1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 #include "swap.h" 31 32 /** 33 * kfree_const - conditionally free memory 34 * @x: pointer to the memory 35 * 36 * Function calls kfree only if @x is not in .rodata section. 37 */ 38 void kfree_const(const void *x) 39 { 40 if (!is_kernel_rodata((unsigned long)x)) 41 kfree(x); 42 } 43 EXPORT_SYMBOL(kfree_const); 44 45 /** 46 * kstrdup - allocate space for and copy an existing string 47 * @s: the string to duplicate 48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 49 * 50 * Return: newly allocated copy of @s or %NULL in case of error 51 */ 52 char *kstrdup(const char *s, gfp_t gfp) 53 { 54 size_t len; 55 char *buf; 56 57 if (!s) 58 return NULL; 59 60 len = strlen(s) + 1; 61 buf = kmalloc_track_caller(len, gfp); 62 if (buf) 63 memcpy(buf, s, len); 64 return buf; 65 } 66 EXPORT_SYMBOL(kstrdup); 67 68 /** 69 * kstrdup_const - conditionally duplicate an existing const string 70 * @s: the string to duplicate 71 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 72 * 73 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 74 * must not be passed to krealloc(). 75 * 76 * Return: source string if it is in .rodata section otherwise 77 * fallback to kstrdup. 78 */ 79 const char *kstrdup_const(const char *s, gfp_t gfp) 80 { 81 if (is_kernel_rodata((unsigned long)s)) 82 return s; 83 84 return kstrdup(s, gfp); 85 } 86 EXPORT_SYMBOL(kstrdup_const); 87 88 /** 89 * kstrndup - allocate space for and copy an existing string 90 * @s: the string to duplicate 91 * @max: read at most @max chars from @s 92 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 93 * 94 * Note: Use kmemdup_nul() instead if the size is known exactly. 95 * 96 * Return: newly allocated copy of @s or %NULL in case of error 97 */ 98 char *kstrndup(const char *s, size_t max, gfp_t gfp) 99 { 100 size_t len; 101 char *buf; 102 103 if (!s) 104 return NULL; 105 106 len = strnlen(s, max); 107 buf = kmalloc_track_caller(len+1, gfp); 108 if (buf) { 109 memcpy(buf, s, len); 110 buf[len] = '\0'; 111 } 112 return buf; 113 } 114 EXPORT_SYMBOL(kstrndup); 115 116 /** 117 * kmemdup - duplicate region of memory 118 * 119 * @src: memory region to duplicate 120 * @len: memory region length 121 * @gfp: GFP mask to use 122 * 123 * Return: newly allocated copy of @src or %NULL in case of error 124 */ 125 void *kmemdup(const void *src, size_t len, gfp_t gfp) 126 { 127 void *p; 128 129 p = kmalloc_track_caller(len, gfp); 130 if (p) 131 memcpy(p, src, len); 132 return p; 133 } 134 EXPORT_SYMBOL(kmemdup); 135 136 /** 137 * kmemdup_nul - Create a NUL-terminated string from unterminated data 138 * @s: The data to stringify 139 * @len: The size of the data 140 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 141 * 142 * Return: newly allocated copy of @s with NUL-termination or %NULL in 143 * case of error 144 */ 145 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 146 { 147 char *buf; 148 149 if (!s) 150 return NULL; 151 152 buf = kmalloc_track_caller(len + 1, gfp); 153 if (buf) { 154 memcpy(buf, s, len); 155 buf[len] = '\0'; 156 } 157 return buf; 158 } 159 EXPORT_SYMBOL(kmemdup_nul); 160 161 /** 162 * memdup_user - duplicate memory region from user space 163 * 164 * @src: source address in user space 165 * @len: number of bytes to copy 166 * 167 * Return: an ERR_PTR() on failure. Result is physically 168 * contiguous, to be freed by kfree(). 169 */ 170 void *memdup_user(const void __user *src, size_t len) 171 { 172 void *p; 173 174 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 175 if (!p) 176 return ERR_PTR(-ENOMEM); 177 178 if (copy_from_user(p, src, len)) { 179 kfree(p); 180 return ERR_PTR(-EFAULT); 181 } 182 183 return p; 184 } 185 EXPORT_SYMBOL(memdup_user); 186 187 /** 188 * vmemdup_user - duplicate memory region from user space 189 * 190 * @src: source address in user space 191 * @len: number of bytes to copy 192 * 193 * Return: an ERR_PTR() on failure. Result may be not 194 * physically contiguous. Use kvfree() to free. 195 */ 196 void *vmemdup_user(const void __user *src, size_t len) 197 { 198 void *p; 199 200 p = kvmalloc(len, GFP_USER); 201 if (!p) 202 return ERR_PTR(-ENOMEM); 203 204 if (copy_from_user(p, src, len)) { 205 kvfree(p); 206 return ERR_PTR(-EFAULT); 207 } 208 209 return p; 210 } 211 EXPORT_SYMBOL(vmemdup_user); 212 213 /** 214 * strndup_user - duplicate an existing string from user space 215 * @s: The string to duplicate 216 * @n: Maximum number of bytes to copy, including the trailing NUL. 217 * 218 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 219 */ 220 char *strndup_user(const char __user *s, long n) 221 { 222 char *p; 223 long length; 224 225 length = strnlen_user(s, n); 226 227 if (!length) 228 return ERR_PTR(-EFAULT); 229 230 if (length > n) 231 return ERR_PTR(-EINVAL); 232 233 p = memdup_user(s, length); 234 235 if (IS_ERR(p)) 236 return p; 237 238 p[length - 1] = '\0'; 239 240 return p; 241 } 242 EXPORT_SYMBOL(strndup_user); 243 244 /** 245 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 246 * 247 * @src: source address in user space 248 * @len: number of bytes to copy 249 * 250 * Return: an ERR_PTR() on failure. 251 */ 252 void *memdup_user_nul(const void __user *src, size_t len) 253 { 254 char *p; 255 256 /* 257 * Always use GFP_KERNEL, since copy_from_user() can sleep and 258 * cause pagefault, which makes it pointless to use GFP_NOFS 259 * or GFP_ATOMIC. 260 */ 261 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 262 if (!p) 263 return ERR_PTR(-ENOMEM); 264 265 if (copy_from_user(p, src, len)) { 266 kfree(p); 267 return ERR_PTR(-EFAULT); 268 } 269 p[len] = '\0'; 270 271 return p; 272 } 273 EXPORT_SYMBOL(memdup_user_nul); 274 275 /* Check if the vma is being used as a stack by this task */ 276 int vma_is_stack_for_current(struct vm_area_struct *vma) 277 { 278 struct task_struct * __maybe_unused t = current; 279 280 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 281 } 282 283 /* 284 * Change backing file, only valid to use during initial VMA setup. 285 */ 286 void vma_set_file(struct vm_area_struct *vma, struct file *file) 287 { 288 /* Changing an anonymous vma with this is illegal */ 289 get_file(file); 290 swap(vma->vm_file, file); 291 fput(file); 292 } 293 EXPORT_SYMBOL(vma_set_file); 294 295 #ifndef STACK_RND_MASK 296 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 297 #endif 298 299 unsigned long randomize_stack_top(unsigned long stack_top) 300 { 301 unsigned long random_variable = 0; 302 303 if (current->flags & PF_RANDOMIZE) { 304 random_variable = get_random_long(); 305 random_variable &= STACK_RND_MASK; 306 random_variable <<= PAGE_SHIFT; 307 } 308 #ifdef CONFIG_STACK_GROWSUP 309 return PAGE_ALIGN(stack_top) + random_variable; 310 #else 311 return PAGE_ALIGN(stack_top) - random_variable; 312 #endif 313 } 314 315 /** 316 * randomize_page - Generate a random, page aligned address 317 * @start: The smallest acceptable address the caller will take. 318 * @range: The size of the area, starting at @start, within which the 319 * random address must fall. 320 * 321 * If @start + @range would overflow, @range is capped. 322 * 323 * NOTE: Historical use of randomize_range, which this replaces, presumed that 324 * @start was already page aligned. We now align it regardless. 325 * 326 * Return: A page aligned address within [start, start + range). On error, 327 * @start is returned. 328 */ 329 unsigned long randomize_page(unsigned long start, unsigned long range) 330 { 331 if (!PAGE_ALIGNED(start)) { 332 range -= PAGE_ALIGN(start) - start; 333 start = PAGE_ALIGN(start); 334 } 335 336 if (start > ULONG_MAX - range) 337 range = ULONG_MAX - start; 338 339 range >>= PAGE_SHIFT; 340 341 if (range == 0) 342 return start; 343 344 return start + (get_random_long() % range << PAGE_SHIFT); 345 } 346 347 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 348 unsigned long __weak arch_randomize_brk(struct mm_struct *mm) 349 { 350 /* Is the current task 32bit ? */ 351 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 352 return randomize_page(mm->brk, SZ_32M); 353 354 return randomize_page(mm->brk, SZ_1G); 355 } 356 357 unsigned long arch_mmap_rnd(void) 358 { 359 unsigned long rnd; 360 361 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 362 if (is_compat_task()) 363 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 364 else 365 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 366 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 367 368 return rnd << PAGE_SHIFT; 369 } 370 371 static int mmap_is_legacy(struct rlimit *rlim_stack) 372 { 373 if (current->personality & ADDR_COMPAT_LAYOUT) 374 return 1; 375 376 if (rlim_stack->rlim_cur == RLIM_INFINITY) 377 return 1; 378 379 return sysctl_legacy_va_layout; 380 } 381 382 /* 383 * Leave enough space between the mmap area and the stack to honour ulimit in 384 * the face of randomisation. 385 */ 386 #define MIN_GAP (SZ_128M) 387 #define MAX_GAP (STACK_TOP / 6 * 5) 388 389 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 390 { 391 unsigned long gap = rlim_stack->rlim_cur; 392 unsigned long pad = stack_guard_gap; 393 394 /* Account for stack randomization if necessary */ 395 if (current->flags & PF_RANDOMIZE) 396 pad += (STACK_RND_MASK << PAGE_SHIFT); 397 398 /* Values close to RLIM_INFINITY can overflow. */ 399 if (gap + pad > gap) 400 gap += pad; 401 402 if (gap < MIN_GAP) 403 gap = MIN_GAP; 404 else if (gap > MAX_GAP) 405 gap = MAX_GAP; 406 407 return PAGE_ALIGN(STACK_TOP - gap - rnd); 408 } 409 410 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 411 { 412 unsigned long random_factor = 0UL; 413 414 if (current->flags & PF_RANDOMIZE) 415 random_factor = arch_mmap_rnd(); 416 417 if (mmap_is_legacy(rlim_stack)) { 418 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 419 mm->get_unmapped_area = arch_get_unmapped_area; 420 } else { 421 mm->mmap_base = mmap_base(random_factor, rlim_stack); 422 mm->get_unmapped_area = arch_get_unmapped_area_topdown; 423 } 424 } 425 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 426 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 427 { 428 mm->mmap_base = TASK_UNMAPPED_BASE; 429 mm->get_unmapped_area = arch_get_unmapped_area; 430 } 431 #endif 432 433 /** 434 * __account_locked_vm - account locked pages to an mm's locked_vm 435 * @mm: mm to account against 436 * @pages: number of pages to account 437 * @inc: %true if @pages should be considered positive, %false if not 438 * @task: task used to check RLIMIT_MEMLOCK 439 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 440 * 441 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 442 * that mmap_lock is held as writer. 443 * 444 * Return: 445 * * 0 on success 446 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 447 */ 448 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 449 struct task_struct *task, bool bypass_rlim) 450 { 451 unsigned long locked_vm, limit; 452 int ret = 0; 453 454 mmap_assert_write_locked(mm); 455 456 locked_vm = mm->locked_vm; 457 if (inc) { 458 if (!bypass_rlim) { 459 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 460 if (locked_vm + pages > limit) 461 ret = -ENOMEM; 462 } 463 if (!ret) 464 mm->locked_vm = locked_vm + pages; 465 } else { 466 WARN_ON_ONCE(pages > locked_vm); 467 mm->locked_vm = locked_vm - pages; 468 } 469 470 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 471 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 472 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 473 ret ? " - exceeded" : ""); 474 475 return ret; 476 } 477 EXPORT_SYMBOL_GPL(__account_locked_vm); 478 479 /** 480 * account_locked_vm - account locked pages to an mm's locked_vm 481 * @mm: mm to account against, may be NULL 482 * @pages: number of pages to account 483 * @inc: %true if @pages should be considered positive, %false if not 484 * 485 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 486 * 487 * Return: 488 * * 0 on success, or if mm is NULL 489 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 490 */ 491 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 492 { 493 int ret; 494 495 if (pages == 0 || !mm) 496 return 0; 497 498 mmap_write_lock(mm); 499 ret = __account_locked_vm(mm, pages, inc, current, 500 capable(CAP_IPC_LOCK)); 501 mmap_write_unlock(mm); 502 503 return ret; 504 } 505 EXPORT_SYMBOL_GPL(account_locked_vm); 506 507 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 508 unsigned long len, unsigned long prot, 509 unsigned long flag, unsigned long pgoff) 510 { 511 unsigned long ret; 512 struct mm_struct *mm = current->mm; 513 unsigned long populate; 514 LIST_HEAD(uf); 515 516 ret = security_mmap_file(file, prot, flag); 517 if (!ret) { 518 if (mmap_write_lock_killable(mm)) 519 return -EINTR; 520 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, 521 &uf); 522 mmap_write_unlock(mm); 523 userfaultfd_unmap_complete(mm, &uf); 524 if (populate) 525 mm_populate(ret, populate); 526 } 527 return ret; 528 } 529 530 unsigned long vm_mmap(struct file *file, unsigned long addr, 531 unsigned long len, unsigned long prot, 532 unsigned long flag, unsigned long offset) 533 { 534 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 535 return -EINVAL; 536 if (unlikely(offset_in_page(offset))) 537 return -EINVAL; 538 539 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 540 } 541 EXPORT_SYMBOL(vm_mmap); 542 543 /** 544 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 545 * failure, fall back to non-contiguous (vmalloc) allocation. 546 * @size: size of the request. 547 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 548 * @node: numa node to allocate from 549 * 550 * Uses kmalloc to get the memory but if the allocation fails then falls back 551 * to the vmalloc allocator. Use kvfree for freeing the memory. 552 * 553 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 554 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 555 * preferable to the vmalloc fallback, due to visible performance drawbacks. 556 * 557 * Return: pointer to the allocated memory of %NULL in case of failure 558 */ 559 void *kvmalloc_node(size_t size, gfp_t flags, int node) 560 { 561 gfp_t kmalloc_flags = flags; 562 void *ret; 563 564 /* 565 * We want to attempt a large physically contiguous block first because 566 * it is less likely to fragment multiple larger blocks and therefore 567 * contribute to a long term fragmentation less than vmalloc fallback. 568 * However make sure that larger requests are not too disruptive - no 569 * OOM killer and no allocation failure warnings as we have a fallback. 570 */ 571 if (size > PAGE_SIZE) { 572 kmalloc_flags |= __GFP_NOWARN; 573 574 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 575 kmalloc_flags |= __GFP_NORETRY; 576 577 /* nofail semantic is implemented by the vmalloc fallback */ 578 kmalloc_flags &= ~__GFP_NOFAIL; 579 } 580 581 ret = kmalloc_node(size, kmalloc_flags, node); 582 583 /* 584 * It doesn't really make sense to fallback to vmalloc for sub page 585 * requests 586 */ 587 if (ret || size <= PAGE_SIZE) 588 return ret; 589 590 /* non-sleeping allocations are not supported by vmalloc */ 591 if (!gfpflags_allow_blocking(flags)) 592 return NULL; 593 594 /* Don't even allow crazy sizes */ 595 if (unlikely(size > INT_MAX)) { 596 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 597 return NULL; 598 } 599 600 /* 601 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 602 * since the callers already cannot assume anything 603 * about the resulting pointer, and cannot play 604 * protection games. 605 */ 606 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 607 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 608 node, __builtin_return_address(0)); 609 } 610 EXPORT_SYMBOL(kvmalloc_node); 611 612 /** 613 * kvfree() - Free memory. 614 * @addr: Pointer to allocated memory. 615 * 616 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 617 * It is slightly more efficient to use kfree() or vfree() if you are certain 618 * that you know which one to use. 619 * 620 * Context: Either preemptible task context or not-NMI interrupt. 621 */ 622 void kvfree(const void *addr) 623 { 624 if (is_vmalloc_addr(addr)) 625 vfree(addr); 626 else 627 kfree(addr); 628 } 629 EXPORT_SYMBOL(kvfree); 630 631 /** 632 * kvfree_sensitive - Free a data object containing sensitive information. 633 * @addr: address of the data object to be freed. 634 * @len: length of the data object. 635 * 636 * Use the special memzero_explicit() function to clear the content of a 637 * kvmalloc'ed object containing sensitive data to make sure that the 638 * compiler won't optimize out the data clearing. 639 */ 640 void kvfree_sensitive(const void *addr, size_t len) 641 { 642 if (likely(!ZERO_OR_NULL_PTR(addr))) { 643 memzero_explicit((void *)addr, len); 644 kvfree(addr); 645 } 646 } 647 EXPORT_SYMBOL(kvfree_sensitive); 648 649 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 650 { 651 void *newp; 652 653 if (oldsize >= newsize) 654 return (void *)p; 655 newp = kvmalloc(newsize, flags); 656 if (!newp) 657 return NULL; 658 memcpy(newp, p, oldsize); 659 kvfree(p); 660 return newp; 661 } 662 EXPORT_SYMBOL(kvrealloc); 663 664 /** 665 * __vmalloc_array - allocate memory for a virtually contiguous array. 666 * @n: number of elements. 667 * @size: element size. 668 * @flags: the type of memory to allocate (see kmalloc). 669 */ 670 void *__vmalloc_array(size_t n, size_t size, gfp_t flags) 671 { 672 size_t bytes; 673 674 if (unlikely(check_mul_overflow(n, size, &bytes))) 675 return NULL; 676 return __vmalloc(bytes, flags); 677 } 678 EXPORT_SYMBOL(__vmalloc_array); 679 680 /** 681 * vmalloc_array - allocate memory for a virtually contiguous array. 682 * @n: number of elements. 683 * @size: element size. 684 */ 685 void *vmalloc_array(size_t n, size_t size) 686 { 687 return __vmalloc_array(n, size, GFP_KERNEL); 688 } 689 EXPORT_SYMBOL(vmalloc_array); 690 691 /** 692 * __vcalloc - allocate and zero memory for a virtually contiguous array. 693 * @n: number of elements. 694 * @size: element size. 695 * @flags: the type of memory to allocate (see kmalloc). 696 */ 697 void *__vcalloc(size_t n, size_t size, gfp_t flags) 698 { 699 return __vmalloc_array(n, size, flags | __GFP_ZERO); 700 } 701 EXPORT_SYMBOL(__vcalloc); 702 703 /** 704 * vcalloc - allocate and zero memory for a virtually contiguous array. 705 * @n: number of elements. 706 * @size: element size. 707 */ 708 void *vcalloc(size_t n, size_t size) 709 { 710 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); 711 } 712 EXPORT_SYMBOL(vcalloc); 713 714 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 715 void *page_rmapping(struct page *page) 716 { 717 return folio_raw_mapping(page_folio(page)); 718 } 719 720 /** 721 * folio_mapped - Is this folio mapped into userspace? 722 * @folio: The folio. 723 * 724 * Return: True if any page in this folio is referenced by user page tables. 725 */ 726 bool folio_mapped(struct folio *folio) 727 { 728 long i, nr; 729 730 if (!folio_test_large(folio)) 731 return atomic_read(&folio->_mapcount) >= 0; 732 if (atomic_read(folio_mapcount_ptr(folio)) >= 0) 733 return true; 734 if (folio_test_hugetlb(folio)) 735 return false; 736 737 nr = folio_nr_pages(folio); 738 for (i = 0; i < nr; i++) { 739 if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0) 740 return true; 741 } 742 return false; 743 } 744 EXPORT_SYMBOL(folio_mapped); 745 746 struct anon_vma *folio_anon_vma(struct folio *folio) 747 { 748 unsigned long mapping = (unsigned long)folio->mapping; 749 750 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 751 return NULL; 752 return (void *)(mapping - PAGE_MAPPING_ANON); 753 } 754 755 /** 756 * folio_mapping - Find the mapping where this folio is stored. 757 * @folio: The folio. 758 * 759 * For folios which are in the page cache, return the mapping that this 760 * page belongs to. Folios in the swap cache return the swap mapping 761 * this page is stored in (which is different from the mapping for the 762 * swap file or swap device where the data is stored). 763 * 764 * You can call this for folios which aren't in the swap cache or page 765 * cache and it will return NULL. 766 */ 767 struct address_space *folio_mapping(struct folio *folio) 768 { 769 struct address_space *mapping; 770 771 /* This happens if someone calls flush_dcache_page on slab page */ 772 if (unlikely(folio_test_slab(folio))) 773 return NULL; 774 775 if (unlikely(folio_test_swapcache(folio))) 776 return swap_address_space(folio_swap_entry(folio)); 777 778 mapping = folio->mapping; 779 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) 780 return NULL; 781 782 return mapping; 783 } 784 EXPORT_SYMBOL(folio_mapping); 785 786 /* Slow path of page_mapcount() for compound pages */ 787 int __page_mapcount(struct page *page) 788 { 789 int ret; 790 791 ret = atomic_read(&page->_mapcount) + 1; 792 /* 793 * For file THP page->_mapcount contains total number of mapping 794 * of the page: no need to look into compound_mapcount. 795 */ 796 if (!PageAnon(page) && !PageHuge(page)) 797 return ret; 798 page = compound_head(page); 799 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 800 if (PageDoubleMap(page)) 801 ret--; 802 return ret; 803 } 804 EXPORT_SYMBOL_GPL(__page_mapcount); 805 806 /** 807 * folio_mapcount() - Calculate the number of mappings of this folio. 808 * @folio: The folio. 809 * 810 * A large folio tracks both how many times the entire folio is mapped, 811 * and how many times each individual page in the folio is mapped. 812 * This function calculates the total number of times the folio is 813 * mapped. 814 * 815 * Return: The number of times this folio is mapped. 816 */ 817 int folio_mapcount(struct folio *folio) 818 { 819 int i, compound, nr, ret; 820 821 if (likely(!folio_test_large(folio))) 822 return atomic_read(&folio->_mapcount) + 1; 823 824 compound = folio_entire_mapcount(folio); 825 if (folio_test_hugetlb(folio)) 826 return compound; 827 ret = compound; 828 nr = folio_nr_pages(folio); 829 for (i = 0; i < nr; i++) 830 ret += atomic_read(&folio_page(folio, i)->_mapcount) + 1; 831 /* File pages has compound_mapcount included in _mapcount */ 832 if (!folio_test_anon(folio)) 833 return ret - compound * nr; 834 if (folio_test_double_map(folio)) 835 ret -= nr; 836 return ret; 837 } 838 839 /** 840 * folio_copy - Copy the contents of one folio to another. 841 * @dst: Folio to copy to. 842 * @src: Folio to copy from. 843 * 844 * The bytes in the folio represented by @src are copied to @dst. 845 * Assumes the caller has validated that @dst is at least as large as @src. 846 * Can be called in atomic context for order-0 folios, but if the folio is 847 * larger, it may sleep. 848 */ 849 void folio_copy(struct folio *dst, struct folio *src) 850 { 851 long i = 0; 852 long nr = folio_nr_pages(src); 853 854 for (;;) { 855 copy_highpage(folio_page(dst, i), folio_page(src, i)); 856 if (++i == nr) 857 break; 858 cond_resched(); 859 } 860 } 861 862 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 863 int sysctl_overcommit_ratio __read_mostly = 50; 864 unsigned long sysctl_overcommit_kbytes __read_mostly; 865 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 866 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 867 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 868 869 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, 870 size_t *lenp, loff_t *ppos) 871 { 872 int ret; 873 874 ret = proc_dointvec(table, write, buffer, lenp, ppos); 875 if (ret == 0 && write) 876 sysctl_overcommit_kbytes = 0; 877 return ret; 878 } 879 880 static void sync_overcommit_as(struct work_struct *dummy) 881 { 882 percpu_counter_sync(&vm_committed_as); 883 } 884 885 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, 886 size_t *lenp, loff_t *ppos) 887 { 888 struct ctl_table t; 889 int new_policy = -1; 890 int ret; 891 892 /* 893 * The deviation of sync_overcommit_as could be big with loose policy 894 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 895 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 896 * with the strict "NEVER", and to avoid possible race condition (even 897 * though user usually won't too frequently do the switching to policy 898 * OVERCOMMIT_NEVER), the switch is done in the following order: 899 * 1. changing the batch 900 * 2. sync percpu count on each CPU 901 * 3. switch the policy 902 */ 903 if (write) { 904 t = *table; 905 t.data = &new_policy; 906 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 907 if (ret || new_policy == -1) 908 return ret; 909 910 mm_compute_batch(new_policy); 911 if (new_policy == OVERCOMMIT_NEVER) 912 schedule_on_each_cpu(sync_overcommit_as); 913 sysctl_overcommit_memory = new_policy; 914 } else { 915 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 916 } 917 918 return ret; 919 } 920 921 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, 922 size_t *lenp, loff_t *ppos) 923 { 924 int ret; 925 926 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 927 if (ret == 0 && write) 928 sysctl_overcommit_ratio = 0; 929 return ret; 930 } 931 932 /* 933 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 934 */ 935 unsigned long vm_commit_limit(void) 936 { 937 unsigned long allowed; 938 939 if (sysctl_overcommit_kbytes) 940 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 941 else 942 allowed = ((totalram_pages() - hugetlb_total_pages()) 943 * sysctl_overcommit_ratio / 100); 944 allowed += total_swap_pages; 945 946 return allowed; 947 } 948 949 /* 950 * Make sure vm_committed_as in one cacheline and not cacheline shared with 951 * other variables. It can be updated by several CPUs frequently. 952 */ 953 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 954 955 /* 956 * The global memory commitment made in the system can be a metric 957 * that can be used to drive ballooning decisions when Linux is hosted 958 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 959 * balancing memory across competing virtual machines that are hosted. 960 * Several metrics drive this policy engine including the guest reported 961 * memory commitment. 962 * 963 * The time cost of this is very low for small platforms, and for big 964 * platform like a 2S/36C/72T Skylake server, in worst case where 965 * vm_committed_as's spinlock is under severe contention, the time cost 966 * could be about 30~40 microseconds. 967 */ 968 unsigned long vm_memory_committed(void) 969 { 970 return percpu_counter_sum_positive(&vm_committed_as); 971 } 972 EXPORT_SYMBOL_GPL(vm_memory_committed); 973 974 /* 975 * Check that a process has enough memory to allocate a new virtual 976 * mapping. 0 means there is enough memory for the allocation to 977 * succeed and -ENOMEM implies there is not. 978 * 979 * We currently support three overcommit policies, which are set via the 980 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst 981 * 982 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 983 * Additional code 2002 Jul 20 by Robert Love. 984 * 985 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 986 * 987 * Note this is a helper function intended to be used by LSMs which 988 * wish to use this logic. 989 */ 990 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 991 { 992 long allowed; 993 994 vm_acct_memory(pages); 995 996 /* 997 * Sometimes we want to use more memory than we have 998 */ 999 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 1000 return 0; 1001 1002 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 1003 if (pages > totalram_pages() + total_swap_pages) 1004 goto error; 1005 return 0; 1006 } 1007 1008 allowed = vm_commit_limit(); 1009 /* 1010 * Reserve some for root 1011 */ 1012 if (!cap_sys_admin) 1013 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 1014 1015 /* 1016 * Don't let a single process grow so big a user can't recover 1017 */ 1018 if (mm) { 1019 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 1020 1021 allowed -= min_t(long, mm->total_vm / 32, reserve); 1022 } 1023 1024 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 1025 return 0; 1026 error: 1027 pr_warn_ratelimited("%s: pid: %d, comm: %s, no enough memory for the allocation\n", 1028 __func__, current->pid, current->comm); 1029 vm_unacct_memory(pages); 1030 1031 return -ENOMEM; 1032 } 1033 1034 /** 1035 * get_cmdline() - copy the cmdline value to a buffer. 1036 * @task: the task whose cmdline value to copy. 1037 * @buffer: the buffer to copy to. 1038 * @buflen: the length of the buffer. Larger cmdline values are truncated 1039 * to this length. 1040 * 1041 * Return: the size of the cmdline field copied. Note that the copy does 1042 * not guarantee an ending NULL byte. 1043 */ 1044 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 1045 { 1046 int res = 0; 1047 unsigned int len; 1048 struct mm_struct *mm = get_task_mm(task); 1049 unsigned long arg_start, arg_end, env_start, env_end; 1050 if (!mm) 1051 goto out; 1052 if (!mm->arg_end) 1053 goto out_mm; /* Shh! No looking before we're done */ 1054 1055 spin_lock(&mm->arg_lock); 1056 arg_start = mm->arg_start; 1057 arg_end = mm->arg_end; 1058 env_start = mm->env_start; 1059 env_end = mm->env_end; 1060 spin_unlock(&mm->arg_lock); 1061 1062 len = arg_end - arg_start; 1063 1064 if (len > buflen) 1065 len = buflen; 1066 1067 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 1068 1069 /* 1070 * If the nul at the end of args has been overwritten, then 1071 * assume application is using setproctitle(3). 1072 */ 1073 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 1074 len = strnlen(buffer, res); 1075 if (len < res) { 1076 res = len; 1077 } else { 1078 len = env_end - env_start; 1079 if (len > buflen - res) 1080 len = buflen - res; 1081 res += access_process_vm(task, env_start, 1082 buffer+res, len, 1083 FOLL_FORCE); 1084 res = strnlen(buffer, res); 1085 } 1086 } 1087 out_mm: 1088 mmput(mm); 1089 out: 1090 return res; 1091 } 1092 1093 int __weak memcmp_pages(struct page *page1, struct page *page2) 1094 { 1095 char *addr1, *addr2; 1096 int ret; 1097 1098 addr1 = kmap_atomic(page1); 1099 addr2 = kmap_atomic(page2); 1100 ret = memcmp(addr1, addr2, PAGE_SIZE); 1101 kunmap_atomic(addr2); 1102 kunmap_atomic(addr1); 1103 return ret; 1104 } 1105 1106 #ifdef CONFIG_PRINTK 1107 /** 1108 * mem_dump_obj - Print available provenance information 1109 * @object: object for which to find provenance information. 1110 * 1111 * This function uses pr_cont(), so that the caller is expected to have 1112 * printed out whatever preamble is appropriate. The provenance information 1113 * depends on the type of object and on how much debugging is enabled. 1114 * For example, for a slab-cache object, the slab name is printed, and, 1115 * if available, the return address and stack trace from the allocation 1116 * and last free path of that object. 1117 */ 1118 void mem_dump_obj(void *object) 1119 { 1120 const char *type; 1121 1122 if (kmem_valid_obj(object)) { 1123 kmem_dump_obj(object); 1124 return; 1125 } 1126 1127 if (vmalloc_dump_obj(object)) 1128 return; 1129 1130 if (virt_addr_valid(object)) 1131 type = "non-slab/vmalloc memory"; 1132 else if (object == NULL) 1133 type = "NULL pointer"; 1134 else if (object == ZERO_SIZE_PTR) 1135 type = "zero-size pointer"; 1136 else 1137 type = "non-paged memory"; 1138 1139 pr_cont(" %s\n", type); 1140 } 1141 EXPORT_SYMBOL_GPL(mem_dump_obj); 1142 #endif 1143 1144 /* 1145 * A driver might set a page logically offline -- PageOffline() -- and 1146 * turn the page inaccessible in the hypervisor; after that, access to page 1147 * content can be fatal. 1148 * 1149 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1150 * pages after checking PageOffline(); however, these PFN walkers can race 1151 * with drivers that set PageOffline(). 1152 * 1153 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1154 * synchronize with such drivers, achieving that a page cannot be set 1155 * PageOffline() while frozen. 1156 * 1157 * page_offline_begin()/page_offline_end() is used by drivers that care about 1158 * such races when setting a page PageOffline(). 1159 */ 1160 static DECLARE_RWSEM(page_offline_rwsem); 1161 1162 void page_offline_freeze(void) 1163 { 1164 down_read(&page_offline_rwsem); 1165 } 1166 1167 void page_offline_thaw(void) 1168 { 1169 up_read(&page_offline_rwsem); 1170 } 1171 1172 void page_offline_begin(void) 1173 { 1174 down_write(&page_offline_rwsem); 1175 } 1176 EXPORT_SYMBOL(page_offline_begin); 1177 1178 void page_offline_end(void) 1179 { 1180 up_write(&page_offline_rwsem); 1181 } 1182 EXPORT_SYMBOL(page_offline_end); 1183 1184 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO 1185 void flush_dcache_folio(struct folio *folio) 1186 { 1187 long i, nr = folio_nr_pages(folio); 1188 1189 for (i = 0; i < nr; i++) 1190 flush_dcache_page(folio_page(folio, i)); 1191 } 1192 EXPORT_SYMBOL(flush_dcache_folio); 1193 #endif 1194