xref: /openbmc/linux/mm/util.c (revision d2999e1b)
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
14 
15 #include <asm/uaccess.h>
16 
17 #include "internal.h"
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/kmem.h>
21 
22 /**
23  * kstrdup - allocate space for and copy an existing string
24  * @s: the string to duplicate
25  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
26  */
27 char *kstrdup(const char *s, gfp_t gfp)
28 {
29 	size_t len;
30 	char *buf;
31 
32 	if (!s)
33 		return NULL;
34 
35 	len = strlen(s) + 1;
36 	buf = kmalloc_track_caller(len, gfp);
37 	if (buf)
38 		memcpy(buf, s, len);
39 	return buf;
40 }
41 EXPORT_SYMBOL(kstrdup);
42 
43 /**
44  * kstrndup - allocate space for and copy an existing string
45  * @s: the string to duplicate
46  * @max: read at most @max chars from @s
47  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48  */
49 char *kstrndup(const char *s, size_t max, gfp_t gfp)
50 {
51 	size_t len;
52 	char *buf;
53 
54 	if (!s)
55 		return NULL;
56 
57 	len = strnlen(s, max);
58 	buf = kmalloc_track_caller(len+1, gfp);
59 	if (buf) {
60 		memcpy(buf, s, len);
61 		buf[len] = '\0';
62 	}
63 	return buf;
64 }
65 EXPORT_SYMBOL(kstrndup);
66 
67 /**
68  * kmemdup - duplicate region of memory
69  *
70  * @src: memory region to duplicate
71  * @len: memory region length
72  * @gfp: GFP mask to use
73  */
74 void *kmemdup(const void *src, size_t len, gfp_t gfp)
75 {
76 	void *p;
77 
78 	p = kmalloc_track_caller(len, gfp);
79 	if (p)
80 		memcpy(p, src, len);
81 	return p;
82 }
83 EXPORT_SYMBOL(kmemdup);
84 
85 /**
86  * memdup_user - duplicate memory region from user space
87  *
88  * @src: source address in user space
89  * @len: number of bytes to copy
90  *
91  * Returns an ERR_PTR() on failure.
92  */
93 void *memdup_user(const void __user *src, size_t len)
94 {
95 	void *p;
96 
97 	/*
98 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
99 	 * cause pagefault, which makes it pointless to use GFP_NOFS
100 	 * or GFP_ATOMIC.
101 	 */
102 	p = kmalloc_track_caller(len, GFP_KERNEL);
103 	if (!p)
104 		return ERR_PTR(-ENOMEM);
105 
106 	if (copy_from_user(p, src, len)) {
107 		kfree(p);
108 		return ERR_PTR(-EFAULT);
109 	}
110 
111 	return p;
112 }
113 EXPORT_SYMBOL(memdup_user);
114 
115 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
116 					   gfp_t flags)
117 {
118 	void *ret;
119 	size_t ks = 0;
120 
121 	if (p)
122 		ks = ksize(p);
123 
124 	if (ks >= new_size)
125 		return (void *)p;
126 
127 	ret = kmalloc_track_caller(new_size, flags);
128 	if (ret && p)
129 		memcpy(ret, p, ks);
130 
131 	return ret;
132 }
133 
134 /**
135  * __krealloc - like krealloc() but don't free @p.
136  * @p: object to reallocate memory for.
137  * @new_size: how many bytes of memory are required.
138  * @flags: the type of memory to allocate.
139  *
140  * This function is like krealloc() except it never frees the originally
141  * allocated buffer. Use this if you don't want to free the buffer immediately
142  * like, for example, with RCU.
143  */
144 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
145 {
146 	if (unlikely(!new_size))
147 		return ZERO_SIZE_PTR;
148 
149 	return __do_krealloc(p, new_size, flags);
150 
151 }
152 EXPORT_SYMBOL(__krealloc);
153 
154 /**
155  * krealloc - reallocate memory. The contents will remain unchanged.
156  * @p: object to reallocate memory for.
157  * @new_size: how many bytes of memory are required.
158  * @flags: the type of memory to allocate.
159  *
160  * The contents of the object pointed to are preserved up to the
161  * lesser of the new and old sizes.  If @p is %NULL, krealloc()
162  * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
163  * %NULL pointer, the object pointed to is freed.
164  */
165 void *krealloc(const void *p, size_t new_size, gfp_t flags)
166 {
167 	void *ret;
168 
169 	if (unlikely(!new_size)) {
170 		kfree(p);
171 		return ZERO_SIZE_PTR;
172 	}
173 
174 	ret = __do_krealloc(p, new_size, flags);
175 	if (ret && p != ret)
176 		kfree(p);
177 
178 	return ret;
179 }
180 EXPORT_SYMBOL(krealloc);
181 
182 /**
183  * kzfree - like kfree but zero memory
184  * @p: object to free memory of
185  *
186  * The memory of the object @p points to is zeroed before freed.
187  * If @p is %NULL, kzfree() does nothing.
188  *
189  * Note: this function zeroes the whole allocated buffer which can be a good
190  * deal bigger than the requested buffer size passed to kmalloc(). So be
191  * careful when using this function in performance sensitive code.
192  */
193 void kzfree(const void *p)
194 {
195 	size_t ks;
196 	void *mem = (void *)p;
197 
198 	if (unlikely(ZERO_OR_NULL_PTR(mem)))
199 		return;
200 	ks = ksize(mem);
201 	memset(mem, 0, ks);
202 	kfree(mem);
203 }
204 EXPORT_SYMBOL(kzfree);
205 
206 /*
207  * strndup_user - duplicate an existing string from user space
208  * @s: The string to duplicate
209  * @n: Maximum number of bytes to copy, including the trailing NUL.
210  */
211 char *strndup_user(const char __user *s, long n)
212 {
213 	char *p;
214 	long length;
215 
216 	length = strnlen_user(s, n);
217 
218 	if (!length)
219 		return ERR_PTR(-EFAULT);
220 
221 	if (length > n)
222 		return ERR_PTR(-EINVAL);
223 
224 	p = memdup_user(s, length);
225 
226 	if (IS_ERR(p))
227 		return p;
228 
229 	p[length - 1] = '\0';
230 
231 	return p;
232 }
233 EXPORT_SYMBOL(strndup_user);
234 
235 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
236 		struct vm_area_struct *prev, struct rb_node *rb_parent)
237 {
238 	struct vm_area_struct *next;
239 
240 	vma->vm_prev = prev;
241 	if (prev) {
242 		next = prev->vm_next;
243 		prev->vm_next = vma;
244 	} else {
245 		mm->mmap = vma;
246 		if (rb_parent)
247 			next = rb_entry(rb_parent,
248 					struct vm_area_struct, vm_rb);
249 		else
250 			next = NULL;
251 	}
252 	vma->vm_next = next;
253 	if (next)
254 		next->vm_prev = vma;
255 }
256 
257 /* Check if the vma is being used as a stack by this task */
258 static int vm_is_stack_for_task(struct task_struct *t,
259 				struct vm_area_struct *vma)
260 {
261 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
262 }
263 
264 /*
265  * Check if the vma is being used as a stack.
266  * If is_group is non-zero, check in the entire thread group or else
267  * just check in the current task. Returns the pid of the task that
268  * the vma is stack for.
269  */
270 pid_t vm_is_stack(struct task_struct *task,
271 		  struct vm_area_struct *vma, int in_group)
272 {
273 	pid_t ret = 0;
274 
275 	if (vm_is_stack_for_task(task, vma))
276 		return task->pid;
277 
278 	if (in_group) {
279 		struct task_struct *t;
280 		rcu_read_lock();
281 		if (!pid_alive(task))
282 			goto done;
283 
284 		t = task;
285 		do {
286 			if (vm_is_stack_for_task(t, vma)) {
287 				ret = t->pid;
288 				goto done;
289 			}
290 		} while_each_thread(task, t);
291 done:
292 		rcu_read_unlock();
293 	}
294 
295 	return ret;
296 }
297 
298 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
299 void arch_pick_mmap_layout(struct mm_struct *mm)
300 {
301 	mm->mmap_base = TASK_UNMAPPED_BASE;
302 	mm->get_unmapped_area = arch_get_unmapped_area;
303 }
304 #endif
305 
306 /*
307  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
308  * back to the regular GUP.
309  * If the architecture not support this function, simply return with no
310  * page pinned
311  */
312 int __weak __get_user_pages_fast(unsigned long start,
313 				 int nr_pages, int write, struct page **pages)
314 {
315 	return 0;
316 }
317 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
318 
319 /**
320  * get_user_pages_fast() - pin user pages in memory
321  * @start:	starting user address
322  * @nr_pages:	number of pages from start to pin
323  * @write:	whether pages will be written to
324  * @pages:	array that receives pointers to the pages pinned.
325  *		Should be at least nr_pages long.
326  *
327  * Returns number of pages pinned. This may be fewer than the number
328  * requested. If nr_pages is 0 or negative, returns 0. If no pages
329  * were pinned, returns -errno.
330  *
331  * get_user_pages_fast provides equivalent functionality to get_user_pages,
332  * operating on current and current->mm, with force=0 and vma=NULL. However
333  * unlike get_user_pages, it must be called without mmap_sem held.
334  *
335  * get_user_pages_fast may take mmap_sem and page table locks, so no
336  * assumptions can be made about lack of locking. get_user_pages_fast is to be
337  * implemented in a way that is advantageous (vs get_user_pages()) when the
338  * user memory area is already faulted in and present in ptes. However if the
339  * pages have to be faulted in, it may turn out to be slightly slower so
340  * callers need to carefully consider what to use. On many architectures,
341  * get_user_pages_fast simply falls back to get_user_pages.
342  */
343 int __weak get_user_pages_fast(unsigned long start,
344 				int nr_pages, int write, struct page **pages)
345 {
346 	struct mm_struct *mm = current->mm;
347 	int ret;
348 
349 	down_read(&mm->mmap_sem);
350 	ret = get_user_pages(current, mm, start, nr_pages,
351 					write, 0, pages, NULL);
352 	up_read(&mm->mmap_sem);
353 
354 	return ret;
355 }
356 EXPORT_SYMBOL_GPL(get_user_pages_fast);
357 
358 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
359 	unsigned long len, unsigned long prot,
360 	unsigned long flag, unsigned long pgoff)
361 {
362 	unsigned long ret;
363 	struct mm_struct *mm = current->mm;
364 	unsigned long populate;
365 
366 	ret = security_mmap_file(file, prot, flag);
367 	if (!ret) {
368 		down_write(&mm->mmap_sem);
369 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
370 				    &populate);
371 		up_write(&mm->mmap_sem);
372 		if (populate)
373 			mm_populate(ret, populate);
374 	}
375 	return ret;
376 }
377 
378 unsigned long vm_mmap(struct file *file, unsigned long addr,
379 	unsigned long len, unsigned long prot,
380 	unsigned long flag, unsigned long offset)
381 {
382 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
383 		return -EINVAL;
384 	if (unlikely(offset & ~PAGE_MASK))
385 		return -EINVAL;
386 
387 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
388 }
389 EXPORT_SYMBOL(vm_mmap);
390 
391 void kvfree(const void *addr)
392 {
393 	if (is_vmalloc_addr(addr))
394 		vfree(addr);
395 	else
396 		kfree(addr);
397 }
398 EXPORT_SYMBOL(kvfree);
399 
400 struct address_space *page_mapping(struct page *page)
401 {
402 	struct address_space *mapping = page->mapping;
403 
404 	/* This happens if someone calls flush_dcache_page on slab page */
405 	if (unlikely(PageSlab(page)))
406 		return NULL;
407 
408 	if (unlikely(PageSwapCache(page))) {
409 		swp_entry_t entry;
410 
411 		entry.val = page_private(page);
412 		mapping = swap_address_space(entry);
413 	} else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
414 		mapping = NULL;
415 	return mapping;
416 }
417 
418 int overcommit_ratio_handler(struct ctl_table *table, int write,
419 			     void __user *buffer, size_t *lenp,
420 			     loff_t *ppos)
421 {
422 	int ret;
423 
424 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
425 	if (ret == 0 && write)
426 		sysctl_overcommit_kbytes = 0;
427 	return ret;
428 }
429 
430 int overcommit_kbytes_handler(struct ctl_table *table, int write,
431 			     void __user *buffer, size_t *lenp,
432 			     loff_t *ppos)
433 {
434 	int ret;
435 
436 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
437 	if (ret == 0 && write)
438 		sysctl_overcommit_ratio = 0;
439 	return ret;
440 }
441 
442 /*
443  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
444  */
445 unsigned long vm_commit_limit(void)
446 {
447 	unsigned long allowed;
448 
449 	if (sysctl_overcommit_kbytes)
450 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
451 	else
452 		allowed = ((totalram_pages - hugetlb_total_pages())
453 			   * sysctl_overcommit_ratio / 100);
454 	allowed += total_swap_pages;
455 
456 	return allowed;
457 }
458 
459 /**
460  * get_cmdline() - copy the cmdline value to a buffer.
461  * @task:     the task whose cmdline value to copy.
462  * @buffer:   the buffer to copy to.
463  * @buflen:   the length of the buffer. Larger cmdline values are truncated
464  *            to this length.
465  * Returns the size of the cmdline field copied. Note that the copy does
466  * not guarantee an ending NULL byte.
467  */
468 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
469 {
470 	int res = 0;
471 	unsigned int len;
472 	struct mm_struct *mm = get_task_mm(task);
473 	if (!mm)
474 		goto out;
475 	if (!mm->arg_end)
476 		goto out_mm;	/* Shh! No looking before we're done */
477 
478 	len = mm->arg_end - mm->arg_start;
479 
480 	if (len > buflen)
481 		len = buflen;
482 
483 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
484 
485 	/*
486 	 * If the nul at the end of args has been overwritten, then
487 	 * assume application is using setproctitle(3).
488 	 */
489 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
490 		len = strnlen(buffer, res);
491 		if (len < res) {
492 			res = len;
493 		} else {
494 			len = mm->env_end - mm->env_start;
495 			if (len > buflen - res)
496 				len = buflen - res;
497 			res += access_process_vm(task, mm->env_start,
498 						 buffer+res, len, 0);
499 			res = strnlen(buffer, res);
500 		}
501 	}
502 out_mm:
503 	mmput(mm);
504 out:
505 	return res;
506 }
507 
508 /* Tracepoints definitions. */
509 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
510 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
511 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
512 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
513 EXPORT_TRACEPOINT_SYMBOL(kfree);
514 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
515