xref: /openbmc/linux/mm/util.c (revision d236d361)
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
17 
18 #include <asm/sections.h>
19 #include <linux/uaccess.h>
20 
21 #include "internal.h"
22 
23 static inline int is_kernel_rodata(unsigned long addr)
24 {
25 	return addr >= (unsigned long)__start_rodata &&
26 		addr < (unsigned long)__end_rodata;
27 }
28 
29 /**
30  * kfree_const - conditionally free memory
31  * @x: pointer to the memory
32  *
33  * Function calls kfree only if @x is not in .rodata section.
34  */
35 void kfree_const(const void *x)
36 {
37 	if (!is_kernel_rodata((unsigned long)x))
38 		kfree(x);
39 }
40 EXPORT_SYMBOL(kfree_const);
41 
42 /**
43  * kstrdup - allocate space for and copy an existing string
44  * @s: the string to duplicate
45  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
46  */
47 char *kstrdup(const char *s, gfp_t gfp)
48 {
49 	size_t len;
50 	char *buf;
51 
52 	if (!s)
53 		return NULL;
54 
55 	len = strlen(s) + 1;
56 	buf = kmalloc_track_caller(len, gfp);
57 	if (buf)
58 		memcpy(buf, s, len);
59 	return buf;
60 }
61 EXPORT_SYMBOL(kstrdup);
62 
63 /**
64  * kstrdup_const - conditionally duplicate an existing const string
65  * @s: the string to duplicate
66  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
67  *
68  * Function returns source string if it is in .rodata section otherwise it
69  * fallbacks to kstrdup.
70  * Strings allocated by kstrdup_const should be freed by kfree_const.
71  */
72 const char *kstrdup_const(const char *s, gfp_t gfp)
73 {
74 	if (is_kernel_rodata((unsigned long)s))
75 		return s;
76 
77 	return kstrdup(s, gfp);
78 }
79 EXPORT_SYMBOL(kstrdup_const);
80 
81 /**
82  * kstrndup - allocate space for and copy an existing string
83  * @s: the string to duplicate
84  * @max: read at most @max chars from @s
85  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
86  */
87 char *kstrndup(const char *s, size_t max, gfp_t gfp)
88 {
89 	size_t len;
90 	char *buf;
91 
92 	if (!s)
93 		return NULL;
94 
95 	len = strnlen(s, max);
96 	buf = kmalloc_track_caller(len+1, gfp);
97 	if (buf) {
98 		memcpy(buf, s, len);
99 		buf[len] = '\0';
100 	}
101 	return buf;
102 }
103 EXPORT_SYMBOL(kstrndup);
104 
105 /**
106  * kmemdup - duplicate region of memory
107  *
108  * @src: memory region to duplicate
109  * @len: memory region length
110  * @gfp: GFP mask to use
111  */
112 void *kmemdup(const void *src, size_t len, gfp_t gfp)
113 {
114 	void *p;
115 
116 	p = kmalloc_track_caller(len, gfp);
117 	if (p)
118 		memcpy(p, src, len);
119 	return p;
120 }
121 EXPORT_SYMBOL(kmemdup);
122 
123 /**
124  * memdup_user - duplicate memory region from user space
125  *
126  * @src: source address in user space
127  * @len: number of bytes to copy
128  *
129  * Returns an ERR_PTR() on failure.
130  */
131 void *memdup_user(const void __user *src, size_t len)
132 {
133 	void *p;
134 
135 	/*
136 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
137 	 * cause pagefault, which makes it pointless to use GFP_NOFS
138 	 * or GFP_ATOMIC.
139 	 */
140 	p = kmalloc_track_caller(len, GFP_KERNEL);
141 	if (!p)
142 		return ERR_PTR(-ENOMEM);
143 
144 	if (copy_from_user(p, src, len)) {
145 		kfree(p);
146 		return ERR_PTR(-EFAULT);
147 	}
148 
149 	return p;
150 }
151 EXPORT_SYMBOL(memdup_user);
152 
153 /*
154  * strndup_user - duplicate an existing string from user space
155  * @s: The string to duplicate
156  * @n: Maximum number of bytes to copy, including the trailing NUL.
157  */
158 char *strndup_user(const char __user *s, long n)
159 {
160 	char *p;
161 	long length;
162 
163 	length = strnlen_user(s, n);
164 
165 	if (!length)
166 		return ERR_PTR(-EFAULT);
167 
168 	if (length > n)
169 		return ERR_PTR(-EINVAL);
170 
171 	p = memdup_user(s, length);
172 
173 	if (IS_ERR(p))
174 		return p;
175 
176 	p[length - 1] = '\0';
177 
178 	return p;
179 }
180 EXPORT_SYMBOL(strndup_user);
181 
182 /**
183  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
184  *
185  * @src: source address in user space
186  * @len: number of bytes to copy
187  *
188  * Returns an ERR_PTR() on failure.
189  */
190 void *memdup_user_nul(const void __user *src, size_t len)
191 {
192 	char *p;
193 
194 	/*
195 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
196 	 * cause pagefault, which makes it pointless to use GFP_NOFS
197 	 * or GFP_ATOMIC.
198 	 */
199 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
200 	if (!p)
201 		return ERR_PTR(-ENOMEM);
202 
203 	if (copy_from_user(p, src, len)) {
204 		kfree(p);
205 		return ERR_PTR(-EFAULT);
206 	}
207 	p[len] = '\0';
208 
209 	return p;
210 }
211 EXPORT_SYMBOL(memdup_user_nul);
212 
213 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
214 		struct vm_area_struct *prev, struct rb_node *rb_parent)
215 {
216 	struct vm_area_struct *next;
217 
218 	vma->vm_prev = prev;
219 	if (prev) {
220 		next = prev->vm_next;
221 		prev->vm_next = vma;
222 	} else {
223 		mm->mmap = vma;
224 		if (rb_parent)
225 			next = rb_entry(rb_parent,
226 					struct vm_area_struct, vm_rb);
227 		else
228 			next = NULL;
229 	}
230 	vma->vm_next = next;
231 	if (next)
232 		next->vm_prev = vma;
233 }
234 
235 /* Check if the vma is being used as a stack by this task */
236 int vma_is_stack_for_current(struct vm_area_struct *vma)
237 {
238 	struct task_struct * __maybe_unused t = current;
239 
240 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
241 }
242 
243 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
244 void arch_pick_mmap_layout(struct mm_struct *mm)
245 {
246 	mm->mmap_base = TASK_UNMAPPED_BASE;
247 	mm->get_unmapped_area = arch_get_unmapped_area;
248 }
249 #endif
250 
251 /*
252  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
253  * back to the regular GUP.
254  * If the architecture not support this function, simply return with no
255  * page pinned
256  */
257 int __weak __get_user_pages_fast(unsigned long start,
258 				 int nr_pages, int write, struct page **pages)
259 {
260 	return 0;
261 }
262 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
263 
264 /**
265  * get_user_pages_fast() - pin user pages in memory
266  * @start:	starting user address
267  * @nr_pages:	number of pages from start to pin
268  * @write:	whether pages will be written to
269  * @pages:	array that receives pointers to the pages pinned.
270  *		Should be at least nr_pages long.
271  *
272  * Returns number of pages pinned. This may be fewer than the number
273  * requested. If nr_pages is 0 or negative, returns 0. If no pages
274  * were pinned, returns -errno.
275  *
276  * get_user_pages_fast provides equivalent functionality to get_user_pages,
277  * operating on current and current->mm, with force=0 and vma=NULL. However
278  * unlike get_user_pages, it must be called without mmap_sem held.
279  *
280  * get_user_pages_fast may take mmap_sem and page table locks, so no
281  * assumptions can be made about lack of locking. get_user_pages_fast is to be
282  * implemented in a way that is advantageous (vs get_user_pages()) when the
283  * user memory area is already faulted in and present in ptes. However if the
284  * pages have to be faulted in, it may turn out to be slightly slower so
285  * callers need to carefully consider what to use. On many architectures,
286  * get_user_pages_fast simply falls back to get_user_pages.
287  */
288 int __weak get_user_pages_fast(unsigned long start,
289 				int nr_pages, int write, struct page **pages)
290 {
291 	return get_user_pages_unlocked(start, nr_pages, pages,
292 				       write ? FOLL_WRITE : 0);
293 }
294 EXPORT_SYMBOL_GPL(get_user_pages_fast);
295 
296 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
297 	unsigned long len, unsigned long prot,
298 	unsigned long flag, unsigned long pgoff)
299 {
300 	unsigned long ret;
301 	struct mm_struct *mm = current->mm;
302 	unsigned long populate;
303 	LIST_HEAD(uf);
304 
305 	ret = security_mmap_file(file, prot, flag);
306 	if (!ret) {
307 		if (down_write_killable(&mm->mmap_sem))
308 			return -EINTR;
309 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
310 				    &populate, &uf);
311 		up_write(&mm->mmap_sem);
312 		userfaultfd_unmap_complete(mm, &uf);
313 		if (populate)
314 			mm_populate(ret, populate);
315 	}
316 	return ret;
317 }
318 
319 unsigned long vm_mmap(struct file *file, unsigned long addr,
320 	unsigned long len, unsigned long prot,
321 	unsigned long flag, unsigned long offset)
322 {
323 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
324 		return -EINVAL;
325 	if (unlikely(offset_in_page(offset)))
326 		return -EINVAL;
327 
328 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
329 }
330 EXPORT_SYMBOL(vm_mmap);
331 
332 /**
333  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
334  * failure, fall back to non-contiguous (vmalloc) allocation.
335  * @size: size of the request.
336  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
337  * @node: numa node to allocate from
338  *
339  * Uses kmalloc to get the memory but if the allocation fails then falls back
340  * to the vmalloc allocator. Use kvfree for freeing the memory.
341  *
342  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. __GFP_REPEAT
343  * is supported only for large (>32kB) allocations, and it should be used only if
344  * kmalloc is preferable to the vmalloc fallback, due to visible performance drawbacks.
345  *
346  * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
347  */
348 void *kvmalloc_node(size_t size, gfp_t flags, int node)
349 {
350 	gfp_t kmalloc_flags = flags;
351 	void *ret;
352 
353 	/*
354 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
355 	 * so the given set of flags has to be compatible.
356 	 */
357 	WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
358 
359 	/*
360 	 * Make sure that larger requests are not too disruptive - no OOM
361 	 * killer and no allocation failure warnings as we have a fallback
362 	 */
363 	if (size > PAGE_SIZE) {
364 		kmalloc_flags |= __GFP_NOWARN;
365 
366 		/*
367 		 * We have to override __GFP_REPEAT by __GFP_NORETRY for !costly
368 		 * requests because there is no other way to tell the allocator
369 		 * that we want to fail rather than retry endlessly.
370 		 */
371 		if (!(kmalloc_flags & __GFP_REPEAT) ||
372 				(size <= PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
373 			kmalloc_flags |= __GFP_NORETRY;
374 	}
375 
376 	ret = kmalloc_node(size, kmalloc_flags, node);
377 
378 	/*
379 	 * It doesn't really make sense to fallback to vmalloc for sub page
380 	 * requests
381 	 */
382 	if (ret || size <= PAGE_SIZE)
383 		return ret;
384 
385 	return __vmalloc_node_flags_caller(size, node, flags,
386 			__builtin_return_address(0));
387 }
388 EXPORT_SYMBOL(kvmalloc_node);
389 
390 void kvfree(const void *addr)
391 {
392 	if (is_vmalloc_addr(addr))
393 		vfree(addr);
394 	else
395 		kfree(addr);
396 }
397 EXPORT_SYMBOL(kvfree);
398 
399 static inline void *__page_rmapping(struct page *page)
400 {
401 	unsigned long mapping;
402 
403 	mapping = (unsigned long)page->mapping;
404 	mapping &= ~PAGE_MAPPING_FLAGS;
405 
406 	return (void *)mapping;
407 }
408 
409 /* Neutral page->mapping pointer to address_space or anon_vma or other */
410 void *page_rmapping(struct page *page)
411 {
412 	page = compound_head(page);
413 	return __page_rmapping(page);
414 }
415 
416 /*
417  * Return true if this page is mapped into pagetables.
418  * For compound page it returns true if any subpage of compound page is mapped.
419  */
420 bool page_mapped(struct page *page)
421 {
422 	int i;
423 
424 	if (likely(!PageCompound(page)))
425 		return atomic_read(&page->_mapcount) >= 0;
426 	page = compound_head(page);
427 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
428 		return true;
429 	if (PageHuge(page))
430 		return false;
431 	for (i = 0; i < hpage_nr_pages(page); i++) {
432 		if (atomic_read(&page[i]._mapcount) >= 0)
433 			return true;
434 	}
435 	return false;
436 }
437 EXPORT_SYMBOL(page_mapped);
438 
439 struct anon_vma *page_anon_vma(struct page *page)
440 {
441 	unsigned long mapping;
442 
443 	page = compound_head(page);
444 	mapping = (unsigned long)page->mapping;
445 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
446 		return NULL;
447 	return __page_rmapping(page);
448 }
449 
450 struct address_space *page_mapping(struct page *page)
451 {
452 	struct address_space *mapping;
453 
454 	page = compound_head(page);
455 
456 	/* This happens if someone calls flush_dcache_page on slab page */
457 	if (unlikely(PageSlab(page)))
458 		return NULL;
459 
460 	if (unlikely(PageSwapCache(page))) {
461 		swp_entry_t entry;
462 
463 		entry.val = page_private(page);
464 		return swap_address_space(entry);
465 	}
466 
467 	mapping = page->mapping;
468 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
469 		return NULL;
470 
471 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
472 }
473 EXPORT_SYMBOL(page_mapping);
474 
475 /* Slow path of page_mapcount() for compound pages */
476 int __page_mapcount(struct page *page)
477 {
478 	int ret;
479 
480 	ret = atomic_read(&page->_mapcount) + 1;
481 	/*
482 	 * For file THP page->_mapcount contains total number of mapping
483 	 * of the page: no need to look into compound_mapcount.
484 	 */
485 	if (!PageAnon(page) && !PageHuge(page))
486 		return ret;
487 	page = compound_head(page);
488 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
489 	if (PageDoubleMap(page))
490 		ret--;
491 	return ret;
492 }
493 EXPORT_SYMBOL_GPL(__page_mapcount);
494 
495 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
496 int sysctl_overcommit_ratio __read_mostly = 50;
497 unsigned long sysctl_overcommit_kbytes __read_mostly;
498 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
499 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
500 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
501 
502 int overcommit_ratio_handler(struct ctl_table *table, int write,
503 			     void __user *buffer, size_t *lenp,
504 			     loff_t *ppos)
505 {
506 	int ret;
507 
508 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
509 	if (ret == 0 && write)
510 		sysctl_overcommit_kbytes = 0;
511 	return ret;
512 }
513 
514 int overcommit_kbytes_handler(struct ctl_table *table, int write,
515 			     void __user *buffer, size_t *lenp,
516 			     loff_t *ppos)
517 {
518 	int ret;
519 
520 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
521 	if (ret == 0 && write)
522 		sysctl_overcommit_ratio = 0;
523 	return ret;
524 }
525 
526 /*
527  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
528  */
529 unsigned long vm_commit_limit(void)
530 {
531 	unsigned long allowed;
532 
533 	if (sysctl_overcommit_kbytes)
534 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
535 	else
536 		allowed = ((totalram_pages - hugetlb_total_pages())
537 			   * sysctl_overcommit_ratio / 100);
538 	allowed += total_swap_pages;
539 
540 	return allowed;
541 }
542 
543 /*
544  * Make sure vm_committed_as in one cacheline and not cacheline shared with
545  * other variables. It can be updated by several CPUs frequently.
546  */
547 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
548 
549 /*
550  * The global memory commitment made in the system can be a metric
551  * that can be used to drive ballooning decisions when Linux is hosted
552  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
553  * balancing memory across competing virtual machines that are hosted.
554  * Several metrics drive this policy engine including the guest reported
555  * memory commitment.
556  */
557 unsigned long vm_memory_committed(void)
558 {
559 	return percpu_counter_read_positive(&vm_committed_as);
560 }
561 EXPORT_SYMBOL_GPL(vm_memory_committed);
562 
563 /*
564  * Check that a process has enough memory to allocate a new virtual
565  * mapping. 0 means there is enough memory for the allocation to
566  * succeed and -ENOMEM implies there is not.
567  *
568  * We currently support three overcommit policies, which are set via the
569  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
570  *
571  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
572  * Additional code 2002 Jul 20 by Robert Love.
573  *
574  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
575  *
576  * Note this is a helper function intended to be used by LSMs which
577  * wish to use this logic.
578  */
579 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
580 {
581 	long free, allowed, reserve;
582 
583 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
584 			-(s64)vm_committed_as_batch * num_online_cpus(),
585 			"memory commitment underflow");
586 
587 	vm_acct_memory(pages);
588 
589 	/*
590 	 * Sometimes we want to use more memory than we have
591 	 */
592 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
593 		return 0;
594 
595 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
596 		free = global_page_state(NR_FREE_PAGES);
597 		free += global_node_page_state(NR_FILE_PAGES);
598 
599 		/*
600 		 * shmem pages shouldn't be counted as free in this
601 		 * case, they can't be purged, only swapped out, and
602 		 * that won't affect the overall amount of available
603 		 * memory in the system.
604 		 */
605 		free -= global_node_page_state(NR_SHMEM);
606 
607 		free += get_nr_swap_pages();
608 
609 		/*
610 		 * Any slabs which are created with the
611 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
612 		 * which are reclaimable, under pressure.  The dentry
613 		 * cache and most inode caches should fall into this
614 		 */
615 		free += global_page_state(NR_SLAB_RECLAIMABLE);
616 
617 		/*
618 		 * Leave reserved pages. The pages are not for anonymous pages.
619 		 */
620 		if (free <= totalreserve_pages)
621 			goto error;
622 		else
623 			free -= totalreserve_pages;
624 
625 		/*
626 		 * Reserve some for root
627 		 */
628 		if (!cap_sys_admin)
629 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
630 
631 		if (free > pages)
632 			return 0;
633 
634 		goto error;
635 	}
636 
637 	allowed = vm_commit_limit();
638 	/*
639 	 * Reserve some for root
640 	 */
641 	if (!cap_sys_admin)
642 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
643 
644 	/*
645 	 * Don't let a single process grow so big a user can't recover
646 	 */
647 	if (mm) {
648 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
649 		allowed -= min_t(long, mm->total_vm / 32, reserve);
650 	}
651 
652 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
653 		return 0;
654 error:
655 	vm_unacct_memory(pages);
656 
657 	return -ENOMEM;
658 }
659 
660 /**
661  * get_cmdline() - copy the cmdline value to a buffer.
662  * @task:     the task whose cmdline value to copy.
663  * @buffer:   the buffer to copy to.
664  * @buflen:   the length of the buffer. Larger cmdline values are truncated
665  *            to this length.
666  * Returns the size of the cmdline field copied. Note that the copy does
667  * not guarantee an ending NULL byte.
668  */
669 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
670 {
671 	int res = 0;
672 	unsigned int len;
673 	struct mm_struct *mm = get_task_mm(task);
674 	unsigned long arg_start, arg_end, env_start, env_end;
675 	if (!mm)
676 		goto out;
677 	if (!mm->arg_end)
678 		goto out_mm;	/* Shh! No looking before we're done */
679 
680 	down_read(&mm->mmap_sem);
681 	arg_start = mm->arg_start;
682 	arg_end = mm->arg_end;
683 	env_start = mm->env_start;
684 	env_end = mm->env_end;
685 	up_read(&mm->mmap_sem);
686 
687 	len = arg_end - arg_start;
688 
689 	if (len > buflen)
690 		len = buflen;
691 
692 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
693 
694 	/*
695 	 * If the nul at the end of args has been overwritten, then
696 	 * assume application is using setproctitle(3).
697 	 */
698 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
699 		len = strnlen(buffer, res);
700 		if (len < res) {
701 			res = len;
702 		} else {
703 			len = env_end - env_start;
704 			if (len > buflen - res)
705 				len = buflen - res;
706 			res += access_process_vm(task, env_start,
707 						 buffer+res, len,
708 						 FOLL_FORCE);
709 			res = strnlen(buffer, res);
710 		}
711 	}
712 out_mm:
713 	mmput(mm);
714 out:
715 	return res;
716 }
717