1 #include <linux/mm.h> 2 #include <linux/slab.h> 3 #include <linux/string.h> 4 #include <linux/compiler.h> 5 #include <linux/export.h> 6 #include <linux/err.h> 7 #include <linux/sched.h> 8 #include <linux/sched/mm.h> 9 #include <linux/sched/task_stack.h> 10 #include <linux/security.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/mman.h> 14 #include <linux/hugetlb.h> 15 #include <linux/vmalloc.h> 16 #include <linux/userfaultfd_k.h> 17 18 #include <asm/sections.h> 19 #include <linux/uaccess.h> 20 21 #include "internal.h" 22 23 static inline int is_kernel_rodata(unsigned long addr) 24 { 25 return addr >= (unsigned long)__start_rodata && 26 addr < (unsigned long)__end_rodata; 27 } 28 29 /** 30 * kfree_const - conditionally free memory 31 * @x: pointer to the memory 32 * 33 * Function calls kfree only if @x is not in .rodata section. 34 */ 35 void kfree_const(const void *x) 36 { 37 if (!is_kernel_rodata((unsigned long)x)) 38 kfree(x); 39 } 40 EXPORT_SYMBOL(kfree_const); 41 42 /** 43 * kstrdup - allocate space for and copy an existing string 44 * @s: the string to duplicate 45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 46 */ 47 char *kstrdup(const char *s, gfp_t gfp) 48 { 49 size_t len; 50 char *buf; 51 52 if (!s) 53 return NULL; 54 55 len = strlen(s) + 1; 56 buf = kmalloc_track_caller(len, gfp); 57 if (buf) 58 memcpy(buf, s, len); 59 return buf; 60 } 61 EXPORT_SYMBOL(kstrdup); 62 63 /** 64 * kstrdup_const - conditionally duplicate an existing const string 65 * @s: the string to duplicate 66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 67 * 68 * Function returns source string if it is in .rodata section otherwise it 69 * fallbacks to kstrdup. 70 * Strings allocated by kstrdup_const should be freed by kfree_const. 71 */ 72 const char *kstrdup_const(const char *s, gfp_t gfp) 73 { 74 if (is_kernel_rodata((unsigned long)s)) 75 return s; 76 77 return kstrdup(s, gfp); 78 } 79 EXPORT_SYMBOL(kstrdup_const); 80 81 /** 82 * kstrndup - allocate space for and copy an existing string 83 * @s: the string to duplicate 84 * @max: read at most @max chars from @s 85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 86 * 87 * Note: Use kmemdup_nul() instead if the size is known exactly. 88 */ 89 char *kstrndup(const char *s, size_t max, gfp_t gfp) 90 { 91 size_t len; 92 char *buf; 93 94 if (!s) 95 return NULL; 96 97 len = strnlen(s, max); 98 buf = kmalloc_track_caller(len+1, gfp); 99 if (buf) { 100 memcpy(buf, s, len); 101 buf[len] = '\0'; 102 } 103 return buf; 104 } 105 EXPORT_SYMBOL(kstrndup); 106 107 /** 108 * kmemdup - duplicate region of memory 109 * 110 * @src: memory region to duplicate 111 * @len: memory region length 112 * @gfp: GFP mask to use 113 */ 114 void *kmemdup(const void *src, size_t len, gfp_t gfp) 115 { 116 void *p; 117 118 p = kmalloc_track_caller(len, gfp); 119 if (p) 120 memcpy(p, src, len); 121 return p; 122 } 123 EXPORT_SYMBOL(kmemdup); 124 125 /** 126 * kmemdup_nul - Create a NUL-terminated string from unterminated data 127 * @s: The data to stringify 128 * @len: The size of the data 129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 130 */ 131 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 132 { 133 char *buf; 134 135 if (!s) 136 return NULL; 137 138 buf = kmalloc_track_caller(len + 1, gfp); 139 if (buf) { 140 memcpy(buf, s, len); 141 buf[len] = '\0'; 142 } 143 return buf; 144 } 145 EXPORT_SYMBOL(kmemdup_nul); 146 147 /** 148 * memdup_user - duplicate memory region from user space 149 * 150 * @src: source address in user space 151 * @len: number of bytes to copy 152 * 153 * Returns an ERR_PTR() on failure. Result is physically 154 * contiguous, to be freed by kfree(). 155 */ 156 void *memdup_user(const void __user *src, size_t len) 157 { 158 void *p; 159 160 p = kmalloc_track_caller(len, GFP_USER); 161 if (!p) 162 return ERR_PTR(-ENOMEM); 163 164 if (copy_from_user(p, src, len)) { 165 kfree(p); 166 return ERR_PTR(-EFAULT); 167 } 168 169 return p; 170 } 171 EXPORT_SYMBOL(memdup_user); 172 173 /** 174 * vmemdup_user - duplicate memory region from user space 175 * 176 * @src: source address in user space 177 * @len: number of bytes to copy 178 * 179 * Returns an ERR_PTR() on failure. Result may be not 180 * physically contiguous. Use kvfree() to free. 181 */ 182 void *vmemdup_user(const void __user *src, size_t len) 183 { 184 void *p; 185 186 p = kvmalloc(len, GFP_USER); 187 if (!p) 188 return ERR_PTR(-ENOMEM); 189 190 if (copy_from_user(p, src, len)) { 191 kvfree(p); 192 return ERR_PTR(-EFAULT); 193 } 194 195 return p; 196 } 197 EXPORT_SYMBOL(vmemdup_user); 198 199 /** 200 * strndup_user - duplicate an existing string from user space 201 * @s: The string to duplicate 202 * @n: Maximum number of bytes to copy, including the trailing NUL. 203 */ 204 char *strndup_user(const char __user *s, long n) 205 { 206 char *p; 207 long length; 208 209 length = strnlen_user(s, n); 210 211 if (!length) 212 return ERR_PTR(-EFAULT); 213 214 if (length > n) 215 return ERR_PTR(-EINVAL); 216 217 p = memdup_user(s, length); 218 219 if (IS_ERR(p)) 220 return p; 221 222 p[length - 1] = '\0'; 223 224 return p; 225 } 226 EXPORT_SYMBOL(strndup_user); 227 228 /** 229 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 230 * 231 * @src: source address in user space 232 * @len: number of bytes to copy 233 * 234 * Returns an ERR_PTR() on failure. 235 */ 236 void *memdup_user_nul(const void __user *src, size_t len) 237 { 238 char *p; 239 240 /* 241 * Always use GFP_KERNEL, since copy_from_user() can sleep and 242 * cause pagefault, which makes it pointless to use GFP_NOFS 243 * or GFP_ATOMIC. 244 */ 245 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 246 if (!p) 247 return ERR_PTR(-ENOMEM); 248 249 if (copy_from_user(p, src, len)) { 250 kfree(p); 251 return ERR_PTR(-EFAULT); 252 } 253 p[len] = '\0'; 254 255 return p; 256 } 257 EXPORT_SYMBOL(memdup_user_nul); 258 259 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 260 struct vm_area_struct *prev, struct rb_node *rb_parent) 261 { 262 struct vm_area_struct *next; 263 264 vma->vm_prev = prev; 265 if (prev) { 266 next = prev->vm_next; 267 prev->vm_next = vma; 268 } else { 269 mm->mmap = vma; 270 if (rb_parent) 271 next = rb_entry(rb_parent, 272 struct vm_area_struct, vm_rb); 273 else 274 next = NULL; 275 } 276 vma->vm_next = next; 277 if (next) 278 next->vm_prev = vma; 279 } 280 281 /* Check if the vma is being used as a stack by this task */ 282 int vma_is_stack_for_current(struct vm_area_struct *vma) 283 { 284 struct task_struct * __maybe_unused t = current; 285 286 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 287 } 288 289 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 290 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 291 { 292 mm->mmap_base = TASK_UNMAPPED_BASE; 293 mm->get_unmapped_area = arch_get_unmapped_area; 294 } 295 #endif 296 297 /* 298 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall 299 * back to the regular GUP. 300 * Note a difference with get_user_pages_fast: this always returns the 301 * number of pages pinned, 0 if no pages were pinned. 302 * If the architecture does not support this function, simply return with no 303 * pages pinned. 304 */ 305 int __weak __get_user_pages_fast(unsigned long start, 306 int nr_pages, int write, struct page **pages) 307 { 308 return 0; 309 } 310 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 311 312 /** 313 * get_user_pages_fast() - pin user pages in memory 314 * @start: starting user address 315 * @nr_pages: number of pages from start to pin 316 * @write: whether pages will be written to 317 * @pages: array that receives pointers to the pages pinned. 318 * Should be at least nr_pages long. 319 * 320 * Returns number of pages pinned. This may be fewer than the number 321 * requested. If nr_pages is 0 or negative, returns 0. If no pages 322 * were pinned, returns -errno. 323 * 324 * get_user_pages_fast provides equivalent functionality to get_user_pages, 325 * operating on current and current->mm, with force=0 and vma=NULL. However 326 * unlike get_user_pages, it must be called without mmap_sem held. 327 * 328 * get_user_pages_fast may take mmap_sem and page table locks, so no 329 * assumptions can be made about lack of locking. get_user_pages_fast is to be 330 * implemented in a way that is advantageous (vs get_user_pages()) when the 331 * user memory area is already faulted in and present in ptes. However if the 332 * pages have to be faulted in, it may turn out to be slightly slower so 333 * callers need to carefully consider what to use. On many architectures, 334 * get_user_pages_fast simply falls back to get_user_pages. 335 */ 336 int __weak get_user_pages_fast(unsigned long start, 337 int nr_pages, int write, struct page **pages) 338 { 339 return get_user_pages_unlocked(start, nr_pages, pages, 340 write ? FOLL_WRITE : 0); 341 } 342 EXPORT_SYMBOL_GPL(get_user_pages_fast); 343 344 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 345 unsigned long len, unsigned long prot, 346 unsigned long flag, unsigned long pgoff) 347 { 348 unsigned long ret; 349 struct mm_struct *mm = current->mm; 350 unsigned long populate; 351 LIST_HEAD(uf); 352 353 ret = security_mmap_file(file, prot, flag); 354 if (!ret) { 355 if (down_write_killable(&mm->mmap_sem)) 356 return -EINTR; 357 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, 358 &populate, &uf); 359 up_write(&mm->mmap_sem); 360 userfaultfd_unmap_complete(mm, &uf); 361 if (populate) 362 mm_populate(ret, populate); 363 } 364 return ret; 365 } 366 367 unsigned long vm_mmap(struct file *file, unsigned long addr, 368 unsigned long len, unsigned long prot, 369 unsigned long flag, unsigned long offset) 370 { 371 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 372 return -EINVAL; 373 if (unlikely(offset_in_page(offset))) 374 return -EINVAL; 375 376 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 377 } 378 EXPORT_SYMBOL(vm_mmap); 379 380 /** 381 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 382 * failure, fall back to non-contiguous (vmalloc) allocation. 383 * @size: size of the request. 384 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 385 * @node: numa node to allocate from 386 * 387 * Uses kmalloc to get the memory but if the allocation fails then falls back 388 * to the vmalloc allocator. Use kvfree for freeing the memory. 389 * 390 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. 391 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 392 * preferable to the vmalloc fallback, due to visible performance drawbacks. 393 * 394 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not 395 * fall back to vmalloc. 396 */ 397 void *kvmalloc_node(size_t size, gfp_t flags, int node) 398 { 399 gfp_t kmalloc_flags = flags; 400 void *ret; 401 402 /* 403 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) 404 * so the given set of flags has to be compatible. 405 */ 406 if ((flags & GFP_KERNEL) != GFP_KERNEL) 407 return kmalloc_node(size, flags, node); 408 409 /* 410 * We want to attempt a large physically contiguous block first because 411 * it is less likely to fragment multiple larger blocks and therefore 412 * contribute to a long term fragmentation less than vmalloc fallback. 413 * However make sure that larger requests are not too disruptive - no 414 * OOM killer and no allocation failure warnings as we have a fallback. 415 */ 416 if (size > PAGE_SIZE) { 417 kmalloc_flags |= __GFP_NOWARN; 418 419 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 420 kmalloc_flags |= __GFP_NORETRY; 421 } 422 423 ret = kmalloc_node(size, kmalloc_flags, node); 424 425 /* 426 * It doesn't really make sense to fallback to vmalloc for sub page 427 * requests 428 */ 429 if (ret || size <= PAGE_SIZE) 430 return ret; 431 432 return __vmalloc_node_flags_caller(size, node, flags, 433 __builtin_return_address(0)); 434 } 435 EXPORT_SYMBOL(kvmalloc_node); 436 437 /** 438 * kvfree - free memory allocated with kvmalloc 439 * @addr: pointer returned by kvmalloc 440 * 441 * If the memory is allocated from vmalloc area it is freed with vfree(). 442 * Otherwise kfree() is used. 443 */ 444 void kvfree(const void *addr) 445 { 446 if (is_vmalloc_addr(addr)) 447 vfree(addr); 448 else 449 kfree(addr); 450 } 451 EXPORT_SYMBOL(kvfree); 452 453 static inline void *__page_rmapping(struct page *page) 454 { 455 unsigned long mapping; 456 457 mapping = (unsigned long)page->mapping; 458 mapping &= ~PAGE_MAPPING_FLAGS; 459 460 return (void *)mapping; 461 } 462 463 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 464 void *page_rmapping(struct page *page) 465 { 466 page = compound_head(page); 467 return __page_rmapping(page); 468 } 469 470 /* 471 * Return true if this page is mapped into pagetables. 472 * For compound page it returns true if any subpage of compound page is mapped. 473 */ 474 bool page_mapped(struct page *page) 475 { 476 int i; 477 478 if (likely(!PageCompound(page))) 479 return atomic_read(&page->_mapcount) >= 0; 480 page = compound_head(page); 481 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 482 return true; 483 if (PageHuge(page)) 484 return false; 485 for (i = 0; i < hpage_nr_pages(page); i++) { 486 if (atomic_read(&page[i]._mapcount) >= 0) 487 return true; 488 } 489 return false; 490 } 491 EXPORT_SYMBOL(page_mapped); 492 493 struct anon_vma *page_anon_vma(struct page *page) 494 { 495 unsigned long mapping; 496 497 page = compound_head(page); 498 mapping = (unsigned long)page->mapping; 499 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 500 return NULL; 501 return __page_rmapping(page); 502 } 503 504 struct address_space *page_mapping(struct page *page) 505 { 506 struct address_space *mapping; 507 508 page = compound_head(page); 509 510 /* This happens if someone calls flush_dcache_page on slab page */ 511 if (unlikely(PageSlab(page))) 512 return NULL; 513 514 if (unlikely(PageSwapCache(page))) { 515 swp_entry_t entry; 516 517 entry.val = page_private(page); 518 return swap_address_space(entry); 519 } 520 521 mapping = page->mapping; 522 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 523 return NULL; 524 525 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 526 } 527 EXPORT_SYMBOL(page_mapping); 528 529 /* 530 * For file cache pages, return the address_space, otherwise return NULL 531 */ 532 struct address_space *page_mapping_file(struct page *page) 533 { 534 if (unlikely(PageSwapCache(page))) 535 return NULL; 536 return page_mapping(page); 537 } 538 539 /* Slow path of page_mapcount() for compound pages */ 540 int __page_mapcount(struct page *page) 541 { 542 int ret; 543 544 ret = atomic_read(&page->_mapcount) + 1; 545 /* 546 * For file THP page->_mapcount contains total number of mapping 547 * of the page: no need to look into compound_mapcount. 548 */ 549 if (!PageAnon(page) && !PageHuge(page)) 550 return ret; 551 page = compound_head(page); 552 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 553 if (PageDoubleMap(page)) 554 ret--; 555 return ret; 556 } 557 EXPORT_SYMBOL_GPL(__page_mapcount); 558 559 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 560 int sysctl_overcommit_ratio __read_mostly = 50; 561 unsigned long sysctl_overcommit_kbytes __read_mostly; 562 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 563 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 564 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 565 566 int overcommit_ratio_handler(struct ctl_table *table, int write, 567 void __user *buffer, size_t *lenp, 568 loff_t *ppos) 569 { 570 int ret; 571 572 ret = proc_dointvec(table, write, buffer, lenp, ppos); 573 if (ret == 0 && write) 574 sysctl_overcommit_kbytes = 0; 575 return ret; 576 } 577 578 int overcommit_kbytes_handler(struct ctl_table *table, int write, 579 void __user *buffer, size_t *lenp, 580 loff_t *ppos) 581 { 582 int ret; 583 584 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 585 if (ret == 0 && write) 586 sysctl_overcommit_ratio = 0; 587 return ret; 588 } 589 590 /* 591 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 592 */ 593 unsigned long vm_commit_limit(void) 594 { 595 unsigned long allowed; 596 597 if (sysctl_overcommit_kbytes) 598 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 599 else 600 allowed = ((totalram_pages - hugetlb_total_pages()) 601 * sysctl_overcommit_ratio / 100); 602 allowed += total_swap_pages; 603 604 return allowed; 605 } 606 607 /* 608 * Make sure vm_committed_as in one cacheline and not cacheline shared with 609 * other variables. It can be updated by several CPUs frequently. 610 */ 611 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 612 613 /* 614 * The global memory commitment made in the system can be a metric 615 * that can be used to drive ballooning decisions when Linux is hosted 616 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 617 * balancing memory across competing virtual machines that are hosted. 618 * Several metrics drive this policy engine including the guest reported 619 * memory commitment. 620 */ 621 unsigned long vm_memory_committed(void) 622 { 623 return percpu_counter_read_positive(&vm_committed_as); 624 } 625 EXPORT_SYMBOL_GPL(vm_memory_committed); 626 627 /* 628 * Check that a process has enough memory to allocate a new virtual 629 * mapping. 0 means there is enough memory for the allocation to 630 * succeed and -ENOMEM implies there is not. 631 * 632 * We currently support three overcommit policies, which are set via the 633 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst 634 * 635 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 636 * Additional code 2002 Jul 20 by Robert Love. 637 * 638 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 639 * 640 * Note this is a helper function intended to be used by LSMs which 641 * wish to use this logic. 642 */ 643 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 644 { 645 long free, allowed, reserve; 646 647 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 648 -(s64)vm_committed_as_batch * num_online_cpus(), 649 "memory commitment underflow"); 650 651 vm_acct_memory(pages); 652 653 /* 654 * Sometimes we want to use more memory than we have 655 */ 656 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 657 return 0; 658 659 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 660 free = global_zone_page_state(NR_FREE_PAGES); 661 free += global_node_page_state(NR_FILE_PAGES); 662 663 /* 664 * shmem pages shouldn't be counted as free in this 665 * case, they can't be purged, only swapped out, and 666 * that won't affect the overall amount of available 667 * memory in the system. 668 */ 669 free -= global_node_page_state(NR_SHMEM); 670 671 free += get_nr_swap_pages(); 672 673 /* 674 * Any slabs which are created with the 675 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 676 * which are reclaimable, under pressure. The dentry 677 * cache and most inode caches should fall into this 678 */ 679 free += global_node_page_state(NR_SLAB_RECLAIMABLE); 680 681 /* 682 * Part of the kernel memory, which can be released 683 * under memory pressure. 684 */ 685 free += global_node_page_state( 686 NR_INDIRECTLY_RECLAIMABLE_BYTES) >> PAGE_SHIFT; 687 688 /* 689 * Leave reserved pages. The pages are not for anonymous pages. 690 */ 691 if (free <= totalreserve_pages) 692 goto error; 693 else 694 free -= totalreserve_pages; 695 696 /* 697 * Reserve some for root 698 */ 699 if (!cap_sys_admin) 700 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 701 702 if (free > pages) 703 return 0; 704 705 goto error; 706 } 707 708 allowed = vm_commit_limit(); 709 /* 710 * Reserve some for root 711 */ 712 if (!cap_sys_admin) 713 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 714 715 /* 716 * Don't let a single process grow so big a user can't recover 717 */ 718 if (mm) { 719 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 720 allowed -= min_t(long, mm->total_vm / 32, reserve); 721 } 722 723 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 724 return 0; 725 error: 726 vm_unacct_memory(pages); 727 728 return -ENOMEM; 729 } 730 731 /** 732 * get_cmdline() - copy the cmdline value to a buffer. 733 * @task: the task whose cmdline value to copy. 734 * @buffer: the buffer to copy to. 735 * @buflen: the length of the buffer. Larger cmdline values are truncated 736 * to this length. 737 * Returns the size of the cmdline field copied. Note that the copy does 738 * not guarantee an ending NULL byte. 739 */ 740 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 741 { 742 int res = 0; 743 unsigned int len; 744 struct mm_struct *mm = get_task_mm(task); 745 unsigned long arg_start, arg_end, env_start, env_end; 746 if (!mm) 747 goto out; 748 if (!mm->arg_end) 749 goto out_mm; /* Shh! No looking before we're done */ 750 751 down_read(&mm->mmap_sem); 752 arg_start = mm->arg_start; 753 arg_end = mm->arg_end; 754 env_start = mm->env_start; 755 env_end = mm->env_end; 756 up_read(&mm->mmap_sem); 757 758 len = arg_end - arg_start; 759 760 if (len > buflen) 761 len = buflen; 762 763 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 764 765 /* 766 * If the nul at the end of args has been overwritten, then 767 * assume application is using setproctitle(3). 768 */ 769 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 770 len = strnlen(buffer, res); 771 if (len < res) { 772 res = len; 773 } else { 774 len = env_end - env_start; 775 if (len > buflen - res) 776 len = buflen - res; 777 res += access_process_vm(task, env_start, 778 buffer+res, len, 779 FOLL_FORCE); 780 res = strnlen(buffer, res); 781 } 782 } 783 out_mm: 784 mmput(mm); 785 out: 786 return res; 787 } 788