xref: /openbmc/linux/mm/util.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
14 
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17 
18 #include "internal.h"
19 
20 static inline int is_kernel_rodata(unsigned long addr)
21 {
22 	return addr >= (unsigned long)__start_rodata &&
23 		addr < (unsigned long)__end_rodata;
24 }
25 
26 /**
27  * kfree_const - conditionally free memory
28  * @x: pointer to the memory
29  *
30  * Function calls kfree only if @x is not in .rodata section.
31  */
32 void kfree_const(const void *x)
33 {
34 	if (!is_kernel_rodata((unsigned long)x))
35 		kfree(x);
36 }
37 EXPORT_SYMBOL(kfree_const);
38 
39 /**
40  * kstrdup - allocate space for and copy an existing string
41  * @s: the string to duplicate
42  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
43  */
44 char *kstrdup(const char *s, gfp_t gfp)
45 {
46 	size_t len;
47 	char *buf;
48 
49 	if (!s)
50 		return NULL;
51 
52 	len = strlen(s) + 1;
53 	buf = kmalloc_track_caller(len, gfp);
54 	if (buf)
55 		memcpy(buf, s, len);
56 	return buf;
57 }
58 EXPORT_SYMBOL(kstrdup);
59 
60 /**
61  * kstrdup_const - conditionally duplicate an existing const string
62  * @s: the string to duplicate
63  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
64  *
65  * Function returns source string if it is in .rodata section otherwise it
66  * fallbacks to kstrdup.
67  * Strings allocated by kstrdup_const should be freed by kfree_const.
68  */
69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71 	if (is_kernel_rodata((unsigned long)s))
72 		return s;
73 
74 	return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77 
78 /**
79  * kstrndup - allocate space for and copy an existing string
80  * @s: the string to duplicate
81  * @max: read at most @max chars from @s
82  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83  */
84 char *kstrndup(const char *s, size_t max, gfp_t gfp)
85 {
86 	size_t len;
87 	char *buf;
88 
89 	if (!s)
90 		return NULL;
91 
92 	len = strnlen(s, max);
93 	buf = kmalloc_track_caller(len+1, gfp);
94 	if (buf) {
95 		memcpy(buf, s, len);
96 		buf[len] = '\0';
97 	}
98 	return buf;
99 }
100 EXPORT_SYMBOL(kstrndup);
101 
102 /**
103  * kmemdup - duplicate region of memory
104  *
105  * @src: memory region to duplicate
106  * @len: memory region length
107  * @gfp: GFP mask to use
108  */
109 void *kmemdup(const void *src, size_t len, gfp_t gfp)
110 {
111 	void *p;
112 
113 	p = kmalloc_track_caller(len, gfp);
114 	if (p)
115 		memcpy(p, src, len);
116 	return p;
117 }
118 EXPORT_SYMBOL(kmemdup);
119 
120 /**
121  * memdup_user - duplicate memory region from user space
122  *
123  * @src: source address in user space
124  * @len: number of bytes to copy
125  *
126  * Returns an ERR_PTR() on failure.
127  */
128 void *memdup_user(const void __user *src, size_t len)
129 {
130 	void *p;
131 
132 	/*
133 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
134 	 * cause pagefault, which makes it pointless to use GFP_NOFS
135 	 * or GFP_ATOMIC.
136 	 */
137 	p = kmalloc_track_caller(len, GFP_KERNEL);
138 	if (!p)
139 		return ERR_PTR(-ENOMEM);
140 
141 	if (copy_from_user(p, src, len)) {
142 		kfree(p);
143 		return ERR_PTR(-EFAULT);
144 	}
145 
146 	return p;
147 }
148 EXPORT_SYMBOL(memdup_user);
149 
150 /*
151  * strndup_user - duplicate an existing string from user space
152  * @s: The string to duplicate
153  * @n: Maximum number of bytes to copy, including the trailing NUL.
154  */
155 char *strndup_user(const char __user *s, long n)
156 {
157 	char *p;
158 	long length;
159 
160 	length = strnlen_user(s, n);
161 
162 	if (!length)
163 		return ERR_PTR(-EFAULT);
164 
165 	if (length > n)
166 		return ERR_PTR(-EINVAL);
167 
168 	p = memdup_user(s, length);
169 
170 	if (IS_ERR(p))
171 		return p;
172 
173 	p[length - 1] = '\0';
174 
175 	return p;
176 }
177 EXPORT_SYMBOL(strndup_user);
178 
179 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
180 		struct vm_area_struct *prev, struct rb_node *rb_parent)
181 {
182 	struct vm_area_struct *next;
183 
184 	vma->vm_prev = prev;
185 	if (prev) {
186 		next = prev->vm_next;
187 		prev->vm_next = vma;
188 	} else {
189 		mm->mmap = vma;
190 		if (rb_parent)
191 			next = rb_entry(rb_parent,
192 					struct vm_area_struct, vm_rb);
193 		else
194 			next = NULL;
195 	}
196 	vma->vm_next = next;
197 	if (next)
198 		next->vm_prev = vma;
199 }
200 
201 /* Check if the vma is being used as a stack by this task */
202 static int vm_is_stack_for_task(struct task_struct *t,
203 				struct vm_area_struct *vma)
204 {
205 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
206 }
207 
208 /*
209  * Check if the vma is being used as a stack.
210  * If is_group is non-zero, check in the entire thread group or else
211  * just check in the current task. Returns the task_struct of the task
212  * that the vma is stack for. Must be called under rcu_read_lock().
213  */
214 struct task_struct *task_of_stack(struct task_struct *task,
215 				struct vm_area_struct *vma, bool in_group)
216 {
217 	if (vm_is_stack_for_task(task, vma))
218 		return task;
219 
220 	if (in_group) {
221 		struct task_struct *t;
222 
223 		for_each_thread(task, t) {
224 			if (vm_is_stack_for_task(t, vma))
225 				return t;
226 		}
227 	}
228 
229 	return NULL;
230 }
231 
232 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
233 void arch_pick_mmap_layout(struct mm_struct *mm)
234 {
235 	mm->mmap_base = TASK_UNMAPPED_BASE;
236 	mm->get_unmapped_area = arch_get_unmapped_area;
237 }
238 #endif
239 
240 /*
241  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
242  * back to the regular GUP.
243  * If the architecture not support this function, simply return with no
244  * page pinned
245  */
246 int __weak __get_user_pages_fast(unsigned long start,
247 				 int nr_pages, int write, struct page **pages)
248 {
249 	return 0;
250 }
251 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
252 
253 /**
254  * get_user_pages_fast() - pin user pages in memory
255  * @start:	starting user address
256  * @nr_pages:	number of pages from start to pin
257  * @write:	whether pages will be written to
258  * @pages:	array that receives pointers to the pages pinned.
259  *		Should be at least nr_pages long.
260  *
261  * Returns number of pages pinned. This may be fewer than the number
262  * requested. If nr_pages is 0 or negative, returns 0. If no pages
263  * were pinned, returns -errno.
264  *
265  * get_user_pages_fast provides equivalent functionality to get_user_pages,
266  * operating on current and current->mm, with force=0 and vma=NULL. However
267  * unlike get_user_pages, it must be called without mmap_sem held.
268  *
269  * get_user_pages_fast may take mmap_sem and page table locks, so no
270  * assumptions can be made about lack of locking. get_user_pages_fast is to be
271  * implemented in a way that is advantageous (vs get_user_pages()) when the
272  * user memory area is already faulted in and present in ptes. However if the
273  * pages have to be faulted in, it may turn out to be slightly slower so
274  * callers need to carefully consider what to use. On many architectures,
275  * get_user_pages_fast simply falls back to get_user_pages.
276  */
277 int __weak get_user_pages_fast(unsigned long start,
278 				int nr_pages, int write, struct page **pages)
279 {
280 	struct mm_struct *mm = current->mm;
281 	return get_user_pages_unlocked(current, mm, start, nr_pages,
282 				       write, 0, pages);
283 }
284 EXPORT_SYMBOL_GPL(get_user_pages_fast);
285 
286 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
287 	unsigned long len, unsigned long prot,
288 	unsigned long flag, unsigned long pgoff)
289 {
290 	unsigned long ret;
291 	struct mm_struct *mm = current->mm;
292 	unsigned long populate;
293 
294 	ret = security_mmap_file(file, prot, flag);
295 	if (!ret) {
296 		down_write(&mm->mmap_sem);
297 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
298 				    &populate);
299 		up_write(&mm->mmap_sem);
300 		if (populate)
301 			mm_populate(ret, populate);
302 	}
303 	return ret;
304 }
305 
306 unsigned long vm_mmap(struct file *file, unsigned long addr,
307 	unsigned long len, unsigned long prot,
308 	unsigned long flag, unsigned long offset)
309 {
310 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
311 		return -EINVAL;
312 	if (unlikely(offset & ~PAGE_MASK))
313 		return -EINVAL;
314 
315 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
316 }
317 EXPORT_SYMBOL(vm_mmap);
318 
319 void kvfree(const void *addr)
320 {
321 	if (is_vmalloc_addr(addr))
322 		vfree(addr);
323 	else
324 		kfree(addr);
325 }
326 EXPORT_SYMBOL(kvfree);
327 
328 static inline void *__page_rmapping(struct page *page)
329 {
330 	unsigned long mapping;
331 
332 	mapping = (unsigned long)page->mapping;
333 	mapping &= ~PAGE_MAPPING_FLAGS;
334 
335 	return (void *)mapping;
336 }
337 
338 /* Neutral page->mapping pointer to address_space or anon_vma or other */
339 void *page_rmapping(struct page *page)
340 {
341 	page = compound_head(page);
342 	return __page_rmapping(page);
343 }
344 
345 struct anon_vma *page_anon_vma(struct page *page)
346 {
347 	unsigned long mapping;
348 
349 	page = compound_head(page);
350 	mapping = (unsigned long)page->mapping;
351 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
352 		return NULL;
353 	return __page_rmapping(page);
354 }
355 
356 struct address_space *page_mapping(struct page *page)
357 {
358 	unsigned long mapping;
359 
360 	/* This happens if someone calls flush_dcache_page on slab page */
361 	if (unlikely(PageSlab(page)))
362 		return NULL;
363 
364 	if (unlikely(PageSwapCache(page))) {
365 		swp_entry_t entry;
366 
367 		entry.val = page_private(page);
368 		return swap_address_space(entry);
369 	}
370 
371 	mapping = (unsigned long)page->mapping;
372 	if (mapping & PAGE_MAPPING_FLAGS)
373 		return NULL;
374 	return page->mapping;
375 }
376 
377 int overcommit_ratio_handler(struct ctl_table *table, int write,
378 			     void __user *buffer, size_t *lenp,
379 			     loff_t *ppos)
380 {
381 	int ret;
382 
383 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
384 	if (ret == 0 && write)
385 		sysctl_overcommit_kbytes = 0;
386 	return ret;
387 }
388 
389 int overcommit_kbytes_handler(struct ctl_table *table, int write,
390 			     void __user *buffer, size_t *lenp,
391 			     loff_t *ppos)
392 {
393 	int ret;
394 
395 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
396 	if (ret == 0 && write)
397 		sysctl_overcommit_ratio = 0;
398 	return ret;
399 }
400 
401 /*
402  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
403  */
404 unsigned long vm_commit_limit(void)
405 {
406 	unsigned long allowed;
407 
408 	if (sysctl_overcommit_kbytes)
409 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
410 	else
411 		allowed = ((totalram_pages - hugetlb_total_pages())
412 			   * sysctl_overcommit_ratio / 100);
413 	allowed += total_swap_pages;
414 
415 	return allowed;
416 }
417 
418 /**
419  * get_cmdline() - copy the cmdline value to a buffer.
420  * @task:     the task whose cmdline value to copy.
421  * @buffer:   the buffer to copy to.
422  * @buflen:   the length of the buffer. Larger cmdline values are truncated
423  *            to this length.
424  * Returns the size of the cmdline field copied. Note that the copy does
425  * not guarantee an ending NULL byte.
426  */
427 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
428 {
429 	int res = 0;
430 	unsigned int len;
431 	struct mm_struct *mm = get_task_mm(task);
432 	if (!mm)
433 		goto out;
434 	if (!mm->arg_end)
435 		goto out_mm;	/* Shh! No looking before we're done */
436 
437 	len = mm->arg_end - mm->arg_start;
438 
439 	if (len > buflen)
440 		len = buflen;
441 
442 	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
443 
444 	/*
445 	 * If the nul at the end of args has been overwritten, then
446 	 * assume application is using setproctitle(3).
447 	 */
448 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
449 		len = strnlen(buffer, res);
450 		if (len < res) {
451 			res = len;
452 		} else {
453 			len = mm->env_end - mm->env_start;
454 			if (len > buflen - res)
455 				len = buflen - res;
456 			res += access_process_vm(task, mm->env_start,
457 						 buffer+res, len, 0);
458 			res = strnlen(buffer, res);
459 		}
460 	}
461 out_mm:
462 	mmput(mm);
463 out:
464 	return res;
465 }
466