xref: /openbmc/linux/mm/util.c (revision cd4d09ec)
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
14 
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17 
18 #include "internal.h"
19 
20 static inline int is_kernel_rodata(unsigned long addr)
21 {
22 	return addr >= (unsigned long)__start_rodata &&
23 		addr < (unsigned long)__end_rodata;
24 }
25 
26 /**
27  * kfree_const - conditionally free memory
28  * @x: pointer to the memory
29  *
30  * Function calls kfree only if @x is not in .rodata section.
31  */
32 void kfree_const(const void *x)
33 {
34 	if (!is_kernel_rodata((unsigned long)x))
35 		kfree(x);
36 }
37 EXPORT_SYMBOL(kfree_const);
38 
39 /**
40  * kstrdup - allocate space for and copy an existing string
41  * @s: the string to duplicate
42  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
43  */
44 char *kstrdup(const char *s, gfp_t gfp)
45 {
46 	size_t len;
47 	char *buf;
48 
49 	if (!s)
50 		return NULL;
51 
52 	len = strlen(s) + 1;
53 	buf = kmalloc_track_caller(len, gfp);
54 	if (buf)
55 		memcpy(buf, s, len);
56 	return buf;
57 }
58 EXPORT_SYMBOL(kstrdup);
59 
60 /**
61  * kstrdup_const - conditionally duplicate an existing const string
62  * @s: the string to duplicate
63  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
64  *
65  * Function returns source string if it is in .rodata section otherwise it
66  * fallbacks to kstrdup.
67  * Strings allocated by kstrdup_const should be freed by kfree_const.
68  */
69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71 	if (is_kernel_rodata((unsigned long)s))
72 		return s;
73 
74 	return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77 
78 /**
79  * kstrndup - allocate space for and copy an existing string
80  * @s: the string to duplicate
81  * @max: read at most @max chars from @s
82  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83  */
84 char *kstrndup(const char *s, size_t max, gfp_t gfp)
85 {
86 	size_t len;
87 	char *buf;
88 
89 	if (!s)
90 		return NULL;
91 
92 	len = strnlen(s, max);
93 	buf = kmalloc_track_caller(len+1, gfp);
94 	if (buf) {
95 		memcpy(buf, s, len);
96 		buf[len] = '\0';
97 	}
98 	return buf;
99 }
100 EXPORT_SYMBOL(kstrndup);
101 
102 /**
103  * kmemdup - duplicate region of memory
104  *
105  * @src: memory region to duplicate
106  * @len: memory region length
107  * @gfp: GFP mask to use
108  */
109 void *kmemdup(const void *src, size_t len, gfp_t gfp)
110 {
111 	void *p;
112 
113 	p = kmalloc_track_caller(len, gfp);
114 	if (p)
115 		memcpy(p, src, len);
116 	return p;
117 }
118 EXPORT_SYMBOL(kmemdup);
119 
120 /**
121  * memdup_user - duplicate memory region from user space
122  *
123  * @src: source address in user space
124  * @len: number of bytes to copy
125  *
126  * Returns an ERR_PTR() on failure.
127  */
128 void *memdup_user(const void __user *src, size_t len)
129 {
130 	void *p;
131 
132 	/*
133 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
134 	 * cause pagefault, which makes it pointless to use GFP_NOFS
135 	 * or GFP_ATOMIC.
136 	 */
137 	p = kmalloc_track_caller(len, GFP_KERNEL);
138 	if (!p)
139 		return ERR_PTR(-ENOMEM);
140 
141 	if (copy_from_user(p, src, len)) {
142 		kfree(p);
143 		return ERR_PTR(-EFAULT);
144 	}
145 
146 	return p;
147 }
148 EXPORT_SYMBOL(memdup_user);
149 
150 /*
151  * strndup_user - duplicate an existing string from user space
152  * @s: The string to duplicate
153  * @n: Maximum number of bytes to copy, including the trailing NUL.
154  */
155 char *strndup_user(const char __user *s, long n)
156 {
157 	char *p;
158 	long length;
159 
160 	length = strnlen_user(s, n);
161 
162 	if (!length)
163 		return ERR_PTR(-EFAULT);
164 
165 	if (length > n)
166 		return ERR_PTR(-EINVAL);
167 
168 	p = memdup_user(s, length);
169 
170 	if (IS_ERR(p))
171 		return p;
172 
173 	p[length - 1] = '\0';
174 
175 	return p;
176 }
177 EXPORT_SYMBOL(strndup_user);
178 
179 /**
180  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
181  *
182  * @src: source address in user space
183  * @len: number of bytes to copy
184  *
185  * Returns an ERR_PTR() on failure.
186  */
187 void *memdup_user_nul(const void __user *src, size_t len)
188 {
189 	char *p;
190 
191 	/*
192 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
193 	 * cause pagefault, which makes it pointless to use GFP_NOFS
194 	 * or GFP_ATOMIC.
195 	 */
196 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
197 	if (!p)
198 		return ERR_PTR(-ENOMEM);
199 
200 	if (copy_from_user(p, src, len)) {
201 		kfree(p);
202 		return ERR_PTR(-EFAULT);
203 	}
204 	p[len] = '\0';
205 
206 	return p;
207 }
208 EXPORT_SYMBOL(memdup_user_nul);
209 
210 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
211 		struct vm_area_struct *prev, struct rb_node *rb_parent)
212 {
213 	struct vm_area_struct *next;
214 
215 	vma->vm_prev = prev;
216 	if (prev) {
217 		next = prev->vm_next;
218 		prev->vm_next = vma;
219 	} else {
220 		mm->mmap = vma;
221 		if (rb_parent)
222 			next = rb_entry(rb_parent,
223 					struct vm_area_struct, vm_rb);
224 		else
225 			next = NULL;
226 	}
227 	vma->vm_next = next;
228 	if (next)
229 		next->vm_prev = vma;
230 }
231 
232 /* Check if the vma is being used as a stack by this task */
233 static int vm_is_stack_for_task(struct task_struct *t,
234 				struct vm_area_struct *vma)
235 {
236 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
237 }
238 
239 /*
240  * Check if the vma is being used as a stack.
241  * If is_group is non-zero, check in the entire thread group or else
242  * just check in the current task. Returns the task_struct of the task
243  * that the vma is stack for. Must be called under rcu_read_lock().
244  */
245 struct task_struct *task_of_stack(struct task_struct *task,
246 				struct vm_area_struct *vma, bool in_group)
247 {
248 	if (vm_is_stack_for_task(task, vma))
249 		return task;
250 
251 	if (in_group) {
252 		struct task_struct *t;
253 
254 		for_each_thread(task, t) {
255 			if (vm_is_stack_for_task(t, vma))
256 				return t;
257 		}
258 	}
259 
260 	return NULL;
261 }
262 
263 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
264 void arch_pick_mmap_layout(struct mm_struct *mm)
265 {
266 	mm->mmap_base = TASK_UNMAPPED_BASE;
267 	mm->get_unmapped_area = arch_get_unmapped_area;
268 }
269 #endif
270 
271 /*
272  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
273  * back to the regular GUP.
274  * If the architecture not support this function, simply return with no
275  * page pinned
276  */
277 int __weak __get_user_pages_fast(unsigned long start,
278 				 int nr_pages, int write, struct page **pages)
279 {
280 	return 0;
281 }
282 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
283 
284 /**
285  * get_user_pages_fast() - pin user pages in memory
286  * @start:	starting user address
287  * @nr_pages:	number of pages from start to pin
288  * @write:	whether pages will be written to
289  * @pages:	array that receives pointers to the pages pinned.
290  *		Should be at least nr_pages long.
291  *
292  * Returns number of pages pinned. This may be fewer than the number
293  * requested. If nr_pages is 0 or negative, returns 0. If no pages
294  * were pinned, returns -errno.
295  *
296  * get_user_pages_fast provides equivalent functionality to get_user_pages,
297  * operating on current and current->mm, with force=0 and vma=NULL. However
298  * unlike get_user_pages, it must be called without mmap_sem held.
299  *
300  * get_user_pages_fast may take mmap_sem and page table locks, so no
301  * assumptions can be made about lack of locking. get_user_pages_fast is to be
302  * implemented in a way that is advantageous (vs get_user_pages()) when the
303  * user memory area is already faulted in and present in ptes. However if the
304  * pages have to be faulted in, it may turn out to be slightly slower so
305  * callers need to carefully consider what to use. On many architectures,
306  * get_user_pages_fast simply falls back to get_user_pages.
307  */
308 int __weak get_user_pages_fast(unsigned long start,
309 				int nr_pages, int write, struct page **pages)
310 {
311 	struct mm_struct *mm = current->mm;
312 	return get_user_pages_unlocked(current, mm, start, nr_pages,
313 				       write, 0, pages);
314 }
315 EXPORT_SYMBOL_GPL(get_user_pages_fast);
316 
317 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
318 	unsigned long len, unsigned long prot,
319 	unsigned long flag, unsigned long pgoff)
320 {
321 	unsigned long ret;
322 	struct mm_struct *mm = current->mm;
323 	unsigned long populate;
324 
325 	ret = security_mmap_file(file, prot, flag);
326 	if (!ret) {
327 		down_write(&mm->mmap_sem);
328 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
329 				    &populate);
330 		up_write(&mm->mmap_sem);
331 		if (populate)
332 			mm_populate(ret, populate);
333 	}
334 	return ret;
335 }
336 
337 unsigned long vm_mmap(struct file *file, unsigned long addr,
338 	unsigned long len, unsigned long prot,
339 	unsigned long flag, unsigned long offset)
340 {
341 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
342 		return -EINVAL;
343 	if (unlikely(offset_in_page(offset)))
344 		return -EINVAL;
345 
346 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
347 }
348 EXPORT_SYMBOL(vm_mmap);
349 
350 void kvfree(const void *addr)
351 {
352 	if (is_vmalloc_addr(addr))
353 		vfree(addr);
354 	else
355 		kfree(addr);
356 }
357 EXPORT_SYMBOL(kvfree);
358 
359 static inline void *__page_rmapping(struct page *page)
360 {
361 	unsigned long mapping;
362 
363 	mapping = (unsigned long)page->mapping;
364 	mapping &= ~PAGE_MAPPING_FLAGS;
365 
366 	return (void *)mapping;
367 }
368 
369 /* Neutral page->mapping pointer to address_space or anon_vma or other */
370 void *page_rmapping(struct page *page)
371 {
372 	page = compound_head(page);
373 	return __page_rmapping(page);
374 }
375 
376 struct anon_vma *page_anon_vma(struct page *page)
377 {
378 	unsigned long mapping;
379 
380 	page = compound_head(page);
381 	mapping = (unsigned long)page->mapping;
382 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
383 		return NULL;
384 	return __page_rmapping(page);
385 }
386 
387 struct address_space *page_mapping(struct page *page)
388 {
389 	struct address_space *mapping;
390 
391 	page = compound_head(page);
392 
393 	/* This happens if someone calls flush_dcache_page on slab page */
394 	if (unlikely(PageSlab(page)))
395 		return NULL;
396 
397 	if (unlikely(PageSwapCache(page))) {
398 		swp_entry_t entry;
399 
400 		entry.val = page_private(page);
401 		return swap_address_space(entry);
402 	}
403 
404 	mapping = page->mapping;
405 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
406 		return NULL;
407 	return mapping;
408 }
409 
410 /* Slow path of page_mapcount() for compound pages */
411 int __page_mapcount(struct page *page)
412 {
413 	int ret;
414 
415 	ret = atomic_read(&page->_mapcount) + 1;
416 	page = compound_head(page);
417 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
418 	if (PageDoubleMap(page))
419 		ret--;
420 	return ret;
421 }
422 EXPORT_SYMBOL_GPL(__page_mapcount);
423 
424 int overcommit_ratio_handler(struct ctl_table *table, int write,
425 			     void __user *buffer, size_t *lenp,
426 			     loff_t *ppos)
427 {
428 	int ret;
429 
430 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
431 	if (ret == 0 && write)
432 		sysctl_overcommit_kbytes = 0;
433 	return ret;
434 }
435 
436 int overcommit_kbytes_handler(struct ctl_table *table, int write,
437 			     void __user *buffer, size_t *lenp,
438 			     loff_t *ppos)
439 {
440 	int ret;
441 
442 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
443 	if (ret == 0 && write)
444 		sysctl_overcommit_ratio = 0;
445 	return ret;
446 }
447 
448 /*
449  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
450  */
451 unsigned long vm_commit_limit(void)
452 {
453 	unsigned long allowed;
454 
455 	if (sysctl_overcommit_kbytes)
456 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
457 	else
458 		allowed = ((totalram_pages - hugetlb_total_pages())
459 			   * sysctl_overcommit_ratio / 100);
460 	allowed += total_swap_pages;
461 
462 	return allowed;
463 }
464 
465 /**
466  * get_cmdline() - copy the cmdline value to a buffer.
467  * @task:     the task whose cmdline value to copy.
468  * @buffer:   the buffer to copy to.
469  * @buflen:   the length of the buffer. Larger cmdline values are truncated
470  *            to this length.
471  * Returns the size of the cmdline field copied. Note that the copy does
472  * not guarantee an ending NULL byte.
473  */
474 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
475 {
476 	int res = 0;
477 	unsigned int len;
478 	struct mm_struct *mm = get_task_mm(task);
479 	unsigned long arg_start, arg_end, env_start, env_end;
480 	if (!mm)
481 		goto out;
482 	if (!mm->arg_end)
483 		goto out_mm;	/* Shh! No looking before we're done */
484 
485 	down_read(&mm->mmap_sem);
486 	arg_start = mm->arg_start;
487 	arg_end = mm->arg_end;
488 	env_start = mm->env_start;
489 	env_end = mm->env_end;
490 	up_read(&mm->mmap_sem);
491 
492 	len = arg_end - arg_start;
493 
494 	if (len > buflen)
495 		len = buflen;
496 
497 	res = access_process_vm(task, arg_start, buffer, len, 0);
498 
499 	/*
500 	 * If the nul at the end of args has been overwritten, then
501 	 * assume application is using setproctitle(3).
502 	 */
503 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
504 		len = strnlen(buffer, res);
505 		if (len < res) {
506 			res = len;
507 		} else {
508 			len = env_end - env_start;
509 			if (len > buflen - res)
510 				len = buflen - res;
511 			res += access_process_vm(task, env_start,
512 						 buffer+res, len, 0);
513 			res = strnlen(buffer, res);
514 		}
515 	}
516 out_mm:
517 	mmput(mm);
518 out:
519 	return res;
520 }
521