1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 /** 32 * kfree_const - conditionally free memory 33 * @x: pointer to the memory 34 * 35 * Function calls kfree only if @x is not in .rodata section. 36 */ 37 void kfree_const(const void *x) 38 { 39 if (!is_kernel_rodata((unsigned long)x)) 40 kfree(x); 41 } 42 EXPORT_SYMBOL(kfree_const); 43 44 /** 45 * kstrdup - allocate space for and copy an existing string 46 * @s: the string to duplicate 47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 48 * 49 * Return: newly allocated copy of @s or %NULL in case of error 50 */ 51 char *kstrdup(const char *s, gfp_t gfp) 52 { 53 size_t len; 54 char *buf; 55 56 if (!s) 57 return NULL; 58 59 len = strlen(s) + 1; 60 buf = kmalloc_track_caller(len, gfp); 61 if (buf) 62 memcpy(buf, s, len); 63 return buf; 64 } 65 EXPORT_SYMBOL(kstrdup); 66 67 /** 68 * kstrdup_const - conditionally duplicate an existing const string 69 * @s: the string to duplicate 70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 71 * 72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 73 * must not be passed to krealloc(). 74 * 75 * Return: source string if it is in .rodata section otherwise 76 * fallback to kstrdup. 77 */ 78 const char *kstrdup_const(const char *s, gfp_t gfp) 79 { 80 if (is_kernel_rodata((unsigned long)s)) 81 return s; 82 83 return kstrdup(s, gfp); 84 } 85 EXPORT_SYMBOL(kstrdup_const); 86 87 /** 88 * kstrndup - allocate space for and copy an existing string 89 * @s: the string to duplicate 90 * @max: read at most @max chars from @s 91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 92 * 93 * Note: Use kmemdup_nul() instead if the size is known exactly. 94 * 95 * Return: newly allocated copy of @s or %NULL in case of error 96 */ 97 char *kstrndup(const char *s, size_t max, gfp_t gfp) 98 { 99 size_t len; 100 char *buf; 101 102 if (!s) 103 return NULL; 104 105 len = strnlen(s, max); 106 buf = kmalloc_track_caller(len+1, gfp); 107 if (buf) { 108 memcpy(buf, s, len); 109 buf[len] = '\0'; 110 } 111 return buf; 112 } 113 EXPORT_SYMBOL(kstrndup); 114 115 /** 116 * kmemdup - duplicate region of memory 117 * 118 * @src: memory region to duplicate 119 * @len: memory region length 120 * @gfp: GFP mask to use 121 * 122 * Return: newly allocated copy of @src or %NULL in case of error 123 */ 124 void *kmemdup(const void *src, size_t len, gfp_t gfp) 125 { 126 void *p; 127 128 p = kmalloc_track_caller(len, gfp); 129 if (p) 130 memcpy(p, src, len); 131 return p; 132 } 133 EXPORT_SYMBOL(kmemdup); 134 135 /** 136 * kmemdup_nul - Create a NUL-terminated string from unterminated data 137 * @s: The data to stringify 138 * @len: The size of the data 139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 140 * 141 * Return: newly allocated copy of @s with NUL-termination or %NULL in 142 * case of error 143 */ 144 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 145 { 146 char *buf; 147 148 if (!s) 149 return NULL; 150 151 buf = kmalloc_track_caller(len + 1, gfp); 152 if (buf) { 153 memcpy(buf, s, len); 154 buf[len] = '\0'; 155 } 156 return buf; 157 } 158 EXPORT_SYMBOL(kmemdup_nul); 159 160 /** 161 * memdup_user - duplicate memory region from user space 162 * 163 * @src: source address in user space 164 * @len: number of bytes to copy 165 * 166 * Return: an ERR_PTR() on failure. Result is physically 167 * contiguous, to be freed by kfree(). 168 */ 169 void *memdup_user(const void __user *src, size_t len) 170 { 171 void *p; 172 173 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 174 if (!p) 175 return ERR_PTR(-ENOMEM); 176 177 if (copy_from_user(p, src, len)) { 178 kfree(p); 179 return ERR_PTR(-EFAULT); 180 } 181 182 return p; 183 } 184 EXPORT_SYMBOL(memdup_user); 185 186 /** 187 * vmemdup_user - duplicate memory region from user space 188 * 189 * @src: source address in user space 190 * @len: number of bytes to copy 191 * 192 * Return: an ERR_PTR() on failure. Result may be not 193 * physically contiguous. Use kvfree() to free. 194 */ 195 void *vmemdup_user(const void __user *src, size_t len) 196 { 197 void *p; 198 199 p = kvmalloc(len, GFP_USER); 200 if (!p) 201 return ERR_PTR(-ENOMEM); 202 203 if (copy_from_user(p, src, len)) { 204 kvfree(p); 205 return ERR_PTR(-EFAULT); 206 } 207 208 return p; 209 } 210 EXPORT_SYMBOL(vmemdup_user); 211 212 /** 213 * strndup_user - duplicate an existing string from user space 214 * @s: The string to duplicate 215 * @n: Maximum number of bytes to copy, including the trailing NUL. 216 * 217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 218 */ 219 char *strndup_user(const char __user *s, long n) 220 { 221 char *p; 222 long length; 223 224 length = strnlen_user(s, n); 225 226 if (!length) 227 return ERR_PTR(-EFAULT); 228 229 if (length > n) 230 return ERR_PTR(-EINVAL); 231 232 p = memdup_user(s, length); 233 234 if (IS_ERR(p)) 235 return p; 236 237 p[length - 1] = '\0'; 238 239 return p; 240 } 241 EXPORT_SYMBOL(strndup_user); 242 243 /** 244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 245 * 246 * @src: source address in user space 247 * @len: number of bytes to copy 248 * 249 * Return: an ERR_PTR() on failure. 250 */ 251 void *memdup_user_nul(const void __user *src, size_t len) 252 { 253 char *p; 254 255 /* 256 * Always use GFP_KERNEL, since copy_from_user() can sleep and 257 * cause pagefault, which makes it pointless to use GFP_NOFS 258 * or GFP_ATOMIC. 259 */ 260 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 261 if (!p) 262 return ERR_PTR(-ENOMEM); 263 264 if (copy_from_user(p, src, len)) { 265 kfree(p); 266 return ERR_PTR(-EFAULT); 267 } 268 p[len] = '\0'; 269 270 return p; 271 } 272 EXPORT_SYMBOL(memdup_user_nul); 273 274 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 275 struct vm_area_struct *prev) 276 { 277 struct vm_area_struct *next; 278 279 vma->vm_prev = prev; 280 if (prev) { 281 next = prev->vm_next; 282 prev->vm_next = vma; 283 } else { 284 next = mm->mmap; 285 mm->mmap = vma; 286 } 287 vma->vm_next = next; 288 if (next) 289 next->vm_prev = vma; 290 } 291 292 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma) 293 { 294 struct vm_area_struct *prev, *next; 295 296 next = vma->vm_next; 297 prev = vma->vm_prev; 298 if (prev) 299 prev->vm_next = next; 300 else 301 mm->mmap = next; 302 if (next) 303 next->vm_prev = prev; 304 } 305 306 /* Check if the vma is being used as a stack by this task */ 307 int vma_is_stack_for_current(struct vm_area_struct *vma) 308 { 309 struct task_struct * __maybe_unused t = current; 310 311 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 312 } 313 314 #ifndef STACK_RND_MASK 315 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 316 #endif 317 318 unsigned long randomize_stack_top(unsigned long stack_top) 319 { 320 unsigned long random_variable = 0; 321 322 if (current->flags & PF_RANDOMIZE) { 323 random_variable = get_random_long(); 324 random_variable &= STACK_RND_MASK; 325 random_variable <<= PAGE_SHIFT; 326 } 327 #ifdef CONFIG_STACK_GROWSUP 328 return PAGE_ALIGN(stack_top) + random_variable; 329 #else 330 return PAGE_ALIGN(stack_top) - random_variable; 331 #endif 332 } 333 334 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 335 unsigned long arch_randomize_brk(struct mm_struct *mm) 336 { 337 /* Is the current task 32bit ? */ 338 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 339 return randomize_page(mm->brk, SZ_32M); 340 341 return randomize_page(mm->brk, SZ_1G); 342 } 343 344 unsigned long arch_mmap_rnd(void) 345 { 346 unsigned long rnd; 347 348 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 349 if (is_compat_task()) 350 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 351 else 352 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 353 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 354 355 return rnd << PAGE_SHIFT; 356 } 357 358 static int mmap_is_legacy(struct rlimit *rlim_stack) 359 { 360 if (current->personality & ADDR_COMPAT_LAYOUT) 361 return 1; 362 363 if (rlim_stack->rlim_cur == RLIM_INFINITY) 364 return 1; 365 366 return sysctl_legacy_va_layout; 367 } 368 369 /* 370 * Leave enough space between the mmap area and the stack to honour ulimit in 371 * the face of randomisation. 372 */ 373 #define MIN_GAP (SZ_128M) 374 #define MAX_GAP (STACK_TOP / 6 * 5) 375 376 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 377 { 378 unsigned long gap = rlim_stack->rlim_cur; 379 unsigned long pad = stack_guard_gap; 380 381 /* Account for stack randomization if necessary */ 382 if (current->flags & PF_RANDOMIZE) 383 pad += (STACK_RND_MASK << PAGE_SHIFT); 384 385 /* Values close to RLIM_INFINITY can overflow. */ 386 if (gap + pad > gap) 387 gap += pad; 388 389 if (gap < MIN_GAP) 390 gap = MIN_GAP; 391 else if (gap > MAX_GAP) 392 gap = MAX_GAP; 393 394 return PAGE_ALIGN(STACK_TOP - gap - rnd); 395 } 396 397 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 398 { 399 unsigned long random_factor = 0UL; 400 401 if (current->flags & PF_RANDOMIZE) 402 random_factor = arch_mmap_rnd(); 403 404 if (mmap_is_legacy(rlim_stack)) { 405 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 406 mm->get_unmapped_area = arch_get_unmapped_area; 407 } else { 408 mm->mmap_base = mmap_base(random_factor, rlim_stack); 409 mm->get_unmapped_area = arch_get_unmapped_area_topdown; 410 } 411 } 412 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 413 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 414 { 415 mm->mmap_base = TASK_UNMAPPED_BASE; 416 mm->get_unmapped_area = arch_get_unmapped_area; 417 } 418 #endif 419 420 /** 421 * __account_locked_vm - account locked pages to an mm's locked_vm 422 * @mm: mm to account against 423 * @pages: number of pages to account 424 * @inc: %true if @pages should be considered positive, %false if not 425 * @task: task used to check RLIMIT_MEMLOCK 426 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 427 * 428 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 429 * that mmap_lock is held as writer. 430 * 431 * Return: 432 * * 0 on success 433 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 434 */ 435 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 436 struct task_struct *task, bool bypass_rlim) 437 { 438 unsigned long locked_vm, limit; 439 int ret = 0; 440 441 mmap_assert_write_locked(mm); 442 443 locked_vm = mm->locked_vm; 444 if (inc) { 445 if (!bypass_rlim) { 446 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 447 if (locked_vm + pages > limit) 448 ret = -ENOMEM; 449 } 450 if (!ret) 451 mm->locked_vm = locked_vm + pages; 452 } else { 453 WARN_ON_ONCE(pages > locked_vm); 454 mm->locked_vm = locked_vm - pages; 455 } 456 457 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 458 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 459 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 460 ret ? " - exceeded" : ""); 461 462 return ret; 463 } 464 EXPORT_SYMBOL_GPL(__account_locked_vm); 465 466 /** 467 * account_locked_vm - account locked pages to an mm's locked_vm 468 * @mm: mm to account against, may be NULL 469 * @pages: number of pages to account 470 * @inc: %true if @pages should be considered positive, %false if not 471 * 472 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 473 * 474 * Return: 475 * * 0 on success, or if mm is NULL 476 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 477 */ 478 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 479 { 480 int ret; 481 482 if (pages == 0 || !mm) 483 return 0; 484 485 mmap_write_lock(mm); 486 ret = __account_locked_vm(mm, pages, inc, current, 487 capable(CAP_IPC_LOCK)); 488 mmap_write_unlock(mm); 489 490 return ret; 491 } 492 EXPORT_SYMBOL_GPL(account_locked_vm); 493 494 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 495 unsigned long len, unsigned long prot, 496 unsigned long flag, unsigned long pgoff) 497 { 498 unsigned long ret; 499 struct mm_struct *mm = current->mm; 500 unsigned long populate; 501 LIST_HEAD(uf); 502 503 ret = security_mmap_file(file, prot, flag); 504 if (!ret) { 505 if (mmap_write_lock_killable(mm)) 506 return -EINTR; 507 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, 508 &uf); 509 mmap_write_unlock(mm); 510 userfaultfd_unmap_complete(mm, &uf); 511 if (populate) 512 mm_populate(ret, populate); 513 } 514 return ret; 515 } 516 517 unsigned long vm_mmap(struct file *file, unsigned long addr, 518 unsigned long len, unsigned long prot, 519 unsigned long flag, unsigned long offset) 520 { 521 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 522 return -EINVAL; 523 if (unlikely(offset_in_page(offset))) 524 return -EINVAL; 525 526 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 527 } 528 EXPORT_SYMBOL(vm_mmap); 529 530 /** 531 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 532 * failure, fall back to non-contiguous (vmalloc) allocation. 533 * @size: size of the request. 534 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 535 * @node: numa node to allocate from 536 * 537 * Uses kmalloc to get the memory but if the allocation fails then falls back 538 * to the vmalloc allocator. Use kvfree for freeing the memory. 539 * 540 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. 541 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 542 * preferable to the vmalloc fallback, due to visible performance drawbacks. 543 * 544 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not 545 * fall back to vmalloc. 546 * 547 * Return: pointer to the allocated memory of %NULL in case of failure 548 */ 549 void *kvmalloc_node(size_t size, gfp_t flags, int node) 550 { 551 gfp_t kmalloc_flags = flags; 552 void *ret; 553 554 /* 555 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) 556 * so the given set of flags has to be compatible. 557 */ 558 if ((flags & GFP_KERNEL) != GFP_KERNEL) 559 return kmalloc_node(size, flags, node); 560 561 /* 562 * We want to attempt a large physically contiguous block first because 563 * it is less likely to fragment multiple larger blocks and therefore 564 * contribute to a long term fragmentation less than vmalloc fallback. 565 * However make sure that larger requests are not too disruptive - no 566 * OOM killer and no allocation failure warnings as we have a fallback. 567 */ 568 if (size > PAGE_SIZE) { 569 kmalloc_flags |= __GFP_NOWARN; 570 571 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 572 kmalloc_flags |= __GFP_NORETRY; 573 } 574 575 ret = kmalloc_node(size, kmalloc_flags, node); 576 577 /* 578 * It doesn't really make sense to fallback to vmalloc for sub page 579 * requests 580 */ 581 if (ret || size <= PAGE_SIZE) 582 return ret; 583 584 return __vmalloc_node(size, 1, flags, node, 585 __builtin_return_address(0)); 586 } 587 EXPORT_SYMBOL(kvmalloc_node); 588 589 /** 590 * kvfree() - Free memory. 591 * @addr: Pointer to allocated memory. 592 * 593 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 594 * It is slightly more efficient to use kfree() or vfree() if you are certain 595 * that you know which one to use. 596 * 597 * Context: Either preemptible task context or not-NMI interrupt. 598 */ 599 void kvfree(const void *addr) 600 { 601 if (is_vmalloc_addr(addr)) 602 vfree(addr); 603 else 604 kfree(addr); 605 } 606 EXPORT_SYMBOL(kvfree); 607 608 /** 609 * kvfree_sensitive - Free a data object containing sensitive information. 610 * @addr: address of the data object to be freed. 611 * @len: length of the data object. 612 * 613 * Use the special memzero_explicit() function to clear the content of a 614 * kvmalloc'ed object containing sensitive data to make sure that the 615 * compiler won't optimize out the data clearing. 616 */ 617 void kvfree_sensitive(const void *addr, size_t len) 618 { 619 if (likely(!ZERO_OR_NULL_PTR(addr))) { 620 memzero_explicit((void *)addr, len); 621 kvfree(addr); 622 } 623 } 624 EXPORT_SYMBOL(kvfree_sensitive); 625 626 static inline void *__page_rmapping(struct page *page) 627 { 628 unsigned long mapping; 629 630 mapping = (unsigned long)page->mapping; 631 mapping &= ~PAGE_MAPPING_FLAGS; 632 633 return (void *)mapping; 634 } 635 636 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 637 void *page_rmapping(struct page *page) 638 { 639 page = compound_head(page); 640 return __page_rmapping(page); 641 } 642 643 /* 644 * Return true if this page is mapped into pagetables. 645 * For compound page it returns true if any subpage of compound page is mapped. 646 */ 647 bool page_mapped(struct page *page) 648 { 649 int i; 650 651 if (likely(!PageCompound(page))) 652 return atomic_read(&page->_mapcount) >= 0; 653 page = compound_head(page); 654 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 655 return true; 656 if (PageHuge(page)) 657 return false; 658 for (i = 0; i < compound_nr(page); i++) { 659 if (atomic_read(&page[i]._mapcount) >= 0) 660 return true; 661 } 662 return false; 663 } 664 EXPORT_SYMBOL(page_mapped); 665 666 struct anon_vma *page_anon_vma(struct page *page) 667 { 668 unsigned long mapping; 669 670 page = compound_head(page); 671 mapping = (unsigned long)page->mapping; 672 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 673 return NULL; 674 return __page_rmapping(page); 675 } 676 677 struct address_space *page_mapping(struct page *page) 678 { 679 struct address_space *mapping; 680 681 page = compound_head(page); 682 683 /* This happens if someone calls flush_dcache_page on slab page */ 684 if (unlikely(PageSlab(page))) 685 return NULL; 686 687 if (unlikely(PageSwapCache(page))) { 688 swp_entry_t entry; 689 690 entry.val = page_private(page); 691 return swap_address_space(entry); 692 } 693 694 mapping = page->mapping; 695 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 696 return NULL; 697 698 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 699 } 700 EXPORT_SYMBOL(page_mapping); 701 702 /* 703 * For file cache pages, return the address_space, otherwise return NULL 704 */ 705 struct address_space *page_mapping_file(struct page *page) 706 { 707 if (unlikely(PageSwapCache(page))) 708 return NULL; 709 return page_mapping(page); 710 } 711 712 /* Slow path of page_mapcount() for compound pages */ 713 int __page_mapcount(struct page *page) 714 { 715 int ret; 716 717 ret = atomic_read(&page->_mapcount) + 1; 718 /* 719 * For file THP page->_mapcount contains total number of mapping 720 * of the page: no need to look into compound_mapcount. 721 */ 722 if (!PageAnon(page) && !PageHuge(page)) 723 return ret; 724 page = compound_head(page); 725 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 726 if (PageDoubleMap(page)) 727 ret--; 728 return ret; 729 } 730 EXPORT_SYMBOL_GPL(__page_mapcount); 731 732 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 733 int sysctl_overcommit_ratio __read_mostly = 50; 734 unsigned long sysctl_overcommit_kbytes __read_mostly; 735 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 736 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 737 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 738 739 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, 740 size_t *lenp, loff_t *ppos) 741 { 742 int ret; 743 744 ret = proc_dointvec(table, write, buffer, lenp, ppos); 745 if (ret == 0 && write) 746 sysctl_overcommit_kbytes = 0; 747 return ret; 748 } 749 750 static void sync_overcommit_as(struct work_struct *dummy) 751 { 752 percpu_counter_sync(&vm_committed_as); 753 } 754 755 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, 756 size_t *lenp, loff_t *ppos) 757 { 758 struct ctl_table t; 759 int new_policy; 760 int ret; 761 762 /* 763 * The deviation of sync_overcommit_as could be big with loose policy 764 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 765 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 766 * with the strict "NEVER", and to avoid possible race condtion (even 767 * though user usually won't too frequently do the switching to policy 768 * OVERCOMMIT_NEVER), the switch is done in the following order: 769 * 1. changing the batch 770 * 2. sync percpu count on each CPU 771 * 3. switch the policy 772 */ 773 if (write) { 774 t = *table; 775 t.data = &new_policy; 776 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 777 if (ret) 778 return ret; 779 780 mm_compute_batch(new_policy); 781 if (new_policy == OVERCOMMIT_NEVER) 782 schedule_on_each_cpu(sync_overcommit_as); 783 sysctl_overcommit_memory = new_policy; 784 } else { 785 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 786 } 787 788 return ret; 789 } 790 791 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, 792 size_t *lenp, loff_t *ppos) 793 { 794 int ret; 795 796 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 797 if (ret == 0 && write) 798 sysctl_overcommit_ratio = 0; 799 return ret; 800 } 801 802 /* 803 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 804 */ 805 unsigned long vm_commit_limit(void) 806 { 807 unsigned long allowed; 808 809 if (sysctl_overcommit_kbytes) 810 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 811 else 812 allowed = ((totalram_pages() - hugetlb_total_pages()) 813 * sysctl_overcommit_ratio / 100); 814 allowed += total_swap_pages; 815 816 return allowed; 817 } 818 819 /* 820 * Make sure vm_committed_as in one cacheline and not cacheline shared with 821 * other variables. It can be updated by several CPUs frequently. 822 */ 823 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 824 825 /* 826 * The global memory commitment made in the system can be a metric 827 * that can be used to drive ballooning decisions when Linux is hosted 828 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 829 * balancing memory across competing virtual machines that are hosted. 830 * Several metrics drive this policy engine including the guest reported 831 * memory commitment. 832 * 833 * The time cost of this is very low for small platforms, and for big 834 * platform like a 2S/36C/72T Skylake server, in worst case where 835 * vm_committed_as's spinlock is under severe contention, the time cost 836 * could be about 30~40 microseconds. 837 */ 838 unsigned long vm_memory_committed(void) 839 { 840 return percpu_counter_sum_positive(&vm_committed_as); 841 } 842 EXPORT_SYMBOL_GPL(vm_memory_committed); 843 844 /* 845 * Check that a process has enough memory to allocate a new virtual 846 * mapping. 0 means there is enough memory for the allocation to 847 * succeed and -ENOMEM implies there is not. 848 * 849 * We currently support three overcommit policies, which are set via the 850 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst 851 * 852 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 853 * Additional code 2002 Jul 20 by Robert Love. 854 * 855 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 856 * 857 * Note this is a helper function intended to be used by LSMs which 858 * wish to use this logic. 859 */ 860 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 861 { 862 long allowed; 863 864 vm_acct_memory(pages); 865 866 /* 867 * Sometimes we want to use more memory than we have 868 */ 869 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 870 return 0; 871 872 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 873 if (pages > totalram_pages() + total_swap_pages) 874 goto error; 875 return 0; 876 } 877 878 allowed = vm_commit_limit(); 879 /* 880 * Reserve some for root 881 */ 882 if (!cap_sys_admin) 883 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 884 885 /* 886 * Don't let a single process grow so big a user can't recover 887 */ 888 if (mm) { 889 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 890 891 allowed -= min_t(long, mm->total_vm / 32, reserve); 892 } 893 894 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 895 return 0; 896 error: 897 vm_unacct_memory(pages); 898 899 return -ENOMEM; 900 } 901 902 /** 903 * get_cmdline() - copy the cmdline value to a buffer. 904 * @task: the task whose cmdline value to copy. 905 * @buffer: the buffer to copy to. 906 * @buflen: the length of the buffer. Larger cmdline values are truncated 907 * to this length. 908 * 909 * Return: the size of the cmdline field copied. Note that the copy does 910 * not guarantee an ending NULL byte. 911 */ 912 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 913 { 914 int res = 0; 915 unsigned int len; 916 struct mm_struct *mm = get_task_mm(task); 917 unsigned long arg_start, arg_end, env_start, env_end; 918 if (!mm) 919 goto out; 920 if (!mm->arg_end) 921 goto out_mm; /* Shh! No looking before we're done */ 922 923 spin_lock(&mm->arg_lock); 924 arg_start = mm->arg_start; 925 arg_end = mm->arg_end; 926 env_start = mm->env_start; 927 env_end = mm->env_end; 928 spin_unlock(&mm->arg_lock); 929 930 len = arg_end - arg_start; 931 932 if (len > buflen) 933 len = buflen; 934 935 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 936 937 /* 938 * If the nul at the end of args has been overwritten, then 939 * assume application is using setproctitle(3). 940 */ 941 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 942 len = strnlen(buffer, res); 943 if (len < res) { 944 res = len; 945 } else { 946 len = env_end - env_start; 947 if (len > buflen - res) 948 len = buflen - res; 949 res += access_process_vm(task, env_start, 950 buffer+res, len, 951 FOLL_FORCE); 952 res = strnlen(buffer, res); 953 } 954 } 955 out_mm: 956 mmput(mm); 957 out: 958 return res; 959 } 960 961 int __weak memcmp_pages(struct page *page1, struct page *page2) 962 { 963 char *addr1, *addr2; 964 int ret; 965 966 addr1 = kmap_atomic(page1); 967 addr2 = kmap_atomic(page2); 968 ret = memcmp(addr1, addr2, PAGE_SIZE); 969 kunmap_atomic(addr2); 970 kunmap_atomic(addr1); 971 return ret; 972 } 973