1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 /** 32 * kfree_const - conditionally free memory 33 * @x: pointer to the memory 34 * 35 * Function calls kfree only if @x is not in .rodata section. 36 */ 37 void kfree_const(const void *x) 38 { 39 if (!is_kernel_rodata((unsigned long)x)) 40 kfree(x); 41 } 42 EXPORT_SYMBOL(kfree_const); 43 44 /** 45 * kstrdup - allocate space for and copy an existing string 46 * @s: the string to duplicate 47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 48 * 49 * Return: newly allocated copy of @s or %NULL in case of error 50 */ 51 char *kstrdup(const char *s, gfp_t gfp) 52 { 53 size_t len; 54 char *buf; 55 56 if (!s) 57 return NULL; 58 59 len = strlen(s) + 1; 60 buf = kmalloc_track_caller(len, gfp); 61 if (buf) 62 memcpy(buf, s, len); 63 return buf; 64 } 65 EXPORT_SYMBOL(kstrdup); 66 67 /** 68 * kstrdup_const - conditionally duplicate an existing const string 69 * @s: the string to duplicate 70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 71 * 72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const. 73 * 74 * Return: source string if it is in .rodata section otherwise 75 * fallback to kstrdup. 76 */ 77 const char *kstrdup_const(const char *s, gfp_t gfp) 78 { 79 if (is_kernel_rodata((unsigned long)s)) 80 return s; 81 82 return kstrdup(s, gfp); 83 } 84 EXPORT_SYMBOL(kstrdup_const); 85 86 /** 87 * kstrndup - allocate space for and copy an existing string 88 * @s: the string to duplicate 89 * @max: read at most @max chars from @s 90 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 91 * 92 * Note: Use kmemdup_nul() instead if the size is known exactly. 93 * 94 * Return: newly allocated copy of @s or %NULL in case of error 95 */ 96 char *kstrndup(const char *s, size_t max, gfp_t gfp) 97 { 98 size_t len; 99 char *buf; 100 101 if (!s) 102 return NULL; 103 104 len = strnlen(s, max); 105 buf = kmalloc_track_caller(len+1, gfp); 106 if (buf) { 107 memcpy(buf, s, len); 108 buf[len] = '\0'; 109 } 110 return buf; 111 } 112 EXPORT_SYMBOL(kstrndup); 113 114 /** 115 * kmemdup - duplicate region of memory 116 * 117 * @src: memory region to duplicate 118 * @len: memory region length 119 * @gfp: GFP mask to use 120 * 121 * Return: newly allocated copy of @src or %NULL in case of error 122 */ 123 void *kmemdup(const void *src, size_t len, gfp_t gfp) 124 { 125 void *p; 126 127 p = kmalloc_track_caller(len, gfp); 128 if (p) 129 memcpy(p, src, len); 130 return p; 131 } 132 EXPORT_SYMBOL(kmemdup); 133 134 /** 135 * kmemdup_nul - Create a NUL-terminated string from unterminated data 136 * @s: The data to stringify 137 * @len: The size of the data 138 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 139 * 140 * Return: newly allocated copy of @s with NUL-termination or %NULL in 141 * case of error 142 */ 143 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 144 { 145 char *buf; 146 147 if (!s) 148 return NULL; 149 150 buf = kmalloc_track_caller(len + 1, gfp); 151 if (buf) { 152 memcpy(buf, s, len); 153 buf[len] = '\0'; 154 } 155 return buf; 156 } 157 EXPORT_SYMBOL(kmemdup_nul); 158 159 /** 160 * memdup_user - duplicate memory region from user space 161 * 162 * @src: source address in user space 163 * @len: number of bytes to copy 164 * 165 * Return: an ERR_PTR() on failure. Result is physically 166 * contiguous, to be freed by kfree(). 167 */ 168 void *memdup_user(const void __user *src, size_t len) 169 { 170 void *p; 171 172 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 173 if (!p) 174 return ERR_PTR(-ENOMEM); 175 176 if (copy_from_user(p, src, len)) { 177 kfree(p); 178 return ERR_PTR(-EFAULT); 179 } 180 181 return p; 182 } 183 EXPORT_SYMBOL(memdup_user); 184 185 /** 186 * vmemdup_user - duplicate memory region from user space 187 * 188 * @src: source address in user space 189 * @len: number of bytes to copy 190 * 191 * Return: an ERR_PTR() on failure. Result may be not 192 * physically contiguous. Use kvfree() to free. 193 */ 194 void *vmemdup_user(const void __user *src, size_t len) 195 { 196 void *p; 197 198 p = kvmalloc(len, GFP_USER); 199 if (!p) 200 return ERR_PTR(-ENOMEM); 201 202 if (copy_from_user(p, src, len)) { 203 kvfree(p); 204 return ERR_PTR(-EFAULT); 205 } 206 207 return p; 208 } 209 EXPORT_SYMBOL(vmemdup_user); 210 211 /** 212 * strndup_user - duplicate an existing string from user space 213 * @s: The string to duplicate 214 * @n: Maximum number of bytes to copy, including the trailing NUL. 215 * 216 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 217 */ 218 char *strndup_user(const char __user *s, long n) 219 { 220 char *p; 221 long length; 222 223 length = strnlen_user(s, n); 224 225 if (!length) 226 return ERR_PTR(-EFAULT); 227 228 if (length > n) 229 return ERR_PTR(-EINVAL); 230 231 p = memdup_user(s, length); 232 233 if (IS_ERR(p)) 234 return p; 235 236 p[length - 1] = '\0'; 237 238 return p; 239 } 240 EXPORT_SYMBOL(strndup_user); 241 242 /** 243 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 244 * 245 * @src: source address in user space 246 * @len: number of bytes to copy 247 * 248 * Return: an ERR_PTR() on failure. 249 */ 250 void *memdup_user_nul(const void __user *src, size_t len) 251 { 252 char *p; 253 254 /* 255 * Always use GFP_KERNEL, since copy_from_user() can sleep and 256 * cause pagefault, which makes it pointless to use GFP_NOFS 257 * or GFP_ATOMIC. 258 */ 259 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 260 if (!p) 261 return ERR_PTR(-ENOMEM); 262 263 if (copy_from_user(p, src, len)) { 264 kfree(p); 265 return ERR_PTR(-EFAULT); 266 } 267 p[len] = '\0'; 268 269 return p; 270 } 271 EXPORT_SYMBOL(memdup_user_nul); 272 273 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 274 struct vm_area_struct *prev, struct rb_node *rb_parent) 275 { 276 struct vm_area_struct *next; 277 278 vma->vm_prev = prev; 279 if (prev) { 280 next = prev->vm_next; 281 prev->vm_next = vma; 282 } else { 283 mm->mmap = vma; 284 if (rb_parent) 285 next = rb_entry(rb_parent, 286 struct vm_area_struct, vm_rb); 287 else 288 next = NULL; 289 } 290 vma->vm_next = next; 291 if (next) 292 next->vm_prev = vma; 293 } 294 295 /* Check if the vma is being used as a stack by this task */ 296 int vma_is_stack_for_current(struct vm_area_struct *vma) 297 { 298 struct task_struct * __maybe_unused t = current; 299 300 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 301 } 302 303 #ifndef STACK_RND_MASK 304 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 305 #endif 306 307 unsigned long randomize_stack_top(unsigned long stack_top) 308 { 309 unsigned long random_variable = 0; 310 311 if (current->flags & PF_RANDOMIZE) { 312 random_variable = get_random_long(); 313 random_variable &= STACK_RND_MASK; 314 random_variable <<= PAGE_SHIFT; 315 } 316 #ifdef CONFIG_STACK_GROWSUP 317 return PAGE_ALIGN(stack_top) + random_variable; 318 #else 319 return PAGE_ALIGN(stack_top) - random_variable; 320 #endif 321 } 322 323 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 324 unsigned long arch_randomize_brk(struct mm_struct *mm) 325 { 326 /* Is the current task 32bit ? */ 327 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 328 return randomize_page(mm->brk, SZ_32M); 329 330 return randomize_page(mm->brk, SZ_1G); 331 } 332 333 unsigned long arch_mmap_rnd(void) 334 { 335 unsigned long rnd; 336 337 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 338 if (is_compat_task()) 339 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 340 else 341 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 342 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 343 344 return rnd << PAGE_SHIFT; 345 } 346 347 static int mmap_is_legacy(struct rlimit *rlim_stack) 348 { 349 if (current->personality & ADDR_COMPAT_LAYOUT) 350 return 1; 351 352 if (rlim_stack->rlim_cur == RLIM_INFINITY) 353 return 1; 354 355 return sysctl_legacy_va_layout; 356 } 357 358 /* 359 * Leave enough space between the mmap area and the stack to honour ulimit in 360 * the face of randomisation. 361 */ 362 #define MIN_GAP (SZ_128M) 363 #define MAX_GAP (STACK_TOP / 6 * 5) 364 365 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 366 { 367 unsigned long gap = rlim_stack->rlim_cur; 368 unsigned long pad = stack_guard_gap; 369 370 /* Account for stack randomization if necessary */ 371 if (current->flags & PF_RANDOMIZE) 372 pad += (STACK_RND_MASK << PAGE_SHIFT); 373 374 /* Values close to RLIM_INFINITY can overflow. */ 375 if (gap + pad > gap) 376 gap += pad; 377 378 if (gap < MIN_GAP) 379 gap = MIN_GAP; 380 else if (gap > MAX_GAP) 381 gap = MAX_GAP; 382 383 return PAGE_ALIGN(STACK_TOP - gap - rnd); 384 } 385 386 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 387 { 388 unsigned long random_factor = 0UL; 389 390 if (current->flags & PF_RANDOMIZE) 391 random_factor = arch_mmap_rnd(); 392 393 if (mmap_is_legacy(rlim_stack)) { 394 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 395 mm->get_unmapped_area = arch_get_unmapped_area; 396 } else { 397 mm->mmap_base = mmap_base(random_factor, rlim_stack); 398 mm->get_unmapped_area = arch_get_unmapped_area_topdown; 399 } 400 } 401 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 402 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 403 { 404 mm->mmap_base = TASK_UNMAPPED_BASE; 405 mm->get_unmapped_area = arch_get_unmapped_area; 406 } 407 #endif 408 409 /** 410 * __account_locked_vm - account locked pages to an mm's locked_vm 411 * @mm: mm to account against 412 * @pages: number of pages to account 413 * @inc: %true if @pages should be considered positive, %false if not 414 * @task: task used to check RLIMIT_MEMLOCK 415 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 416 * 417 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 418 * that mmap_sem is held as writer. 419 * 420 * Return: 421 * * 0 on success 422 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 423 */ 424 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 425 struct task_struct *task, bool bypass_rlim) 426 { 427 unsigned long locked_vm, limit; 428 int ret = 0; 429 430 lockdep_assert_held_write(&mm->mmap_sem); 431 432 locked_vm = mm->locked_vm; 433 if (inc) { 434 if (!bypass_rlim) { 435 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 436 if (locked_vm + pages > limit) 437 ret = -ENOMEM; 438 } 439 if (!ret) 440 mm->locked_vm = locked_vm + pages; 441 } else { 442 WARN_ON_ONCE(pages > locked_vm); 443 mm->locked_vm = locked_vm - pages; 444 } 445 446 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 447 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 448 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 449 ret ? " - exceeded" : ""); 450 451 return ret; 452 } 453 EXPORT_SYMBOL_GPL(__account_locked_vm); 454 455 /** 456 * account_locked_vm - account locked pages to an mm's locked_vm 457 * @mm: mm to account against, may be NULL 458 * @pages: number of pages to account 459 * @inc: %true if @pages should be considered positive, %false if not 460 * 461 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 462 * 463 * Return: 464 * * 0 on success, or if mm is NULL 465 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 466 */ 467 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 468 { 469 int ret; 470 471 if (pages == 0 || !mm) 472 return 0; 473 474 down_write(&mm->mmap_sem); 475 ret = __account_locked_vm(mm, pages, inc, current, 476 capable(CAP_IPC_LOCK)); 477 up_write(&mm->mmap_sem); 478 479 return ret; 480 } 481 EXPORT_SYMBOL_GPL(account_locked_vm); 482 483 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 484 unsigned long len, unsigned long prot, 485 unsigned long flag, unsigned long pgoff) 486 { 487 unsigned long ret; 488 struct mm_struct *mm = current->mm; 489 unsigned long populate; 490 LIST_HEAD(uf); 491 492 ret = security_mmap_file(file, prot, flag); 493 if (!ret) { 494 if (down_write_killable(&mm->mmap_sem)) 495 return -EINTR; 496 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, 497 &populate, &uf); 498 up_write(&mm->mmap_sem); 499 userfaultfd_unmap_complete(mm, &uf); 500 if (populate) 501 mm_populate(ret, populate); 502 } 503 return ret; 504 } 505 506 unsigned long vm_mmap(struct file *file, unsigned long addr, 507 unsigned long len, unsigned long prot, 508 unsigned long flag, unsigned long offset) 509 { 510 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 511 return -EINVAL; 512 if (unlikely(offset_in_page(offset))) 513 return -EINVAL; 514 515 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 516 } 517 EXPORT_SYMBOL(vm_mmap); 518 519 /** 520 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 521 * failure, fall back to non-contiguous (vmalloc) allocation. 522 * @size: size of the request. 523 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 524 * @node: numa node to allocate from 525 * 526 * Uses kmalloc to get the memory but if the allocation fails then falls back 527 * to the vmalloc allocator. Use kvfree for freeing the memory. 528 * 529 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. 530 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 531 * preferable to the vmalloc fallback, due to visible performance drawbacks. 532 * 533 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not 534 * fall back to vmalloc. 535 * 536 * Return: pointer to the allocated memory of %NULL in case of failure 537 */ 538 void *kvmalloc_node(size_t size, gfp_t flags, int node) 539 { 540 gfp_t kmalloc_flags = flags; 541 void *ret; 542 543 /* 544 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) 545 * so the given set of flags has to be compatible. 546 */ 547 if ((flags & GFP_KERNEL) != GFP_KERNEL) 548 return kmalloc_node(size, flags, node); 549 550 /* 551 * We want to attempt a large physically contiguous block first because 552 * it is less likely to fragment multiple larger blocks and therefore 553 * contribute to a long term fragmentation less than vmalloc fallback. 554 * However make sure that larger requests are not too disruptive - no 555 * OOM killer and no allocation failure warnings as we have a fallback. 556 */ 557 if (size > PAGE_SIZE) { 558 kmalloc_flags |= __GFP_NOWARN; 559 560 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 561 kmalloc_flags |= __GFP_NORETRY; 562 } 563 564 ret = kmalloc_node(size, kmalloc_flags, node); 565 566 /* 567 * It doesn't really make sense to fallback to vmalloc for sub page 568 * requests 569 */ 570 if (ret || size <= PAGE_SIZE) 571 return ret; 572 573 return __vmalloc_node_flags_caller(size, node, flags, 574 __builtin_return_address(0)); 575 } 576 EXPORT_SYMBOL(kvmalloc_node); 577 578 /** 579 * kvfree() - Free memory. 580 * @addr: Pointer to allocated memory. 581 * 582 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 583 * It is slightly more efficient to use kfree() or vfree() if you are certain 584 * that you know which one to use. 585 * 586 * Context: Either preemptible task context or not-NMI interrupt. 587 */ 588 void kvfree(const void *addr) 589 { 590 if (is_vmalloc_addr(addr)) 591 vfree(addr); 592 else 593 kfree(addr); 594 } 595 EXPORT_SYMBOL(kvfree); 596 597 static inline void *__page_rmapping(struct page *page) 598 { 599 unsigned long mapping; 600 601 mapping = (unsigned long)page->mapping; 602 mapping &= ~PAGE_MAPPING_FLAGS; 603 604 return (void *)mapping; 605 } 606 607 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 608 void *page_rmapping(struct page *page) 609 { 610 page = compound_head(page); 611 return __page_rmapping(page); 612 } 613 614 /* 615 * Return true if this page is mapped into pagetables. 616 * For compound page it returns true if any subpage of compound page is mapped. 617 */ 618 bool page_mapped(struct page *page) 619 { 620 int i; 621 622 if (likely(!PageCompound(page))) 623 return atomic_read(&page->_mapcount) >= 0; 624 page = compound_head(page); 625 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 626 return true; 627 if (PageHuge(page)) 628 return false; 629 for (i = 0; i < compound_nr(page); i++) { 630 if (atomic_read(&page[i]._mapcount) >= 0) 631 return true; 632 } 633 return false; 634 } 635 EXPORT_SYMBOL(page_mapped); 636 637 struct anon_vma *page_anon_vma(struct page *page) 638 { 639 unsigned long mapping; 640 641 page = compound_head(page); 642 mapping = (unsigned long)page->mapping; 643 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 644 return NULL; 645 return __page_rmapping(page); 646 } 647 648 struct address_space *page_mapping(struct page *page) 649 { 650 struct address_space *mapping; 651 652 page = compound_head(page); 653 654 /* This happens if someone calls flush_dcache_page on slab page */ 655 if (unlikely(PageSlab(page))) 656 return NULL; 657 658 if (unlikely(PageSwapCache(page))) { 659 swp_entry_t entry; 660 661 entry.val = page_private(page); 662 return swap_address_space(entry); 663 } 664 665 mapping = page->mapping; 666 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 667 return NULL; 668 669 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 670 } 671 EXPORT_SYMBOL(page_mapping); 672 673 /* 674 * For file cache pages, return the address_space, otherwise return NULL 675 */ 676 struct address_space *page_mapping_file(struct page *page) 677 { 678 if (unlikely(PageSwapCache(page))) 679 return NULL; 680 return page_mapping(page); 681 } 682 683 /* Slow path of page_mapcount() for compound pages */ 684 int __page_mapcount(struct page *page) 685 { 686 int ret; 687 688 ret = atomic_read(&page->_mapcount) + 1; 689 /* 690 * For file THP page->_mapcount contains total number of mapping 691 * of the page: no need to look into compound_mapcount. 692 */ 693 if (!PageAnon(page) && !PageHuge(page)) 694 return ret; 695 page = compound_head(page); 696 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 697 if (PageDoubleMap(page)) 698 ret--; 699 return ret; 700 } 701 EXPORT_SYMBOL_GPL(__page_mapcount); 702 703 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 704 int sysctl_overcommit_ratio __read_mostly = 50; 705 unsigned long sysctl_overcommit_kbytes __read_mostly; 706 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 707 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 708 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 709 710 int overcommit_ratio_handler(struct ctl_table *table, int write, 711 void __user *buffer, size_t *lenp, 712 loff_t *ppos) 713 { 714 int ret; 715 716 ret = proc_dointvec(table, write, buffer, lenp, ppos); 717 if (ret == 0 && write) 718 sysctl_overcommit_kbytes = 0; 719 return ret; 720 } 721 722 int overcommit_kbytes_handler(struct ctl_table *table, int write, 723 void __user *buffer, size_t *lenp, 724 loff_t *ppos) 725 { 726 int ret; 727 728 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 729 if (ret == 0 && write) 730 sysctl_overcommit_ratio = 0; 731 return ret; 732 } 733 734 /* 735 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 736 */ 737 unsigned long vm_commit_limit(void) 738 { 739 unsigned long allowed; 740 741 if (sysctl_overcommit_kbytes) 742 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 743 else 744 allowed = ((totalram_pages() - hugetlb_total_pages()) 745 * sysctl_overcommit_ratio / 100); 746 allowed += total_swap_pages; 747 748 return allowed; 749 } 750 751 /* 752 * Make sure vm_committed_as in one cacheline and not cacheline shared with 753 * other variables. It can be updated by several CPUs frequently. 754 */ 755 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 756 757 /* 758 * The global memory commitment made in the system can be a metric 759 * that can be used to drive ballooning decisions when Linux is hosted 760 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 761 * balancing memory across competing virtual machines that are hosted. 762 * Several metrics drive this policy engine including the guest reported 763 * memory commitment. 764 */ 765 unsigned long vm_memory_committed(void) 766 { 767 return percpu_counter_read_positive(&vm_committed_as); 768 } 769 EXPORT_SYMBOL_GPL(vm_memory_committed); 770 771 /* 772 * Check that a process has enough memory to allocate a new virtual 773 * mapping. 0 means there is enough memory for the allocation to 774 * succeed and -ENOMEM implies there is not. 775 * 776 * We currently support three overcommit policies, which are set via the 777 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst 778 * 779 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 780 * Additional code 2002 Jul 20 by Robert Love. 781 * 782 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 783 * 784 * Note this is a helper function intended to be used by LSMs which 785 * wish to use this logic. 786 */ 787 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 788 { 789 long allowed; 790 791 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 792 -(s64)vm_committed_as_batch * num_online_cpus(), 793 "memory commitment underflow"); 794 795 vm_acct_memory(pages); 796 797 /* 798 * Sometimes we want to use more memory than we have 799 */ 800 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 801 return 0; 802 803 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 804 if (pages > totalram_pages() + total_swap_pages) 805 goto error; 806 return 0; 807 } 808 809 allowed = vm_commit_limit(); 810 /* 811 * Reserve some for root 812 */ 813 if (!cap_sys_admin) 814 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 815 816 /* 817 * Don't let a single process grow so big a user can't recover 818 */ 819 if (mm) { 820 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 821 822 allowed -= min_t(long, mm->total_vm / 32, reserve); 823 } 824 825 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 826 return 0; 827 error: 828 vm_unacct_memory(pages); 829 830 return -ENOMEM; 831 } 832 833 /** 834 * get_cmdline() - copy the cmdline value to a buffer. 835 * @task: the task whose cmdline value to copy. 836 * @buffer: the buffer to copy to. 837 * @buflen: the length of the buffer. Larger cmdline values are truncated 838 * to this length. 839 * 840 * Return: the size of the cmdline field copied. Note that the copy does 841 * not guarantee an ending NULL byte. 842 */ 843 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 844 { 845 int res = 0; 846 unsigned int len; 847 struct mm_struct *mm = get_task_mm(task); 848 unsigned long arg_start, arg_end, env_start, env_end; 849 if (!mm) 850 goto out; 851 if (!mm->arg_end) 852 goto out_mm; /* Shh! No looking before we're done */ 853 854 spin_lock(&mm->arg_lock); 855 arg_start = mm->arg_start; 856 arg_end = mm->arg_end; 857 env_start = mm->env_start; 858 env_end = mm->env_end; 859 spin_unlock(&mm->arg_lock); 860 861 len = arg_end - arg_start; 862 863 if (len > buflen) 864 len = buflen; 865 866 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 867 868 /* 869 * If the nul at the end of args has been overwritten, then 870 * assume application is using setproctitle(3). 871 */ 872 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 873 len = strnlen(buffer, res); 874 if (len < res) { 875 res = len; 876 } else { 877 len = env_end - env_start; 878 if (len > buflen - res) 879 len = buflen - res; 880 res += access_process_vm(task, env_start, 881 buffer+res, len, 882 FOLL_FORCE); 883 res = strnlen(buffer, res); 884 } 885 } 886 out_mm: 887 mmput(mm); 888 out: 889 return res; 890 } 891 892 int memcmp_pages(struct page *page1, struct page *page2) 893 { 894 char *addr1, *addr2; 895 int ret; 896 897 addr1 = kmap_atomic(page1); 898 addr2 = kmap_atomic(page2); 899 ret = memcmp(addr1, addr2, PAGE_SIZE); 900 kunmap_atomic(addr2); 901 kunmap_atomic(addr1); 902 return ret; 903 } 904