xref: /openbmc/linux/mm/util.c (revision 4beec1d7)
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
14 
15 #include <asm/sections.h>
16 #include <linux/uaccess.h>
17 
18 #include "internal.h"
19 
20 static inline int is_kernel_rodata(unsigned long addr)
21 {
22 	return addr >= (unsigned long)__start_rodata &&
23 		addr < (unsigned long)__end_rodata;
24 }
25 
26 /**
27  * kfree_const - conditionally free memory
28  * @x: pointer to the memory
29  *
30  * Function calls kfree only if @x is not in .rodata section.
31  */
32 void kfree_const(const void *x)
33 {
34 	if (!is_kernel_rodata((unsigned long)x))
35 		kfree(x);
36 }
37 EXPORT_SYMBOL(kfree_const);
38 
39 /**
40  * kstrdup - allocate space for and copy an existing string
41  * @s: the string to duplicate
42  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
43  */
44 char *kstrdup(const char *s, gfp_t gfp)
45 {
46 	size_t len;
47 	char *buf;
48 
49 	if (!s)
50 		return NULL;
51 
52 	len = strlen(s) + 1;
53 	buf = kmalloc_track_caller(len, gfp);
54 	if (buf)
55 		memcpy(buf, s, len);
56 	return buf;
57 }
58 EXPORT_SYMBOL(kstrdup);
59 
60 /**
61  * kstrdup_const - conditionally duplicate an existing const string
62  * @s: the string to duplicate
63  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
64  *
65  * Function returns source string if it is in .rodata section otherwise it
66  * fallbacks to kstrdup.
67  * Strings allocated by kstrdup_const should be freed by kfree_const.
68  */
69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71 	if (is_kernel_rodata((unsigned long)s))
72 		return s;
73 
74 	return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77 
78 /**
79  * kstrndup - allocate space for and copy an existing string
80  * @s: the string to duplicate
81  * @max: read at most @max chars from @s
82  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83  */
84 char *kstrndup(const char *s, size_t max, gfp_t gfp)
85 {
86 	size_t len;
87 	char *buf;
88 
89 	if (!s)
90 		return NULL;
91 
92 	len = strnlen(s, max);
93 	buf = kmalloc_track_caller(len+1, gfp);
94 	if (buf) {
95 		memcpy(buf, s, len);
96 		buf[len] = '\0';
97 	}
98 	return buf;
99 }
100 EXPORT_SYMBOL(kstrndup);
101 
102 /**
103  * kmemdup - duplicate region of memory
104  *
105  * @src: memory region to duplicate
106  * @len: memory region length
107  * @gfp: GFP mask to use
108  */
109 void *kmemdup(const void *src, size_t len, gfp_t gfp)
110 {
111 	void *p;
112 
113 	p = kmalloc_track_caller(len, gfp);
114 	if (p)
115 		memcpy(p, src, len);
116 	return p;
117 }
118 EXPORT_SYMBOL(kmemdup);
119 
120 /**
121  * memdup_user - duplicate memory region from user space
122  *
123  * @src: source address in user space
124  * @len: number of bytes to copy
125  *
126  * Returns an ERR_PTR() on failure.
127  */
128 void *memdup_user(const void __user *src, size_t len)
129 {
130 	void *p;
131 
132 	/*
133 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
134 	 * cause pagefault, which makes it pointless to use GFP_NOFS
135 	 * or GFP_ATOMIC.
136 	 */
137 	p = kmalloc_track_caller(len, GFP_KERNEL);
138 	if (!p)
139 		return ERR_PTR(-ENOMEM);
140 
141 	if (copy_from_user(p, src, len)) {
142 		kfree(p);
143 		return ERR_PTR(-EFAULT);
144 	}
145 
146 	return p;
147 }
148 EXPORT_SYMBOL(memdup_user);
149 
150 /*
151  * strndup_user - duplicate an existing string from user space
152  * @s: The string to duplicate
153  * @n: Maximum number of bytes to copy, including the trailing NUL.
154  */
155 char *strndup_user(const char __user *s, long n)
156 {
157 	char *p;
158 	long length;
159 
160 	length = strnlen_user(s, n);
161 
162 	if (!length)
163 		return ERR_PTR(-EFAULT);
164 
165 	if (length > n)
166 		return ERR_PTR(-EINVAL);
167 
168 	p = memdup_user(s, length);
169 
170 	if (IS_ERR(p))
171 		return p;
172 
173 	p[length - 1] = '\0';
174 
175 	return p;
176 }
177 EXPORT_SYMBOL(strndup_user);
178 
179 /**
180  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
181  *
182  * @src: source address in user space
183  * @len: number of bytes to copy
184  *
185  * Returns an ERR_PTR() on failure.
186  */
187 void *memdup_user_nul(const void __user *src, size_t len)
188 {
189 	char *p;
190 
191 	/*
192 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
193 	 * cause pagefault, which makes it pointless to use GFP_NOFS
194 	 * or GFP_ATOMIC.
195 	 */
196 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
197 	if (!p)
198 		return ERR_PTR(-ENOMEM);
199 
200 	if (copy_from_user(p, src, len)) {
201 		kfree(p);
202 		return ERR_PTR(-EFAULT);
203 	}
204 	p[len] = '\0';
205 
206 	return p;
207 }
208 EXPORT_SYMBOL(memdup_user_nul);
209 
210 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
211 		struct vm_area_struct *prev, struct rb_node *rb_parent)
212 {
213 	struct vm_area_struct *next;
214 
215 	vma->vm_prev = prev;
216 	if (prev) {
217 		next = prev->vm_next;
218 		prev->vm_next = vma;
219 	} else {
220 		mm->mmap = vma;
221 		if (rb_parent)
222 			next = rb_entry(rb_parent,
223 					struct vm_area_struct, vm_rb);
224 		else
225 			next = NULL;
226 	}
227 	vma->vm_next = next;
228 	if (next)
229 		next->vm_prev = vma;
230 }
231 
232 /* Check if the vma is being used as a stack by this task */
233 int vma_is_stack_for_current(struct vm_area_struct *vma)
234 {
235 	struct task_struct * __maybe_unused t = current;
236 
237 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
238 }
239 
240 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
241 void arch_pick_mmap_layout(struct mm_struct *mm)
242 {
243 	mm->mmap_base = TASK_UNMAPPED_BASE;
244 	mm->get_unmapped_area = arch_get_unmapped_area;
245 }
246 #endif
247 
248 /*
249  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
250  * back to the regular GUP.
251  * If the architecture not support this function, simply return with no
252  * page pinned
253  */
254 int __weak __get_user_pages_fast(unsigned long start,
255 				 int nr_pages, int write, struct page **pages)
256 {
257 	return 0;
258 }
259 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
260 
261 /**
262  * get_user_pages_fast() - pin user pages in memory
263  * @start:	starting user address
264  * @nr_pages:	number of pages from start to pin
265  * @write:	whether pages will be written to
266  * @pages:	array that receives pointers to the pages pinned.
267  *		Should be at least nr_pages long.
268  *
269  * Returns number of pages pinned. This may be fewer than the number
270  * requested. If nr_pages is 0 or negative, returns 0. If no pages
271  * were pinned, returns -errno.
272  *
273  * get_user_pages_fast provides equivalent functionality to get_user_pages,
274  * operating on current and current->mm, with force=0 and vma=NULL. However
275  * unlike get_user_pages, it must be called without mmap_sem held.
276  *
277  * get_user_pages_fast may take mmap_sem and page table locks, so no
278  * assumptions can be made about lack of locking. get_user_pages_fast is to be
279  * implemented in a way that is advantageous (vs get_user_pages()) when the
280  * user memory area is already faulted in and present in ptes. However if the
281  * pages have to be faulted in, it may turn out to be slightly slower so
282  * callers need to carefully consider what to use. On many architectures,
283  * get_user_pages_fast simply falls back to get_user_pages.
284  */
285 int __weak get_user_pages_fast(unsigned long start,
286 				int nr_pages, int write, struct page **pages)
287 {
288 	return get_user_pages_unlocked(start, nr_pages, pages,
289 				       write ? FOLL_WRITE : 0);
290 }
291 EXPORT_SYMBOL_GPL(get_user_pages_fast);
292 
293 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
294 	unsigned long len, unsigned long prot,
295 	unsigned long flag, unsigned long pgoff)
296 {
297 	unsigned long ret;
298 	struct mm_struct *mm = current->mm;
299 	unsigned long populate;
300 
301 	ret = security_mmap_file(file, prot, flag);
302 	if (!ret) {
303 		if (down_write_killable(&mm->mmap_sem))
304 			return -EINTR;
305 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
306 				    &populate);
307 		up_write(&mm->mmap_sem);
308 		if (populate)
309 			mm_populate(ret, populate);
310 	}
311 	return ret;
312 }
313 
314 unsigned long vm_mmap(struct file *file, unsigned long addr,
315 	unsigned long len, unsigned long prot,
316 	unsigned long flag, unsigned long offset)
317 {
318 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
319 		return -EINVAL;
320 	if (unlikely(offset_in_page(offset)))
321 		return -EINVAL;
322 
323 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
324 }
325 EXPORT_SYMBOL(vm_mmap);
326 
327 void kvfree(const void *addr)
328 {
329 	if (is_vmalloc_addr(addr))
330 		vfree(addr);
331 	else
332 		kfree(addr);
333 }
334 EXPORT_SYMBOL(kvfree);
335 
336 static inline void *__page_rmapping(struct page *page)
337 {
338 	unsigned long mapping;
339 
340 	mapping = (unsigned long)page->mapping;
341 	mapping &= ~PAGE_MAPPING_FLAGS;
342 
343 	return (void *)mapping;
344 }
345 
346 /* Neutral page->mapping pointer to address_space or anon_vma or other */
347 void *page_rmapping(struct page *page)
348 {
349 	page = compound_head(page);
350 	return __page_rmapping(page);
351 }
352 
353 /*
354  * Return true if this page is mapped into pagetables.
355  * For compound page it returns true if any subpage of compound page is mapped.
356  */
357 bool page_mapped(struct page *page)
358 {
359 	int i;
360 
361 	if (likely(!PageCompound(page)))
362 		return atomic_read(&page->_mapcount) >= 0;
363 	page = compound_head(page);
364 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
365 		return true;
366 	if (PageHuge(page))
367 		return false;
368 	for (i = 0; i < hpage_nr_pages(page); i++) {
369 		if (atomic_read(&page[i]._mapcount) >= 0)
370 			return true;
371 	}
372 	return false;
373 }
374 EXPORT_SYMBOL(page_mapped);
375 
376 struct anon_vma *page_anon_vma(struct page *page)
377 {
378 	unsigned long mapping;
379 
380 	page = compound_head(page);
381 	mapping = (unsigned long)page->mapping;
382 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
383 		return NULL;
384 	return __page_rmapping(page);
385 }
386 
387 struct address_space *page_mapping(struct page *page)
388 {
389 	struct address_space *mapping;
390 
391 	page = compound_head(page);
392 
393 	/* This happens if someone calls flush_dcache_page on slab page */
394 	if (unlikely(PageSlab(page)))
395 		return NULL;
396 
397 	if (unlikely(PageSwapCache(page))) {
398 		swp_entry_t entry;
399 
400 		entry.val = page_private(page);
401 		return swap_address_space(entry);
402 	}
403 
404 	mapping = page->mapping;
405 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
406 		return NULL;
407 
408 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
409 }
410 EXPORT_SYMBOL(page_mapping);
411 
412 /* Slow path of page_mapcount() for compound pages */
413 int __page_mapcount(struct page *page)
414 {
415 	int ret;
416 
417 	ret = atomic_read(&page->_mapcount) + 1;
418 	/*
419 	 * For file THP page->_mapcount contains total number of mapping
420 	 * of the page: no need to look into compound_mapcount.
421 	 */
422 	if (!PageAnon(page) && !PageHuge(page))
423 		return ret;
424 	page = compound_head(page);
425 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
426 	if (PageDoubleMap(page))
427 		ret--;
428 	return ret;
429 }
430 EXPORT_SYMBOL_GPL(__page_mapcount);
431 
432 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
433 int sysctl_overcommit_ratio __read_mostly = 50;
434 unsigned long sysctl_overcommit_kbytes __read_mostly;
435 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
436 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
437 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
438 
439 int overcommit_ratio_handler(struct ctl_table *table, int write,
440 			     void __user *buffer, size_t *lenp,
441 			     loff_t *ppos)
442 {
443 	int ret;
444 
445 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
446 	if (ret == 0 && write)
447 		sysctl_overcommit_kbytes = 0;
448 	return ret;
449 }
450 
451 int overcommit_kbytes_handler(struct ctl_table *table, int write,
452 			     void __user *buffer, size_t *lenp,
453 			     loff_t *ppos)
454 {
455 	int ret;
456 
457 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
458 	if (ret == 0 && write)
459 		sysctl_overcommit_ratio = 0;
460 	return ret;
461 }
462 
463 /*
464  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
465  */
466 unsigned long vm_commit_limit(void)
467 {
468 	unsigned long allowed;
469 
470 	if (sysctl_overcommit_kbytes)
471 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
472 	else
473 		allowed = ((totalram_pages - hugetlb_total_pages())
474 			   * sysctl_overcommit_ratio / 100);
475 	allowed += total_swap_pages;
476 
477 	return allowed;
478 }
479 
480 /*
481  * Make sure vm_committed_as in one cacheline and not cacheline shared with
482  * other variables. It can be updated by several CPUs frequently.
483  */
484 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
485 
486 /*
487  * The global memory commitment made in the system can be a metric
488  * that can be used to drive ballooning decisions when Linux is hosted
489  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
490  * balancing memory across competing virtual machines that are hosted.
491  * Several metrics drive this policy engine including the guest reported
492  * memory commitment.
493  */
494 unsigned long vm_memory_committed(void)
495 {
496 	return percpu_counter_read_positive(&vm_committed_as);
497 }
498 EXPORT_SYMBOL_GPL(vm_memory_committed);
499 
500 /*
501  * Check that a process has enough memory to allocate a new virtual
502  * mapping. 0 means there is enough memory for the allocation to
503  * succeed and -ENOMEM implies there is not.
504  *
505  * We currently support three overcommit policies, which are set via the
506  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
507  *
508  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
509  * Additional code 2002 Jul 20 by Robert Love.
510  *
511  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
512  *
513  * Note this is a helper function intended to be used by LSMs which
514  * wish to use this logic.
515  */
516 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
517 {
518 	long free, allowed, reserve;
519 
520 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
521 			-(s64)vm_committed_as_batch * num_online_cpus(),
522 			"memory commitment underflow");
523 
524 	vm_acct_memory(pages);
525 
526 	/*
527 	 * Sometimes we want to use more memory than we have
528 	 */
529 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
530 		return 0;
531 
532 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
533 		free = global_page_state(NR_FREE_PAGES);
534 		free += global_node_page_state(NR_FILE_PAGES);
535 
536 		/*
537 		 * shmem pages shouldn't be counted as free in this
538 		 * case, they can't be purged, only swapped out, and
539 		 * that won't affect the overall amount of available
540 		 * memory in the system.
541 		 */
542 		free -= global_node_page_state(NR_SHMEM);
543 
544 		free += get_nr_swap_pages();
545 
546 		/*
547 		 * Any slabs which are created with the
548 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
549 		 * which are reclaimable, under pressure.  The dentry
550 		 * cache and most inode caches should fall into this
551 		 */
552 		free += global_page_state(NR_SLAB_RECLAIMABLE);
553 
554 		/*
555 		 * Leave reserved pages. The pages are not for anonymous pages.
556 		 */
557 		if (free <= totalreserve_pages)
558 			goto error;
559 		else
560 			free -= totalreserve_pages;
561 
562 		/*
563 		 * Reserve some for root
564 		 */
565 		if (!cap_sys_admin)
566 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
567 
568 		if (free > pages)
569 			return 0;
570 
571 		goto error;
572 	}
573 
574 	allowed = vm_commit_limit();
575 	/*
576 	 * Reserve some for root
577 	 */
578 	if (!cap_sys_admin)
579 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
580 
581 	/*
582 	 * Don't let a single process grow so big a user can't recover
583 	 */
584 	if (mm) {
585 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
586 		allowed -= min_t(long, mm->total_vm / 32, reserve);
587 	}
588 
589 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
590 		return 0;
591 error:
592 	vm_unacct_memory(pages);
593 
594 	return -ENOMEM;
595 }
596 
597 /**
598  * get_cmdline() - copy the cmdline value to a buffer.
599  * @task:     the task whose cmdline value to copy.
600  * @buffer:   the buffer to copy to.
601  * @buflen:   the length of the buffer. Larger cmdline values are truncated
602  *            to this length.
603  * Returns the size of the cmdline field copied. Note that the copy does
604  * not guarantee an ending NULL byte.
605  */
606 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
607 {
608 	int res = 0;
609 	unsigned int len;
610 	struct mm_struct *mm = get_task_mm(task);
611 	unsigned long arg_start, arg_end, env_start, env_end;
612 	if (!mm)
613 		goto out;
614 	if (!mm->arg_end)
615 		goto out_mm;	/* Shh! No looking before we're done */
616 
617 	down_read(&mm->mmap_sem);
618 	arg_start = mm->arg_start;
619 	arg_end = mm->arg_end;
620 	env_start = mm->env_start;
621 	env_end = mm->env_end;
622 	up_read(&mm->mmap_sem);
623 
624 	len = arg_end - arg_start;
625 
626 	if (len > buflen)
627 		len = buflen;
628 
629 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
630 
631 	/*
632 	 * If the nul at the end of args has been overwritten, then
633 	 * assume application is using setproctitle(3).
634 	 */
635 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
636 		len = strnlen(buffer, res);
637 		if (len < res) {
638 			res = len;
639 		} else {
640 			len = env_end - env_start;
641 			if (len > buflen - res)
642 				len = buflen - res;
643 			res += access_process_vm(task, env_start,
644 						 buffer+res, len,
645 						 FOLL_FORCE);
646 			res = strnlen(buffer, res);
647 		}
648 	}
649 out_mm:
650 	mmput(mm);
651 out:
652 	return res;
653 }
654