct page **pages) 1230 { 1231 return vmap_page_range_noflush(addr, addr + size, prot, pages); 1232 } 1233 1234 /** 1235 * unmap_kernel_range_noflush - unmap kernel VM area 1236 * @addr: start of the VM area to unmap 1237 * @size: size of the VM area to unmap 1238 * 1239 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size 1240 * specify should have been allocated using get_vm_area() and its 1241 * friends. 1242 * 1243 * NOTE: 1244 * This function does NOT do any cache flushing. The caller is 1245 * responsible for calling flush_cache_vunmap() on to-be-mapped areas 1246 * before calling this function and flush_tlb_kernel_range() after. 1247 */ 1248 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) 1249 { 1250 vunmap_page_range(addr, addr + size); 1251 } 1252 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); 1253 1254 /** 1255 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB 1256 * @addr: start of the VM area to unmap 1257 * @size: size of the VM area to unmap 1258 * 1259 * Similar to unmap_kernel_range_noflush() but flushes vcache before 1260 * the unmapping and tlb after. 1261 */ 1262 void unmap_kernel_range(unsigned long addr, unsigned long size) 1263 { 1264 unsigned long end = addr + size; 1265 1266 flush_cache_vunmap(addr, end); 1267 vunmap_page_range(addr, end); 1268 flush_tlb_kernel_range(addr, end); 1269 } 1270 EXPORT_SYMBOL_GPL(unmap_kernel_range); 1271 1272 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) 1273 { 1274 unsigned long addr = (unsigned long)area->addr; 1275 unsigned long end = addr + get_vm_area_size(area); 1276 int err; 1277 1278 err = vmap_page_range(addr, end, prot, pages); 1279 1280 return err > 0 ? 0 : err; 1281 } 1282 EXPORT_SYMBOL_GPL(map_vm_area); 1283 1284 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, 1285 unsigned long flags, const void *caller) 1286 { 1287 spin_lock(&vmap_area_lock); 1288 vm->flags = flags; 1289 vm->addr = (void *)va->va_start; 1290 vm->size = va->va_end - va->va_start; 1291 vm->caller = caller; 1292 va->vm = vm; 1293 va->flags |= VM_VM_AREA; 1294 spin_unlock(&vmap_area_lock); 1295 } 1296 1297 static void clear_vm_uninitialized_flag(struct vm_struct *vm) 1298 { 1299 /* 1300 * Before removing VM_UNINITIALIZED, 1301 * we should make sure that vm has proper values. 1302 * Pair with smp_rmb() in show_numa_info(). 1303 */ 1304 smp_wmb(); 1305 vm->flags &= ~VM_UNINITIALIZED; 1306 } 1307 1308 static struct vm_struct *__get_vm_area_node(unsigned long size, 1309 unsigned long align, unsigned long flags, unsigned long start, 1310 unsigned long end, int node, gfp_t gfp_mask, const void *caller) 1311 { 1312 struct vmap_area *va; 1313 struct vm_struct *area; 1314 1315 BUG_ON(in_interrupt()); 1316 if (flags & VM_IOREMAP) 1317 align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); 1318 1319 size = PAGE_ALIGN(size); 1320 if (unlikely(!size)) 1321 return NULL; 1322 1323 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); 1324 if (unlikely(!area)) 1325 return NULL; 1326 1327 if (!(flags & VM_NO_GUARD)) 1328 size += PAGE_SIZE; 1329 1330 va = alloc_vmap_area(size, align, start, end, node, gfp_mask); 1331 if (IS_ERR(va)) { 1332 kfree(area); 1333 return NULL; 1334 } 1335 1336 setup_vmalloc_vm(area, va, flags, caller); 1337 1338 return area; 1339 } 1340 1341 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 1342 unsigned long start, unsigned long end) 1343 { 1344 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1345 GFP_KERNEL, __builtin_return_address(0)); 1346 } 1347 EXPORT_SYMBOL_GPL(__get_vm_area); 1348 1349 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, 1350 unsigned long start, unsigned long end, 1351 const void *caller) 1352 { 1353 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, 1354 GFP_KERNEL, caller); 1355 } 1356 1357 /** 1358 * get_vm_area - reserve a contiguous kernel virtual area 1359 * @size: size of the area 1360 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 1361 * 1362 * Search an area of @size in the kernel virtual mapping area, 1363 * and reserved it for out purposes. Returns the area descriptor 1364 * on success or %NULL on failure. 1365 */ 1366 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 1367 { 1368 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1369 NUMA_NO_NODE, GFP_KERNEL, 1370 __builtin_return_address(0)); 1371 } 1372 1373 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, 1374 const void *caller) 1375 { 1376 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, 1377 NUMA_NO_NODE, GFP_KERNEL, caller); 1378 } 1379 1380 /** 1381 * find_vm_area - find a continuous kernel virtual area 1382 * @addr: base address 1383 * 1384 * Search for the kernel VM area starting at @addr, and return it. 1385 * It is up to the caller to do all required locking to keep the returned 1386 * pointer valid. 1387 */ 1388 struct vm_struct *find_vm_area(const void *addr) 1389 { 1390 struct vmap_area *va; 1391 1392 va = find_vmap_area((unsigned long)addr); 1393 if (va && va->flags & VM_VM_AREA) 1394 return va->vm; 1395 1396 return NULL; 1397 } 1398 1399 /** 1400 * remove_vm_area - find and remove a continuous kernel virtual area 1401 * @addr: base address 1402 * 1403 * Search for the kernel VM area starting at @addr, and remove it. 1404 * This function returns the found VM area, but using it is NOT safe 1405 * on SMP machines, except for its size or flags. 1406 */ 1407 struct vm_struct *remove_vm_area(const void *addr) 1408 { 1409 struct vmap_area *va; 1410 1411 va = find_vmap_area((unsigned long)addr); 1412 if (va && va->flags & VM_VM_AREA) { 1413 struct vm_struct *vm = va->vm; 1414 1415 spin_lock(&vmap_area_lock); 1416 va->vm = NULL; 1417 va->flags &= ~VM_VM_AREA; 1418 spin_unlock(&vmap_area_lock); 1419 1420 vmap_debug_free_range(va->va_start, va->va_end); 1421 kasan_free_shadow(vm); 1422 free_unmap_vmap_area(va); 1423 vm->size -= PAGE_SIZE; 1424 1425 return vm; 1426 } 1427 return NULL; 1428 } 1429 1430 static void __vunmap(const void *addr, int deallocate_pages) 1431 { 1432 struct vm_struct *area; 1433 1434 if (!addr) 1435 return; 1436 1437 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", 1438 addr)) 1439 return; 1440 1441 area = remove_vm_area(addr); 1442 if (unlikely(!area)) { 1443 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 1444 addr); 1445 return; 1446 } 1447 1448 debug_check_no_locks_freed(addr, area->size); 1449 debug_check_no_obj_freed(addr, area->size); 1450 1451 if (deallocate_pages) { 1452 int i; 1453 1454 for (i = 0; i < area->nr_pages; i++) { 1455 struct page *page = area->pages[i]; 1456 1457 BUG_ON(!page); 1458 __free_page(page); 1459 } 1460 1461 if (area->flags & VM_VPAGES) 1462 vfree(area->pages); 1463 else 1464 kfree(area->pages); 1465 } 1466 1467 kfree(area); 1468 return; 1469 } 1470 1471 /** 1472 * vfree - release memory allocated by vmalloc() 1473 * @addr: memory base address 1474 * 1475 * Free the virtually continuous memory area starting at @addr, as 1476 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 1477 * NULL, no operation is performed. 1478 * 1479 * Must not be called in NMI context (strictly speaking, only if we don't 1480 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling 1481 * conventions for vfree() arch-depenedent would be a really bad idea) 1482 * 1483 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) 1484 */ 1485 void vfree(const void *addr) 1486 { 1487 BUG_ON(in_nmi()); 1488 1489 kmemleak_free(addr); 1490 1491 if (!addr) 1492 return; 1493 if (unlikely(in_interrupt())) { 1494 struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred); 1495 if (llist_add((struct llist_node *)addr, &p->list)) 1496 schedule_work(&p->wq); 1497 } else 1498 __vunmap(addr, 1); 1499 } 1500 EXPORT_SYMBOL(vfree); 1501 1502 /** 1503 * vunmap - release virtual mapping obtained by vmap() 1504 * @addr: memory base address 1505 * 1506 * Free the virtually contiguous memory area starting at @addr, 1507 * which was created from the page array passed to vmap(). 1508 * 1509 * Must not be called in interrupt context. 1510 */ 1511 void vunmap(const void *addr) 1512 { 1513 BUG_ON(in_interrupt()); 1514 might_sleep(); 1515 if (addr) 1516 __vunmap(addr, 0); 1517 } 1518 EXPORT_SYMBOL(vunmap); 1519 1520 /** 1521 * vmap - map an array of pages into virtually contiguous space 1522 * @pages: array of page pointers 1523 * @count: number of pages to map 1524 * @flags: vm_area->flags 1525 * @prot: page protection for the mapping 1526 * 1527 * Maps @count pages from @pages into contiguous kernel virtual 1528 * space. 1529 */ 1530 void *vmap(struct page **pages, unsigned int count, 1531 unsigned long flags, pgprot_t prot) 1532 { 1533 struct vm_struct *area; 1534 1535 might_sleep(); 1536 1537 if (count > totalram_pages) 1538 return NULL; 1539 1540 area = get_vm_area_caller((count << PAGE_SHIFT), flags, 1541 __builtin_return_address(0)); 1542 if (!area) 1543 return NULL; 1544 1545 if (map_vm_area(area, prot, pages)) { 1546 vunmap(area->addr); 1547 return NULL; 1548 } 1549 1550 return area->addr; 1551 } 1552 EXPORT_SYMBOL(vmap); 1553 1554 static void *__vmalloc_node(unsigned long size, unsigned long align, 1555 gfp_t gfp_mask, pgprot_t prot, 1556 int node, const void *caller); 1557 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 1558 pgprot_t prot, int node) 1559 { 1560 const int order = 0; 1561 struct page **pages; 1562 unsigned int nr_pages, array_size, i; 1563 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; 1564 const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; 1565 1566 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; 1567 array_size = (nr_pages * sizeof(struct page *)); 1568 1569 area->nr_pages = nr_pages; 1570 /* Please note that the recursion is strictly bounded. */ 1571 if (array_size > PAGE_SIZE) { 1572 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, 1573 PAGE_KERNEL, node, area->caller); 1574 area->flags |= VM_VPAGES; 1575 } else { 1576 pages = kmalloc_node(array_size, nested_gfp, node); 1577 } 1578 area->pages = pages; 1579 if (!area->pages) { 1580 remove_vm_area(area->addr); 1581 kfree(area); 1582 return NULL; 1583 } 1584 1585 for (i = 0; i < area->nr_pages; i++) { 1586 struct page *page; 1587 1588 if (node == NUMA_NO_NODE) 1589 page = alloc_page(alloc_mask); 1590 else 1591 page = alloc_pages_node(node, alloc_mask, order); 1592 1593 if (unlikely(!page)) { 1594 /* Successfully allocated i pages, free them in __vunmap() */ 1595 area->nr_pages = i; 1596 goto fail; 1597 } 1598 area->pages[i] = page; 1599 if (gfp_mask & __GFP_WAIT) 1600 cond_resched(); 1601 } 1602 1603 if (map_vm_area(area, prot, pages)) 1604 goto fail; 1605 return area->addr; 1606 1607 fail: 1608 warn_alloc_failed(gfp_mask, order, 1609 "vmalloc: allocation failure, allocated %ld of %ld bytes\n", 1610 (area->nr_pages*PAGE_SIZE), area->size); 1611 vfree(area->addr); 1612 return NULL; 1613 } 1614 1615 /** 1616 * __vmalloc_node_range - allocate virtually contiguous memory 1617 * @size: allocation size 1618 * @align: desired alignment 1619 * @start: vm area range start 1620 * @end: vm area range end 1621 * @gfp_mask: flags for the page level allocator 1622 * @prot: protection mask for the allocated pages 1623 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) 1624 * @node: node to use for allocation or NUMA_NO_NODE 1625 * @caller: caller's return address 1626 * 1627 * Allocate enough pages to cover @size from the page level 1628 * allocator with @gfp_mask flags. Map them into contiguous 1629 * kernel virtual space, using a pagetable protection of @prot. 1630 */ 1631 void *__vmalloc_node_range(unsigned long size, unsigned long align, 1632 unsigned long start, unsigned long end, gfp_t gfp_mask, 1633 pgprot_t prot, unsigned long vm_flags, int node, 1634 const void *caller) 1635 { 1636 struct vm_struct *area; 1637 void *addr; 1638 unsigned long real_size = size; 1639 1640 size = PAGE_ALIGN(size); 1641 if (!size || (size >> PAGE_SHIFT) > totalram_pages) 1642 goto fail; 1643 1644 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | 1645 vm_flags, start, end, node, gfp_mask, caller); 1646 if (!area) 1647 goto fail; 1648 1649 addr = __vmalloc_area_node(area, gfp_mask, prot, node); 1650 if (!addr) 1651 return NULL; 1652 1653 /* 1654 * In this function, newly allocated vm_struct has VM_UNINITIALIZED 1655 * flag. It means that vm_struct is not fully initialized. 1656 * Now, it is fully initialized, so remove this flag here. 1657 */ 1658 clear_vm_uninitialized_flag(area); 1659 1660 /* 1661 * A ref_count = 2 is needed because vm_struct allocated in 1662 * __get_vm_area_node() contains a reference to the virtual address of 1663 * the vmalloc'ed block. 1664 */ 1665 kmemleak_alloc(addr, real_size, 2, gfp_mask); 1666 1667 return addr; 1668 1669 fail: 1670 warn_alloc_failed(gfp_mask, 0, 1671 "vmalloc: allocation failure: %lu bytes\n", 1672 real_size); 1673 return NULL; 1674 } 1675 1676 /** 1677 * __vmalloc_node - allocate virtually contiguous memory 1678 * @size: allocation size 1679 * @align: desired alignment 1680 * @gfp_mask: flags for the page level allocator 1681 * @prot: protection mask for the allocated pages 1682 * @node: node to use for allocation or NUMA_NO_NODE 1683 * @caller: caller's return address 1684 * 1685 * Allocate enough pages to cover @size from the page level 1686 * allocator with @gfp_mask flags. Map them into contiguous 1687 * kernel virtual space, using a pagetable protection of @prot. 1688 */ 1689 static void *__vmalloc_node(unsigned long size, unsigned long align, 1690 gfp_t gfp_mask, pgprot_t prot, 1691 int node, const void *caller) 1692 { 1693 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, 1694 gfp_mask, prot, 0, node, caller); 1695 } 1696 1697 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 1698 { 1699 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, 1700 __builtin_return_address(0)); 1701 } 1702 EXPORT_SYMBOL(__vmalloc); 1703 1704 static inline void *__vmalloc_node_flags(unsigned long size, 1705 int node, gfp_t flags) 1706 { 1707 return __vmalloc_node(size, 1, flags, PAGE_KERNEL, 1708 node, __builtin_return_address(0)); 1709 } 1710 1711 /** 1712 * vmalloc - allocate virtually contiguous memory 1713 * @size: allocation size 1714 * Allocate enough pages to cover @size from the page level 1715 * allocator and map them into contiguous kernel virtual space. 1716 * 1717 * For tight control over page level allocator and protection flags 1718 * use __vmalloc() instead. 1719 */ 1720 void *vmalloc(unsigned long size) 1721 { 1722 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1723 GFP_KERNEL | __GFP_HIGHMEM); 1724 } 1725 EXPORT_SYMBOL(vmalloc); 1726 1727 /** 1728 * vzalloc - allocate virtually contiguous memory with zero fill 1729 * @size: allocation size 1730 * Allocate enough pages to cover @size from the page level 1731 * allocator and map them into contiguous kernel virtual space. 1732 * The memory allocated is set to zero. 1733 * 1734 * For tight control over page level allocator and protection flags 1735 * use __vmalloc() instead. 1736 */ 1737 void *vzalloc(unsigned long size) 1738 { 1739 return __vmalloc_node_flags(size, NUMA_NO_NODE, 1740 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1741 } 1742 EXPORT_SYMBOL(vzalloc); 1743 1744 /** 1745 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace 1746 * @size: allocation size 1747 * 1748 * The resulting memory area is zeroed so it can be mapped to userspace 1749 * without leaking data. 1750 */ 1751 void *vmalloc_user(unsigned long size) 1752 { 1753 struct vm_struct *area; 1754 void *ret; 1755 1756 ret = __vmalloc_node(size, SHMLBA, 1757 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, 1758 PAGE_KERNEL, NUMA_NO_NODE, 1759 __builtin_return_address(0)); 1760 if (ret) { 1761 area = find_vm_area(ret); 1762 area->flags |= VM_USERMAP; 1763 } 1764 return ret; 1765 } 1766 EXPORT_SYMBOL(vmalloc_user); 1767 1768 /** 1769 * vmalloc_node - allocate memory on a specific node 1770 * @size: allocation size 1771 * @node: numa node 1772 * 1773 * Allocate enough pages to cover @size from the page level 1774 * allocator and map them into contiguous kernel virtual space. 1775 * 1776 * For tight control over page level allocator and protection flags 1777 * use __vmalloc() instead. 1778 */ 1779 void *vmalloc_node(unsigned long size, int node) 1780 { 1781 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, 1782 node, __builtin_return_address(0)); 1783 } 1784 EXPORT_SYMBOL(vmalloc_node); 1785 1786 /** 1787 * vzalloc_node - allocate memory on a specific node with zero fill 1788 * @size: allocation size 1789 * @node: numa node 1790 * 1791 * Allocate enough pages to cover @size from the page level 1792 * allocator and map them into contiguous kernel virtual space. 1793 * The memory allocated is set to zero. 1794 * 1795 * For tight control over page level allocator and protection flags 1796 * use __vmalloc_node() instead. 1797 */ 1798 void *vzalloc_node(unsigned long size, int node) 1799 { 1800 return __vmalloc_node_flags(size, node, 1801 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); 1802 } 1803 EXPORT_SYMBOL(vzalloc_node); 1804 1805 #ifndef PAGE_KERNEL_EXEC 1806 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1807 #endif 1808 1809 /** 1810 * vmalloc_exec - allocate virtually contiguous, executable memory 1811 * @size: allocation size 1812 * 1813 * Kernel-internal function to allocate enough pages to cover @size 1814 * the page level allocator and map them into contiguous and 1815 * executable kernel virtual space. 1816 * 1817 * For tight control over page level allocator and protection flags 1818 * use __vmalloc() instead. 1819 */ 1820 1821 void *vmalloc_exec(unsigned long size) 1822 { 1823 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, 1824 NUMA_NO_NODE, __builtin_return_address(0)); 1825 } 1826 1827 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) 1828 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL 1829 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) 1830 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL 1831 #else 1832 #define GFP_VMALLOC32 GFP_KERNEL 1833 #endif 1834 1835 /** 1836 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 1837 * @size: allocation size 1838 * 1839 * Allocate enough 32bit PA addressable pages to cover @size from the 1840 * page level allocator and map them into contiguous kernel virtual space. 1841 */ 1842 void *vmalloc_32(unsigned long size) 1843 { 1844 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, 1845 NUMA_NO_NODE, __builtin_return_address(0)); 1846 } 1847 EXPORT_SYMBOL(vmalloc_32); 1848 1849 /** 1850 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory 1851 * @size: allocation size 1852 * 1853 * The resulting memory area is 32bit addressable and zeroed so it can be 1854 * mapped to userspace without leaking data. 1855 */ 1856 void *vmalloc_32_user(unsigned long size) 1857 { 1858 struct vm_struct *area; 1859 void *ret; 1860 1861 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, 1862 NUMA_NO_NODE, __builtin_return_address(0)); 1863 if (ret) { 1864 area = find_vm_area(ret); 1865 area->flags |= VM_USERMAP; 1866 } 1867 return ret; 1868 } 1869 EXPORT_SYMBOL(vmalloc_32_user); 1870 1871 /* 1872 * small helper routine , copy contents to buf from addr. 1873 * If the page is not present, fill zero. 1874 */ 1875 1876 static int aligned_vread(char *buf, char *addr, unsigned long count) 1877 { 1878 struct page *p; 1879 int copied = 0; 1880 1881 while (count) { 1882 unsigned long offset, length; 1883 1884 offset = (unsigned long)addr & ~PAGE_MASK; 1885 length = PAGE_SIZE - offset; 1886 if (length > count) 1887 length = count; 1888 p = vmalloc_to_page(addr); 1889 /* 1890 * To do safe access to this _mapped_ area, we need 1891 * lock. But adding lock here means that we need to add 1892 * overhead of vmalloc()/vfree() calles for this _debug_ 1893 * interface, rarely used. Instead of that, we'll use 1894 * kmap() and get small overhead in this access function. 1895 */ 1896 if (p) { 1897 /* 1898 * we can expect USER0 is not used (see vread/vwrite's 1899 * function description) 1900 */ 1901 void *map = kmap_atomic(p); 1902 memcpy(buf, map + offset, length); 1903 kunmap_atomic(map); 1904 } else 1905 memset(buf, 0, length); 1906 1907 addr += length; 1908 buf += length; 1909 copied += length; 1910 count -= length; 1911 } 1912 return copied; 1913 } 1914 1915 static int aligned_vwrite(char *buf, char *addr, unsigned long count) 1916 { 1917 struct page *p; 1918 int copied = 0; 1919 1920 while (count) { 1921 unsigned long offset, length; 1922 1923 offset = (unsigned long)addr & ~PAGE_MASK; 1924 length = PAGE_SIZE - offset; 1925 if (length > count) 1926 length = count; 1927 p = vmalloc_to_page(addr); 1928 /* 1929 * To do safe access to this _mapped_ area, we need 1930 * lock. But adding lock here means that we need to add 1931 * overhead of vmalloc()/vfree() calles for this _debug_ 1932 * interface, rarely used. Instead of that, we'll use 1933 * kmap() and get small overhead in this access function. 1934 */ 1935 if (p) { 1936 /* 1937 * we can expect USER0 is not used (see vread/vwrite's 1938 * function description) 1939 */ 1940 void *map = kmap_atomic(p); 1941 memcpy(map + offset, buf, length); 1942 kunmap_atomic(map); 1943 } 1944 addr += length; 1945 buf += length; 1946 copied += length; 1947 count -= length; 1948 } 1949 return copied; 1950 } 1951 1952 /** 1953 * vread() - read vmalloc area in a safe way. 1954 * @buf: buffer for reading data 1955 * @addr: vm address. 1956 * @count: number of bytes to be read. 1957 * 1958 * Returns # of bytes which addr and buf should be increased. 1959 * (same number to @count). Returns 0 if [addr...addr+count) doesn't 1960 * includes any intersect with alive vmalloc area. 1961 * 1962 * This function checks that addr is a valid vmalloc'ed area, and 1963 * copy data from that area to a given buffer. If the given memory range 1964 * of [addr...addr+count) includes some valid address, data is copied to 1965 * proper area of @buf. If there are memory holes, they'll be zero-filled. 1966 * IOREMAP area is treated as memory hole and no copy is done. 1967 * 1968 * If [addr...addr+count) doesn't includes any intersects with alive 1969 * vm_struct area, returns 0. @buf should be kernel's buffer. 1970 * 1971 * Note: In usual ops, vread() is never necessary because the caller 1972 * should know vmalloc() area is valid and can use memcpy(). 1973 * This is for routines which have to access vmalloc area without 1974 * any informaion, as /dev/kmem. 1975 * 1976 */ 1977 1978 long vread(char *buf, char *addr, unsigned long count) 1979 { 1980 struct vmap_area *va; 1981 struct vm_struct *vm; 1982 char *vaddr, *buf_start = buf; 1983 unsigned long buflen = count; 1984 unsigned long n; 1985 1986 /* Don't allow overflow */ 1987 if ((unsigned long) addr + count < count) 1988 count = -(unsigned long) addr; 1989 1990 spin_lock(&vmap_area_lock); 1991 list_for_each_entry(va, &vmap_area_list, list) { 1992 if (!count) 1993 break; 1994 1995 if (!(va->flags & VM_VM_AREA)) 1996 continue; 1997 1998 vm = va->vm; 1999 vaddr = (char *) vm->addr; 2000 if (addr >= vaddr + get_vm_area_size(vm)) 2001 continue; 2002 while (addr < vaddr) { 2003 if (count == 0) 2004 goto finished; 2005 *buf = '\0'; 2006 buf++; 2007 addr++; 2008 count--; 2009 } 2010 n = vaddr + get_vm_area_size(vm) - addr; 2011 if (n > count) 2012 n = count; 2013 if (!(vm->flags & VM_IOREMAP)) 2014 aligned_vread(buf, addr, n); 2015 else /* IOREMAP area is treated as memory hole */ 2016 memset(buf, 0, n); 2017 buf += n; 2018 addr += n; 2019 count -= n; 2020 } 2021 finished: 2022 spin_unlock(&vmap_area_lock); 2023 2024 if (buf == buf_start) 2025 return 0; 2026 /* zero-fill memory holes */ 2027 if (buf != buf_start + buflen) 2028 memset(buf, 0, buflen - (buf - buf_start)); 2029 2030 return buflen; 2031 } 2032 2033 /** 2034 * vwrite() - write vmalloc area in a safe way. 2035 * @buf: buffer for source data 2036 * @addr: vm address. 2037 * @count: number of bytes to be read. 2038 * 2039 * Returns # of bytes which addr and buf should be incresed. 2040 * (same number to @count). 2041 * If [addr...addr+count) doesn't includes any intersect with valid 2042 * vmalloc area, returns 0. 2043 * 2044 * This function checks that addr is a valid vmalloc'ed area, and 2045 * copy data from a buffer to the given addr. If specified range of 2046 * [addr...addr+count) includes some valid address, data is copied from 2047 * proper area of @buf. If there are memory holes, no copy to hole. 2048 * IOREMAP area is treated as memory hole and no copy is done. 2049 * 2050 * If [addr...addr+count) doesn't includes any intersects with alive 2051 * vm_struct area, returns 0. @buf should be kernel's buffer. 2052 * 2053 * Note: In usual ops, vwrite() is never necessary because the caller 2054 * should know vmalloc() area is valid and can use memcpy(). 2055 * This is for routines which have to access vmalloc area without 2056 * any informaion, as /dev/kmem. 2057 */ 2058 2059 long vwrite(char *buf, char *addr, unsigned long count) 2060 { 2061 struct vmap_area *va; 2062 struct vm_struct *vm; 2063 char *vaddr; 2064 unsigned long n, buflen; 2065 int copied = 0; 2066 2067 /* Don't allow overflow */ 2068 if ((unsigned long) addr + count < count) 2069 count = -(unsigned long) addr; 2070 buflen = count; 2071 2072 spin_lock(&vmap_area_lock); 2073 list_for_each_entry(va, &vmap_area_list, list) { 2074 if (!count) 2075 break; 2076 2077 if (!(va->flags & VM_VM_AREA)) 2078 continue; 2079 2080 vm = va->vm; 2081 vaddr = (char *) vm->addr; 2082 if (addr >= vaddr + get_vm_area_size(vm)) 2083 continue; 2084 while (addr < vaddr) { 2085 if (count == 0) 2086 goto finished; 2087 buf++; 2088 addr++; 2089 count--; 2090 } 2091 n = vaddr + get_vm_area_size(vm) - addr; 2092 if (n > count) 2093 n = count; 2094 if (!(vm->flags & VM_IOREMAP)) { 2095 aligned_vwrite(buf, addr, n); 2096 copied++; 2097 } 2098 buf += n; 2099 addr += n; 2100 count -= n; 2101 } 2102 finished: 2103 spin_unlock(&vmap_area_lock); 2104 if (!copied) 2105 return 0; 2106 return buflen; 2107 } 2108 2109 /** 2110 * remap_vmalloc_range_partial - map vmalloc pages to userspace 2111 * @vma: vma to cover 2112 * @uaddr: target user address to start at 2113 * @kaddr: virtual address of vmalloc kernel memory 2114 * @size: size of map area 2115 * 2116 * Returns: 0 for success, -Exxx on failure 2117 * 2118 * This function checks that @kaddr is a valid vmalloc'ed area, 2119 * and that it is big enough to cover the range starting at 2120 * @uaddr in @vma. Will return failure if that criteria isn't 2121 * met. 2122 * 2123 * Similar to remap_pfn_range() (see mm/memory.c) 2124 */ 2125 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, 2126 void *kaddr, unsigned long size) 2127 { 2128 struct vm_struct *area; 2129 2130 size = PAGE_ALIGN(size); 2131 2132 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) 2133 return -EINVAL; 2134 2135 area = find_vm_area(kaddr); 2136 if (!area) 2137 return -EINVAL; 2138 2139 if (!(area->flags & VM_USERMAP)) 2140 return -EINVAL; 2141 2142 if (kaddr + size > area->addr + area->size) 2143 return -EINVAL; 2144 2145 do { 2146 struct page *page = vmalloc_to_page(kaddr); 2147 int ret; 2148 2149 ret = vm_insert_page(vma, uaddr, page); 2150 if (ret) 2151 return ret; 2152 2153 uaddr += PAGE_SIZE; 2154 kaddr += PAGE_SIZE; 2155 size -= PAGE_SIZE; 2156 } while (size > 0); 2157 2158 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; 2159 2160 return 0; 2161 } 2162 EXPORT_SYMBOL(remap_vmalloc_range_partial); 2163 2164 /** 2165 * remap_vmalloc_range - map vmalloc pages to userspace 2166 * @vma: vma to cover (map full range of vma) 2167 * @addr: vmalloc memory 2168 * @pgoff: number of pages into addr before first page to map 2169 * 2170 * Returns: 0 for success, -Exxx on failure 2171 * 2172 * This function checks that addr is a valid vmalloc'ed area, and 2173 * that it is big enough to cover the vma. Will return failure if 2174 * that criteria isn't met. 2175 * 2176 * Similar to remap_pfn_range() (see mm/memory.c) 2177 */ 2178 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 2179 unsigned long pgoff) 2180 { 2181 return remap_vmalloc_range_partial(vma, vma->vm_start, 2182 addr + (pgoff << PAGE_SHIFT), 2183 vma->vm_end - vma->vm_start); 2184 } 2185 EXPORT_SYMBOL(remap_vmalloc_range); 2186 2187 /* 2188 * Implement a stub for vmalloc_sync_all() if the architecture chose not to 2189 * have one. 2190 */ 2191 void __weak vmalloc_sync_all(void) 2192 { 2193 } 2194 2195 2196 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) 2197 { 2198 pte_t ***p = data; 2199 2200 if (p) { 2201 *(*p) = pte; 2202 (*p)++; 2203 } 2204 return 0; 2205 } 2206 2207 /** 2208 * alloc_vm_area - allocate a range of kernel address space 2209 * @size: size of the area 2210 * @ptes: returns the PTEs for the address space 2211 * 2212 * Returns: NULL on failure, vm_struct on success 2213 * 2214 * This function reserves a range of kernel address space, and 2215 * allocates pagetables to map that range. No actual mappings 2216 * are created. 2217 * 2218 * If @ptes is non-NULL, pointers to the PTEs (in init_mm) 2219 * allocated for the VM area are returned. 2220 */ 2221 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) 2222 { 2223 struct vm_struct *area; 2224 2225 area = get_vm_area_caller(size, VM_IOREMAP, 2226 __builtin_return_address(0)); 2227 if (area == NULL) 2228 return NULL; 2229 2230 /* 2231 * This ensures that page tables are constructed for this region 2232 * of kernel virtual address space and mapped into init_mm. 2233 */ 2234 if (apply_to_page_range(&init_mm, (unsigned long)area->addr, 2235 size, f, ptes ? &ptes : NULL)) { 2236 free_vm_area(area); 2237 return NULL; 2238 } 2239 2240 return area; 2241 } 2242 EXPORT_SYMBOL_GPL(alloc_vm_area); 2243 2244 void free_vm_area(struct vm_struct *area) 2245 { 2246 struct vm_struct *ret; 2247 ret = remove_vm_area(area->addr); 2248 BUG_ON(ret != area); 2249 kfree(area); 2250 } 2251 EXPORT_SYMBOL_GPL(free_vm_area); 2252 2253 #ifdef CONFIG_SMP 2254 static struct vmap_area *node_to_va(struct rb_node *n) 2255 { 2256 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; 2257 } 2258 2259 /** 2260 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end 2261 * @end: target address 2262 * @pnext: out arg for the next vmap_area 2263 * @pprev: out arg for the previous vmap_area 2264 * 2265 * Returns: %true if either or both of next and prev are found, 2266 * %false if no vmap_area exists 2267 * 2268 * Find vmap_areas end addresses of which enclose @end. ie. if not 2269 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. 2270 */ 2271 static bool pvm_find_next_prev(unsigned long end, 2272 struct vmap_area **pnext, 2273 struct vmap_area **pprev) 2274 { 2275 struct rb_node *n = vmap_area_root.rb_node; 2276 struct vmap_area *va = NULL; 2277 2278 while (n) { 2279 va = rb_entry(n, struct vmap_area, rb_node); 2280 if (end < va->va_end) 2281 n = n->rb_left; 2282 else if (end > va->va_end) 2283 n = n->rb_right; 2284 else 2285 break; 2286 } 2287 2288 if (!va) 2289 return false; 2290 2291 if (va->va_end > end) { 2292 *pnext = va; 2293 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2294 } else { 2295 *pprev = va; 2296 *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); 2297 } 2298 return true; 2299 } 2300 2301 /** 2302 * pvm_determine_end - find the highest aligned address between two vmap_areas 2303 * @pnext: in/out arg for the next vmap_area 2304 * @pprev: in/out arg for the previous vmap_area 2305 * @align: alignment 2306 * 2307 * Returns: determined end address 2308 * 2309 * Find the highest aligned address between *@pnext and *@pprev below 2310 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned 2311 * down address is between the end addresses of the two vmap_areas. 2312 * 2313 * Please note that the address returned by this function may fall 2314 * inside *@pnext vmap_area. The caller is responsible for checking 2315 * that. 2316 */ 2317 static unsigned long pvm_determine_end(struct vmap_area **pnext, 2318 struct vmap_area **pprev, 2319 unsigned long align) 2320 { 2321 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2322 unsigned long addr; 2323 2324 if (*pnext) 2325 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); 2326 else 2327 addr = vmalloc_end; 2328 2329 while (*pprev && (*pprev)->va_end > addr) { 2330 *pnext = *pprev; 2331 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); 2332 } 2333 2334 return addr; 2335 } 2336 2337 /** 2338 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator 2339 * @offsets: array containing offset of each area 2340 * @sizes: array containing size of each area 2341 * @nr_vms: the number of areas to allocate 2342 * @align: alignment, all entries in @offsets and @sizes must be aligned to this 2343 * 2344 * Returns: kmalloc'd vm_struct pointer array pointing to allocated 2345 * vm_structs on success, %NULL on failure 2346 * 2347 * Percpu allocator wants to use congruent vm areas so that it can 2348 * maintain the offsets among percpu areas. This function allocates 2349 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to 2350 * be scattered pretty far, distance between two areas easily going up 2351 * to gigabytes. To avoid interacting with regular vmallocs, these 2352 * areas are allocated from top. 2353 * 2354 * Despite its complicated look, this allocator is rather simple. It 2355 * does everything top-down and scans areas from the end looking for 2356 * matching slot. While scanning, if any of the areas overlaps with 2357 * existing vmap_area, the base address is pulled down to fit the 2358 * area. Scanning is repeated till all the areas fit and then all 2359 * necessary data structres are inserted and the result is returned. 2360 */ 2361 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, 2362 const size_t *sizes, int nr_vms, 2363 size_t align) 2364 { 2365 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); 2366 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); 2367 struct vmap_area **vas, *prev, *next; 2368 struct vm_struct **vms; 2369 int area, area2, last_area, term_area; 2370 unsigned long base, start, end, last_end; 2371 bool purged = false; 2372 2373 /* verify parameters and allocate data structures */ 2374 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); 2375 for (last_area = 0, area = 0; area < nr_vms; area++) { 2376 start = offsets[area]; 2377 end = start + sizes[area]; 2378 2379 /* is everything aligned properly? */ 2380 BUG_ON(!IS_ALIGNED(offsets[area], align)); 2381 BUG_ON(!IS_ALIGNED(sizes[area], align)); 2382 2383 /* detect the area with the highest address */ 2384 if (start > offsets[last_area]) 2385 last_area = area; 2386 2387 for (area2 = 0; area2 < nr_vms; area2++) { 2388 unsigned long start2 = offsets[area2]; 2389 unsigned long end2 = start2 + sizes[area2]; 2390 2391 if (area2 == area) 2392 continue; 2393 2394 BUG_ON(start2 >= start && start2 < end); 2395 BUG_ON(end2 <= end && end2 > start); 2396 } 2397 } 2398 last_end = offsets[last_area] + sizes[last_area]; 2399 2400 if (vmalloc_end - vmalloc_start < last_end) { 2401 WARN_ON(true); 2402 return NULL; 2403 } 2404 2405 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); 2406 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); 2407 if (!vas || !vms) 2408 goto err_free2; 2409 2410 for (area = 0; area < nr_vms; area++) { 2411 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); 2412 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); 2413 if (!vas[area] || !vms[area]) 2414 goto err_free; 2415 } 2416 retry: 2417 spin_lock(&vmap_area_lock); 2418 2419 /* start scanning - we scan from the top, begin with the last area */ 2420 area = term_area = last_area; 2421 start = offsets[area]; 2422 end = start + sizes[area]; 2423 2424 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { 2425 base = vmalloc_end - last_end; 2426 goto found; 2427 } 2428 base = pvm_determine_end(&next, &prev, align) - end; 2429 2430 while (true) { 2431 BUG_ON(next && next->va_end <= base + end); 2432 BUG_ON(prev && prev->va_end > base + end); 2433 2434 /* 2435 * base might have underflowed, add last_end before 2436 * comparing. 2437 */ 2438 if (base + last_end < vmalloc_start + last_end) { 2439 spin_unlock(&vmap_area_lock); 2440 if (!purged) { 2441 purge_vmap_area_lazy(); 2442 purged = true; 2443 goto retry; 2444 } 2445 goto err_free; 2446 } 2447 2448 /* 2449 * If next overlaps, move base downwards so that it's 2450 * right below next and then recheck. 2451 */ 2452 if (next && next->va_start < base + end) { 2453 base = pvm_determine_end(&next, &prev, align) - end; 2454 term_area = area; 2455 continue; 2456 } 2457 2458 /* 2459 * If prev overlaps, shift down next and prev and move 2460 * base so that it's right below new next and then 2461 * recheck. 2462 */ 2463 if (prev && prev->va_end > base + start) { 2464 next = prev; 2465 prev = node_to_va(rb_prev(&next->rb_node)); 2466 base = pvm_determine_end(&next, &prev, align) - end; 2467 term_area = area; 2468 continue; 2469 } 2470 2471 /* 2472 * This area fits, move on to the previous one. If 2473 * the previous one is the terminal one, we're done. 2474 */ 2475 area = (area + nr_vms - 1) % nr_vms; 2476 if (area == term_area) 2477 break; 2478 start = offsets[area]; 2479 end = start + sizes[area]; 2480 pvm_find_next_prev(base + end, &next, &prev); 2481 } 2482 found: 2483 /* we've found a fitting base, insert all va's */ 2484 for (area = 0; area < nr_vms; area++) { 2485 struct vmap_area *va = vas[area]; 2486 2487 va->va_start = base + offsets[area]; 2488 va->va_end = va->va_start + sizes[area]; 2489 __insert_vmap_area(va); 2490 } 2491 2492 vmap_area_pcpu_hole = base + offsets[last_area]; 2493 2494 spin_unlock(&vmap_area_lock); 2495 2496 /* insert all vm's */ 2497 for (area = 0; area < nr_vms; area++) 2498 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, 2499 pcpu_get_vm_areas); 2500 2501 kfree(vas); 2502 return vms; 2503 2504 err_free: 2505 for (area = 0; area < nr_vms; area++) { 2506 kfree(vas[area]); 2507 kfree(vms[area]); 2508 } 2509 err_free2: 2510 kfree(vas); 2511 kfree(vms); 2512 return NULL; 2513 } 2514 2515 /** 2516 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator 2517 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() 2518 * @nr_vms: the number of allocated areas 2519 * 2520 * Free vm_structs and the array allocated by pcpu_get_vm_areas(). 2521 */ 2522 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) 2523 { 2524 int i; 2525 2526 for (i = 0; i < nr_vms; i++) 2527 free_vm_area(vms[i]); 2528 kfree(vms); 2529 } 2530 #endif /* CONFIG_SMP */ 2531 2532 #ifdef CONFIG_PROC_FS 2533 static void *s_start(struct seq_file *m, loff_t *pos) 2534 __acquires(&vmap_area_lock) 2535 { 2536 loff_t n = *pos; 2537 struct vmap_area *va; 2538 2539 spin_lock(&vmap_area_lock); 2540 va = list_entry((&vmap_area_list)->next, typeof(*va), list); 2541 while (n > 0 && &va->list != &vmap_area_list) { 2542 n--; 2543 va = list_entry(va->list.next, typeof(*va), list); 2544 } 2545 if (!n && &va->list != &vmap_area_list) 2546 return va; 2547 2548 return NULL; 2549 2550 } 2551 2552 static void *s_next(struct seq_file *m, void *p, loff_t *pos) 2553 { 2554 struct vmap_area *va = p, *next; 2555 2556 ++*pos; 2557 next = list_entry(va->list.next, typeof(*va), list); 2558 if (&next->list != &vmap_area_list) 2559 return next; 2560 2561 return NULL; 2562 } 2563 2564 static void s_stop(struct seq_file *m, void *p) 2565 __releases(&vmap_area_lock) 2566 { 2567 spin_unlock(&vmap_area_lock); 2568 } 2569 2570 static void show_numa_info(struct seq_file *m, struct vm_struct *v) 2571 { 2572 if (IS_ENABLED(CONFIG_NUMA)) { 2573 unsigned int nr, *counters = m->private; 2574 2575 if (!counters) 2576 return; 2577 2578 if (v->flags & VM_UNINITIALIZED) 2579 return; 2580 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ 2581 smp_rmb(); 2582 2583 memset(counters, 0, nr_node_ids * sizeof(unsigned int)); 2584 2585 for (nr = 0; nr < v->nr_pages; nr++) 2586 counters[page_to_nid(v->pages[nr])]++; 2587 2588 for_each_node_state(nr, N_HIGH_MEMORY) 2589 if (counters[nr]) 2590 seq_printf(m, " N%u=%u", nr, counters[nr]); 2591 } 2592 } 2593 2594 static int s_show(struct seq_file *m, void *p) 2595 { 2596 struct vmap_area *va = p; 2597 struct vm_struct *v; 2598 2599 /* 2600 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on 2601 * behalf of vmap area is being tear down or vm_map_ram allocation. 2602 */ 2603 if (!(va->flags & VM_VM_AREA)) 2604 return 0; 2605 2606 v = va->vm; 2607 2608 seq_printf(m, "0x%pK-0x%pK %7ld", 2609 v->addr, v->addr + v->size, v->size); 2610 2611 if (v->caller) 2612 seq_printf(m, " %pS", v->caller); 2613 2614 if (v->nr_pages) 2615 seq_printf(m, " pages=%d", v->nr_pages); 2616 2617 if (v->phys_addr) 2618 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); 2619 2620 if (v->flags & VM_IOREMAP) 2621 seq_puts(m, " ioremap"); 2622 2623 if (v->flags & VM_ALLOC) 2624 seq_puts(m, " vmalloc"); 2625 2626 if (v->flags & VM_MAP) 2627 seq_puts(m, " vmap"); 2628 2629 if (v->flags & VM_USERMAP) 2630 seq_puts(m, " user"); 2631 2632 if (v->flags & VM_VPAGES) 2633 seq_puts(m, " vpages"); 2634 2635 show_numa_info(m, v); 2636 seq_putc(m, '\n'); 2637 return 0; 2638 } 2639 2640 static const struct seq_operations vmalloc_op = { 2641 .start = s_start, 2642 .next = s_next, 2643 .stop = s_stop, 2644 .show = s_show, 2645 }; 2646 2647 static int vmalloc_open(struct inode *inode, struct file *file) 2648 { 2649 if (IS_ENABLED(CONFIG_NUMA)) 2650 return seq_open_private(file, &vmalloc_op, 2651 nr_node_ids * sizeof(unsigned int)); 2652 else 2653 return seq_open(file, &vmalloc_op); 2654 } 2655 2656 static const struct file_operations proc_vmalloc_operations = { 2657 .open = vmalloc_open, 2658 .read = seq_read, 2659 .llseek = seq_lseek, 2660 .release = seq_release_private, 2661 }; 2662 2663 static int __init proc_vmalloc_init(void) 2664 { 2665 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); 2666 return 0; 2667 } 2668 module_init(proc_vmalloc_init); 2669 2670 void get_vmalloc_info(struct vmalloc_info *vmi) 2671 { 2672 struct vmap_area *va; 2673 unsigned long free_area_size; 2674 unsigned long prev_end; 2675 2676 vmi->used = 0; 2677 vmi->largest_chunk = 0; 2678 2679 prev_end = VMALLOC_START; 2680 2681 rcu_read_lock(); 2682 2683 if (list_empty(&vmap_area_list)) { 2684 vmi->largest_chunk = VMALLOC_TOTAL; 2685 goto out; 2686 } 2687 2688 list_for_each_entry_rcu(va, &vmap_area_list, list) { 2689 unsigned long addr = va->va_start; 2690 2691 /* 2692 * Some archs keep another range for modules in vmalloc space 2693 */ 2694 if (addr < VMALLOC_START) 2695 continue; 2696 if (addr >= VMALLOC_END) 2697 break; 2698 2699 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) 2700 continue; 2701 2702 vmi->used += (va->va_end - va->va_start); 2703 2704 free_area_size = addr - prev_end; 2705 if (vmi->largest_chunk < free_area_size) 2706 vmi->largest_chunk = free_area_size; 2707 2708 prev_end = va->va_end; 2709 } 2710 2711 if (VMALLOC_END - prev_end > vmi->largest_chunk) 2712 vmi->largest_chunk = VMALLOC_END - prev_end; 2713 2714 out: 2715 rcu_read_unlock(); 2716 } 2717 #endif 2718 2719