1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/task_stack.h> 11 #include <linux/security.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/mman.h> 15 #include <linux/hugetlb.h> 16 #include <linux/vmalloc.h> 17 #include <linux/userfaultfd_k.h> 18 19 #include <linux/uaccess.h> 20 21 #include "internal.h" 22 23 /** 24 * kfree_const - conditionally free memory 25 * @x: pointer to the memory 26 * 27 * Function calls kfree only if @x is not in .rodata section. 28 */ 29 void kfree_const(const void *x) 30 { 31 if (!is_kernel_rodata((unsigned long)x)) 32 kfree(x); 33 } 34 EXPORT_SYMBOL(kfree_const); 35 36 /** 37 * kstrdup - allocate space for and copy an existing string 38 * @s: the string to duplicate 39 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 40 * 41 * Return: newly allocated copy of @s or %NULL in case of error 42 */ 43 char *kstrdup(const char *s, gfp_t gfp) 44 { 45 size_t len; 46 char *buf; 47 48 if (!s) 49 return NULL; 50 51 len = strlen(s) + 1; 52 buf = kmalloc_track_caller(len, gfp); 53 if (buf) 54 memcpy(buf, s, len); 55 return buf; 56 } 57 EXPORT_SYMBOL(kstrdup); 58 59 /** 60 * kstrdup_const - conditionally duplicate an existing const string 61 * @s: the string to duplicate 62 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 63 * 64 * Note: Strings allocated by kstrdup_const should be freed by kfree_const. 65 * 66 * Return: source string if it is in .rodata section otherwise 67 * fallback to kstrdup. 68 */ 69 const char *kstrdup_const(const char *s, gfp_t gfp) 70 { 71 if (is_kernel_rodata((unsigned long)s)) 72 return s; 73 74 return kstrdup(s, gfp); 75 } 76 EXPORT_SYMBOL(kstrdup_const); 77 78 /** 79 * kstrndup - allocate space for and copy an existing string 80 * @s: the string to duplicate 81 * @max: read at most @max chars from @s 82 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 83 * 84 * Note: Use kmemdup_nul() instead if the size is known exactly. 85 * 86 * Return: newly allocated copy of @s or %NULL in case of error 87 */ 88 char *kstrndup(const char *s, size_t max, gfp_t gfp) 89 { 90 size_t len; 91 char *buf; 92 93 if (!s) 94 return NULL; 95 96 len = strnlen(s, max); 97 buf = kmalloc_track_caller(len+1, gfp); 98 if (buf) { 99 memcpy(buf, s, len); 100 buf[len] = '\0'; 101 } 102 return buf; 103 } 104 EXPORT_SYMBOL(kstrndup); 105 106 /** 107 * kmemdup - duplicate region of memory 108 * 109 * @src: memory region to duplicate 110 * @len: memory region length 111 * @gfp: GFP mask to use 112 * 113 * Return: newly allocated copy of @src or %NULL in case of error 114 */ 115 void *kmemdup(const void *src, size_t len, gfp_t gfp) 116 { 117 void *p; 118 119 p = kmalloc_track_caller(len, gfp); 120 if (p) 121 memcpy(p, src, len); 122 return p; 123 } 124 EXPORT_SYMBOL(kmemdup); 125 126 /** 127 * kmemdup_nul - Create a NUL-terminated string from unterminated data 128 * @s: The data to stringify 129 * @len: The size of the data 130 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 131 * 132 * Return: newly allocated copy of @s with NUL-termination or %NULL in 133 * case of error 134 */ 135 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 136 { 137 char *buf; 138 139 if (!s) 140 return NULL; 141 142 buf = kmalloc_track_caller(len + 1, gfp); 143 if (buf) { 144 memcpy(buf, s, len); 145 buf[len] = '\0'; 146 } 147 return buf; 148 } 149 EXPORT_SYMBOL(kmemdup_nul); 150 151 /** 152 * memdup_user - duplicate memory region from user space 153 * 154 * @src: source address in user space 155 * @len: number of bytes to copy 156 * 157 * Return: an ERR_PTR() on failure. Result is physically 158 * contiguous, to be freed by kfree(). 159 */ 160 void *memdup_user(const void __user *src, size_t len) 161 { 162 void *p; 163 164 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 165 if (!p) 166 return ERR_PTR(-ENOMEM); 167 168 if (copy_from_user(p, src, len)) { 169 kfree(p); 170 return ERR_PTR(-EFAULT); 171 } 172 173 return p; 174 } 175 EXPORT_SYMBOL(memdup_user); 176 177 /** 178 * vmemdup_user - duplicate memory region from user space 179 * 180 * @src: source address in user space 181 * @len: number of bytes to copy 182 * 183 * Return: an ERR_PTR() on failure. Result may be not 184 * physically contiguous. Use kvfree() to free. 185 */ 186 void *vmemdup_user(const void __user *src, size_t len) 187 { 188 void *p; 189 190 p = kvmalloc(len, GFP_USER); 191 if (!p) 192 return ERR_PTR(-ENOMEM); 193 194 if (copy_from_user(p, src, len)) { 195 kvfree(p); 196 return ERR_PTR(-EFAULT); 197 } 198 199 return p; 200 } 201 EXPORT_SYMBOL(vmemdup_user); 202 203 /** 204 * strndup_user - duplicate an existing string from user space 205 * @s: The string to duplicate 206 * @n: Maximum number of bytes to copy, including the trailing NUL. 207 * 208 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 209 */ 210 char *strndup_user(const char __user *s, long n) 211 { 212 char *p; 213 long length; 214 215 length = strnlen_user(s, n); 216 217 if (!length) 218 return ERR_PTR(-EFAULT); 219 220 if (length > n) 221 return ERR_PTR(-EINVAL); 222 223 p = memdup_user(s, length); 224 225 if (IS_ERR(p)) 226 return p; 227 228 p[length - 1] = '\0'; 229 230 return p; 231 } 232 EXPORT_SYMBOL(strndup_user); 233 234 /** 235 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 236 * 237 * @src: source address in user space 238 * @len: number of bytes to copy 239 * 240 * Return: an ERR_PTR() on failure. 241 */ 242 void *memdup_user_nul(const void __user *src, size_t len) 243 { 244 char *p; 245 246 /* 247 * Always use GFP_KERNEL, since copy_from_user() can sleep and 248 * cause pagefault, which makes it pointless to use GFP_NOFS 249 * or GFP_ATOMIC. 250 */ 251 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 252 if (!p) 253 return ERR_PTR(-ENOMEM); 254 255 if (copy_from_user(p, src, len)) { 256 kfree(p); 257 return ERR_PTR(-EFAULT); 258 } 259 p[len] = '\0'; 260 261 return p; 262 } 263 EXPORT_SYMBOL(memdup_user_nul); 264 265 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 266 struct vm_area_struct *prev, struct rb_node *rb_parent) 267 { 268 struct vm_area_struct *next; 269 270 vma->vm_prev = prev; 271 if (prev) { 272 next = prev->vm_next; 273 prev->vm_next = vma; 274 } else { 275 mm->mmap = vma; 276 if (rb_parent) 277 next = rb_entry(rb_parent, 278 struct vm_area_struct, vm_rb); 279 else 280 next = NULL; 281 } 282 vma->vm_next = next; 283 if (next) 284 next->vm_prev = vma; 285 } 286 287 /* Check if the vma is being used as a stack by this task */ 288 int vma_is_stack_for_current(struct vm_area_struct *vma) 289 { 290 struct task_struct * __maybe_unused t = current; 291 292 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 293 } 294 295 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 296 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 297 { 298 mm->mmap_base = TASK_UNMAPPED_BASE; 299 mm->get_unmapped_area = arch_get_unmapped_area; 300 } 301 #endif 302 303 /* 304 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall 305 * back to the regular GUP. 306 * Note a difference with get_user_pages_fast: this always returns the 307 * number of pages pinned, 0 if no pages were pinned. 308 * If the architecture does not support this function, simply return with no 309 * pages pinned. 310 */ 311 int __weak __get_user_pages_fast(unsigned long start, 312 int nr_pages, int write, struct page **pages) 313 { 314 return 0; 315 } 316 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 317 318 /** 319 * get_user_pages_fast() - pin user pages in memory 320 * @start: starting user address 321 * @nr_pages: number of pages from start to pin 322 * @gup_flags: flags modifying pin behaviour 323 * @pages: array that receives pointers to the pages pinned. 324 * Should be at least nr_pages long. 325 * 326 * get_user_pages_fast provides equivalent functionality to get_user_pages, 327 * operating on current and current->mm, with force=0 and vma=NULL. However 328 * unlike get_user_pages, it must be called without mmap_sem held. 329 * 330 * get_user_pages_fast may take mmap_sem and page table locks, so no 331 * assumptions can be made about lack of locking. get_user_pages_fast is to be 332 * implemented in a way that is advantageous (vs get_user_pages()) when the 333 * user memory area is already faulted in and present in ptes. However if the 334 * pages have to be faulted in, it may turn out to be slightly slower so 335 * callers need to carefully consider what to use. On many architectures, 336 * get_user_pages_fast simply falls back to get_user_pages. 337 * 338 * Return: number of pages pinned. This may be fewer than the number 339 * requested. If nr_pages is 0 or negative, returns 0. If no pages 340 * were pinned, returns -errno. 341 */ 342 int __weak get_user_pages_fast(unsigned long start, 343 int nr_pages, unsigned int gup_flags, 344 struct page **pages) 345 { 346 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 347 } 348 EXPORT_SYMBOL_GPL(get_user_pages_fast); 349 350 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 351 unsigned long len, unsigned long prot, 352 unsigned long flag, unsigned long pgoff) 353 { 354 unsigned long ret; 355 struct mm_struct *mm = current->mm; 356 unsigned long populate; 357 LIST_HEAD(uf); 358 359 ret = security_mmap_file(file, prot, flag); 360 if (!ret) { 361 if (down_write_killable(&mm->mmap_sem)) 362 return -EINTR; 363 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, 364 &populate, &uf); 365 up_write(&mm->mmap_sem); 366 userfaultfd_unmap_complete(mm, &uf); 367 if (populate) 368 mm_populate(ret, populate); 369 } 370 return ret; 371 } 372 373 unsigned long vm_mmap(struct file *file, unsigned long addr, 374 unsigned long len, unsigned long prot, 375 unsigned long flag, unsigned long offset) 376 { 377 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 378 return -EINVAL; 379 if (unlikely(offset_in_page(offset))) 380 return -EINVAL; 381 382 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 383 } 384 EXPORT_SYMBOL(vm_mmap); 385 386 /** 387 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 388 * failure, fall back to non-contiguous (vmalloc) allocation. 389 * @size: size of the request. 390 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 391 * @node: numa node to allocate from 392 * 393 * Uses kmalloc to get the memory but if the allocation fails then falls back 394 * to the vmalloc allocator. Use kvfree for freeing the memory. 395 * 396 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. 397 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 398 * preferable to the vmalloc fallback, due to visible performance drawbacks. 399 * 400 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not 401 * fall back to vmalloc. 402 * 403 * Return: pointer to the allocated memory of %NULL in case of failure 404 */ 405 void *kvmalloc_node(size_t size, gfp_t flags, int node) 406 { 407 gfp_t kmalloc_flags = flags; 408 void *ret; 409 410 /* 411 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) 412 * so the given set of flags has to be compatible. 413 */ 414 if ((flags & GFP_KERNEL) != GFP_KERNEL) 415 return kmalloc_node(size, flags, node); 416 417 /* 418 * We want to attempt a large physically contiguous block first because 419 * it is less likely to fragment multiple larger blocks and therefore 420 * contribute to a long term fragmentation less than vmalloc fallback. 421 * However make sure that larger requests are not too disruptive - no 422 * OOM killer and no allocation failure warnings as we have a fallback. 423 */ 424 if (size > PAGE_SIZE) { 425 kmalloc_flags |= __GFP_NOWARN; 426 427 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 428 kmalloc_flags |= __GFP_NORETRY; 429 } 430 431 ret = kmalloc_node(size, kmalloc_flags, node); 432 433 /* 434 * It doesn't really make sense to fallback to vmalloc for sub page 435 * requests 436 */ 437 if (ret || size <= PAGE_SIZE) 438 return ret; 439 440 return __vmalloc_node_flags_caller(size, node, flags, 441 __builtin_return_address(0)); 442 } 443 EXPORT_SYMBOL(kvmalloc_node); 444 445 /** 446 * kvfree() - Free memory. 447 * @addr: Pointer to allocated memory. 448 * 449 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 450 * It is slightly more efficient to use kfree() or vfree() if you are certain 451 * that you know which one to use. 452 * 453 * Context: Either preemptible task context or not-NMI interrupt. 454 */ 455 void kvfree(const void *addr) 456 { 457 if (is_vmalloc_addr(addr)) 458 vfree(addr); 459 else 460 kfree(addr); 461 } 462 EXPORT_SYMBOL(kvfree); 463 464 static inline void *__page_rmapping(struct page *page) 465 { 466 unsigned long mapping; 467 468 mapping = (unsigned long)page->mapping; 469 mapping &= ~PAGE_MAPPING_FLAGS; 470 471 return (void *)mapping; 472 } 473 474 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 475 void *page_rmapping(struct page *page) 476 { 477 page = compound_head(page); 478 return __page_rmapping(page); 479 } 480 481 /* 482 * Return true if this page is mapped into pagetables. 483 * For compound page it returns true if any subpage of compound page is mapped. 484 */ 485 bool page_mapped(struct page *page) 486 { 487 int i; 488 489 if (likely(!PageCompound(page))) 490 return atomic_read(&page->_mapcount) >= 0; 491 page = compound_head(page); 492 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 493 return true; 494 if (PageHuge(page)) 495 return false; 496 for (i = 0; i < (1 << compound_order(page)); i++) { 497 if (atomic_read(&page[i]._mapcount) >= 0) 498 return true; 499 } 500 return false; 501 } 502 EXPORT_SYMBOL(page_mapped); 503 504 struct anon_vma *page_anon_vma(struct page *page) 505 { 506 unsigned long mapping; 507 508 page = compound_head(page); 509 mapping = (unsigned long)page->mapping; 510 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 511 return NULL; 512 return __page_rmapping(page); 513 } 514 515 struct address_space *page_mapping(struct page *page) 516 { 517 struct address_space *mapping; 518 519 page = compound_head(page); 520 521 /* This happens if someone calls flush_dcache_page on slab page */ 522 if (unlikely(PageSlab(page))) 523 return NULL; 524 525 if (unlikely(PageSwapCache(page))) { 526 swp_entry_t entry; 527 528 entry.val = page_private(page); 529 return swap_address_space(entry); 530 } 531 532 mapping = page->mapping; 533 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 534 return NULL; 535 536 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 537 } 538 EXPORT_SYMBOL(page_mapping); 539 540 /* 541 * For file cache pages, return the address_space, otherwise return NULL 542 */ 543 struct address_space *page_mapping_file(struct page *page) 544 { 545 if (unlikely(PageSwapCache(page))) 546 return NULL; 547 return page_mapping(page); 548 } 549 550 /* Slow path of page_mapcount() for compound pages */ 551 int __page_mapcount(struct page *page) 552 { 553 int ret; 554 555 ret = atomic_read(&page->_mapcount) + 1; 556 /* 557 * For file THP page->_mapcount contains total number of mapping 558 * of the page: no need to look into compound_mapcount. 559 */ 560 if (!PageAnon(page) && !PageHuge(page)) 561 return ret; 562 page = compound_head(page); 563 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 564 if (PageDoubleMap(page)) 565 ret--; 566 return ret; 567 } 568 EXPORT_SYMBOL_GPL(__page_mapcount); 569 570 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 571 int sysctl_overcommit_ratio __read_mostly = 50; 572 unsigned long sysctl_overcommit_kbytes __read_mostly; 573 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 574 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 575 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 576 577 int overcommit_ratio_handler(struct ctl_table *table, int write, 578 void __user *buffer, size_t *lenp, 579 loff_t *ppos) 580 { 581 int ret; 582 583 ret = proc_dointvec(table, write, buffer, lenp, ppos); 584 if (ret == 0 && write) 585 sysctl_overcommit_kbytes = 0; 586 return ret; 587 } 588 589 int overcommit_kbytes_handler(struct ctl_table *table, int write, 590 void __user *buffer, size_t *lenp, 591 loff_t *ppos) 592 { 593 int ret; 594 595 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 596 if (ret == 0 && write) 597 sysctl_overcommit_ratio = 0; 598 return ret; 599 } 600 601 /* 602 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 603 */ 604 unsigned long vm_commit_limit(void) 605 { 606 unsigned long allowed; 607 608 if (sysctl_overcommit_kbytes) 609 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 610 else 611 allowed = ((totalram_pages() - hugetlb_total_pages()) 612 * sysctl_overcommit_ratio / 100); 613 allowed += total_swap_pages; 614 615 return allowed; 616 } 617 618 /* 619 * Make sure vm_committed_as in one cacheline and not cacheline shared with 620 * other variables. It can be updated by several CPUs frequently. 621 */ 622 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 623 624 /* 625 * The global memory commitment made in the system can be a metric 626 * that can be used to drive ballooning decisions when Linux is hosted 627 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 628 * balancing memory across competing virtual machines that are hosted. 629 * Several metrics drive this policy engine including the guest reported 630 * memory commitment. 631 */ 632 unsigned long vm_memory_committed(void) 633 { 634 return percpu_counter_read_positive(&vm_committed_as); 635 } 636 EXPORT_SYMBOL_GPL(vm_memory_committed); 637 638 /* 639 * Check that a process has enough memory to allocate a new virtual 640 * mapping. 0 means there is enough memory for the allocation to 641 * succeed and -ENOMEM implies there is not. 642 * 643 * We currently support three overcommit policies, which are set via the 644 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst 645 * 646 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 647 * Additional code 2002 Jul 20 by Robert Love. 648 * 649 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 650 * 651 * Note this is a helper function intended to be used by LSMs which 652 * wish to use this logic. 653 */ 654 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 655 { 656 long allowed; 657 658 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 659 -(s64)vm_committed_as_batch * num_online_cpus(), 660 "memory commitment underflow"); 661 662 vm_acct_memory(pages); 663 664 /* 665 * Sometimes we want to use more memory than we have 666 */ 667 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 668 return 0; 669 670 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 671 if (pages > totalram_pages() + total_swap_pages) 672 goto error; 673 return 0; 674 } 675 676 allowed = vm_commit_limit(); 677 /* 678 * Reserve some for root 679 */ 680 if (!cap_sys_admin) 681 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 682 683 /* 684 * Don't let a single process grow so big a user can't recover 685 */ 686 if (mm) { 687 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 688 689 allowed -= min_t(long, mm->total_vm / 32, reserve); 690 } 691 692 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 693 return 0; 694 error: 695 vm_unacct_memory(pages); 696 697 return -ENOMEM; 698 } 699 700 /** 701 * get_cmdline() - copy the cmdline value to a buffer. 702 * @task: the task whose cmdline value to copy. 703 * @buffer: the buffer to copy to. 704 * @buflen: the length of the buffer. Larger cmdline values are truncated 705 * to this length. 706 * 707 * Return: the size of the cmdline field copied. Note that the copy does 708 * not guarantee an ending NULL byte. 709 */ 710 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 711 { 712 int res = 0; 713 unsigned int len; 714 struct mm_struct *mm = get_task_mm(task); 715 unsigned long arg_start, arg_end, env_start, env_end; 716 if (!mm) 717 goto out; 718 if (!mm->arg_end) 719 goto out_mm; /* Shh! No looking before we're done */ 720 721 spin_lock(&mm->arg_lock); 722 arg_start = mm->arg_start; 723 arg_end = mm->arg_end; 724 env_start = mm->env_start; 725 env_end = mm->env_end; 726 spin_unlock(&mm->arg_lock); 727 728 len = arg_end - arg_start; 729 730 if (len > buflen) 731 len = buflen; 732 733 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 734 735 /* 736 * If the nul at the end of args has been overwritten, then 737 * assume application is using setproctitle(3). 738 */ 739 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 740 len = strnlen(buffer, res); 741 if (len < res) { 742 res = len; 743 } else { 744 len = env_end - env_start; 745 if (len > buflen - res) 746 len = buflen - res; 747 res += access_process_vm(task, env_start, 748 buffer+res, len, 749 FOLL_FORCE); 750 res = strnlen(buffer, res); 751 } 752 } 753 out_mm: 754 mmput(mm); 755 out: 756 return res; 757 } 758