1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 #include "swap.h" 31 32 /** 33 * kfree_const - conditionally free memory 34 * @x: pointer to the memory 35 * 36 * Function calls kfree only if @x is not in .rodata section. 37 */ 38 void kfree_const(const void *x) 39 { 40 if (!is_kernel_rodata((unsigned long)x)) 41 kfree(x); 42 } 43 EXPORT_SYMBOL(kfree_const); 44 45 /** 46 * kstrdup - allocate space for and copy an existing string 47 * @s: the string to duplicate 48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 49 * 50 * Return: newly allocated copy of @s or %NULL in case of error 51 */ 52 char *kstrdup(const char *s, gfp_t gfp) 53 { 54 size_t len; 55 char *buf; 56 57 if (!s) 58 return NULL; 59 60 len = strlen(s) + 1; 61 buf = kmalloc_track_caller(len, gfp); 62 if (buf) 63 memcpy(buf, s, len); 64 return buf; 65 } 66 EXPORT_SYMBOL(kstrdup); 67 68 /** 69 * kstrdup_const - conditionally duplicate an existing const string 70 * @s: the string to duplicate 71 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 72 * 73 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 74 * must not be passed to krealloc(). 75 * 76 * Return: source string if it is in .rodata section otherwise 77 * fallback to kstrdup. 78 */ 79 const char *kstrdup_const(const char *s, gfp_t gfp) 80 { 81 if (is_kernel_rodata((unsigned long)s)) 82 return s; 83 84 return kstrdup(s, gfp); 85 } 86 EXPORT_SYMBOL(kstrdup_const); 87 88 /** 89 * kstrndup - allocate space for and copy an existing string 90 * @s: the string to duplicate 91 * @max: read at most @max chars from @s 92 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 93 * 94 * Note: Use kmemdup_nul() instead if the size is known exactly. 95 * 96 * Return: newly allocated copy of @s or %NULL in case of error 97 */ 98 char *kstrndup(const char *s, size_t max, gfp_t gfp) 99 { 100 size_t len; 101 char *buf; 102 103 if (!s) 104 return NULL; 105 106 len = strnlen(s, max); 107 buf = kmalloc_track_caller(len+1, gfp); 108 if (buf) { 109 memcpy(buf, s, len); 110 buf[len] = '\0'; 111 } 112 return buf; 113 } 114 EXPORT_SYMBOL(kstrndup); 115 116 /** 117 * kmemdup - duplicate region of memory 118 * 119 * @src: memory region to duplicate 120 * @len: memory region length 121 * @gfp: GFP mask to use 122 * 123 * Return: newly allocated copy of @src or %NULL in case of error, 124 * result is physically contiguous. Use kfree() to free. 125 */ 126 void *kmemdup(const void *src, size_t len, gfp_t gfp) 127 { 128 void *p; 129 130 p = kmalloc_track_caller(len, gfp); 131 if (p) 132 memcpy(p, src, len); 133 return p; 134 } 135 EXPORT_SYMBOL(kmemdup); 136 137 /** 138 * kvmemdup - duplicate region of memory 139 * 140 * @src: memory region to duplicate 141 * @len: memory region length 142 * @gfp: GFP mask to use 143 * 144 * Return: newly allocated copy of @src or %NULL in case of error, 145 * result may be not physically contiguous. Use kvfree() to free. 146 */ 147 void *kvmemdup(const void *src, size_t len, gfp_t gfp) 148 { 149 void *p; 150 151 p = kvmalloc(len, gfp); 152 if (p) 153 memcpy(p, src, len); 154 return p; 155 } 156 EXPORT_SYMBOL(kvmemdup); 157 158 /** 159 * kmemdup_nul - Create a NUL-terminated string from unterminated data 160 * @s: The data to stringify 161 * @len: The size of the data 162 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 163 * 164 * Return: newly allocated copy of @s with NUL-termination or %NULL in 165 * case of error 166 */ 167 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 168 { 169 char *buf; 170 171 if (!s) 172 return NULL; 173 174 buf = kmalloc_track_caller(len + 1, gfp); 175 if (buf) { 176 memcpy(buf, s, len); 177 buf[len] = '\0'; 178 } 179 return buf; 180 } 181 EXPORT_SYMBOL(kmemdup_nul); 182 183 /** 184 * memdup_user - duplicate memory region from user space 185 * 186 * @src: source address in user space 187 * @len: number of bytes to copy 188 * 189 * Return: an ERR_PTR() on failure. Result is physically 190 * contiguous, to be freed by kfree(). 191 */ 192 void *memdup_user(const void __user *src, size_t len) 193 { 194 void *p; 195 196 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 197 if (!p) 198 return ERR_PTR(-ENOMEM); 199 200 if (copy_from_user(p, src, len)) { 201 kfree(p); 202 return ERR_PTR(-EFAULT); 203 } 204 205 return p; 206 } 207 EXPORT_SYMBOL(memdup_user); 208 209 /** 210 * vmemdup_user - duplicate memory region from user space 211 * 212 * @src: source address in user space 213 * @len: number of bytes to copy 214 * 215 * Return: an ERR_PTR() on failure. Result may be not 216 * physically contiguous. Use kvfree() to free. 217 */ 218 void *vmemdup_user(const void __user *src, size_t len) 219 { 220 void *p; 221 222 p = kvmalloc(len, GFP_USER); 223 if (!p) 224 return ERR_PTR(-ENOMEM); 225 226 if (copy_from_user(p, src, len)) { 227 kvfree(p); 228 return ERR_PTR(-EFAULT); 229 } 230 231 return p; 232 } 233 EXPORT_SYMBOL(vmemdup_user); 234 235 /** 236 * strndup_user - duplicate an existing string from user space 237 * @s: The string to duplicate 238 * @n: Maximum number of bytes to copy, including the trailing NUL. 239 * 240 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 241 */ 242 char *strndup_user(const char __user *s, long n) 243 { 244 char *p; 245 long length; 246 247 length = strnlen_user(s, n); 248 249 if (!length) 250 return ERR_PTR(-EFAULT); 251 252 if (length > n) 253 return ERR_PTR(-EINVAL); 254 255 p = memdup_user(s, length); 256 257 if (IS_ERR(p)) 258 return p; 259 260 p[length - 1] = '\0'; 261 262 return p; 263 } 264 EXPORT_SYMBOL(strndup_user); 265 266 /** 267 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 268 * 269 * @src: source address in user space 270 * @len: number of bytes to copy 271 * 272 * Return: an ERR_PTR() on failure. 273 */ 274 void *memdup_user_nul(const void __user *src, size_t len) 275 { 276 char *p; 277 278 /* 279 * Always use GFP_KERNEL, since copy_from_user() can sleep and 280 * cause pagefault, which makes it pointless to use GFP_NOFS 281 * or GFP_ATOMIC. 282 */ 283 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 284 if (!p) 285 return ERR_PTR(-ENOMEM); 286 287 if (copy_from_user(p, src, len)) { 288 kfree(p); 289 return ERR_PTR(-EFAULT); 290 } 291 p[len] = '\0'; 292 293 return p; 294 } 295 EXPORT_SYMBOL(memdup_user_nul); 296 297 /* Check if the vma is being used as a stack by this task */ 298 int vma_is_stack_for_current(struct vm_area_struct *vma) 299 { 300 struct task_struct * __maybe_unused t = current; 301 302 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 303 } 304 305 /* 306 * Change backing file, only valid to use during initial VMA setup. 307 */ 308 void vma_set_file(struct vm_area_struct *vma, struct file *file) 309 { 310 /* Changing an anonymous vma with this is illegal */ 311 get_file(file); 312 swap(vma->vm_file, file); 313 fput(file); 314 } 315 EXPORT_SYMBOL(vma_set_file); 316 317 #ifndef STACK_RND_MASK 318 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 319 #endif 320 321 unsigned long randomize_stack_top(unsigned long stack_top) 322 { 323 unsigned long random_variable = 0; 324 325 if (current->flags & PF_RANDOMIZE) { 326 random_variable = get_random_long(); 327 random_variable &= STACK_RND_MASK; 328 random_variable <<= PAGE_SHIFT; 329 } 330 #ifdef CONFIG_STACK_GROWSUP 331 return PAGE_ALIGN(stack_top) + random_variable; 332 #else 333 return PAGE_ALIGN(stack_top) - random_variable; 334 #endif 335 } 336 337 /** 338 * randomize_page - Generate a random, page aligned address 339 * @start: The smallest acceptable address the caller will take. 340 * @range: The size of the area, starting at @start, within which the 341 * random address must fall. 342 * 343 * If @start + @range would overflow, @range is capped. 344 * 345 * NOTE: Historical use of randomize_range, which this replaces, presumed that 346 * @start was already page aligned. We now align it regardless. 347 * 348 * Return: A page aligned address within [start, start + range). On error, 349 * @start is returned. 350 */ 351 unsigned long randomize_page(unsigned long start, unsigned long range) 352 { 353 if (!PAGE_ALIGNED(start)) { 354 range -= PAGE_ALIGN(start) - start; 355 start = PAGE_ALIGN(start); 356 } 357 358 if (start > ULONG_MAX - range) 359 range = ULONG_MAX - start; 360 361 range >>= PAGE_SHIFT; 362 363 if (range == 0) 364 return start; 365 366 return start + (get_random_long() % range << PAGE_SHIFT); 367 } 368 369 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 370 unsigned long __weak arch_randomize_brk(struct mm_struct *mm) 371 { 372 /* Is the current task 32bit ? */ 373 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 374 return randomize_page(mm->brk, SZ_32M); 375 376 return randomize_page(mm->brk, SZ_1G); 377 } 378 379 unsigned long arch_mmap_rnd(void) 380 { 381 unsigned long rnd; 382 383 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 384 if (is_compat_task()) 385 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 386 else 387 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 388 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 389 390 return rnd << PAGE_SHIFT; 391 } 392 393 static int mmap_is_legacy(struct rlimit *rlim_stack) 394 { 395 if (current->personality & ADDR_COMPAT_LAYOUT) 396 return 1; 397 398 if (rlim_stack->rlim_cur == RLIM_INFINITY) 399 return 1; 400 401 return sysctl_legacy_va_layout; 402 } 403 404 /* 405 * Leave enough space between the mmap area and the stack to honour ulimit in 406 * the face of randomisation. 407 */ 408 #define MIN_GAP (SZ_128M) 409 #define MAX_GAP (STACK_TOP / 6 * 5) 410 411 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 412 { 413 unsigned long gap = rlim_stack->rlim_cur; 414 unsigned long pad = stack_guard_gap; 415 416 /* Account for stack randomization if necessary */ 417 if (current->flags & PF_RANDOMIZE) 418 pad += (STACK_RND_MASK << PAGE_SHIFT); 419 420 /* Values close to RLIM_INFINITY can overflow. */ 421 if (gap + pad > gap) 422 gap += pad; 423 424 if (gap < MIN_GAP) 425 gap = MIN_GAP; 426 else if (gap > MAX_GAP) 427 gap = MAX_GAP; 428 429 return PAGE_ALIGN(STACK_TOP - gap - rnd); 430 } 431 432 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 433 { 434 unsigned long random_factor = 0UL; 435 436 if (current->flags & PF_RANDOMIZE) 437 random_factor = arch_mmap_rnd(); 438 439 if (mmap_is_legacy(rlim_stack)) { 440 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 441 mm->get_unmapped_area = arch_get_unmapped_area; 442 } else { 443 mm->mmap_base = mmap_base(random_factor, rlim_stack); 444 mm->get_unmapped_area = arch_get_unmapped_area_topdown; 445 } 446 } 447 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 448 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 449 { 450 mm->mmap_base = TASK_UNMAPPED_BASE; 451 mm->get_unmapped_area = arch_get_unmapped_area; 452 } 453 #endif 454 455 /** 456 * __account_locked_vm - account locked pages to an mm's locked_vm 457 * @mm: mm to account against 458 * @pages: number of pages to account 459 * @inc: %true if @pages should be considered positive, %false if not 460 * @task: task used to check RLIMIT_MEMLOCK 461 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 462 * 463 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 464 * that mmap_lock is held as writer. 465 * 466 * Return: 467 * * 0 on success 468 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 469 */ 470 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 471 struct task_struct *task, bool bypass_rlim) 472 { 473 unsigned long locked_vm, limit; 474 int ret = 0; 475 476 mmap_assert_write_locked(mm); 477 478 locked_vm = mm->locked_vm; 479 if (inc) { 480 if (!bypass_rlim) { 481 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 482 if (locked_vm + pages > limit) 483 ret = -ENOMEM; 484 } 485 if (!ret) 486 mm->locked_vm = locked_vm + pages; 487 } else { 488 WARN_ON_ONCE(pages > locked_vm); 489 mm->locked_vm = locked_vm - pages; 490 } 491 492 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 493 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 494 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 495 ret ? " - exceeded" : ""); 496 497 return ret; 498 } 499 EXPORT_SYMBOL_GPL(__account_locked_vm); 500 501 /** 502 * account_locked_vm - account locked pages to an mm's locked_vm 503 * @mm: mm to account against, may be NULL 504 * @pages: number of pages to account 505 * @inc: %true if @pages should be considered positive, %false if not 506 * 507 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 508 * 509 * Return: 510 * * 0 on success, or if mm is NULL 511 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 512 */ 513 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 514 { 515 int ret; 516 517 if (pages == 0 || !mm) 518 return 0; 519 520 mmap_write_lock(mm); 521 ret = __account_locked_vm(mm, pages, inc, current, 522 capable(CAP_IPC_LOCK)); 523 mmap_write_unlock(mm); 524 525 return ret; 526 } 527 EXPORT_SYMBOL_GPL(account_locked_vm); 528 529 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 530 unsigned long len, unsigned long prot, 531 unsigned long flag, unsigned long pgoff) 532 { 533 unsigned long ret; 534 struct mm_struct *mm = current->mm; 535 unsigned long populate; 536 LIST_HEAD(uf); 537 538 ret = security_mmap_file(file, prot, flag); 539 if (!ret) { 540 if (mmap_write_lock_killable(mm)) 541 return -EINTR; 542 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, 543 &uf); 544 mmap_write_unlock(mm); 545 userfaultfd_unmap_complete(mm, &uf); 546 if (populate) 547 mm_populate(ret, populate); 548 } 549 return ret; 550 } 551 552 unsigned long vm_mmap(struct file *file, unsigned long addr, 553 unsigned long len, unsigned long prot, 554 unsigned long flag, unsigned long offset) 555 { 556 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 557 return -EINVAL; 558 if (unlikely(offset_in_page(offset))) 559 return -EINVAL; 560 561 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 562 } 563 EXPORT_SYMBOL(vm_mmap); 564 565 /** 566 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 567 * failure, fall back to non-contiguous (vmalloc) allocation. 568 * @size: size of the request. 569 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 570 * @node: numa node to allocate from 571 * 572 * Uses kmalloc to get the memory but if the allocation fails then falls back 573 * to the vmalloc allocator. Use kvfree for freeing the memory. 574 * 575 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 576 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 577 * preferable to the vmalloc fallback, due to visible performance drawbacks. 578 * 579 * Return: pointer to the allocated memory of %NULL in case of failure 580 */ 581 void *kvmalloc_node(size_t size, gfp_t flags, int node) 582 { 583 gfp_t kmalloc_flags = flags; 584 void *ret; 585 586 /* 587 * We want to attempt a large physically contiguous block first because 588 * it is less likely to fragment multiple larger blocks and therefore 589 * contribute to a long term fragmentation less than vmalloc fallback. 590 * However make sure that larger requests are not too disruptive - no 591 * OOM killer and no allocation failure warnings as we have a fallback. 592 */ 593 if (size > PAGE_SIZE) { 594 kmalloc_flags |= __GFP_NOWARN; 595 596 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 597 kmalloc_flags |= __GFP_NORETRY; 598 599 /* nofail semantic is implemented by the vmalloc fallback */ 600 kmalloc_flags &= ~__GFP_NOFAIL; 601 } 602 603 ret = kmalloc_node(size, kmalloc_flags, node); 604 605 /* 606 * It doesn't really make sense to fallback to vmalloc for sub page 607 * requests 608 */ 609 if (ret || size <= PAGE_SIZE) 610 return ret; 611 612 /* non-sleeping allocations are not supported by vmalloc */ 613 if (!gfpflags_allow_blocking(flags)) 614 return NULL; 615 616 /* Don't even allow crazy sizes */ 617 if (unlikely(size > INT_MAX)) { 618 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 619 return NULL; 620 } 621 622 /* 623 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 624 * since the callers already cannot assume anything 625 * about the resulting pointer, and cannot play 626 * protection games. 627 */ 628 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 629 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 630 node, __builtin_return_address(0)); 631 } 632 EXPORT_SYMBOL(kvmalloc_node); 633 634 /** 635 * kvfree() - Free memory. 636 * @addr: Pointer to allocated memory. 637 * 638 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 639 * It is slightly more efficient to use kfree() or vfree() if you are certain 640 * that you know which one to use. 641 * 642 * Context: Either preemptible task context or not-NMI interrupt. 643 */ 644 void kvfree(const void *addr) 645 { 646 if (is_vmalloc_addr(addr)) 647 vfree(addr); 648 else 649 kfree(addr); 650 } 651 EXPORT_SYMBOL(kvfree); 652 653 /** 654 * kvfree_sensitive - Free a data object containing sensitive information. 655 * @addr: address of the data object to be freed. 656 * @len: length of the data object. 657 * 658 * Use the special memzero_explicit() function to clear the content of a 659 * kvmalloc'ed object containing sensitive data to make sure that the 660 * compiler won't optimize out the data clearing. 661 */ 662 void kvfree_sensitive(const void *addr, size_t len) 663 { 664 if (likely(!ZERO_OR_NULL_PTR(addr))) { 665 memzero_explicit((void *)addr, len); 666 kvfree(addr); 667 } 668 } 669 EXPORT_SYMBOL(kvfree_sensitive); 670 671 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 672 { 673 void *newp; 674 675 if (oldsize >= newsize) 676 return (void *)p; 677 newp = kvmalloc(newsize, flags); 678 if (!newp) 679 return NULL; 680 memcpy(newp, p, oldsize); 681 kvfree(p); 682 return newp; 683 } 684 EXPORT_SYMBOL(kvrealloc); 685 686 /** 687 * __vmalloc_array - allocate memory for a virtually contiguous array. 688 * @n: number of elements. 689 * @size: element size. 690 * @flags: the type of memory to allocate (see kmalloc). 691 */ 692 void *__vmalloc_array(size_t n, size_t size, gfp_t flags) 693 { 694 size_t bytes; 695 696 if (unlikely(check_mul_overflow(n, size, &bytes))) 697 return NULL; 698 return __vmalloc(bytes, flags); 699 } 700 EXPORT_SYMBOL(__vmalloc_array); 701 702 /** 703 * vmalloc_array - allocate memory for a virtually contiguous array. 704 * @n: number of elements. 705 * @size: element size. 706 */ 707 void *vmalloc_array(size_t n, size_t size) 708 { 709 return __vmalloc_array(n, size, GFP_KERNEL); 710 } 711 EXPORT_SYMBOL(vmalloc_array); 712 713 /** 714 * __vcalloc - allocate and zero memory for a virtually contiguous array. 715 * @n: number of elements. 716 * @size: element size. 717 * @flags: the type of memory to allocate (see kmalloc). 718 */ 719 void *__vcalloc(size_t n, size_t size, gfp_t flags) 720 { 721 return __vmalloc_array(n, size, flags | __GFP_ZERO); 722 } 723 EXPORT_SYMBOL(__vcalloc); 724 725 /** 726 * vcalloc - allocate and zero memory for a virtually contiguous array. 727 * @n: number of elements. 728 * @size: element size. 729 */ 730 void *vcalloc(size_t n, size_t size) 731 { 732 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); 733 } 734 EXPORT_SYMBOL(vcalloc); 735 736 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 737 void *page_rmapping(struct page *page) 738 { 739 return folio_raw_mapping(page_folio(page)); 740 } 741 742 struct anon_vma *folio_anon_vma(struct folio *folio) 743 { 744 unsigned long mapping = (unsigned long)folio->mapping; 745 746 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 747 return NULL; 748 return (void *)(mapping - PAGE_MAPPING_ANON); 749 } 750 751 /** 752 * folio_mapping - Find the mapping where this folio is stored. 753 * @folio: The folio. 754 * 755 * For folios which are in the page cache, return the mapping that this 756 * page belongs to. Folios in the swap cache return the swap mapping 757 * this page is stored in (which is different from the mapping for the 758 * swap file or swap device where the data is stored). 759 * 760 * You can call this for folios which aren't in the swap cache or page 761 * cache and it will return NULL. 762 */ 763 struct address_space *folio_mapping(struct folio *folio) 764 { 765 struct address_space *mapping; 766 767 /* This happens if someone calls flush_dcache_page on slab page */ 768 if (unlikely(folio_test_slab(folio))) 769 return NULL; 770 771 if (unlikely(folio_test_swapcache(folio))) 772 return swap_address_space(folio_swap_entry(folio)); 773 774 mapping = folio->mapping; 775 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) 776 return NULL; 777 778 return mapping; 779 } 780 EXPORT_SYMBOL(folio_mapping); 781 782 /** 783 * folio_copy - Copy the contents of one folio to another. 784 * @dst: Folio to copy to. 785 * @src: Folio to copy from. 786 * 787 * The bytes in the folio represented by @src are copied to @dst. 788 * Assumes the caller has validated that @dst is at least as large as @src. 789 * Can be called in atomic context for order-0 folios, but if the folio is 790 * larger, it may sleep. 791 */ 792 void folio_copy(struct folio *dst, struct folio *src) 793 { 794 long i = 0; 795 long nr = folio_nr_pages(src); 796 797 for (;;) { 798 copy_highpage(folio_page(dst, i), folio_page(src, i)); 799 if (++i == nr) 800 break; 801 cond_resched(); 802 } 803 } 804 805 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 806 int sysctl_overcommit_ratio __read_mostly = 50; 807 unsigned long sysctl_overcommit_kbytes __read_mostly; 808 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 809 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 810 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 811 812 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, 813 size_t *lenp, loff_t *ppos) 814 { 815 int ret; 816 817 ret = proc_dointvec(table, write, buffer, lenp, ppos); 818 if (ret == 0 && write) 819 sysctl_overcommit_kbytes = 0; 820 return ret; 821 } 822 823 static void sync_overcommit_as(struct work_struct *dummy) 824 { 825 percpu_counter_sync(&vm_committed_as); 826 } 827 828 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, 829 size_t *lenp, loff_t *ppos) 830 { 831 struct ctl_table t; 832 int new_policy = -1; 833 int ret; 834 835 /* 836 * The deviation of sync_overcommit_as could be big with loose policy 837 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 838 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 839 * with the strict "NEVER", and to avoid possible race condition (even 840 * though user usually won't too frequently do the switching to policy 841 * OVERCOMMIT_NEVER), the switch is done in the following order: 842 * 1. changing the batch 843 * 2. sync percpu count on each CPU 844 * 3. switch the policy 845 */ 846 if (write) { 847 t = *table; 848 t.data = &new_policy; 849 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 850 if (ret || new_policy == -1) 851 return ret; 852 853 mm_compute_batch(new_policy); 854 if (new_policy == OVERCOMMIT_NEVER) 855 schedule_on_each_cpu(sync_overcommit_as); 856 sysctl_overcommit_memory = new_policy; 857 } else { 858 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 859 } 860 861 return ret; 862 } 863 864 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, 865 size_t *lenp, loff_t *ppos) 866 { 867 int ret; 868 869 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 870 if (ret == 0 && write) 871 sysctl_overcommit_ratio = 0; 872 return ret; 873 } 874 875 /* 876 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 877 */ 878 unsigned long vm_commit_limit(void) 879 { 880 unsigned long allowed; 881 882 if (sysctl_overcommit_kbytes) 883 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 884 else 885 allowed = ((totalram_pages() - hugetlb_total_pages()) 886 * sysctl_overcommit_ratio / 100); 887 allowed += total_swap_pages; 888 889 return allowed; 890 } 891 892 /* 893 * Make sure vm_committed_as in one cacheline and not cacheline shared with 894 * other variables. It can be updated by several CPUs frequently. 895 */ 896 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 897 898 /* 899 * The global memory commitment made in the system can be a metric 900 * that can be used to drive ballooning decisions when Linux is hosted 901 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 902 * balancing memory across competing virtual machines that are hosted. 903 * Several metrics drive this policy engine including the guest reported 904 * memory commitment. 905 * 906 * The time cost of this is very low for small platforms, and for big 907 * platform like a 2S/36C/72T Skylake server, in worst case where 908 * vm_committed_as's spinlock is under severe contention, the time cost 909 * could be about 30~40 microseconds. 910 */ 911 unsigned long vm_memory_committed(void) 912 { 913 return percpu_counter_sum_positive(&vm_committed_as); 914 } 915 EXPORT_SYMBOL_GPL(vm_memory_committed); 916 917 /* 918 * Check that a process has enough memory to allocate a new virtual 919 * mapping. 0 means there is enough memory for the allocation to 920 * succeed and -ENOMEM implies there is not. 921 * 922 * We currently support three overcommit policies, which are set via the 923 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst 924 * 925 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 926 * Additional code 2002 Jul 20 by Robert Love. 927 * 928 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 929 * 930 * Note this is a helper function intended to be used by LSMs which 931 * wish to use this logic. 932 */ 933 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 934 { 935 long allowed; 936 937 vm_acct_memory(pages); 938 939 /* 940 * Sometimes we want to use more memory than we have 941 */ 942 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 943 return 0; 944 945 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 946 if (pages > totalram_pages() + total_swap_pages) 947 goto error; 948 return 0; 949 } 950 951 allowed = vm_commit_limit(); 952 /* 953 * Reserve some for root 954 */ 955 if (!cap_sys_admin) 956 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 957 958 /* 959 * Don't let a single process grow so big a user can't recover 960 */ 961 if (mm) { 962 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 963 964 allowed -= min_t(long, mm->total_vm / 32, reserve); 965 } 966 967 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 968 return 0; 969 error: 970 pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n", 971 __func__, current->pid, current->comm); 972 vm_unacct_memory(pages); 973 974 return -ENOMEM; 975 } 976 977 /** 978 * get_cmdline() - copy the cmdline value to a buffer. 979 * @task: the task whose cmdline value to copy. 980 * @buffer: the buffer to copy to. 981 * @buflen: the length of the buffer. Larger cmdline values are truncated 982 * to this length. 983 * 984 * Return: the size of the cmdline field copied. Note that the copy does 985 * not guarantee an ending NULL byte. 986 */ 987 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 988 { 989 int res = 0; 990 unsigned int len; 991 struct mm_struct *mm = get_task_mm(task); 992 unsigned long arg_start, arg_end, env_start, env_end; 993 if (!mm) 994 goto out; 995 if (!mm->arg_end) 996 goto out_mm; /* Shh! No looking before we're done */ 997 998 spin_lock(&mm->arg_lock); 999 arg_start = mm->arg_start; 1000 arg_end = mm->arg_end; 1001 env_start = mm->env_start; 1002 env_end = mm->env_end; 1003 spin_unlock(&mm->arg_lock); 1004 1005 len = arg_end - arg_start; 1006 1007 if (len > buflen) 1008 len = buflen; 1009 1010 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 1011 1012 /* 1013 * If the nul at the end of args has been overwritten, then 1014 * assume application is using setproctitle(3). 1015 */ 1016 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 1017 len = strnlen(buffer, res); 1018 if (len < res) { 1019 res = len; 1020 } else { 1021 len = env_end - env_start; 1022 if (len > buflen - res) 1023 len = buflen - res; 1024 res += access_process_vm(task, env_start, 1025 buffer+res, len, 1026 FOLL_FORCE); 1027 res = strnlen(buffer, res); 1028 } 1029 } 1030 out_mm: 1031 mmput(mm); 1032 out: 1033 return res; 1034 } 1035 1036 int __weak memcmp_pages(struct page *page1, struct page *page2) 1037 { 1038 char *addr1, *addr2; 1039 int ret; 1040 1041 addr1 = kmap_atomic(page1); 1042 addr2 = kmap_atomic(page2); 1043 ret = memcmp(addr1, addr2, PAGE_SIZE); 1044 kunmap_atomic(addr2); 1045 kunmap_atomic(addr1); 1046 return ret; 1047 } 1048 1049 #ifdef CONFIG_PRINTK 1050 /** 1051 * mem_dump_obj - Print available provenance information 1052 * @object: object for which to find provenance information. 1053 * 1054 * This function uses pr_cont(), so that the caller is expected to have 1055 * printed out whatever preamble is appropriate. The provenance information 1056 * depends on the type of object and on how much debugging is enabled. 1057 * For example, for a slab-cache object, the slab name is printed, and, 1058 * if available, the return address and stack trace from the allocation 1059 * and last free path of that object. 1060 */ 1061 void mem_dump_obj(void *object) 1062 { 1063 const char *type; 1064 1065 if (kmem_valid_obj(object)) { 1066 kmem_dump_obj(object); 1067 return; 1068 } 1069 1070 if (vmalloc_dump_obj(object)) 1071 return; 1072 1073 if (virt_addr_valid(object)) 1074 type = "non-slab/vmalloc memory"; 1075 else if (object == NULL) 1076 type = "NULL pointer"; 1077 else if (object == ZERO_SIZE_PTR) 1078 type = "zero-size pointer"; 1079 else 1080 type = "non-paged memory"; 1081 1082 pr_cont(" %s\n", type); 1083 } 1084 EXPORT_SYMBOL_GPL(mem_dump_obj); 1085 #endif 1086 1087 /* 1088 * A driver might set a page logically offline -- PageOffline() -- and 1089 * turn the page inaccessible in the hypervisor; after that, access to page 1090 * content can be fatal. 1091 * 1092 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1093 * pages after checking PageOffline(); however, these PFN walkers can race 1094 * with drivers that set PageOffline(). 1095 * 1096 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1097 * synchronize with such drivers, achieving that a page cannot be set 1098 * PageOffline() while frozen. 1099 * 1100 * page_offline_begin()/page_offline_end() is used by drivers that care about 1101 * such races when setting a page PageOffline(). 1102 */ 1103 static DECLARE_RWSEM(page_offline_rwsem); 1104 1105 void page_offline_freeze(void) 1106 { 1107 down_read(&page_offline_rwsem); 1108 } 1109 1110 void page_offline_thaw(void) 1111 { 1112 up_read(&page_offline_rwsem); 1113 } 1114 1115 void page_offline_begin(void) 1116 { 1117 down_write(&page_offline_rwsem); 1118 } 1119 EXPORT_SYMBOL(page_offline_begin); 1120 1121 void page_offline_end(void) 1122 { 1123 up_write(&page_offline_rwsem); 1124 } 1125 EXPORT_SYMBOL(page_offline_end); 1126 1127 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO 1128 void flush_dcache_folio(struct folio *folio) 1129 { 1130 long i, nr = folio_nr_pages(folio); 1131 1132 for (i = 0; i < nr; i++) 1133 flush_dcache_page(folio_page(folio, i)); 1134 } 1135 EXPORT_SYMBOL(flush_dcache_folio); 1136 #endif 1137