1 #include <linux/mm.h> 2 #include <linux/slab.h> 3 #include <linux/string.h> 4 #include <linux/compiler.h> 5 #include <linux/export.h> 6 #include <linux/err.h> 7 #include <linux/sched.h> 8 #include <linux/sched/mm.h> 9 #include <linux/sched/task_stack.h> 10 #include <linux/security.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/mman.h> 14 #include <linux/hugetlb.h> 15 #include <linux/vmalloc.h> 16 #include <linux/userfaultfd_k.h> 17 18 #include <linux/uaccess.h> 19 20 #include "internal.h" 21 22 /** 23 * kfree_const - conditionally free memory 24 * @x: pointer to the memory 25 * 26 * Function calls kfree only if @x is not in .rodata section. 27 */ 28 void kfree_const(const void *x) 29 { 30 if (!is_kernel_rodata((unsigned long)x)) 31 kfree(x); 32 } 33 EXPORT_SYMBOL(kfree_const); 34 35 /** 36 * kstrdup - allocate space for and copy an existing string 37 * @s: the string to duplicate 38 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 39 */ 40 char *kstrdup(const char *s, gfp_t gfp) 41 { 42 size_t len; 43 char *buf; 44 45 if (!s) 46 return NULL; 47 48 len = strlen(s) + 1; 49 buf = kmalloc_track_caller(len, gfp); 50 if (buf) 51 memcpy(buf, s, len); 52 return buf; 53 } 54 EXPORT_SYMBOL(kstrdup); 55 56 /** 57 * kstrdup_const - conditionally duplicate an existing const string 58 * @s: the string to duplicate 59 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 60 * 61 * Function returns source string if it is in .rodata section otherwise it 62 * fallbacks to kstrdup. 63 * Strings allocated by kstrdup_const should be freed by kfree_const. 64 */ 65 const char *kstrdup_const(const char *s, gfp_t gfp) 66 { 67 if (is_kernel_rodata((unsigned long)s)) 68 return s; 69 70 return kstrdup(s, gfp); 71 } 72 EXPORT_SYMBOL(kstrdup_const); 73 74 /** 75 * kstrndup - allocate space for and copy an existing string 76 * @s: the string to duplicate 77 * @max: read at most @max chars from @s 78 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 79 * 80 * Note: Use kmemdup_nul() instead if the size is known exactly. 81 */ 82 char *kstrndup(const char *s, size_t max, gfp_t gfp) 83 { 84 size_t len; 85 char *buf; 86 87 if (!s) 88 return NULL; 89 90 len = strnlen(s, max); 91 buf = kmalloc_track_caller(len+1, gfp); 92 if (buf) { 93 memcpy(buf, s, len); 94 buf[len] = '\0'; 95 } 96 return buf; 97 } 98 EXPORT_SYMBOL(kstrndup); 99 100 /** 101 * kmemdup - duplicate region of memory 102 * 103 * @src: memory region to duplicate 104 * @len: memory region length 105 * @gfp: GFP mask to use 106 */ 107 void *kmemdup(const void *src, size_t len, gfp_t gfp) 108 { 109 void *p; 110 111 p = kmalloc_track_caller(len, gfp); 112 if (p) 113 memcpy(p, src, len); 114 return p; 115 } 116 EXPORT_SYMBOL(kmemdup); 117 118 /** 119 * kmemdup_nul - Create a NUL-terminated string from unterminated data 120 * @s: The data to stringify 121 * @len: The size of the data 122 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 123 */ 124 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 125 { 126 char *buf; 127 128 if (!s) 129 return NULL; 130 131 buf = kmalloc_track_caller(len + 1, gfp); 132 if (buf) { 133 memcpy(buf, s, len); 134 buf[len] = '\0'; 135 } 136 return buf; 137 } 138 EXPORT_SYMBOL(kmemdup_nul); 139 140 /** 141 * memdup_user - duplicate memory region from user space 142 * 143 * @src: source address in user space 144 * @len: number of bytes to copy 145 * 146 * Returns an ERR_PTR() on failure. Result is physically 147 * contiguous, to be freed by kfree(). 148 */ 149 void *memdup_user(const void __user *src, size_t len) 150 { 151 void *p; 152 153 p = kmalloc_track_caller(len, GFP_USER); 154 if (!p) 155 return ERR_PTR(-ENOMEM); 156 157 if (copy_from_user(p, src, len)) { 158 kfree(p); 159 return ERR_PTR(-EFAULT); 160 } 161 162 return p; 163 } 164 EXPORT_SYMBOL(memdup_user); 165 166 /** 167 * vmemdup_user - duplicate memory region from user space 168 * 169 * @src: source address in user space 170 * @len: number of bytes to copy 171 * 172 * Returns an ERR_PTR() on failure. Result may be not 173 * physically contiguous. Use kvfree() to free. 174 */ 175 void *vmemdup_user(const void __user *src, size_t len) 176 { 177 void *p; 178 179 p = kvmalloc(len, GFP_USER); 180 if (!p) 181 return ERR_PTR(-ENOMEM); 182 183 if (copy_from_user(p, src, len)) { 184 kvfree(p); 185 return ERR_PTR(-EFAULT); 186 } 187 188 return p; 189 } 190 EXPORT_SYMBOL(vmemdup_user); 191 192 /** 193 * strndup_user - duplicate an existing string from user space 194 * @s: The string to duplicate 195 * @n: Maximum number of bytes to copy, including the trailing NUL. 196 */ 197 char *strndup_user(const char __user *s, long n) 198 { 199 char *p; 200 long length; 201 202 length = strnlen_user(s, n); 203 204 if (!length) 205 return ERR_PTR(-EFAULT); 206 207 if (length > n) 208 return ERR_PTR(-EINVAL); 209 210 p = memdup_user(s, length); 211 212 if (IS_ERR(p)) 213 return p; 214 215 p[length - 1] = '\0'; 216 217 return p; 218 } 219 EXPORT_SYMBOL(strndup_user); 220 221 /** 222 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 223 * 224 * @src: source address in user space 225 * @len: number of bytes to copy 226 * 227 * Returns an ERR_PTR() on failure. 228 */ 229 void *memdup_user_nul(const void __user *src, size_t len) 230 { 231 char *p; 232 233 /* 234 * Always use GFP_KERNEL, since copy_from_user() can sleep and 235 * cause pagefault, which makes it pointless to use GFP_NOFS 236 * or GFP_ATOMIC. 237 */ 238 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 239 if (!p) 240 return ERR_PTR(-ENOMEM); 241 242 if (copy_from_user(p, src, len)) { 243 kfree(p); 244 return ERR_PTR(-EFAULT); 245 } 246 p[len] = '\0'; 247 248 return p; 249 } 250 EXPORT_SYMBOL(memdup_user_nul); 251 252 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 253 struct vm_area_struct *prev, struct rb_node *rb_parent) 254 { 255 struct vm_area_struct *next; 256 257 vma->vm_prev = prev; 258 if (prev) { 259 next = prev->vm_next; 260 prev->vm_next = vma; 261 } else { 262 mm->mmap = vma; 263 if (rb_parent) 264 next = rb_entry(rb_parent, 265 struct vm_area_struct, vm_rb); 266 else 267 next = NULL; 268 } 269 vma->vm_next = next; 270 if (next) 271 next->vm_prev = vma; 272 } 273 274 /* Check if the vma is being used as a stack by this task */ 275 int vma_is_stack_for_current(struct vm_area_struct *vma) 276 { 277 struct task_struct * __maybe_unused t = current; 278 279 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 280 } 281 282 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 283 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 284 { 285 mm->mmap_base = TASK_UNMAPPED_BASE; 286 mm->get_unmapped_area = arch_get_unmapped_area; 287 } 288 #endif 289 290 /* 291 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall 292 * back to the regular GUP. 293 * Note a difference with get_user_pages_fast: this always returns the 294 * number of pages pinned, 0 if no pages were pinned. 295 * If the architecture does not support this function, simply return with no 296 * pages pinned. 297 */ 298 int __weak __get_user_pages_fast(unsigned long start, 299 int nr_pages, int write, struct page **pages) 300 { 301 return 0; 302 } 303 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 304 305 /** 306 * get_user_pages_fast() - pin user pages in memory 307 * @start: starting user address 308 * @nr_pages: number of pages from start to pin 309 * @write: whether pages will be written to 310 * @pages: array that receives pointers to the pages pinned. 311 * Should be at least nr_pages long. 312 * 313 * Returns number of pages pinned. This may be fewer than the number 314 * requested. If nr_pages is 0 or negative, returns 0. If no pages 315 * were pinned, returns -errno. 316 * 317 * get_user_pages_fast provides equivalent functionality to get_user_pages, 318 * operating on current and current->mm, with force=0 and vma=NULL. However 319 * unlike get_user_pages, it must be called without mmap_sem held. 320 * 321 * get_user_pages_fast may take mmap_sem and page table locks, so no 322 * assumptions can be made about lack of locking. get_user_pages_fast is to be 323 * implemented in a way that is advantageous (vs get_user_pages()) when the 324 * user memory area is already faulted in and present in ptes. However if the 325 * pages have to be faulted in, it may turn out to be slightly slower so 326 * callers need to carefully consider what to use. On many architectures, 327 * get_user_pages_fast simply falls back to get_user_pages. 328 */ 329 int __weak get_user_pages_fast(unsigned long start, 330 int nr_pages, int write, struct page **pages) 331 { 332 return get_user_pages_unlocked(start, nr_pages, pages, 333 write ? FOLL_WRITE : 0); 334 } 335 EXPORT_SYMBOL_GPL(get_user_pages_fast); 336 337 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 338 unsigned long len, unsigned long prot, 339 unsigned long flag, unsigned long pgoff) 340 { 341 unsigned long ret; 342 struct mm_struct *mm = current->mm; 343 unsigned long populate; 344 LIST_HEAD(uf); 345 346 ret = security_mmap_file(file, prot, flag); 347 if (!ret) { 348 if (down_write_killable(&mm->mmap_sem)) 349 return -EINTR; 350 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, 351 &populate, &uf); 352 up_write(&mm->mmap_sem); 353 userfaultfd_unmap_complete(mm, &uf); 354 if (populate) 355 mm_populate(ret, populate); 356 } 357 return ret; 358 } 359 360 unsigned long vm_mmap(struct file *file, unsigned long addr, 361 unsigned long len, unsigned long prot, 362 unsigned long flag, unsigned long offset) 363 { 364 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 365 return -EINVAL; 366 if (unlikely(offset_in_page(offset))) 367 return -EINVAL; 368 369 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 370 } 371 EXPORT_SYMBOL(vm_mmap); 372 373 /** 374 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 375 * failure, fall back to non-contiguous (vmalloc) allocation. 376 * @size: size of the request. 377 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 378 * @node: numa node to allocate from 379 * 380 * Uses kmalloc to get the memory but if the allocation fails then falls back 381 * to the vmalloc allocator. Use kvfree for freeing the memory. 382 * 383 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. 384 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 385 * preferable to the vmalloc fallback, due to visible performance drawbacks. 386 * 387 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not 388 * fall back to vmalloc. 389 */ 390 void *kvmalloc_node(size_t size, gfp_t flags, int node) 391 { 392 gfp_t kmalloc_flags = flags; 393 void *ret; 394 395 /* 396 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) 397 * so the given set of flags has to be compatible. 398 */ 399 if ((flags & GFP_KERNEL) != GFP_KERNEL) 400 return kmalloc_node(size, flags, node); 401 402 /* 403 * We want to attempt a large physically contiguous block first because 404 * it is less likely to fragment multiple larger blocks and therefore 405 * contribute to a long term fragmentation less than vmalloc fallback. 406 * However make sure that larger requests are not too disruptive - no 407 * OOM killer and no allocation failure warnings as we have a fallback. 408 */ 409 if (size > PAGE_SIZE) { 410 kmalloc_flags |= __GFP_NOWARN; 411 412 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 413 kmalloc_flags |= __GFP_NORETRY; 414 } 415 416 ret = kmalloc_node(size, kmalloc_flags, node); 417 418 /* 419 * It doesn't really make sense to fallback to vmalloc for sub page 420 * requests 421 */ 422 if (ret || size <= PAGE_SIZE) 423 return ret; 424 425 return __vmalloc_node_flags_caller(size, node, flags, 426 __builtin_return_address(0)); 427 } 428 EXPORT_SYMBOL(kvmalloc_node); 429 430 /** 431 * kvfree() - Free memory. 432 * @addr: Pointer to allocated memory. 433 * 434 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 435 * It is slightly more efficient to use kfree() or vfree() if you are certain 436 * that you know which one to use. 437 * 438 * Context: Either preemptible task context or not-NMI interrupt. 439 */ 440 void kvfree(const void *addr) 441 { 442 if (is_vmalloc_addr(addr)) 443 vfree(addr); 444 else 445 kfree(addr); 446 } 447 EXPORT_SYMBOL(kvfree); 448 449 static inline void *__page_rmapping(struct page *page) 450 { 451 unsigned long mapping; 452 453 mapping = (unsigned long)page->mapping; 454 mapping &= ~PAGE_MAPPING_FLAGS; 455 456 return (void *)mapping; 457 } 458 459 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 460 void *page_rmapping(struct page *page) 461 { 462 page = compound_head(page); 463 return __page_rmapping(page); 464 } 465 466 /* 467 * Return true if this page is mapped into pagetables. 468 * For compound page it returns true if any subpage of compound page is mapped. 469 */ 470 bool page_mapped(struct page *page) 471 { 472 int i; 473 474 if (likely(!PageCompound(page))) 475 return atomic_read(&page->_mapcount) >= 0; 476 page = compound_head(page); 477 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 478 return true; 479 if (PageHuge(page)) 480 return false; 481 for (i = 0; i < hpage_nr_pages(page); i++) { 482 if (atomic_read(&page[i]._mapcount) >= 0) 483 return true; 484 } 485 return false; 486 } 487 EXPORT_SYMBOL(page_mapped); 488 489 struct anon_vma *page_anon_vma(struct page *page) 490 { 491 unsigned long mapping; 492 493 page = compound_head(page); 494 mapping = (unsigned long)page->mapping; 495 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 496 return NULL; 497 return __page_rmapping(page); 498 } 499 500 struct address_space *page_mapping(struct page *page) 501 { 502 struct address_space *mapping; 503 504 page = compound_head(page); 505 506 /* This happens if someone calls flush_dcache_page on slab page */ 507 if (unlikely(PageSlab(page))) 508 return NULL; 509 510 if (unlikely(PageSwapCache(page))) { 511 swp_entry_t entry; 512 513 entry.val = page_private(page); 514 return swap_address_space(entry); 515 } 516 517 mapping = page->mapping; 518 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 519 return NULL; 520 521 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 522 } 523 EXPORT_SYMBOL(page_mapping); 524 525 /* 526 * For file cache pages, return the address_space, otherwise return NULL 527 */ 528 struct address_space *page_mapping_file(struct page *page) 529 { 530 if (unlikely(PageSwapCache(page))) 531 return NULL; 532 return page_mapping(page); 533 } 534 535 /* Slow path of page_mapcount() for compound pages */ 536 int __page_mapcount(struct page *page) 537 { 538 int ret; 539 540 ret = atomic_read(&page->_mapcount) + 1; 541 /* 542 * For file THP page->_mapcount contains total number of mapping 543 * of the page: no need to look into compound_mapcount. 544 */ 545 if (!PageAnon(page) && !PageHuge(page)) 546 return ret; 547 page = compound_head(page); 548 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 549 if (PageDoubleMap(page)) 550 ret--; 551 return ret; 552 } 553 EXPORT_SYMBOL_GPL(__page_mapcount); 554 555 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 556 int sysctl_overcommit_ratio __read_mostly = 50; 557 unsigned long sysctl_overcommit_kbytes __read_mostly; 558 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 559 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 560 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 561 562 int overcommit_ratio_handler(struct ctl_table *table, int write, 563 void __user *buffer, size_t *lenp, 564 loff_t *ppos) 565 { 566 int ret; 567 568 ret = proc_dointvec(table, write, buffer, lenp, ppos); 569 if (ret == 0 && write) 570 sysctl_overcommit_kbytes = 0; 571 return ret; 572 } 573 574 int overcommit_kbytes_handler(struct ctl_table *table, int write, 575 void __user *buffer, size_t *lenp, 576 loff_t *ppos) 577 { 578 int ret; 579 580 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 581 if (ret == 0 && write) 582 sysctl_overcommit_ratio = 0; 583 return ret; 584 } 585 586 /* 587 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 588 */ 589 unsigned long vm_commit_limit(void) 590 { 591 unsigned long allowed; 592 593 if (sysctl_overcommit_kbytes) 594 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 595 else 596 allowed = ((totalram_pages() - hugetlb_total_pages()) 597 * sysctl_overcommit_ratio / 100); 598 allowed += total_swap_pages; 599 600 return allowed; 601 } 602 603 /* 604 * Make sure vm_committed_as in one cacheline and not cacheline shared with 605 * other variables. It can be updated by several CPUs frequently. 606 */ 607 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 608 609 /* 610 * The global memory commitment made in the system can be a metric 611 * that can be used to drive ballooning decisions when Linux is hosted 612 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 613 * balancing memory across competing virtual machines that are hosted. 614 * Several metrics drive this policy engine including the guest reported 615 * memory commitment. 616 */ 617 unsigned long vm_memory_committed(void) 618 { 619 return percpu_counter_read_positive(&vm_committed_as); 620 } 621 EXPORT_SYMBOL_GPL(vm_memory_committed); 622 623 /* 624 * Check that a process has enough memory to allocate a new virtual 625 * mapping. 0 means there is enough memory for the allocation to 626 * succeed and -ENOMEM implies there is not. 627 * 628 * We currently support three overcommit policies, which are set via the 629 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst 630 * 631 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 632 * Additional code 2002 Jul 20 by Robert Love. 633 * 634 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 635 * 636 * Note this is a helper function intended to be used by LSMs which 637 * wish to use this logic. 638 */ 639 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 640 { 641 long free, allowed, reserve; 642 643 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 644 -(s64)vm_committed_as_batch * num_online_cpus(), 645 "memory commitment underflow"); 646 647 vm_acct_memory(pages); 648 649 /* 650 * Sometimes we want to use more memory than we have 651 */ 652 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 653 return 0; 654 655 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 656 free = global_zone_page_state(NR_FREE_PAGES); 657 free += global_node_page_state(NR_FILE_PAGES); 658 659 /* 660 * shmem pages shouldn't be counted as free in this 661 * case, they can't be purged, only swapped out, and 662 * that won't affect the overall amount of available 663 * memory in the system. 664 */ 665 free -= global_node_page_state(NR_SHMEM); 666 667 free += get_nr_swap_pages(); 668 669 /* 670 * Any slabs which are created with the 671 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 672 * which are reclaimable, under pressure. The dentry 673 * cache and most inode caches should fall into this 674 */ 675 free += global_node_page_state(NR_SLAB_RECLAIMABLE); 676 677 /* 678 * Part of the kernel memory, which can be released 679 * under memory pressure. 680 */ 681 free += global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 682 683 /* 684 * Leave reserved pages. The pages are not for anonymous pages. 685 */ 686 if (free <= totalreserve_pages) 687 goto error; 688 else 689 free -= totalreserve_pages; 690 691 /* 692 * Reserve some for root 693 */ 694 if (!cap_sys_admin) 695 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 696 697 if (free > pages) 698 return 0; 699 700 goto error; 701 } 702 703 allowed = vm_commit_limit(); 704 /* 705 * Reserve some for root 706 */ 707 if (!cap_sys_admin) 708 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 709 710 /* 711 * Don't let a single process grow so big a user can't recover 712 */ 713 if (mm) { 714 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 715 allowed -= min_t(long, mm->total_vm / 32, reserve); 716 } 717 718 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 719 return 0; 720 error: 721 vm_unacct_memory(pages); 722 723 return -ENOMEM; 724 } 725 726 /** 727 * get_cmdline() - copy the cmdline value to a buffer. 728 * @task: the task whose cmdline value to copy. 729 * @buffer: the buffer to copy to. 730 * @buflen: the length of the buffer. Larger cmdline values are truncated 731 * to this length. 732 * Returns the size of the cmdline field copied. Note that the copy does 733 * not guarantee an ending NULL byte. 734 */ 735 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 736 { 737 int res = 0; 738 unsigned int len; 739 struct mm_struct *mm = get_task_mm(task); 740 unsigned long arg_start, arg_end, env_start, env_end; 741 if (!mm) 742 goto out; 743 if (!mm->arg_end) 744 goto out_mm; /* Shh! No looking before we're done */ 745 746 down_read(&mm->mmap_sem); 747 arg_start = mm->arg_start; 748 arg_end = mm->arg_end; 749 env_start = mm->env_start; 750 env_end = mm->env_end; 751 up_read(&mm->mmap_sem); 752 753 len = arg_end - arg_start; 754 755 if (len > buflen) 756 len = buflen; 757 758 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 759 760 /* 761 * If the nul at the end of args has been overwritten, then 762 * assume application is using setproctitle(3). 763 */ 764 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 765 len = strnlen(buffer, res); 766 if (len < res) { 767 res = len; 768 } else { 769 len = env_end - env_start; 770 if (len > buflen - res) 771 len = buflen - res; 772 res += access_process_vm(task, env_start, 773 buffer+res, len, 774 FOLL_FORCE); 775 res = strnlen(buffer, res); 776 } 777 } 778 out_mm: 779 mmput(mm); 780 out: 781 return res; 782 } 783