1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 #include "swap.h" 31 32 /** 33 * kfree_const - conditionally free memory 34 * @x: pointer to the memory 35 * 36 * Function calls kfree only if @x is not in .rodata section. 37 */ 38 void kfree_const(const void *x) 39 { 40 if (!is_kernel_rodata((unsigned long)x)) 41 kfree(x); 42 } 43 EXPORT_SYMBOL(kfree_const); 44 45 /** 46 * kstrdup - allocate space for and copy an existing string 47 * @s: the string to duplicate 48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 49 * 50 * Return: newly allocated copy of @s or %NULL in case of error 51 */ 52 noinline 53 char *kstrdup(const char *s, gfp_t gfp) 54 { 55 size_t len; 56 char *buf; 57 58 if (!s) 59 return NULL; 60 61 len = strlen(s) + 1; 62 buf = kmalloc_track_caller(len, gfp); 63 if (buf) 64 memcpy(buf, s, len); 65 return buf; 66 } 67 EXPORT_SYMBOL(kstrdup); 68 69 /** 70 * kstrdup_const - conditionally duplicate an existing const string 71 * @s: the string to duplicate 72 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 73 * 74 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 75 * must not be passed to krealloc(). 76 * 77 * Return: source string if it is in .rodata section otherwise 78 * fallback to kstrdup. 79 */ 80 const char *kstrdup_const(const char *s, gfp_t gfp) 81 { 82 if (is_kernel_rodata((unsigned long)s)) 83 return s; 84 85 return kstrdup(s, gfp); 86 } 87 EXPORT_SYMBOL(kstrdup_const); 88 89 /** 90 * kstrndup - allocate space for and copy an existing string 91 * @s: the string to duplicate 92 * @max: read at most @max chars from @s 93 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 94 * 95 * Note: Use kmemdup_nul() instead if the size is known exactly. 96 * 97 * Return: newly allocated copy of @s or %NULL in case of error 98 */ 99 char *kstrndup(const char *s, size_t max, gfp_t gfp) 100 { 101 size_t len; 102 char *buf; 103 104 if (!s) 105 return NULL; 106 107 len = strnlen(s, max); 108 buf = kmalloc_track_caller(len+1, gfp); 109 if (buf) { 110 memcpy(buf, s, len); 111 buf[len] = '\0'; 112 } 113 return buf; 114 } 115 EXPORT_SYMBOL(kstrndup); 116 117 /** 118 * kmemdup - duplicate region of memory 119 * 120 * @src: memory region to duplicate 121 * @len: memory region length 122 * @gfp: GFP mask to use 123 * 124 * Return: newly allocated copy of @src or %NULL in case of error, 125 * result is physically contiguous. Use kfree() to free. 126 */ 127 void *kmemdup(const void *src, size_t len, gfp_t gfp) 128 { 129 void *p; 130 131 p = kmalloc_track_caller(len, gfp); 132 if (p) 133 memcpy(p, src, len); 134 return p; 135 } 136 EXPORT_SYMBOL(kmemdup); 137 138 /** 139 * kvmemdup - duplicate region of memory 140 * 141 * @src: memory region to duplicate 142 * @len: memory region length 143 * @gfp: GFP mask to use 144 * 145 * Return: newly allocated copy of @src or %NULL in case of error, 146 * result may be not physically contiguous. Use kvfree() to free. 147 */ 148 void *kvmemdup(const void *src, size_t len, gfp_t gfp) 149 { 150 void *p; 151 152 p = kvmalloc(len, gfp); 153 if (p) 154 memcpy(p, src, len); 155 return p; 156 } 157 EXPORT_SYMBOL(kvmemdup); 158 159 /** 160 * kmemdup_nul - Create a NUL-terminated string from unterminated data 161 * @s: The data to stringify 162 * @len: The size of the data 163 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 164 * 165 * Return: newly allocated copy of @s with NUL-termination or %NULL in 166 * case of error 167 */ 168 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 169 { 170 char *buf; 171 172 if (!s) 173 return NULL; 174 175 buf = kmalloc_track_caller(len + 1, gfp); 176 if (buf) { 177 memcpy(buf, s, len); 178 buf[len] = '\0'; 179 } 180 return buf; 181 } 182 EXPORT_SYMBOL(kmemdup_nul); 183 184 /** 185 * memdup_user - duplicate memory region from user space 186 * 187 * @src: source address in user space 188 * @len: number of bytes to copy 189 * 190 * Return: an ERR_PTR() on failure. Result is physically 191 * contiguous, to be freed by kfree(). 192 */ 193 void *memdup_user(const void __user *src, size_t len) 194 { 195 void *p; 196 197 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 198 if (!p) 199 return ERR_PTR(-ENOMEM); 200 201 if (copy_from_user(p, src, len)) { 202 kfree(p); 203 return ERR_PTR(-EFAULT); 204 } 205 206 return p; 207 } 208 EXPORT_SYMBOL(memdup_user); 209 210 /** 211 * vmemdup_user - duplicate memory region from user space 212 * 213 * @src: source address in user space 214 * @len: number of bytes to copy 215 * 216 * Return: an ERR_PTR() on failure. Result may be not 217 * physically contiguous. Use kvfree() to free. 218 */ 219 void *vmemdup_user(const void __user *src, size_t len) 220 { 221 void *p; 222 223 p = kvmalloc(len, GFP_USER); 224 if (!p) 225 return ERR_PTR(-ENOMEM); 226 227 if (copy_from_user(p, src, len)) { 228 kvfree(p); 229 return ERR_PTR(-EFAULT); 230 } 231 232 return p; 233 } 234 EXPORT_SYMBOL(vmemdup_user); 235 236 /** 237 * strndup_user - duplicate an existing string from user space 238 * @s: The string to duplicate 239 * @n: Maximum number of bytes to copy, including the trailing NUL. 240 * 241 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 242 */ 243 char *strndup_user(const char __user *s, long n) 244 { 245 char *p; 246 long length; 247 248 length = strnlen_user(s, n); 249 250 if (!length) 251 return ERR_PTR(-EFAULT); 252 253 if (length > n) 254 return ERR_PTR(-EINVAL); 255 256 p = memdup_user(s, length); 257 258 if (IS_ERR(p)) 259 return p; 260 261 p[length - 1] = '\0'; 262 263 return p; 264 } 265 EXPORT_SYMBOL(strndup_user); 266 267 /** 268 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 269 * 270 * @src: source address in user space 271 * @len: number of bytes to copy 272 * 273 * Return: an ERR_PTR() on failure. 274 */ 275 void *memdup_user_nul(const void __user *src, size_t len) 276 { 277 char *p; 278 279 /* 280 * Always use GFP_KERNEL, since copy_from_user() can sleep and 281 * cause pagefault, which makes it pointless to use GFP_NOFS 282 * or GFP_ATOMIC. 283 */ 284 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 285 if (!p) 286 return ERR_PTR(-ENOMEM); 287 288 if (copy_from_user(p, src, len)) { 289 kfree(p); 290 return ERR_PTR(-EFAULT); 291 } 292 p[len] = '\0'; 293 294 return p; 295 } 296 EXPORT_SYMBOL(memdup_user_nul); 297 298 /* Check if the vma is being used as a stack by this task */ 299 int vma_is_stack_for_current(struct vm_area_struct *vma) 300 { 301 struct task_struct * __maybe_unused t = current; 302 303 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 304 } 305 306 /* 307 * Change backing file, only valid to use during initial VMA setup. 308 */ 309 void vma_set_file(struct vm_area_struct *vma, struct file *file) 310 { 311 /* Changing an anonymous vma with this is illegal */ 312 get_file(file); 313 swap(vma->vm_file, file); 314 fput(file); 315 } 316 EXPORT_SYMBOL(vma_set_file); 317 318 #ifndef STACK_RND_MASK 319 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 320 #endif 321 322 unsigned long randomize_stack_top(unsigned long stack_top) 323 { 324 unsigned long random_variable = 0; 325 326 if (current->flags & PF_RANDOMIZE) { 327 random_variable = get_random_long(); 328 random_variable &= STACK_RND_MASK; 329 random_variable <<= PAGE_SHIFT; 330 } 331 #ifdef CONFIG_STACK_GROWSUP 332 return PAGE_ALIGN(stack_top) + random_variable; 333 #else 334 return PAGE_ALIGN(stack_top) - random_variable; 335 #endif 336 } 337 338 /** 339 * randomize_page - Generate a random, page aligned address 340 * @start: The smallest acceptable address the caller will take. 341 * @range: The size of the area, starting at @start, within which the 342 * random address must fall. 343 * 344 * If @start + @range would overflow, @range is capped. 345 * 346 * NOTE: Historical use of randomize_range, which this replaces, presumed that 347 * @start was already page aligned. We now align it regardless. 348 * 349 * Return: A page aligned address within [start, start + range). On error, 350 * @start is returned. 351 */ 352 unsigned long randomize_page(unsigned long start, unsigned long range) 353 { 354 if (!PAGE_ALIGNED(start)) { 355 range -= PAGE_ALIGN(start) - start; 356 start = PAGE_ALIGN(start); 357 } 358 359 if (start > ULONG_MAX - range) 360 range = ULONG_MAX - start; 361 362 range >>= PAGE_SHIFT; 363 364 if (range == 0) 365 return start; 366 367 return start + (get_random_long() % range << PAGE_SHIFT); 368 } 369 370 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 371 unsigned long __weak arch_randomize_brk(struct mm_struct *mm) 372 { 373 /* Is the current task 32bit ? */ 374 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 375 return randomize_page(mm->brk, SZ_32M); 376 377 return randomize_page(mm->brk, SZ_1G); 378 } 379 380 unsigned long arch_mmap_rnd(void) 381 { 382 unsigned long rnd; 383 384 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 385 if (is_compat_task()) 386 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 387 else 388 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 389 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 390 391 return rnd << PAGE_SHIFT; 392 } 393 394 static int mmap_is_legacy(struct rlimit *rlim_stack) 395 { 396 if (current->personality & ADDR_COMPAT_LAYOUT) 397 return 1; 398 399 if (rlim_stack->rlim_cur == RLIM_INFINITY) 400 return 1; 401 402 return sysctl_legacy_va_layout; 403 } 404 405 /* 406 * Leave enough space between the mmap area and the stack to honour ulimit in 407 * the face of randomisation. 408 */ 409 #define MIN_GAP (SZ_128M) 410 #define MAX_GAP (STACK_TOP / 6 * 5) 411 412 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 413 { 414 unsigned long gap = rlim_stack->rlim_cur; 415 unsigned long pad = stack_guard_gap; 416 417 /* Account for stack randomization if necessary */ 418 if (current->flags & PF_RANDOMIZE) 419 pad += (STACK_RND_MASK << PAGE_SHIFT); 420 421 /* Values close to RLIM_INFINITY can overflow. */ 422 if (gap + pad > gap) 423 gap += pad; 424 425 if (gap < MIN_GAP) 426 gap = MIN_GAP; 427 else if (gap > MAX_GAP) 428 gap = MAX_GAP; 429 430 return PAGE_ALIGN(STACK_TOP - gap - rnd); 431 } 432 433 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 434 { 435 unsigned long random_factor = 0UL; 436 437 if (current->flags & PF_RANDOMIZE) 438 random_factor = arch_mmap_rnd(); 439 440 if (mmap_is_legacy(rlim_stack)) { 441 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 442 mm->get_unmapped_area = arch_get_unmapped_area; 443 } else { 444 mm->mmap_base = mmap_base(random_factor, rlim_stack); 445 mm->get_unmapped_area = arch_get_unmapped_area_topdown; 446 } 447 } 448 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 449 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 450 { 451 mm->mmap_base = TASK_UNMAPPED_BASE; 452 mm->get_unmapped_area = arch_get_unmapped_area; 453 } 454 #endif 455 456 /** 457 * __account_locked_vm - account locked pages to an mm's locked_vm 458 * @mm: mm to account against 459 * @pages: number of pages to account 460 * @inc: %true if @pages should be considered positive, %false if not 461 * @task: task used to check RLIMIT_MEMLOCK 462 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 463 * 464 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 465 * that mmap_lock is held as writer. 466 * 467 * Return: 468 * * 0 on success 469 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 470 */ 471 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 472 struct task_struct *task, bool bypass_rlim) 473 { 474 unsigned long locked_vm, limit; 475 int ret = 0; 476 477 mmap_assert_write_locked(mm); 478 479 locked_vm = mm->locked_vm; 480 if (inc) { 481 if (!bypass_rlim) { 482 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 483 if (locked_vm + pages > limit) 484 ret = -ENOMEM; 485 } 486 if (!ret) 487 mm->locked_vm = locked_vm + pages; 488 } else { 489 WARN_ON_ONCE(pages > locked_vm); 490 mm->locked_vm = locked_vm - pages; 491 } 492 493 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 494 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 495 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 496 ret ? " - exceeded" : ""); 497 498 return ret; 499 } 500 EXPORT_SYMBOL_GPL(__account_locked_vm); 501 502 /** 503 * account_locked_vm - account locked pages to an mm's locked_vm 504 * @mm: mm to account against, may be NULL 505 * @pages: number of pages to account 506 * @inc: %true if @pages should be considered positive, %false if not 507 * 508 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 509 * 510 * Return: 511 * * 0 on success, or if mm is NULL 512 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 513 */ 514 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 515 { 516 int ret; 517 518 if (pages == 0 || !mm) 519 return 0; 520 521 mmap_write_lock(mm); 522 ret = __account_locked_vm(mm, pages, inc, current, 523 capable(CAP_IPC_LOCK)); 524 mmap_write_unlock(mm); 525 526 return ret; 527 } 528 EXPORT_SYMBOL_GPL(account_locked_vm); 529 530 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 531 unsigned long len, unsigned long prot, 532 unsigned long flag, unsigned long pgoff) 533 { 534 unsigned long ret; 535 struct mm_struct *mm = current->mm; 536 unsigned long populate; 537 LIST_HEAD(uf); 538 539 ret = security_mmap_file(file, prot, flag); 540 if (!ret) { 541 if (mmap_write_lock_killable(mm)) 542 return -EINTR; 543 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, 544 &uf); 545 mmap_write_unlock(mm); 546 userfaultfd_unmap_complete(mm, &uf); 547 if (populate) 548 mm_populate(ret, populate); 549 } 550 return ret; 551 } 552 553 unsigned long vm_mmap(struct file *file, unsigned long addr, 554 unsigned long len, unsigned long prot, 555 unsigned long flag, unsigned long offset) 556 { 557 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 558 return -EINVAL; 559 if (unlikely(offset_in_page(offset))) 560 return -EINVAL; 561 562 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 563 } 564 EXPORT_SYMBOL(vm_mmap); 565 566 /** 567 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 568 * failure, fall back to non-contiguous (vmalloc) allocation. 569 * @size: size of the request. 570 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 571 * @node: numa node to allocate from 572 * 573 * Uses kmalloc to get the memory but if the allocation fails then falls back 574 * to the vmalloc allocator. Use kvfree for freeing the memory. 575 * 576 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. 577 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 578 * preferable to the vmalloc fallback, due to visible performance drawbacks. 579 * 580 * Return: pointer to the allocated memory of %NULL in case of failure 581 */ 582 void *kvmalloc_node(size_t size, gfp_t flags, int node) 583 { 584 gfp_t kmalloc_flags = flags; 585 void *ret; 586 587 /* 588 * We want to attempt a large physically contiguous block first because 589 * it is less likely to fragment multiple larger blocks and therefore 590 * contribute to a long term fragmentation less than vmalloc fallback. 591 * However make sure that larger requests are not too disruptive - no 592 * OOM killer and no allocation failure warnings as we have a fallback. 593 */ 594 if (size > PAGE_SIZE) { 595 kmalloc_flags |= __GFP_NOWARN; 596 597 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 598 kmalloc_flags |= __GFP_NORETRY; 599 600 /* nofail semantic is implemented by the vmalloc fallback */ 601 kmalloc_flags &= ~__GFP_NOFAIL; 602 } 603 604 ret = kmalloc_node(size, kmalloc_flags, node); 605 606 /* 607 * It doesn't really make sense to fallback to vmalloc for sub page 608 * requests 609 */ 610 if (ret || size <= PAGE_SIZE) 611 return ret; 612 613 /* non-sleeping allocations are not supported by vmalloc */ 614 if (!gfpflags_allow_blocking(flags)) 615 return NULL; 616 617 /* Don't even allow crazy sizes */ 618 if (unlikely(size > INT_MAX)) { 619 WARN_ON_ONCE(!(flags & __GFP_NOWARN)); 620 return NULL; 621 } 622 623 /* 624 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, 625 * since the callers already cannot assume anything 626 * about the resulting pointer, and cannot play 627 * protection games. 628 */ 629 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 630 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, 631 node, __builtin_return_address(0)); 632 } 633 EXPORT_SYMBOL(kvmalloc_node); 634 635 /** 636 * kvfree() - Free memory. 637 * @addr: Pointer to allocated memory. 638 * 639 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 640 * It is slightly more efficient to use kfree() or vfree() if you are certain 641 * that you know which one to use. 642 * 643 * Context: Either preemptible task context or not-NMI interrupt. 644 */ 645 void kvfree(const void *addr) 646 { 647 if (is_vmalloc_addr(addr)) 648 vfree(addr); 649 else 650 kfree(addr); 651 } 652 EXPORT_SYMBOL(kvfree); 653 654 /** 655 * kvfree_sensitive - Free a data object containing sensitive information. 656 * @addr: address of the data object to be freed. 657 * @len: length of the data object. 658 * 659 * Use the special memzero_explicit() function to clear the content of a 660 * kvmalloc'ed object containing sensitive data to make sure that the 661 * compiler won't optimize out the data clearing. 662 */ 663 void kvfree_sensitive(const void *addr, size_t len) 664 { 665 if (likely(!ZERO_OR_NULL_PTR(addr))) { 666 memzero_explicit((void *)addr, len); 667 kvfree(addr); 668 } 669 } 670 EXPORT_SYMBOL(kvfree_sensitive); 671 672 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) 673 { 674 void *newp; 675 676 if (oldsize >= newsize) 677 return (void *)p; 678 newp = kvmalloc(newsize, flags); 679 if (!newp) 680 return NULL; 681 memcpy(newp, p, oldsize); 682 kvfree(p); 683 return newp; 684 } 685 EXPORT_SYMBOL(kvrealloc); 686 687 /** 688 * __vmalloc_array - allocate memory for a virtually contiguous array. 689 * @n: number of elements. 690 * @size: element size. 691 * @flags: the type of memory to allocate (see kmalloc). 692 */ 693 void *__vmalloc_array(size_t n, size_t size, gfp_t flags) 694 { 695 size_t bytes; 696 697 if (unlikely(check_mul_overflow(n, size, &bytes))) 698 return NULL; 699 return __vmalloc(bytes, flags); 700 } 701 EXPORT_SYMBOL(__vmalloc_array); 702 703 /** 704 * vmalloc_array - allocate memory for a virtually contiguous array. 705 * @n: number of elements. 706 * @size: element size. 707 */ 708 void *vmalloc_array(size_t n, size_t size) 709 { 710 return __vmalloc_array(n, size, GFP_KERNEL); 711 } 712 EXPORT_SYMBOL(vmalloc_array); 713 714 /** 715 * __vcalloc - allocate and zero memory for a virtually contiguous array. 716 * @n: number of elements. 717 * @size: element size. 718 * @flags: the type of memory to allocate (see kmalloc). 719 */ 720 void *__vcalloc(size_t n, size_t size, gfp_t flags) 721 { 722 return __vmalloc_array(n, size, flags | __GFP_ZERO); 723 } 724 EXPORT_SYMBOL(__vcalloc); 725 726 /** 727 * vcalloc - allocate and zero memory for a virtually contiguous array. 728 * @n: number of elements. 729 * @size: element size. 730 */ 731 void *vcalloc(size_t n, size_t size) 732 { 733 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); 734 } 735 EXPORT_SYMBOL(vcalloc); 736 737 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 738 void *page_rmapping(struct page *page) 739 { 740 return folio_raw_mapping(page_folio(page)); 741 } 742 743 struct anon_vma *folio_anon_vma(struct folio *folio) 744 { 745 unsigned long mapping = (unsigned long)folio->mapping; 746 747 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 748 return NULL; 749 return (void *)(mapping - PAGE_MAPPING_ANON); 750 } 751 752 /** 753 * folio_mapping - Find the mapping where this folio is stored. 754 * @folio: The folio. 755 * 756 * For folios which are in the page cache, return the mapping that this 757 * page belongs to. Folios in the swap cache return the swap mapping 758 * this page is stored in (which is different from the mapping for the 759 * swap file or swap device where the data is stored). 760 * 761 * You can call this for folios which aren't in the swap cache or page 762 * cache and it will return NULL. 763 */ 764 struct address_space *folio_mapping(struct folio *folio) 765 { 766 struct address_space *mapping; 767 768 /* This happens if someone calls flush_dcache_page on slab page */ 769 if (unlikely(folio_test_slab(folio))) 770 return NULL; 771 772 if (unlikely(folio_test_swapcache(folio))) 773 return swap_address_space(folio_swap_entry(folio)); 774 775 mapping = folio->mapping; 776 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) 777 return NULL; 778 779 return mapping; 780 } 781 EXPORT_SYMBOL(folio_mapping); 782 783 /** 784 * folio_copy - Copy the contents of one folio to another. 785 * @dst: Folio to copy to. 786 * @src: Folio to copy from. 787 * 788 * The bytes in the folio represented by @src are copied to @dst. 789 * Assumes the caller has validated that @dst is at least as large as @src. 790 * Can be called in atomic context for order-0 folios, but if the folio is 791 * larger, it may sleep. 792 */ 793 void folio_copy(struct folio *dst, struct folio *src) 794 { 795 long i = 0; 796 long nr = folio_nr_pages(src); 797 798 for (;;) { 799 copy_highpage(folio_page(dst, i), folio_page(src, i)); 800 if (++i == nr) 801 break; 802 cond_resched(); 803 } 804 } 805 806 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 807 int sysctl_overcommit_ratio __read_mostly = 50; 808 unsigned long sysctl_overcommit_kbytes __read_mostly; 809 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 810 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 811 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 812 813 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, 814 size_t *lenp, loff_t *ppos) 815 { 816 int ret; 817 818 ret = proc_dointvec(table, write, buffer, lenp, ppos); 819 if (ret == 0 && write) 820 sysctl_overcommit_kbytes = 0; 821 return ret; 822 } 823 824 static void sync_overcommit_as(struct work_struct *dummy) 825 { 826 percpu_counter_sync(&vm_committed_as); 827 } 828 829 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, 830 size_t *lenp, loff_t *ppos) 831 { 832 struct ctl_table t; 833 int new_policy = -1; 834 int ret; 835 836 /* 837 * The deviation of sync_overcommit_as could be big with loose policy 838 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 839 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 840 * with the strict "NEVER", and to avoid possible race condition (even 841 * though user usually won't too frequently do the switching to policy 842 * OVERCOMMIT_NEVER), the switch is done in the following order: 843 * 1. changing the batch 844 * 2. sync percpu count on each CPU 845 * 3. switch the policy 846 */ 847 if (write) { 848 t = *table; 849 t.data = &new_policy; 850 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 851 if (ret || new_policy == -1) 852 return ret; 853 854 mm_compute_batch(new_policy); 855 if (new_policy == OVERCOMMIT_NEVER) 856 schedule_on_each_cpu(sync_overcommit_as); 857 sysctl_overcommit_memory = new_policy; 858 } else { 859 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 860 } 861 862 return ret; 863 } 864 865 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, 866 size_t *lenp, loff_t *ppos) 867 { 868 int ret; 869 870 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 871 if (ret == 0 && write) 872 sysctl_overcommit_ratio = 0; 873 return ret; 874 } 875 876 /* 877 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 878 */ 879 unsigned long vm_commit_limit(void) 880 { 881 unsigned long allowed; 882 883 if (sysctl_overcommit_kbytes) 884 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 885 else 886 allowed = ((totalram_pages() - hugetlb_total_pages()) 887 * sysctl_overcommit_ratio / 100); 888 allowed += total_swap_pages; 889 890 return allowed; 891 } 892 893 /* 894 * Make sure vm_committed_as in one cacheline and not cacheline shared with 895 * other variables. It can be updated by several CPUs frequently. 896 */ 897 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 898 899 /* 900 * The global memory commitment made in the system can be a metric 901 * that can be used to drive ballooning decisions when Linux is hosted 902 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 903 * balancing memory across competing virtual machines that are hosted. 904 * Several metrics drive this policy engine including the guest reported 905 * memory commitment. 906 * 907 * The time cost of this is very low for small platforms, and for big 908 * platform like a 2S/36C/72T Skylake server, in worst case where 909 * vm_committed_as's spinlock is under severe contention, the time cost 910 * could be about 30~40 microseconds. 911 */ 912 unsigned long vm_memory_committed(void) 913 { 914 return percpu_counter_sum_positive(&vm_committed_as); 915 } 916 EXPORT_SYMBOL_GPL(vm_memory_committed); 917 918 /* 919 * Check that a process has enough memory to allocate a new virtual 920 * mapping. 0 means there is enough memory for the allocation to 921 * succeed and -ENOMEM implies there is not. 922 * 923 * We currently support three overcommit policies, which are set via the 924 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst 925 * 926 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 927 * Additional code 2002 Jul 20 by Robert Love. 928 * 929 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 930 * 931 * Note this is a helper function intended to be used by LSMs which 932 * wish to use this logic. 933 */ 934 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 935 { 936 long allowed; 937 938 vm_acct_memory(pages); 939 940 /* 941 * Sometimes we want to use more memory than we have 942 */ 943 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 944 return 0; 945 946 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 947 if (pages > totalram_pages() + total_swap_pages) 948 goto error; 949 return 0; 950 } 951 952 allowed = vm_commit_limit(); 953 /* 954 * Reserve some for root 955 */ 956 if (!cap_sys_admin) 957 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 958 959 /* 960 * Don't let a single process grow so big a user can't recover 961 */ 962 if (mm) { 963 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 964 965 allowed -= min_t(long, mm->total_vm / 32, reserve); 966 } 967 968 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 969 return 0; 970 error: 971 pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n", 972 __func__, current->pid, current->comm); 973 vm_unacct_memory(pages); 974 975 return -ENOMEM; 976 } 977 978 /** 979 * get_cmdline() - copy the cmdline value to a buffer. 980 * @task: the task whose cmdline value to copy. 981 * @buffer: the buffer to copy to. 982 * @buflen: the length of the buffer. Larger cmdline values are truncated 983 * to this length. 984 * 985 * Return: the size of the cmdline field copied. Note that the copy does 986 * not guarantee an ending NULL byte. 987 */ 988 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 989 { 990 int res = 0; 991 unsigned int len; 992 struct mm_struct *mm = get_task_mm(task); 993 unsigned long arg_start, arg_end, env_start, env_end; 994 if (!mm) 995 goto out; 996 if (!mm->arg_end) 997 goto out_mm; /* Shh! No looking before we're done */ 998 999 spin_lock(&mm->arg_lock); 1000 arg_start = mm->arg_start; 1001 arg_end = mm->arg_end; 1002 env_start = mm->env_start; 1003 env_end = mm->env_end; 1004 spin_unlock(&mm->arg_lock); 1005 1006 len = arg_end - arg_start; 1007 1008 if (len > buflen) 1009 len = buflen; 1010 1011 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 1012 1013 /* 1014 * If the nul at the end of args has been overwritten, then 1015 * assume application is using setproctitle(3). 1016 */ 1017 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 1018 len = strnlen(buffer, res); 1019 if (len < res) { 1020 res = len; 1021 } else { 1022 len = env_end - env_start; 1023 if (len > buflen - res) 1024 len = buflen - res; 1025 res += access_process_vm(task, env_start, 1026 buffer+res, len, 1027 FOLL_FORCE); 1028 res = strnlen(buffer, res); 1029 } 1030 } 1031 out_mm: 1032 mmput(mm); 1033 out: 1034 return res; 1035 } 1036 1037 int __weak memcmp_pages(struct page *page1, struct page *page2) 1038 { 1039 char *addr1, *addr2; 1040 int ret; 1041 1042 addr1 = kmap_atomic(page1); 1043 addr2 = kmap_atomic(page2); 1044 ret = memcmp(addr1, addr2, PAGE_SIZE); 1045 kunmap_atomic(addr2); 1046 kunmap_atomic(addr1); 1047 return ret; 1048 } 1049 1050 #ifdef CONFIG_PRINTK 1051 /** 1052 * mem_dump_obj - Print available provenance information 1053 * @object: object for which to find provenance information. 1054 * 1055 * This function uses pr_cont(), so that the caller is expected to have 1056 * printed out whatever preamble is appropriate. The provenance information 1057 * depends on the type of object and on how much debugging is enabled. 1058 * For example, for a slab-cache object, the slab name is printed, and, 1059 * if available, the return address and stack trace from the allocation 1060 * and last free path of that object. 1061 */ 1062 void mem_dump_obj(void *object) 1063 { 1064 const char *type; 1065 1066 if (kmem_valid_obj(object)) { 1067 kmem_dump_obj(object); 1068 return; 1069 } 1070 1071 if (vmalloc_dump_obj(object)) 1072 return; 1073 1074 if (virt_addr_valid(object)) 1075 type = "non-slab/vmalloc memory"; 1076 else if (object == NULL) 1077 type = "NULL pointer"; 1078 else if (object == ZERO_SIZE_PTR) 1079 type = "zero-size pointer"; 1080 else 1081 type = "non-paged memory"; 1082 1083 pr_cont(" %s\n", type); 1084 } 1085 EXPORT_SYMBOL_GPL(mem_dump_obj); 1086 #endif 1087 1088 /* 1089 * A driver might set a page logically offline -- PageOffline() -- and 1090 * turn the page inaccessible in the hypervisor; after that, access to page 1091 * content can be fatal. 1092 * 1093 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1094 * pages after checking PageOffline(); however, these PFN walkers can race 1095 * with drivers that set PageOffline(). 1096 * 1097 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1098 * synchronize with such drivers, achieving that a page cannot be set 1099 * PageOffline() while frozen. 1100 * 1101 * page_offline_begin()/page_offline_end() is used by drivers that care about 1102 * such races when setting a page PageOffline(). 1103 */ 1104 static DECLARE_RWSEM(page_offline_rwsem); 1105 1106 void page_offline_freeze(void) 1107 { 1108 down_read(&page_offline_rwsem); 1109 } 1110 1111 void page_offline_thaw(void) 1112 { 1113 up_read(&page_offline_rwsem); 1114 } 1115 1116 void page_offline_begin(void) 1117 { 1118 down_write(&page_offline_rwsem); 1119 } 1120 EXPORT_SYMBOL(page_offline_begin); 1121 1122 void page_offline_end(void) 1123 { 1124 up_write(&page_offline_rwsem); 1125 } 1126 EXPORT_SYMBOL(page_offline_end); 1127 1128 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO 1129 void flush_dcache_folio(struct folio *folio) 1130 { 1131 long i, nr = folio_nr_pages(folio); 1132 1133 for (i = 0; i < nr; i++) 1134 flush_dcache_page(folio_page(folio, i)); 1135 } 1136 EXPORT_SYMBOL(flush_dcache_folio); 1137 #endif 1138