xref: /openbmc/linux/mm/util.c (revision e0f6d1a5)
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
17 
18 #include <asm/sections.h>
19 #include <linux/uaccess.h>
20 
21 #include "internal.h"
22 
23 static inline int is_kernel_rodata(unsigned long addr)
24 {
25 	return addr >= (unsigned long)__start_rodata &&
26 		addr < (unsigned long)__end_rodata;
27 }
28 
29 /**
30  * kfree_const - conditionally free memory
31  * @x: pointer to the memory
32  *
33  * Function calls kfree only if @x is not in .rodata section.
34  */
35 void kfree_const(const void *x)
36 {
37 	if (!is_kernel_rodata((unsigned long)x))
38 		kfree(x);
39 }
40 EXPORT_SYMBOL(kfree_const);
41 
42 /**
43  * kstrdup - allocate space for and copy an existing string
44  * @s: the string to duplicate
45  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
46  */
47 char *kstrdup(const char *s, gfp_t gfp)
48 {
49 	size_t len;
50 	char *buf;
51 
52 	if (!s)
53 		return NULL;
54 
55 	len = strlen(s) + 1;
56 	buf = kmalloc_track_caller(len, gfp);
57 	if (buf)
58 		memcpy(buf, s, len);
59 	return buf;
60 }
61 EXPORT_SYMBOL(kstrdup);
62 
63 /**
64  * kstrdup_const - conditionally duplicate an existing const string
65  * @s: the string to duplicate
66  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
67  *
68  * Function returns source string if it is in .rodata section otherwise it
69  * fallbacks to kstrdup.
70  * Strings allocated by kstrdup_const should be freed by kfree_const.
71  */
72 const char *kstrdup_const(const char *s, gfp_t gfp)
73 {
74 	if (is_kernel_rodata((unsigned long)s))
75 		return s;
76 
77 	return kstrdup(s, gfp);
78 }
79 EXPORT_SYMBOL(kstrdup_const);
80 
81 /**
82  * kstrndup - allocate space for and copy an existing string
83  * @s: the string to duplicate
84  * @max: read at most @max chars from @s
85  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
86  *
87  * Note: Use kmemdup_nul() instead if the size is known exactly.
88  */
89 char *kstrndup(const char *s, size_t max, gfp_t gfp)
90 {
91 	size_t len;
92 	char *buf;
93 
94 	if (!s)
95 		return NULL;
96 
97 	len = strnlen(s, max);
98 	buf = kmalloc_track_caller(len+1, gfp);
99 	if (buf) {
100 		memcpy(buf, s, len);
101 		buf[len] = '\0';
102 	}
103 	return buf;
104 }
105 EXPORT_SYMBOL(kstrndup);
106 
107 /**
108  * kmemdup - duplicate region of memory
109  *
110  * @src: memory region to duplicate
111  * @len: memory region length
112  * @gfp: GFP mask to use
113  */
114 void *kmemdup(const void *src, size_t len, gfp_t gfp)
115 {
116 	void *p;
117 
118 	p = kmalloc_track_caller(len, gfp);
119 	if (p)
120 		memcpy(p, src, len);
121 	return p;
122 }
123 EXPORT_SYMBOL(kmemdup);
124 
125 /**
126  * kmemdup_nul - Create a NUL-terminated string from unterminated data
127  * @s: The data to stringify
128  * @len: The size of the data
129  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
130  */
131 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
132 {
133 	char *buf;
134 
135 	if (!s)
136 		return NULL;
137 
138 	buf = kmalloc_track_caller(len + 1, gfp);
139 	if (buf) {
140 		memcpy(buf, s, len);
141 		buf[len] = '\0';
142 	}
143 	return buf;
144 }
145 EXPORT_SYMBOL(kmemdup_nul);
146 
147 /**
148  * memdup_user - duplicate memory region from user space
149  *
150  * @src: source address in user space
151  * @len: number of bytes to copy
152  *
153  * Returns an ERR_PTR() on failure.  Result is physically
154  * contiguous, to be freed by kfree().
155  */
156 void *memdup_user(const void __user *src, size_t len)
157 {
158 	void *p;
159 
160 	p = kmalloc_track_caller(len, GFP_USER);
161 	if (!p)
162 		return ERR_PTR(-ENOMEM);
163 
164 	if (copy_from_user(p, src, len)) {
165 		kfree(p);
166 		return ERR_PTR(-EFAULT);
167 	}
168 
169 	return p;
170 }
171 EXPORT_SYMBOL(memdup_user);
172 
173 /**
174  * vmemdup_user - duplicate memory region from user space
175  *
176  * @src: source address in user space
177  * @len: number of bytes to copy
178  *
179  * Returns an ERR_PTR() on failure.  Result may be not
180  * physically contiguous.  Use kvfree() to free.
181  */
182 void *vmemdup_user(const void __user *src, size_t len)
183 {
184 	void *p;
185 
186 	p = kvmalloc(len, GFP_USER);
187 	if (!p)
188 		return ERR_PTR(-ENOMEM);
189 
190 	if (copy_from_user(p, src, len)) {
191 		kvfree(p);
192 		return ERR_PTR(-EFAULT);
193 	}
194 
195 	return p;
196 }
197 EXPORT_SYMBOL(vmemdup_user);
198 
199 /*
200  * strndup_user - duplicate an existing string from user space
201  * @s: The string to duplicate
202  * @n: Maximum number of bytes to copy, including the trailing NUL.
203  */
204 char *strndup_user(const char __user *s, long n)
205 {
206 	char *p;
207 	long length;
208 
209 	length = strnlen_user(s, n);
210 
211 	if (!length)
212 		return ERR_PTR(-EFAULT);
213 
214 	if (length > n)
215 		return ERR_PTR(-EINVAL);
216 
217 	p = memdup_user(s, length);
218 
219 	if (IS_ERR(p))
220 		return p;
221 
222 	p[length - 1] = '\0';
223 
224 	return p;
225 }
226 EXPORT_SYMBOL(strndup_user);
227 
228 /**
229  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
230  *
231  * @src: source address in user space
232  * @len: number of bytes to copy
233  *
234  * Returns an ERR_PTR() on failure.
235  */
236 void *memdup_user_nul(const void __user *src, size_t len)
237 {
238 	char *p;
239 
240 	/*
241 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
242 	 * cause pagefault, which makes it pointless to use GFP_NOFS
243 	 * or GFP_ATOMIC.
244 	 */
245 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
246 	if (!p)
247 		return ERR_PTR(-ENOMEM);
248 
249 	if (copy_from_user(p, src, len)) {
250 		kfree(p);
251 		return ERR_PTR(-EFAULT);
252 	}
253 	p[len] = '\0';
254 
255 	return p;
256 }
257 EXPORT_SYMBOL(memdup_user_nul);
258 
259 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
260 		struct vm_area_struct *prev, struct rb_node *rb_parent)
261 {
262 	struct vm_area_struct *next;
263 
264 	vma->vm_prev = prev;
265 	if (prev) {
266 		next = prev->vm_next;
267 		prev->vm_next = vma;
268 	} else {
269 		mm->mmap = vma;
270 		if (rb_parent)
271 			next = rb_entry(rb_parent,
272 					struct vm_area_struct, vm_rb);
273 		else
274 			next = NULL;
275 	}
276 	vma->vm_next = next;
277 	if (next)
278 		next->vm_prev = vma;
279 }
280 
281 /* Check if the vma is being used as a stack by this task */
282 int vma_is_stack_for_current(struct vm_area_struct *vma)
283 {
284 	struct task_struct * __maybe_unused t = current;
285 
286 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
287 }
288 
289 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
290 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
291 {
292 	mm->mmap_base = TASK_UNMAPPED_BASE;
293 	mm->get_unmapped_area = arch_get_unmapped_area;
294 }
295 #endif
296 
297 /*
298  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
299  * back to the regular GUP.
300  * Note a difference with get_user_pages_fast: this always returns the
301  * number of pages pinned, 0 if no pages were pinned.
302  * If the architecture does not support this function, simply return with no
303  * pages pinned.
304  */
305 int __weak __get_user_pages_fast(unsigned long start,
306 				 int nr_pages, int write, struct page **pages)
307 {
308 	return 0;
309 }
310 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
311 
312 /**
313  * get_user_pages_fast() - pin user pages in memory
314  * @start:	starting user address
315  * @nr_pages:	number of pages from start to pin
316  * @write:	whether pages will be written to
317  * @pages:	array that receives pointers to the pages pinned.
318  *		Should be at least nr_pages long.
319  *
320  * Returns number of pages pinned. This may be fewer than the number
321  * requested. If nr_pages is 0 or negative, returns 0. If no pages
322  * were pinned, returns -errno.
323  *
324  * get_user_pages_fast provides equivalent functionality to get_user_pages,
325  * operating on current and current->mm, with force=0 and vma=NULL. However
326  * unlike get_user_pages, it must be called without mmap_sem held.
327  *
328  * get_user_pages_fast may take mmap_sem and page table locks, so no
329  * assumptions can be made about lack of locking. get_user_pages_fast is to be
330  * implemented in a way that is advantageous (vs get_user_pages()) when the
331  * user memory area is already faulted in and present in ptes. However if the
332  * pages have to be faulted in, it may turn out to be slightly slower so
333  * callers need to carefully consider what to use. On many architectures,
334  * get_user_pages_fast simply falls back to get_user_pages.
335  */
336 int __weak get_user_pages_fast(unsigned long start,
337 				int nr_pages, int write, struct page **pages)
338 {
339 	return get_user_pages_unlocked(start, nr_pages, pages,
340 				       write ? FOLL_WRITE : 0);
341 }
342 EXPORT_SYMBOL_GPL(get_user_pages_fast);
343 
344 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
345 	unsigned long len, unsigned long prot,
346 	unsigned long flag, unsigned long pgoff)
347 {
348 	unsigned long ret;
349 	struct mm_struct *mm = current->mm;
350 	unsigned long populate;
351 	LIST_HEAD(uf);
352 
353 	ret = security_mmap_file(file, prot, flag);
354 	if (!ret) {
355 		if (down_write_killable(&mm->mmap_sem))
356 			return -EINTR;
357 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
358 				    &populate, &uf);
359 		up_write(&mm->mmap_sem);
360 		userfaultfd_unmap_complete(mm, &uf);
361 		if (populate)
362 			mm_populate(ret, populate);
363 	}
364 	return ret;
365 }
366 
367 unsigned long vm_mmap(struct file *file, unsigned long addr,
368 	unsigned long len, unsigned long prot,
369 	unsigned long flag, unsigned long offset)
370 {
371 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
372 		return -EINVAL;
373 	if (unlikely(offset_in_page(offset)))
374 		return -EINVAL;
375 
376 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
377 }
378 EXPORT_SYMBOL(vm_mmap);
379 
380 /**
381  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
382  * failure, fall back to non-contiguous (vmalloc) allocation.
383  * @size: size of the request.
384  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
385  * @node: numa node to allocate from
386  *
387  * Uses kmalloc to get the memory but if the allocation fails then falls back
388  * to the vmalloc allocator. Use kvfree for freeing the memory.
389  *
390  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
391  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
392  * preferable to the vmalloc fallback, due to visible performance drawbacks.
393  *
394  * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
395  */
396 void *kvmalloc_node(size_t size, gfp_t flags, int node)
397 {
398 	gfp_t kmalloc_flags = flags;
399 	void *ret;
400 
401 	/*
402 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
403 	 * so the given set of flags has to be compatible.
404 	 */
405 	WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
406 
407 	/*
408 	 * We want to attempt a large physically contiguous block first because
409 	 * it is less likely to fragment multiple larger blocks and therefore
410 	 * contribute to a long term fragmentation less than vmalloc fallback.
411 	 * However make sure that larger requests are not too disruptive - no
412 	 * OOM killer and no allocation failure warnings as we have a fallback.
413 	 */
414 	if (size > PAGE_SIZE) {
415 		kmalloc_flags |= __GFP_NOWARN;
416 
417 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
418 			kmalloc_flags |= __GFP_NORETRY;
419 	}
420 
421 	ret = kmalloc_node(size, kmalloc_flags, node);
422 
423 	/*
424 	 * It doesn't really make sense to fallback to vmalloc for sub page
425 	 * requests
426 	 */
427 	if (ret || size <= PAGE_SIZE)
428 		return ret;
429 
430 	return __vmalloc_node_flags_caller(size, node, flags,
431 			__builtin_return_address(0));
432 }
433 EXPORT_SYMBOL(kvmalloc_node);
434 
435 void kvfree(const void *addr)
436 {
437 	if (is_vmalloc_addr(addr))
438 		vfree(addr);
439 	else
440 		kfree(addr);
441 }
442 EXPORT_SYMBOL(kvfree);
443 
444 static inline void *__page_rmapping(struct page *page)
445 {
446 	unsigned long mapping;
447 
448 	mapping = (unsigned long)page->mapping;
449 	mapping &= ~PAGE_MAPPING_FLAGS;
450 
451 	return (void *)mapping;
452 }
453 
454 /* Neutral page->mapping pointer to address_space or anon_vma or other */
455 void *page_rmapping(struct page *page)
456 {
457 	page = compound_head(page);
458 	return __page_rmapping(page);
459 }
460 
461 /*
462  * Return true if this page is mapped into pagetables.
463  * For compound page it returns true if any subpage of compound page is mapped.
464  */
465 bool page_mapped(struct page *page)
466 {
467 	int i;
468 
469 	if (likely(!PageCompound(page)))
470 		return atomic_read(&page->_mapcount) >= 0;
471 	page = compound_head(page);
472 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
473 		return true;
474 	if (PageHuge(page))
475 		return false;
476 	for (i = 0; i < hpage_nr_pages(page); i++) {
477 		if (atomic_read(&page[i]._mapcount) >= 0)
478 			return true;
479 	}
480 	return false;
481 }
482 EXPORT_SYMBOL(page_mapped);
483 
484 struct anon_vma *page_anon_vma(struct page *page)
485 {
486 	unsigned long mapping;
487 
488 	page = compound_head(page);
489 	mapping = (unsigned long)page->mapping;
490 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
491 		return NULL;
492 	return __page_rmapping(page);
493 }
494 
495 struct address_space *page_mapping(struct page *page)
496 {
497 	struct address_space *mapping;
498 
499 	page = compound_head(page);
500 
501 	/* This happens if someone calls flush_dcache_page on slab page */
502 	if (unlikely(PageSlab(page)))
503 		return NULL;
504 
505 	if (unlikely(PageSwapCache(page))) {
506 		swp_entry_t entry;
507 
508 		entry.val = page_private(page);
509 		return swap_address_space(entry);
510 	}
511 
512 	mapping = page->mapping;
513 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
514 		return NULL;
515 
516 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
517 }
518 EXPORT_SYMBOL(page_mapping);
519 
520 /*
521  * For file cache pages, return the address_space, otherwise return NULL
522  */
523 struct address_space *page_mapping_file(struct page *page)
524 {
525 	if (unlikely(PageSwapCache(page)))
526 		return NULL;
527 	return page_mapping(page);
528 }
529 
530 /* Slow path of page_mapcount() for compound pages */
531 int __page_mapcount(struct page *page)
532 {
533 	int ret;
534 
535 	ret = atomic_read(&page->_mapcount) + 1;
536 	/*
537 	 * For file THP page->_mapcount contains total number of mapping
538 	 * of the page: no need to look into compound_mapcount.
539 	 */
540 	if (!PageAnon(page) && !PageHuge(page))
541 		return ret;
542 	page = compound_head(page);
543 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
544 	if (PageDoubleMap(page))
545 		ret--;
546 	return ret;
547 }
548 EXPORT_SYMBOL_GPL(__page_mapcount);
549 
550 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
551 int sysctl_overcommit_ratio __read_mostly = 50;
552 unsigned long sysctl_overcommit_kbytes __read_mostly;
553 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
554 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
555 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
556 
557 int overcommit_ratio_handler(struct ctl_table *table, int write,
558 			     void __user *buffer, size_t *lenp,
559 			     loff_t *ppos)
560 {
561 	int ret;
562 
563 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
564 	if (ret == 0 && write)
565 		sysctl_overcommit_kbytes = 0;
566 	return ret;
567 }
568 
569 int overcommit_kbytes_handler(struct ctl_table *table, int write,
570 			     void __user *buffer, size_t *lenp,
571 			     loff_t *ppos)
572 {
573 	int ret;
574 
575 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
576 	if (ret == 0 && write)
577 		sysctl_overcommit_ratio = 0;
578 	return ret;
579 }
580 
581 /*
582  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
583  */
584 unsigned long vm_commit_limit(void)
585 {
586 	unsigned long allowed;
587 
588 	if (sysctl_overcommit_kbytes)
589 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
590 	else
591 		allowed = ((totalram_pages - hugetlb_total_pages())
592 			   * sysctl_overcommit_ratio / 100);
593 	allowed += total_swap_pages;
594 
595 	return allowed;
596 }
597 
598 /*
599  * Make sure vm_committed_as in one cacheline and not cacheline shared with
600  * other variables. It can be updated by several CPUs frequently.
601  */
602 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
603 
604 /*
605  * The global memory commitment made in the system can be a metric
606  * that can be used to drive ballooning decisions when Linux is hosted
607  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
608  * balancing memory across competing virtual machines that are hosted.
609  * Several metrics drive this policy engine including the guest reported
610  * memory commitment.
611  */
612 unsigned long vm_memory_committed(void)
613 {
614 	return percpu_counter_read_positive(&vm_committed_as);
615 }
616 EXPORT_SYMBOL_GPL(vm_memory_committed);
617 
618 /*
619  * Check that a process has enough memory to allocate a new virtual
620  * mapping. 0 means there is enough memory for the allocation to
621  * succeed and -ENOMEM implies there is not.
622  *
623  * We currently support three overcommit policies, which are set via the
624  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
625  *
626  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
627  * Additional code 2002 Jul 20 by Robert Love.
628  *
629  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
630  *
631  * Note this is a helper function intended to be used by LSMs which
632  * wish to use this logic.
633  */
634 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
635 {
636 	long free, allowed, reserve;
637 
638 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
639 			-(s64)vm_committed_as_batch * num_online_cpus(),
640 			"memory commitment underflow");
641 
642 	vm_acct_memory(pages);
643 
644 	/*
645 	 * Sometimes we want to use more memory than we have
646 	 */
647 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
648 		return 0;
649 
650 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
651 		free = global_zone_page_state(NR_FREE_PAGES);
652 		free += global_node_page_state(NR_FILE_PAGES);
653 
654 		/*
655 		 * shmem pages shouldn't be counted as free in this
656 		 * case, they can't be purged, only swapped out, and
657 		 * that won't affect the overall amount of available
658 		 * memory in the system.
659 		 */
660 		free -= global_node_page_state(NR_SHMEM);
661 
662 		free += get_nr_swap_pages();
663 
664 		/*
665 		 * Any slabs which are created with the
666 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
667 		 * which are reclaimable, under pressure.  The dentry
668 		 * cache and most inode caches should fall into this
669 		 */
670 		free += global_node_page_state(NR_SLAB_RECLAIMABLE);
671 
672 		/*
673 		 * Part of the kernel memory, which can be released
674 		 * under memory pressure.
675 		 */
676 		free += global_node_page_state(
677 			NR_INDIRECTLY_RECLAIMABLE_BYTES) >> PAGE_SHIFT;
678 
679 		/*
680 		 * Leave reserved pages. The pages are not for anonymous pages.
681 		 */
682 		if (free <= totalreserve_pages)
683 			goto error;
684 		else
685 			free -= totalreserve_pages;
686 
687 		/*
688 		 * Reserve some for root
689 		 */
690 		if (!cap_sys_admin)
691 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
692 
693 		if (free > pages)
694 			return 0;
695 
696 		goto error;
697 	}
698 
699 	allowed = vm_commit_limit();
700 	/*
701 	 * Reserve some for root
702 	 */
703 	if (!cap_sys_admin)
704 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
705 
706 	/*
707 	 * Don't let a single process grow so big a user can't recover
708 	 */
709 	if (mm) {
710 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
711 		allowed -= min_t(long, mm->total_vm / 32, reserve);
712 	}
713 
714 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
715 		return 0;
716 error:
717 	vm_unacct_memory(pages);
718 
719 	return -ENOMEM;
720 }
721 
722 /**
723  * get_cmdline() - copy the cmdline value to a buffer.
724  * @task:     the task whose cmdline value to copy.
725  * @buffer:   the buffer to copy to.
726  * @buflen:   the length of the buffer. Larger cmdline values are truncated
727  *            to this length.
728  * Returns the size of the cmdline field copied. Note that the copy does
729  * not guarantee an ending NULL byte.
730  */
731 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
732 {
733 	int res = 0;
734 	unsigned int len;
735 	struct mm_struct *mm = get_task_mm(task);
736 	unsigned long arg_start, arg_end, env_start, env_end;
737 	if (!mm)
738 		goto out;
739 	if (!mm->arg_end)
740 		goto out_mm;	/* Shh! No looking before we're done */
741 
742 	down_read(&mm->mmap_sem);
743 	arg_start = mm->arg_start;
744 	arg_end = mm->arg_end;
745 	env_start = mm->env_start;
746 	env_end = mm->env_end;
747 	up_read(&mm->mmap_sem);
748 
749 	len = arg_end - arg_start;
750 
751 	if (len > buflen)
752 		len = buflen;
753 
754 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
755 
756 	/*
757 	 * If the nul at the end of args has been overwritten, then
758 	 * assume application is using setproctitle(3).
759 	 */
760 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
761 		len = strnlen(buffer, res);
762 		if (len < res) {
763 			res = len;
764 		} else {
765 			len = env_end - env_start;
766 			if (len > buflen - res)
767 				len = buflen - res;
768 			res += access_process_vm(task, env_start,
769 						 buffer+res, len,
770 						 FOLL_FORCE);
771 			res = strnlen(buffer, res);
772 		}
773 	}
774 out_mm:
775 	mmput(mm);
776 out:
777 	return res;
778 }
779