xref: /openbmc/linux/mm/util.c (revision e15a5365)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 /**
32  * kfree_const - conditionally free memory
33  * @x: pointer to the memory
34  *
35  * Function calls kfree only if @x is not in .rodata section.
36  */
37 void kfree_const(const void *x)
38 {
39 	if (!is_kernel_rodata((unsigned long)x))
40 		kfree(x);
41 }
42 EXPORT_SYMBOL(kfree_const);
43 
44 /**
45  * kstrdup - allocate space for and copy an existing string
46  * @s: the string to duplicate
47  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48  *
49  * Return: newly allocated copy of @s or %NULL in case of error
50  */
51 char *kstrdup(const char *s, gfp_t gfp)
52 {
53 	size_t len;
54 	char *buf;
55 
56 	if (!s)
57 		return NULL;
58 
59 	len = strlen(s) + 1;
60 	buf = kmalloc_track_caller(len, gfp);
61 	if (buf)
62 		memcpy(buf, s, len);
63 	return buf;
64 }
65 EXPORT_SYMBOL(kstrdup);
66 
67 /**
68  * kstrdup_const - conditionally duplicate an existing const string
69  * @s: the string to duplicate
70  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71  *
72  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
73  * must not be passed to krealloc().
74  *
75  * Return: source string if it is in .rodata section otherwise
76  * fallback to kstrdup.
77  */
78 const char *kstrdup_const(const char *s, gfp_t gfp)
79 {
80 	if (is_kernel_rodata((unsigned long)s))
81 		return s;
82 
83 	return kstrdup(s, gfp);
84 }
85 EXPORT_SYMBOL(kstrdup_const);
86 
87 /**
88  * kstrndup - allocate space for and copy an existing string
89  * @s: the string to duplicate
90  * @max: read at most @max chars from @s
91  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
92  *
93  * Note: Use kmemdup_nul() instead if the size is known exactly.
94  *
95  * Return: newly allocated copy of @s or %NULL in case of error
96  */
97 char *kstrndup(const char *s, size_t max, gfp_t gfp)
98 {
99 	size_t len;
100 	char *buf;
101 
102 	if (!s)
103 		return NULL;
104 
105 	len = strnlen(s, max);
106 	buf = kmalloc_track_caller(len+1, gfp);
107 	if (buf) {
108 		memcpy(buf, s, len);
109 		buf[len] = '\0';
110 	}
111 	return buf;
112 }
113 EXPORT_SYMBOL(kstrndup);
114 
115 /**
116  * kmemdup - duplicate region of memory
117  *
118  * @src: memory region to duplicate
119  * @len: memory region length
120  * @gfp: GFP mask to use
121  *
122  * Return: newly allocated copy of @src or %NULL in case of error
123  */
124 void *kmemdup(const void *src, size_t len, gfp_t gfp)
125 {
126 	void *p;
127 
128 	p = kmalloc_track_caller(len, gfp);
129 	if (p)
130 		memcpy(p, src, len);
131 	return p;
132 }
133 EXPORT_SYMBOL(kmemdup);
134 
135 /**
136  * kmemdup_nul - Create a NUL-terminated string from unterminated data
137  * @s: The data to stringify
138  * @len: The size of the data
139  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
140  *
141  * Return: newly allocated copy of @s with NUL-termination or %NULL in
142  * case of error
143  */
144 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
145 {
146 	char *buf;
147 
148 	if (!s)
149 		return NULL;
150 
151 	buf = kmalloc_track_caller(len + 1, gfp);
152 	if (buf) {
153 		memcpy(buf, s, len);
154 		buf[len] = '\0';
155 	}
156 	return buf;
157 }
158 EXPORT_SYMBOL(kmemdup_nul);
159 
160 /**
161  * memdup_user - duplicate memory region from user space
162  *
163  * @src: source address in user space
164  * @len: number of bytes to copy
165  *
166  * Return: an ERR_PTR() on failure.  Result is physically
167  * contiguous, to be freed by kfree().
168  */
169 void *memdup_user(const void __user *src, size_t len)
170 {
171 	void *p;
172 
173 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
174 	if (!p)
175 		return ERR_PTR(-ENOMEM);
176 
177 	if (copy_from_user(p, src, len)) {
178 		kfree(p);
179 		return ERR_PTR(-EFAULT);
180 	}
181 
182 	return p;
183 }
184 EXPORT_SYMBOL(memdup_user);
185 
186 /**
187  * vmemdup_user - duplicate memory region from user space
188  *
189  * @src: source address in user space
190  * @len: number of bytes to copy
191  *
192  * Return: an ERR_PTR() on failure.  Result may be not
193  * physically contiguous.  Use kvfree() to free.
194  */
195 void *vmemdup_user(const void __user *src, size_t len)
196 {
197 	void *p;
198 
199 	p = kvmalloc(len, GFP_USER);
200 	if (!p)
201 		return ERR_PTR(-ENOMEM);
202 
203 	if (copy_from_user(p, src, len)) {
204 		kvfree(p);
205 		return ERR_PTR(-EFAULT);
206 	}
207 
208 	return p;
209 }
210 EXPORT_SYMBOL(vmemdup_user);
211 
212 /**
213  * strndup_user - duplicate an existing string from user space
214  * @s: The string to duplicate
215  * @n: Maximum number of bytes to copy, including the trailing NUL.
216  *
217  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
218  */
219 char *strndup_user(const char __user *s, long n)
220 {
221 	char *p;
222 	long length;
223 
224 	length = strnlen_user(s, n);
225 
226 	if (!length)
227 		return ERR_PTR(-EFAULT);
228 
229 	if (length > n)
230 		return ERR_PTR(-EINVAL);
231 
232 	p = memdup_user(s, length);
233 
234 	if (IS_ERR(p))
235 		return p;
236 
237 	p[length - 1] = '\0';
238 
239 	return p;
240 }
241 EXPORT_SYMBOL(strndup_user);
242 
243 /**
244  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
245  *
246  * @src: source address in user space
247  * @len: number of bytes to copy
248  *
249  * Return: an ERR_PTR() on failure.
250  */
251 void *memdup_user_nul(const void __user *src, size_t len)
252 {
253 	char *p;
254 
255 	/*
256 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
257 	 * cause pagefault, which makes it pointless to use GFP_NOFS
258 	 * or GFP_ATOMIC.
259 	 */
260 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
261 	if (!p)
262 		return ERR_PTR(-ENOMEM);
263 
264 	if (copy_from_user(p, src, len)) {
265 		kfree(p);
266 		return ERR_PTR(-EFAULT);
267 	}
268 	p[len] = '\0';
269 
270 	return p;
271 }
272 EXPORT_SYMBOL(memdup_user_nul);
273 
274 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
275 		struct vm_area_struct *prev)
276 {
277 	struct vm_area_struct *next;
278 
279 	vma->vm_prev = prev;
280 	if (prev) {
281 		next = prev->vm_next;
282 		prev->vm_next = vma;
283 	} else {
284 		next = mm->mmap;
285 		mm->mmap = vma;
286 	}
287 	vma->vm_next = next;
288 	if (next)
289 		next->vm_prev = vma;
290 }
291 
292 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
293 {
294 	struct vm_area_struct *prev, *next;
295 
296 	next = vma->vm_next;
297 	prev = vma->vm_prev;
298 	if (prev)
299 		prev->vm_next = next;
300 	else
301 		mm->mmap = next;
302 	if (next)
303 		next->vm_prev = prev;
304 }
305 
306 /* Check if the vma is being used as a stack by this task */
307 int vma_is_stack_for_current(struct vm_area_struct *vma)
308 {
309 	struct task_struct * __maybe_unused t = current;
310 
311 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
312 }
313 
314 #ifndef STACK_RND_MASK
315 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
316 #endif
317 
318 unsigned long randomize_stack_top(unsigned long stack_top)
319 {
320 	unsigned long random_variable = 0;
321 
322 	if (current->flags & PF_RANDOMIZE) {
323 		random_variable = get_random_long();
324 		random_variable &= STACK_RND_MASK;
325 		random_variable <<= PAGE_SHIFT;
326 	}
327 #ifdef CONFIG_STACK_GROWSUP
328 	return PAGE_ALIGN(stack_top) + random_variable;
329 #else
330 	return PAGE_ALIGN(stack_top) - random_variable;
331 #endif
332 }
333 
334 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
335 unsigned long arch_randomize_brk(struct mm_struct *mm)
336 {
337 	/* Is the current task 32bit ? */
338 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
339 		return randomize_page(mm->brk, SZ_32M);
340 
341 	return randomize_page(mm->brk, SZ_1G);
342 }
343 
344 unsigned long arch_mmap_rnd(void)
345 {
346 	unsigned long rnd;
347 
348 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
349 	if (is_compat_task())
350 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
351 	else
352 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
353 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
354 
355 	return rnd << PAGE_SHIFT;
356 }
357 
358 static int mmap_is_legacy(struct rlimit *rlim_stack)
359 {
360 	if (current->personality & ADDR_COMPAT_LAYOUT)
361 		return 1;
362 
363 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
364 		return 1;
365 
366 	return sysctl_legacy_va_layout;
367 }
368 
369 /*
370  * Leave enough space between the mmap area and the stack to honour ulimit in
371  * the face of randomisation.
372  */
373 #define MIN_GAP		(SZ_128M)
374 #define MAX_GAP		(STACK_TOP / 6 * 5)
375 
376 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
377 {
378 	unsigned long gap = rlim_stack->rlim_cur;
379 	unsigned long pad = stack_guard_gap;
380 
381 	/* Account for stack randomization if necessary */
382 	if (current->flags & PF_RANDOMIZE)
383 		pad += (STACK_RND_MASK << PAGE_SHIFT);
384 
385 	/* Values close to RLIM_INFINITY can overflow. */
386 	if (gap + pad > gap)
387 		gap += pad;
388 
389 	if (gap < MIN_GAP)
390 		gap = MIN_GAP;
391 	else if (gap > MAX_GAP)
392 		gap = MAX_GAP;
393 
394 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
395 }
396 
397 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
398 {
399 	unsigned long random_factor = 0UL;
400 
401 	if (current->flags & PF_RANDOMIZE)
402 		random_factor = arch_mmap_rnd();
403 
404 	if (mmap_is_legacy(rlim_stack)) {
405 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
406 		mm->get_unmapped_area = arch_get_unmapped_area;
407 	} else {
408 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
409 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
410 	}
411 }
412 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
413 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
414 {
415 	mm->mmap_base = TASK_UNMAPPED_BASE;
416 	mm->get_unmapped_area = arch_get_unmapped_area;
417 }
418 #endif
419 
420 /**
421  * __account_locked_vm - account locked pages to an mm's locked_vm
422  * @mm:          mm to account against
423  * @pages:       number of pages to account
424  * @inc:         %true if @pages should be considered positive, %false if not
425  * @task:        task used to check RLIMIT_MEMLOCK
426  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
427  *
428  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
429  * that mmap_lock is held as writer.
430  *
431  * Return:
432  * * 0       on success
433  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
434  */
435 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
436 			struct task_struct *task, bool bypass_rlim)
437 {
438 	unsigned long locked_vm, limit;
439 	int ret = 0;
440 
441 	mmap_assert_write_locked(mm);
442 
443 	locked_vm = mm->locked_vm;
444 	if (inc) {
445 		if (!bypass_rlim) {
446 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
447 			if (locked_vm + pages > limit)
448 				ret = -ENOMEM;
449 		}
450 		if (!ret)
451 			mm->locked_vm = locked_vm + pages;
452 	} else {
453 		WARN_ON_ONCE(pages > locked_vm);
454 		mm->locked_vm = locked_vm - pages;
455 	}
456 
457 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
458 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
459 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
460 		 ret ? " - exceeded" : "");
461 
462 	return ret;
463 }
464 EXPORT_SYMBOL_GPL(__account_locked_vm);
465 
466 /**
467  * account_locked_vm - account locked pages to an mm's locked_vm
468  * @mm:          mm to account against, may be NULL
469  * @pages:       number of pages to account
470  * @inc:         %true if @pages should be considered positive, %false if not
471  *
472  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
473  *
474  * Return:
475  * * 0       on success, or if mm is NULL
476  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
477  */
478 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
479 {
480 	int ret;
481 
482 	if (pages == 0 || !mm)
483 		return 0;
484 
485 	mmap_write_lock(mm);
486 	ret = __account_locked_vm(mm, pages, inc, current,
487 				  capable(CAP_IPC_LOCK));
488 	mmap_write_unlock(mm);
489 
490 	return ret;
491 }
492 EXPORT_SYMBOL_GPL(account_locked_vm);
493 
494 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
495 	unsigned long len, unsigned long prot,
496 	unsigned long flag, unsigned long pgoff)
497 {
498 	unsigned long ret;
499 	struct mm_struct *mm = current->mm;
500 	unsigned long populate;
501 	LIST_HEAD(uf);
502 
503 	ret = security_mmap_file(file, prot, flag);
504 	if (!ret) {
505 		if (mmap_write_lock_killable(mm))
506 			return -EINTR;
507 		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
508 			      &uf);
509 		mmap_write_unlock(mm);
510 		userfaultfd_unmap_complete(mm, &uf);
511 		if (populate)
512 			mm_populate(ret, populate);
513 	}
514 	return ret;
515 }
516 
517 unsigned long vm_mmap(struct file *file, unsigned long addr,
518 	unsigned long len, unsigned long prot,
519 	unsigned long flag, unsigned long offset)
520 {
521 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
522 		return -EINVAL;
523 	if (unlikely(offset_in_page(offset)))
524 		return -EINVAL;
525 
526 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
527 }
528 EXPORT_SYMBOL(vm_mmap);
529 
530 /**
531  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
532  * failure, fall back to non-contiguous (vmalloc) allocation.
533  * @size: size of the request.
534  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
535  * @node: numa node to allocate from
536  *
537  * Uses kmalloc to get the memory but if the allocation fails then falls back
538  * to the vmalloc allocator. Use kvfree for freeing the memory.
539  *
540  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
541  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
542  * preferable to the vmalloc fallback, due to visible performance drawbacks.
543  *
544  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
545  * fall back to vmalloc.
546  *
547  * Return: pointer to the allocated memory of %NULL in case of failure
548  */
549 void *kvmalloc_node(size_t size, gfp_t flags, int node)
550 {
551 	gfp_t kmalloc_flags = flags;
552 	void *ret;
553 
554 	/*
555 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
556 	 * so the given set of flags has to be compatible.
557 	 */
558 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
559 		return kmalloc_node(size, flags, node);
560 
561 	/*
562 	 * We want to attempt a large physically contiguous block first because
563 	 * it is less likely to fragment multiple larger blocks and therefore
564 	 * contribute to a long term fragmentation less than vmalloc fallback.
565 	 * However make sure that larger requests are not too disruptive - no
566 	 * OOM killer and no allocation failure warnings as we have a fallback.
567 	 */
568 	if (size > PAGE_SIZE) {
569 		kmalloc_flags |= __GFP_NOWARN;
570 
571 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
572 			kmalloc_flags |= __GFP_NORETRY;
573 	}
574 
575 	ret = kmalloc_node(size, kmalloc_flags, node);
576 
577 	/*
578 	 * It doesn't really make sense to fallback to vmalloc for sub page
579 	 * requests
580 	 */
581 	if (ret || size <= PAGE_SIZE)
582 		return ret;
583 
584 	return __vmalloc_node(size, 1, flags, node,
585 			__builtin_return_address(0));
586 }
587 EXPORT_SYMBOL(kvmalloc_node);
588 
589 /**
590  * kvfree() - Free memory.
591  * @addr: Pointer to allocated memory.
592  *
593  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
594  * It is slightly more efficient to use kfree() or vfree() if you are certain
595  * that you know which one to use.
596  *
597  * Context: Either preemptible task context or not-NMI interrupt.
598  */
599 void kvfree(const void *addr)
600 {
601 	if (is_vmalloc_addr(addr))
602 		vfree(addr);
603 	else
604 		kfree(addr);
605 }
606 EXPORT_SYMBOL(kvfree);
607 
608 /**
609  * kvfree_sensitive - Free a data object containing sensitive information.
610  * @addr: address of the data object to be freed.
611  * @len: length of the data object.
612  *
613  * Use the special memzero_explicit() function to clear the content of a
614  * kvmalloc'ed object containing sensitive data to make sure that the
615  * compiler won't optimize out the data clearing.
616  */
617 void kvfree_sensitive(const void *addr, size_t len)
618 {
619 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
620 		memzero_explicit((void *)addr, len);
621 		kvfree(addr);
622 	}
623 }
624 EXPORT_SYMBOL(kvfree_sensitive);
625 
626 static inline void *__page_rmapping(struct page *page)
627 {
628 	unsigned long mapping;
629 
630 	mapping = (unsigned long)page->mapping;
631 	mapping &= ~PAGE_MAPPING_FLAGS;
632 
633 	return (void *)mapping;
634 }
635 
636 /* Neutral page->mapping pointer to address_space or anon_vma or other */
637 void *page_rmapping(struct page *page)
638 {
639 	page = compound_head(page);
640 	return __page_rmapping(page);
641 }
642 
643 /*
644  * Return true if this page is mapped into pagetables.
645  * For compound page it returns true if any subpage of compound page is mapped.
646  */
647 bool page_mapped(struct page *page)
648 {
649 	int i;
650 
651 	if (likely(!PageCompound(page)))
652 		return atomic_read(&page->_mapcount) >= 0;
653 	page = compound_head(page);
654 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
655 		return true;
656 	if (PageHuge(page))
657 		return false;
658 	for (i = 0; i < compound_nr(page); i++) {
659 		if (atomic_read(&page[i]._mapcount) >= 0)
660 			return true;
661 	}
662 	return false;
663 }
664 EXPORT_SYMBOL(page_mapped);
665 
666 struct anon_vma *page_anon_vma(struct page *page)
667 {
668 	unsigned long mapping;
669 
670 	page = compound_head(page);
671 	mapping = (unsigned long)page->mapping;
672 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
673 		return NULL;
674 	return __page_rmapping(page);
675 }
676 
677 struct address_space *page_mapping(struct page *page)
678 {
679 	struct address_space *mapping;
680 
681 	page = compound_head(page);
682 
683 	/* This happens if someone calls flush_dcache_page on slab page */
684 	if (unlikely(PageSlab(page)))
685 		return NULL;
686 
687 	if (unlikely(PageSwapCache(page))) {
688 		swp_entry_t entry;
689 
690 		entry.val = page_private(page);
691 		return swap_address_space(entry);
692 	}
693 
694 	mapping = page->mapping;
695 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
696 		return NULL;
697 
698 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
699 }
700 EXPORT_SYMBOL(page_mapping);
701 
702 /*
703  * For file cache pages, return the address_space, otherwise return NULL
704  */
705 struct address_space *page_mapping_file(struct page *page)
706 {
707 	if (unlikely(PageSwapCache(page)))
708 		return NULL;
709 	return page_mapping(page);
710 }
711 
712 /* Slow path of page_mapcount() for compound pages */
713 int __page_mapcount(struct page *page)
714 {
715 	int ret;
716 
717 	ret = atomic_read(&page->_mapcount) + 1;
718 	/*
719 	 * For file THP page->_mapcount contains total number of mapping
720 	 * of the page: no need to look into compound_mapcount.
721 	 */
722 	if (!PageAnon(page) && !PageHuge(page))
723 		return ret;
724 	page = compound_head(page);
725 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
726 	if (PageDoubleMap(page))
727 		ret--;
728 	return ret;
729 }
730 EXPORT_SYMBOL_GPL(__page_mapcount);
731 
732 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
733 int sysctl_overcommit_ratio __read_mostly = 50;
734 unsigned long sysctl_overcommit_kbytes __read_mostly;
735 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
736 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
737 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
738 
739 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
740 		size_t *lenp, loff_t *ppos)
741 {
742 	int ret;
743 
744 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
745 	if (ret == 0 && write)
746 		sysctl_overcommit_kbytes = 0;
747 	return ret;
748 }
749 
750 static void sync_overcommit_as(struct work_struct *dummy)
751 {
752 	percpu_counter_sync(&vm_committed_as);
753 }
754 
755 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
756 		size_t *lenp, loff_t *ppos)
757 {
758 	struct ctl_table t;
759 	int new_policy;
760 	int ret;
761 
762 	/*
763 	 * The deviation of sync_overcommit_as could be big with loose policy
764 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
765 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
766 	 * with the strict "NEVER", and to avoid possible race condtion (even
767 	 * though user usually won't too frequently do the switching to policy
768 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
769 	 *	1. changing the batch
770 	 *	2. sync percpu count on each CPU
771 	 *	3. switch the policy
772 	 */
773 	if (write) {
774 		t = *table;
775 		t.data = &new_policy;
776 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
777 		if (ret)
778 			return ret;
779 
780 		mm_compute_batch(new_policy);
781 		if (new_policy == OVERCOMMIT_NEVER)
782 			schedule_on_each_cpu(sync_overcommit_as);
783 		sysctl_overcommit_memory = new_policy;
784 	} else {
785 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
786 	}
787 
788 	return ret;
789 }
790 
791 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
792 		size_t *lenp, loff_t *ppos)
793 {
794 	int ret;
795 
796 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
797 	if (ret == 0 && write)
798 		sysctl_overcommit_ratio = 0;
799 	return ret;
800 }
801 
802 /*
803  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
804  */
805 unsigned long vm_commit_limit(void)
806 {
807 	unsigned long allowed;
808 
809 	if (sysctl_overcommit_kbytes)
810 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
811 	else
812 		allowed = ((totalram_pages() - hugetlb_total_pages())
813 			   * sysctl_overcommit_ratio / 100);
814 	allowed += total_swap_pages;
815 
816 	return allowed;
817 }
818 
819 /*
820  * Make sure vm_committed_as in one cacheline and not cacheline shared with
821  * other variables. It can be updated by several CPUs frequently.
822  */
823 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
824 
825 /*
826  * The global memory commitment made in the system can be a metric
827  * that can be used to drive ballooning decisions when Linux is hosted
828  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
829  * balancing memory across competing virtual machines that are hosted.
830  * Several metrics drive this policy engine including the guest reported
831  * memory commitment.
832  *
833  * The time cost of this is very low for small platforms, and for big
834  * platform like a 2S/36C/72T Skylake server, in worst case where
835  * vm_committed_as's spinlock is under severe contention, the time cost
836  * could be about 30~40 microseconds.
837  */
838 unsigned long vm_memory_committed(void)
839 {
840 	return percpu_counter_sum_positive(&vm_committed_as);
841 }
842 EXPORT_SYMBOL_GPL(vm_memory_committed);
843 
844 /*
845  * Check that a process has enough memory to allocate a new virtual
846  * mapping. 0 means there is enough memory for the allocation to
847  * succeed and -ENOMEM implies there is not.
848  *
849  * We currently support three overcommit policies, which are set via the
850  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
851  *
852  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
853  * Additional code 2002 Jul 20 by Robert Love.
854  *
855  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
856  *
857  * Note this is a helper function intended to be used by LSMs which
858  * wish to use this logic.
859  */
860 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
861 {
862 	long allowed;
863 
864 	vm_acct_memory(pages);
865 
866 	/*
867 	 * Sometimes we want to use more memory than we have
868 	 */
869 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
870 		return 0;
871 
872 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
873 		if (pages > totalram_pages() + total_swap_pages)
874 			goto error;
875 		return 0;
876 	}
877 
878 	allowed = vm_commit_limit();
879 	/*
880 	 * Reserve some for root
881 	 */
882 	if (!cap_sys_admin)
883 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
884 
885 	/*
886 	 * Don't let a single process grow so big a user can't recover
887 	 */
888 	if (mm) {
889 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
890 
891 		allowed -= min_t(long, mm->total_vm / 32, reserve);
892 	}
893 
894 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
895 		return 0;
896 error:
897 	vm_unacct_memory(pages);
898 
899 	return -ENOMEM;
900 }
901 
902 /**
903  * get_cmdline() - copy the cmdline value to a buffer.
904  * @task:     the task whose cmdline value to copy.
905  * @buffer:   the buffer to copy to.
906  * @buflen:   the length of the buffer. Larger cmdline values are truncated
907  *            to this length.
908  *
909  * Return: the size of the cmdline field copied. Note that the copy does
910  * not guarantee an ending NULL byte.
911  */
912 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
913 {
914 	int res = 0;
915 	unsigned int len;
916 	struct mm_struct *mm = get_task_mm(task);
917 	unsigned long arg_start, arg_end, env_start, env_end;
918 	if (!mm)
919 		goto out;
920 	if (!mm->arg_end)
921 		goto out_mm;	/* Shh! No looking before we're done */
922 
923 	spin_lock(&mm->arg_lock);
924 	arg_start = mm->arg_start;
925 	arg_end = mm->arg_end;
926 	env_start = mm->env_start;
927 	env_end = mm->env_end;
928 	spin_unlock(&mm->arg_lock);
929 
930 	len = arg_end - arg_start;
931 
932 	if (len > buflen)
933 		len = buflen;
934 
935 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
936 
937 	/*
938 	 * If the nul at the end of args has been overwritten, then
939 	 * assume application is using setproctitle(3).
940 	 */
941 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
942 		len = strnlen(buffer, res);
943 		if (len < res) {
944 			res = len;
945 		} else {
946 			len = env_end - env_start;
947 			if (len > buflen - res)
948 				len = buflen - res;
949 			res += access_process_vm(task, env_start,
950 						 buffer+res, len,
951 						 FOLL_FORCE);
952 			res = strnlen(buffer, res);
953 		}
954 	}
955 out_mm:
956 	mmput(mm);
957 out:
958 	return res;
959 }
960 
961 int __weak memcmp_pages(struct page *page1, struct page *page2)
962 {
963 	char *addr1, *addr2;
964 	int ret;
965 
966 	addr1 = kmap_atomic(page1);
967 	addr2 = kmap_atomic(page2);
968 	ret = memcmp(addr1, addr2, PAGE_SIZE);
969 	kunmap_atomic(addr2);
970 	kunmap_atomic(addr1);
971 	return ret;
972 }
973