xref: /openbmc/linux/mm/util.c (revision a5b2c10c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 /**
32  * kfree_const - conditionally free memory
33  * @x: pointer to the memory
34  *
35  * Function calls kfree only if @x is not in .rodata section.
36  */
37 void kfree_const(const void *x)
38 {
39 	if (!is_kernel_rodata((unsigned long)x))
40 		kfree(x);
41 }
42 EXPORT_SYMBOL(kfree_const);
43 
44 /**
45  * kstrdup - allocate space for and copy an existing string
46  * @s: the string to duplicate
47  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48  *
49  * Return: newly allocated copy of @s or %NULL in case of error
50  */
51 char *kstrdup(const char *s, gfp_t gfp)
52 {
53 	size_t len;
54 	char *buf;
55 
56 	if (!s)
57 		return NULL;
58 
59 	len = strlen(s) + 1;
60 	buf = kmalloc_track_caller(len, gfp);
61 	if (buf)
62 		memcpy(buf, s, len);
63 	return buf;
64 }
65 EXPORT_SYMBOL(kstrdup);
66 
67 /**
68  * kstrdup_const - conditionally duplicate an existing const string
69  * @s: the string to duplicate
70  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71  *
72  * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
73  *
74  * Return: source string if it is in .rodata section otherwise
75  * fallback to kstrdup.
76  */
77 const char *kstrdup_const(const char *s, gfp_t gfp)
78 {
79 	if (is_kernel_rodata((unsigned long)s))
80 		return s;
81 
82 	return kstrdup(s, gfp);
83 }
84 EXPORT_SYMBOL(kstrdup_const);
85 
86 /**
87  * kstrndup - allocate space for and copy an existing string
88  * @s: the string to duplicate
89  * @max: read at most @max chars from @s
90  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
91  *
92  * Note: Use kmemdup_nul() instead if the size is known exactly.
93  *
94  * Return: newly allocated copy of @s or %NULL in case of error
95  */
96 char *kstrndup(const char *s, size_t max, gfp_t gfp)
97 {
98 	size_t len;
99 	char *buf;
100 
101 	if (!s)
102 		return NULL;
103 
104 	len = strnlen(s, max);
105 	buf = kmalloc_track_caller(len+1, gfp);
106 	if (buf) {
107 		memcpy(buf, s, len);
108 		buf[len] = '\0';
109 	}
110 	return buf;
111 }
112 EXPORT_SYMBOL(kstrndup);
113 
114 /**
115  * kmemdup - duplicate region of memory
116  *
117  * @src: memory region to duplicate
118  * @len: memory region length
119  * @gfp: GFP mask to use
120  *
121  * Return: newly allocated copy of @src or %NULL in case of error
122  */
123 void *kmemdup(const void *src, size_t len, gfp_t gfp)
124 {
125 	void *p;
126 
127 	p = kmalloc_track_caller(len, gfp);
128 	if (p)
129 		memcpy(p, src, len);
130 	return p;
131 }
132 EXPORT_SYMBOL(kmemdup);
133 
134 /**
135  * kmemdup_nul - Create a NUL-terminated string from unterminated data
136  * @s: The data to stringify
137  * @len: The size of the data
138  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
139  *
140  * Return: newly allocated copy of @s with NUL-termination or %NULL in
141  * case of error
142  */
143 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
144 {
145 	char *buf;
146 
147 	if (!s)
148 		return NULL;
149 
150 	buf = kmalloc_track_caller(len + 1, gfp);
151 	if (buf) {
152 		memcpy(buf, s, len);
153 		buf[len] = '\0';
154 	}
155 	return buf;
156 }
157 EXPORT_SYMBOL(kmemdup_nul);
158 
159 /**
160  * memdup_user - duplicate memory region from user space
161  *
162  * @src: source address in user space
163  * @len: number of bytes to copy
164  *
165  * Return: an ERR_PTR() on failure.  Result is physically
166  * contiguous, to be freed by kfree().
167  */
168 void *memdup_user(const void __user *src, size_t len)
169 {
170 	void *p;
171 
172 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
173 	if (!p)
174 		return ERR_PTR(-ENOMEM);
175 
176 	if (copy_from_user(p, src, len)) {
177 		kfree(p);
178 		return ERR_PTR(-EFAULT);
179 	}
180 
181 	return p;
182 }
183 EXPORT_SYMBOL(memdup_user);
184 
185 /**
186  * vmemdup_user - duplicate memory region from user space
187  *
188  * @src: source address in user space
189  * @len: number of bytes to copy
190  *
191  * Return: an ERR_PTR() on failure.  Result may be not
192  * physically contiguous.  Use kvfree() to free.
193  */
194 void *vmemdup_user(const void __user *src, size_t len)
195 {
196 	void *p;
197 
198 	p = kvmalloc(len, GFP_USER);
199 	if (!p)
200 		return ERR_PTR(-ENOMEM);
201 
202 	if (copy_from_user(p, src, len)) {
203 		kvfree(p);
204 		return ERR_PTR(-EFAULT);
205 	}
206 
207 	return p;
208 }
209 EXPORT_SYMBOL(vmemdup_user);
210 
211 /**
212  * strndup_user - duplicate an existing string from user space
213  * @s: The string to duplicate
214  * @n: Maximum number of bytes to copy, including the trailing NUL.
215  *
216  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
217  */
218 char *strndup_user(const char __user *s, long n)
219 {
220 	char *p;
221 	long length;
222 
223 	length = strnlen_user(s, n);
224 
225 	if (!length)
226 		return ERR_PTR(-EFAULT);
227 
228 	if (length > n)
229 		return ERR_PTR(-EINVAL);
230 
231 	p = memdup_user(s, length);
232 
233 	if (IS_ERR(p))
234 		return p;
235 
236 	p[length - 1] = '\0';
237 
238 	return p;
239 }
240 EXPORT_SYMBOL(strndup_user);
241 
242 /**
243  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
244  *
245  * @src: source address in user space
246  * @len: number of bytes to copy
247  *
248  * Return: an ERR_PTR() on failure.
249  */
250 void *memdup_user_nul(const void __user *src, size_t len)
251 {
252 	char *p;
253 
254 	/*
255 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
256 	 * cause pagefault, which makes it pointless to use GFP_NOFS
257 	 * or GFP_ATOMIC.
258 	 */
259 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
260 	if (!p)
261 		return ERR_PTR(-ENOMEM);
262 
263 	if (copy_from_user(p, src, len)) {
264 		kfree(p);
265 		return ERR_PTR(-EFAULT);
266 	}
267 	p[len] = '\0';
268 
269 	return p;
270 }
271 EXPORT_SYMBOL(memdup_user_nul);
272 
273 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
274 		struct vm_area_struct *prev)
275 {
276 	struct vm_area_struct *next;
277 
278 	vma->vm_prev = prev;
279 	if (prev) {
280 		next = prev->vm_next;
281 		prev->vm_next = vma;
282 	} else {
283 		next = mm->mmap;
284 		mm->mmap = vma;
285 	}
286 	vma->vm_next = next;
287 	if (next)
288 		next->vm_prev = vma;
289 }
290 
291 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
292 {
293 	struct vm_area_struct *prev, *next;
294 
295 	next = vma->vm_next;
296 	prev = vma->vm_prev;
297 	if (prev)
298 		prev->vm_next = next;
299 	else
300 		mm->mmap = next;
301 	if (next)
302 		next->vm_prev = prev;
303 }
304 
305 /* Check if the vma is being used as a stack by this task */
306 int vma_is_stack_for_current(struct vm_area_struct *vma)
307 {
308 	struct task_struct * __maybe_unused t = current;
309 
310 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
311 }
312 
313 #ifndef STACK_RND_MASK
314 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
315 #endif
316 
317 unsigned long randomize_stack_top(unsigned long stack_top)
318 {
319 	unsigned long random_variable = 0;
320 
321 	if (current->flags & PF_RANDOMIZE) {
322 		random_variable = get_random_long();
323 		random_variable &= STACK_RND_MASK;
324 		random_variable <<= PAGE_SHIFT;
325 	}
326 #ifdef CONFIG_STACK_GROWSUP
327 	return PAGE_ALIGN(stack_top) + random_variable;
328 #else
329 	return PAGE_ALIGN(stack_top) - random_variable;
330 #endif
331 }
332 
333 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
334 unsigned long arch_randomize_brk(struct mm_struct *mm)
335 {
336 	/* Is the current task 32bit ? */
337 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
338 		return randomize_page(mm->brk, SZ_32M);
339 
340 	return randomize_page(mm->brk, SZ_1G);
341 }
342 
343 unsigned long arch_mmap_rnd(void)
344 {
345 	unsigned long rnd;
346 
347 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
348 	if (is_compat_task())
349 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
350 	else
351 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
352 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
353 
354 	return rnd << PAGE_SHIFT;
355 }
356 
357 static int mmap_is_legacy(struct rlimit *rlim_stack)
358 {
359 	if (current->personality & ADDR_COMPAT_LAYOUT)
360 		return 1;
361 
362 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
363 		return 1;
364 
365 	return sysctl_legacy_va_layout;
366 }
367 
368 /*
369  * Leave enough space between the mmap area and the stack to honour ulimit in
370  * the face of randomisation.
371  */
372 #define MIN_GAP		(SZ_128M)
373 #define MAX_GAP		(STACK_TOP / 6 * 5)
374 
375 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
376 {
377 	unsigned long gap = rlim_stack->rlim_cur;
378 	unsigned long pad = stack_guard_gap;
379 
380 	/* Account for stack randomization if necessary */
381 	if (current->flags & PF_RANDOMIZE)
382 		pad += (STACK_RND_MASK << PAGE_SHIFT);
383 
384 	/* Values close to RLIM_INFINITY can overflow. */
385 	if (gap + pad > gap)
386 		gap += pad;
387 
388 	if (gap < MIN_GAP)
389 		gap = MIN_GAP;
390 	else if (gap > MAX_GAP)
391 		gap = MAX_GAP;
392 
393 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
394 }
395 
396 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
397 {
398 	unsigned long random_factor = 0UL;
399 
400 	if (current->flags & PF_RANDOMIZE)
401 		random_factor = arch_mmap_rnd();
402 
403 	if (mmap_is_legacy(rlim_stack)) {
404 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
405 		mm->get_unmapped_area = arch_get_unmapped_area;
406 	} else {
407 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
408 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
409 	}
410 }
411 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
412 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
413 {
414 	mm->mmap_base = TASK_UNMAPPED_BASE;
415 	mm->get_unmapped_area = arch_get_unmapped_area;
416 }
417 #endif
418 
419 /**
420  * __account_locked_vm - account locked pages to an mm's locked_vm
421  * @mm:          mm to account against
422  * @pages:       number of pages to account
423  * @inc:         %true if @pages should be considered positive, %false if not
424  * @task:        task used to check RLIMIT_MEMLOCK
425  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
426  *
427  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
428  * that mmap_lock is held as writer.
429  *
430  * Return:
431  * * 0       on success
432  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
433  */
434 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
435 			struct task_struct *task, bool bypass_rlim)
436 {
437 	unsigned long locked_vm, limit;
438 	int ret = 0;
439 
440 	mmap_assert_write_locked(mm);
441 
442 	locked_vm = mm->locked_vm;
443 	if (inc) {
444 		if (!bypass_rlim) {
445 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
446 			if (locked_vm + pages > limit)
447 				ret = -ENOMEM;
448 		}
449 		if (!ret)
450 			mm->locked_vm = locked_vm + pages;
451 	} else {
452 		WARN_ON_ONCE(pages > locked_vm);
453 		mm->locked_vm = locked_vm - pages;
454 	}
455 
456 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
457 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
458 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
459 		 ret ? " - exceeded" : "");
460 
461 	return ret;
462 }
463 EXPORT_SYMBOL_GPL(__account_locked_vm);
464 
465 /**
466  * account_locked_vm - account locked pages to an mm's locked_vm
467  * @mm:          mm to account against, may be NULL
468  * @pages:       number of pages to account
469  * @inc:         %true if @pages should be considered positive, %false if not
470  *
471  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
472  *
473  * Return:
474  * * 0       on success, or if mm is NULL
475  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
476  */
477 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
478 {
479 	int ret;
480 
481 	if (pages == 0 || !mm)
482 		return 0;
483 
484 	mmap_write_lock(mm);
485 	ret = __account_locked_vm(mm, pages, inc, current,
486 				  capable(CAP_IPC_LOCK));
487 	mmap_write_unlock(mm);
488 
489 	return ret;
490 }
491 EXPORT_SYMBOL_GPL(account_locked_vm);
492 
493 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
494 	unsigned long len, unsigned long prot,
495 	unsigned long flag, unsigned long pgoff)
496 {
497 	unsigned long ret;
498 	struct mm_struct *mm = current->mm;
499 	unsigned long populate;
500 	LIST_HEAD(uf);
501 
502 	ret = security_mmap_file(file, prot, flag);
503 	if (!ret) {
504 		if (mmap_write_lock_killable(mm))
505 			return -EINTR;
506 		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
507 			      &uf);
508 		mmap_write_unlock(mm);
509 		userfaultfd_unmap_complete(mm, &uf);
510 		if (populate)
511 			mm_populate(ret, populate);
512 	}
513 	return ret;
514 }
515 
516 unsigned long vm_mmap(struct file *file, unsigned long addr,
517 	unsigned long len, unsigned long prot,
518 	unsigned long flag, unsigned long offset)
519 {
520 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
521 		return -EINVAL;
522 	if (unlikely(offset_in_page(offset)))
523 		return -EINVAL;
524 
525 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
526 }
527 EXPORT_SYMBOL(vm_mmap);
528 
529 /**
530  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
531  * failure, fall back to non-contiguous (vmalloc) allocation.
532  * @size: size of the request.
533  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
534  * @node: numa node to allocate from
535  *
536  * Uses kmalloc to get the memory but if the allocation fails then falls back
537  * to the vmalloc allocator. Use kvfree for freeing the memory.
538  *
539  * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
540  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
541  * preferable to the vmalloc fallback, due to visible performance drawbacks.
542  *
543  * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
544  * fall back to vmalloc.
545  *
546  * Return: pointer to the allocated memory of %NULL in case of failure
547  */
548 void *kvmalloc_node(size_t size, gfp_t flags, int node)
549 {
550 	gfp_t kmalloc_flags = flags;
551 	void *ret;
552 
553 	/*
554 	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
555 	 * so the given set of flags has to be compatible.
556 	 */
557 	if ((flags & GFP_KERNEL) != GFP_KERNEL)
558 		return kmalloc_node(size, flags, node);
559 
560 	/*
561 	 * We want to attempt a large physically contiguous block first because
562 	 * it is less likely to fragment multiple larger blocks and therefore
563 	 * contribute to a long term fragmentation less than vmalloc fallback.
564 	 * However make sure that larger requests are not too disruptive - no
565 	 * OOM killer and no allocation failure warnings as we have a fallback.
566 	 */
567 	if (size > PAGE_SIZE) {
568 		kmalloc_flags |= __GFP_NOWARN;
569 
570 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
571 			kmalloc_flags |= __GFP_NORETRY;
572 	}
573 
574 	ret = kmalloc_node(size, kmalloc_flags, node);
575 
576 	/*
577 	 * It doesn't really make sense to fallback to vmalloc for sub page
578 	 * requests
579 	 */
580 	if (ret || size <= PAGE_SIZE)
581 		return ret;
582 
583 	return __vmalloc_node(size, 1, flags, node,
584 			__builtin_return_address(0));
585 }
586 EXPORT_SYMBOL(kvmalloc_node);
587 
588 /**
589  * kvfree() - Free memory.
590  * @addr: Pointer to allocated memory.
591  *
592  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
593  * It is slightly more efficient to use kfree() or vfree() if you are certain
594  * that you know which one to use.
595  *
596  * Context: Either preemptible task context or not-NMI interrupt.
597  */
598 void kvfree(const void *addr)
599 {
600 	if (is_vmalloc_addr(addr))
601 		vfree(addr);
602 	else
603 		kfree(addr);
604 }
605 EXPORT_SYMBOL(kvfree);
606 
607 /**
608  * kvfree_sensitive - Free a data object containing sensitive information.
609  * @addr: address of the data object to be freed.
610  * @len: length of the data object.
611  *
612  * Use the special memzero_explicit() function to clear the content of a
613  * kvmalloc'ed object containing sensitive data to make sure that the
614  * compiler won't optimize out the data clearing.
615  */
616 void kvfree_sensitive(const void *addr, size_t len)
617 {
618 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
619 		memzero_explicit((void *)addr, len);
620 		kvfree(addr);
621 	}
622 }
623 EXPORT_SYMBOL(kvfree_sensitive);
624 
625 static inline void *__page_rmapping(struct page *page)
626 {
627 	unsigned long mapping;
628 
629 	mapping = (unsigned long)page->mapping;
630 	mapping &= ~PAGE_MAPPING_FLAGS;
631 
632 	return (void *)mapping;
633 }
634 
635 /* Neutral page->mapping pointer to address_space or anon_vma or other */
636 void *page_rmapping(struct page *page)
637 {
638 	page = compound_head(page);
639 	return __page_rmapping(page);
640 }
641 
642 /*
643  * Return true if this page is mapped into pagetables.
644  * For compound page it returns true if any subpage of compound page is mapped.
645  */
646 bool page_mapped(struct page *page)
647 {
648 	int i;
649 
650 	if (likely(!PageCompound(page)))
651 		return atomic_read(&page->_mapcount) >= 0;
652 	page = compound_head(page);
653 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
654 		return true;
655 	if (PageHuge(page))
656 		return false;
657 	for (i = 0; i < compound_nr(page); i++) {
658 		if (atomic_read(&page[i]._mapcount) >= 0)
659 			return true;
660 	}
661 	return false;
662 }
663 EXPORT_SYMBOL(page_mapped);
664 
665 struct anon_vma *page_anon_vma(struct page *page)
666 {
667 	unsigned long mapping;
668 
669 	page = compound_head(page);
670 	mapping = (unsigned long)page->mapping;
671 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
672 		return NULL;
673 	return __page_rmapping(page);
674 }
675 
676 struct address_space *page_mapping(struct page *page)
677 {
678 	struct address_space *mapping;
679 
680 	page = compound_head(page);
681 
682 	/* This happens if someone calls flush_dcache_page on slab page */
683 	if (unlikely(PageSlab(page)))
684 		return NULL;
685 
686 	if (unlikely(PageSwapCache(page))) {
687 		swp_entry_t entry;
688 
689 		entry.val = page_private(page);
690 		return swap_address_space(entry);
691 	}
692 
693 	mapping = page->mapping;
694 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
695 		return NULL;
696 
697 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
698 }
699 EXPORT_SYMBOL(page_mapping);
700 
701 /*
702  * For file cache pages, return the address_space, otherwise return NULL
703  */
704 struct address_space *page_mapping_file(struct page *page)
705 {
706 	if (unlikely(PageSwapCache(page)))
707 		return NULL;
708 	return page_mapping(page);
709 }
710 
711 /* Slow path of page_mapcount() for compound pages */
712 int __page_mapcount(struct page *page)
713 {
714 	int ret;
715 
716 	ret = atomic_read(&page->_mapcount) + 1;
717 	/*
718 	 * For file THP page->_mapcount contains total number of mapping
719 	 * of the page: no need to look into compound_mapcount.
720 	 */
721 	if (!PageAnon(page) && !PageHuge(page))
722 		return ret;
723 	page = compound_head(page);
724 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
725 	if (PageDoubleMap(page))
726 		ret--;
727 	return ret;
728 }
729 EXPORT_SYMBOL_GPL(__page_mapcount);
730 
731 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
732 int sysctl_overcommit_ratio __read_mostly = 50;
733 unsigned long sysctl_overcommit_kbytes __read_mostly;
734 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
735 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
736 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
737 
738 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
739 		size_t *lenp, loff_t *ppos)
740 {
741 	int ret;
742 
743 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
744 	if (ret == 0 && write)
745 		sysctl_overcommit_kbytes = 0;
746 	return ret;
747 }
748 
749 static void sync_overcommit_as(struct work_struct *dummy)
750 {
751 	percpu_counter_sync(&vm_committed_as);
752 }
753 
754 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
755 		size_t *lenp, loff_t *ppos)
756 {
757 	struct ctl_table t;
758 	int new_policy;
759 	int ret;
760 
761 	/*
762 	 * The deviation of sync_overcommit_as could be big with loose policy
763 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
764 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
765 	 * with the strict "NEVER", and to avoid possible race condtion (even
766 	 * though user usually won't too frequently do the switching to policy
767 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
768 	 *	1. changing the batch
769 	 *	2. sync percpu count on each CPU
770 	 *	3. switch the policy
771 	 */
772 	if (write) {
773 		t = *table;
774 		t.data = &new_policy;
775 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
776 		if (ret)
777 			return ret;
778 
779 		mm_compute_batch(new_policy);
780 		if (new_policy == OVERCOMMIT_NEVER)
781 			schedule_on_each_cpu(sync_overcommit_as);
782 		sysctl_overcommit_memory = new_policy;
783 	} else {
784 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
785 	}
786 
787 	return ret;
788 }
789 
790 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
791 		size_t *lenp, loff_t *ppos)
792 {
793 	int ret;
794 
795 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
796 	if (ret == 0 && write)
797 		sysctl_overcommit_ratio = 0;
798 	return ret;
799 }
800 
801 /*
802  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
803  */
804 unsigned long vm_commit_limit(void)
805 {
806 	unsigned long allowed;
807 
808 	if (sysctl_overcommit_kbytes)
809 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
810 	else
811 		allowed = ((totalram_pages() - hugetlb_total_pages())
812 			   * sysctl_overcommit_ratio / 100);
813 	allowed += total_swap_pages;
814 
815 	return allowed;
816 }
817 
818 /*
819  * Make sure vm_committed_as in one cacheline and not cacheline shared with
820  * other variables. It can be updated by several CPUs frequently.
821  */
822 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
823 
824 /*
825  * The global memory commitment made in the system can be a metric
826  * that can be used to drive ballooning decisions when Linux is hosted
827  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
828  * balancing memory across competing virtual machines that are hosted.
829  * Several metrics drive this policy engine including the guest reported
830  * memory commitment.
831  *
832  * The time cost of this is very low for small platforms, and for big
833  * platform like a 2S/36C/72T Skylake server, in worst case where
834  * vm_committed_as's spinlock is under severe contention, the time cost
835  * could be about 30~40 microseconds.
836  */
837 unsigned long vm_memory_committed(void)
838 {
839 	return percpu_counter_sum_positive(&vm_committed_as);
840 }
841 EXPORT_SYMBOL_GPL(vm_memory_committed);
842 
843 /*
844  * Check that a process has enough memory to allocate a new virtual
845  * mapping. 0 means there is enough memory for the allocation to
846  * succeed and -ENOMEM implies there is not.
847  *
848  * We currently support three overcommit policies, which are set via the
849  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
850  *
851  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
852  * Additional code 2002 Jul 20 by Robert Love.
853  *
854  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
855  *
856  * Note this is a helper function intended to be used by LSMs which
857  * wish to use this logic.
858  */
859 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
860 {
861 	long allowed;
862 
863 	vm_acct_memory(pages);
864 
865 	/*
866 	 * Sometimes we want to use more memory than we have
867 	 */
868 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
869 		return 0;
870 
871 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
872 		if (pages > totalram_pages() + total_swap_pages)
873 			goto error;
874 		return 0;
875 	}
876 
877 	allowed = vm_commit_limit();
878 	/*
879 	 * Reserve some for root
880 	 */
881 	if (!cap_sys_admin)
882 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
883 
884 	/*
885 	 * Don't let a single process grow so big a user can't recover
886 	 */
887 	if (mm) {
888 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
889 
890 		allowed -= min_t(long, mm->total_vm / 32, reserve);
891 	}
892 
893 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
894 		return 0;
895 error:
896 	vm_unacct_memory(pages);
897 
898 	return -ENOMEM;
899 }
900 
901 /**
902  * get_cmdline() - copy the cmdline value to a buffer.
903  * @task:     the task whose cmdline value to copy.
904  * @buffer:   the buffer to copy to.
905  * @buflen:   the length of the buffer. Larger cmdline values are truncated
906  *            to this length.
907  *
908  * Return: the size of the cmdline field copied. Note that the copy does
909  * not guarantee an ending NULL byte.
910  */
911 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
912 {
913 	int res = 0;
914 	unsigned int len;
915 	struct mm_struct *mm = get_task_mm(task);
916 	unsigned long arg_start, arg_end, env_start, env_end;
917 	if (!mm)
918 		goto out;
919 	if (!mm->arg_end)
920 		goto out_mm;	/* Shh! No looking before we're done */
921 
922 	spin_lock(&mm->arg_lock);
923 	arg_start = mm->arg_start;
924 	arg_end = mm->arg_end;
925 	env_start = mm->env_start;
926 	env_end = mm->env_end;
927 	spin_unlock(&mm->arg_lock);
928 
929 	len = arg_end - arg_start;
930 
931 	if (len > buflen)
932 		len = buflen;
933 
934 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
935 
936 	/*
937 	 * If the nul at the end of args has been overwritten, then
938 	 * assume application is using setproctitle(3).
939 	 */
940 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
941 		len = strnlen(buffer, res);
942 		if (len < res) {
943 			res = len;
944 		} else {
945 			len = env_end - env_start;
946 			if (len > buflen - res)
947 				len = buflen - res;
948 			res += access_process_vm(task, env_start,
949 						 buffer+res, len,
950 						 FOLL_FORCE);
951 			res = strnlen(buffer, res);
952 		}
953 	}
954 out_mm:
955 	mmput(mm);
956 out:
957 	return res;
958 }
959 
960 int memcmp_pages(struct page *page1, struct page *page2)
961 {
962 	char *addr1, *addr2;
963 	int ret;
964 
965 	addr1 = kmap_atomic(page1);
966 	addr2 = kmap_atomic(page2);
967 	ret = memcmp(addr1, addr2, PAGE_SIZE);
968 	kunmap_atomic(addr2);
969 	kunmap_atomic(addr1);
970 	return ret;
971 }
972