1 #include <linux/mm.h> 2 #include <linux/slab.h> 3 #include <linux/string.h> 4 #include <linux/compiler.h> 5 #include <linux/export.h> 6 #include <linux/err.h> 7 #include <linux/sched.h> 8 #include <linux/security.h> 9 #include <linux/swap.h> 10 #include <linux/swapops.h> 11 #include <linux/mman.h> 12 #include <linux/hugetlb.h> 13 #include <linux/vmalloc.h> 14 15 #include <asm/sections.h> 16 #include <linux/uaccess.h> 17 18 #include "internal.h" 19 20 static inline int is_kernel_rodata(unsigned long addr) 21 { 22 return addr >= (unsigned long)__start_rodata && 23 addr < (unsigned long)__end_rodata; 24 } 25 26 /** 27 * kfree_const - conditionally free memory 28 * @x: pointer to the memory 29 * 30 * Function calls kfree only if @x is not in .rodata section. 31 */ 32 void kfree_const(const void *x) 33 { 34 if (!is_kernel_rodata((unsigned long)x)) 35 kfree(x); 36 } 37 EXPORT_SYMBOL(kfree_const); 38 39 /** 40 * kstrdup - allocate space for and copy an existing string 41 * @s: the string to duplicate 42 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 43 */ 44 char *kstrdup(const char *s, gfp_t gfp) 45 { 46 size_t len; 47 char *buf; 48 49 if (!s) 50 return NULL; 51 52 len = strlen(s) + 1; 53 buf = kmalloc_track_caller(len, gfp); 54 if (buf) 55 memcpy(buf, s, len); 56 return buf; 57 } 58 EXPORT_SYMBOL(kstrdup); 59 60 /** 61 * kstrdup_const - conditionally duplicate an existing const string 62 * @s: the string to duplicate 63 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 64 * 65 * Function returns source string if it is in .rodata section otherwise it 66 * fallbacks to kstrdup. 67 * Strings allocated by kstrdup_const should be freed by kfree_const. 68 */ 69 const char *kstrdup_const(const char *s, gfp_t gfp) 70 { 71 if (is_kernel_rodata((unsigned long)s)) 72 return s; 73 74 return kstrdup(s, gfp); 75 } 76 EXPORT_SYMBOL(kstrdup_const); 77 78 /** 79 * kstrndup - allocate space for and copy an existing string 80 * @s: the string to duplicate 81 * @max: read at most @max chars from @s 82 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 83 */ 84 char *kstrndup(const char *s, size_t max, gfp_t gfp) 85 { 86 size_t len; 87 char *buf; 88 89 if (!s) 90 return NULL; 91 92 len = strnlen(s, max); 93 buf = kmalloc_track_caller(len+1, gfp); 94 if (buf) { 95 memcpy(buf, s, len); 96 buf[len] = '\0'; 97 } 98 return buf; 99 } 100 EXPORT_SYMBOL(kstrndup); 101 102 /** 103 * kmemdup - duplicate region of memory 104 * 105 * @src: memory region to duplicate 106 * @len: memory region length 107 * @gfp: GFP mask to use 108 */ 109 void *kmemdup(const void *src, size_t len, gfp_t gfp) 110 { 111 void *p; 112 113 p = kmalloc_track_caller(len, gfp); 114 if (p) 115 memcpy(p, src, len); 116 return p; 117 } 118 EXPORT_SYMBOL(kmemdup); 119 120 /** 121 * memdup_user - duplicate memory region from user space 122 * 123 * @src: source address in user space 124 * @len: number of bytes to copy 125 * 126 * Returns an ERR_PTR() on failure. 127 */ 128 void *memdup_user(const void __user *src, size_t len) 129 { 130 void *p; 131 132 /* 133 * Always use GFP_KERNEL, since copy_from_user() can sleep and 134 * cause pagefault, which makes it pointless to use GFP_NOFS 135 * or GFP_ATOMIC. 136 */ 137 p = kmalloc_track_caller(len, GFP_KERNEL); 138 if (!p) 139 return ERR_PTR(-ENOMEM); 140 141 if (copy_from_user(p, src, len)) { 142 kfree(p); 143 return ERR_PTR(-EFAULT); 144 } 145 146 return p; 147 } 148 EXPORT_SYMBOL(memdup_user); 149 150 /* 151 * strndup_user - duplicate an existing string from user space 152 * @s: The string to duplicate 153 * @n: Maximum number of bytes to copy, including the trailing NUL. 154 */ 155 char *strndup_user(const char __user *s, long n) 156 { 157 char *p; 158 long length; 159 160 length = strnlen_user(s, n); 161 162 if (!length) 163 return ERR_PTR(-EFAULT); 164 165 if (length > n) 166 return ERR_PTR(-EINVAL); 167 168 p = memdup_user(s, length); 169 170 if (IS_ERR(p)) 171 return p; 172 173 p[length - 1] = '\0'; 174 175 return p; 176 } 177 EXPORT_SYMBOL(strndup_user); 178 179 /** 180 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 181 * 182 * @src: source address in user space 183 * @len: number of bytes to copy 184 * 185 * Returns an ERR_PTR() on failure. 186 */ 187 void *memdup_user_nul(const void __user *src, size_t len) 188 { 189 char *p; 190 191 /* 192 * Always use GFP_KERNEL, since copy_from_user() can sleep and 193 * cause pagefault, which makes it pointless to use GFP_NOFS 194 * or GFP_ATOMIC. 195 */ 196 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 197 if (!p) 198 return ERR_PTR(-ENOMEM); 199 200 if (copy_from_user(p, src, len)) { 201 kfree(p); 202 return ERR_PTR(-EFAULT); 203 } 204 p[len] = '\0'; 205 206 return p; 207 } 208 EXPORT_SYMBOL(memdup_user_nul); 209 210 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 211 struct vm_area_struct *prev, struct rb_node *rb_parent) 212 { 213 struct vm_area_struct *next; 214 215 vma->vm_prev = prev; 216 if (prev) { 217 next = prev->vm_next; 218 prev->vm_next = vma; 219 } else { 220 mm->mmap = vma; 221 if (rb_parent) 222 next = rb_entry(rb_parent, 223 struct vm_area_struct, vm_rb); 224 else 225 next = NULL; 226 } 227 vma->vm_next = next; 228 if (next) 229 next->vm_prev = vma; 230 } 231 232 /* Check if the vma is being used as a stack by this task */ 233 int vma_is_stack_for_current(struct vm_area_struct *vma) 234 { 235 struct task_struct * __maybe_unused t = current; 236 237 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 238 } 239 240 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 241 void arch_pick_mmap_layout(struct mm_struct *mm) 242 { 243 mm->mmap_base = TASK_UNMAPPED_BASE; 244 mm->get_unmapped_area = arch_get_unmapped_area; 245 } 246 #endif 247 248 /* 249 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall 250 * back to the regular GUP. 251 * If the architecture not support this function, simply return with no 252 * page pinned 253 */ 254 int __weak __get_user_pages_fast(unsigned long start, 255 int nr_pages, int write, struct page **pages) 256 { 257 return 0; 258 } 259 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 260 261 /** 262 * get_user_pages_fast() - pin user pages in memory 263 * @start: starting user address 264 * @nr_pages: number of pages from start to pin 265 * @write: whether pages will be written to 266 * @pages: array that receives pointers to the pages pinned. 267 * Should be at least nr_pages long. 268 * 269 * Returns number of pages pinned. This may be fewer than the number 270 * requested. If nr_pages is 0 or negative, returns 0. If no pages 271 * were pinned, returns -errno. 272 * 273 * get_user_pages_fast provides equivalent functionality to get_user_pages, 274 * operating on current and current->mm, with force=0 and vma=NULL. However 275 * unlike get_user_pages, it must be called without mmap_sem held. 276 * 277 * get_user_pages_fast may take mmap_sem and page table locks, so no 278 * assumptions can be made about lack of locking. get_user_pages_fast is to be 279 * implemented in a way that is advantageous (vs get_user_pages()) when the 280 * user memory area is already faulted in and present in ptes. However if the 281 * pages have to be faulted in, it may turn out to be slightly slower so 282 * callers need to carefully consider what to use. On many architectures, 283 * get_user_pages_fast simply falls back to get_user_pages. 284 */ 285 int __weak get_user_pages_fast(unsigned long start, 286 int nr_pages, int write, struct page **pages) 287 { 288 return get_user_pages_unlocked(start, nr_pages, pages, 289 write ? FOLL_WRITE : 0); 290 } 291 EXPORT_SYMBOL_GPL(get_user_pages_fast); 292 293 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 294 unsigned long len, unsigned long prot, 295 unsigned long flag, unsigned long pgoff) 296 { 297 unsigned long ret; 298 struct mm_struct *mm = current->mm; 299 unsigned long populate; 300 301 ret = security_mmap_file(file, prot, flag); 302 if (!ret) { 303 if (down_write_killable(&mm->mmap_sem)) 304 return -EINTR; 305 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, 306 &populate); 307 up_write(&mm->mmap_sem); 308 if (populate) 309 mm_populate(ret, populate); 310 } 311 return ret; 312 } 313 314 unsigned long vm_mmap(struct file *file, unsigned long addr, 315 unsigned long len, unsigned long prot, 316 unsigned long flag, unsigned long offset) 317 { 318 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 319 return -EINVAL; 320 if (unlikely(offset_in_page(offset))) 321 return -EINVAL; 322 323 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 324 } 325 EXPORT_SYMBOL(vm_mmap); 326 327 void kvfree(const void *addr) 328 { 329 if (is_vmalloc_addr(addr)) 330 vfree(addr); 331 else 332 kfree(addr); 333 } 334 EXPORT_SYMBOL(kvfree); 335 336 static inline void *__page_rmapping(struct page *page) 337 { 338 unsigned long mapping; 339 340 mapping = (unsigned long)page->mapping; 341 mapping &= ~PAGE_MAPPING_FLAGS; 342 343 return (void *)mapping; 344 } 345 346 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 347 void *page_rmapping(struct page *page) 348 { 349 page = compound_head(page); 350 return __page_rmapping(page); 351 } 352 353 /* 354 * Return true if this page is mapped into pagetables. 355 * For compound page it returns true if any subpage of compound page is mapped. 356 */ 357 bool page_mapped(struct page *page) 358 { 359 int i; 360 361 if (likely(!PageCompound(page))) 362 return atomic_read(&page->_mapcount) >= 0; 363 page = compound_head(page); 364 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 365 return true; 366 if (PageHuge(page)) 367 return false; 368 for (i = 0; i < hpage_nr_pages(page); i++) { 369 if (atomic_read(&page[i]._mapcount) >= 0) 370 return true; 371 } 372 return false; 373 } 374 EXPORT_SYMBOL(page_mapped); 375 376 struct anon_vma *page_anon_vma(struct page *page) 377 { 378 unsigned long mapping; 379 380 page = compound_head(page); 381 mapping = (unsigned long)page->mapping; 382 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 383 return NULL; 384 return __page_rmapping(page); 385 } 386 387 struct address_space *page_mapping(struct page *page) 388 { 389 struct address_space *mapping; 390 391 page = compound_head(page); 392 393 /* This happens if someone calls flush_dcache_page on slab page */ 394 if (unlikely(PageSlab(page))) 395 return NULL; 396 397 if (unlikely(PageSwapCache(page))) { 398 swp_entry_t entry; 399 400 entry.val = page_private(page); 401 return swap_address_space(entry); 402 } 403 404 mapping = page->mapping; 405 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 406 return NULL; 407 408 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 409 } 410 EXPORT_SYMBOL(page_mapping); 411 412 /* Slow path of page_mapcount() for compound pages */ 413 int __page_mapcount(struct page *page) 414 { 415 int ret; 416 417 ret = atomic_read(&page->_mapcount) + 1; 418 /* 419 * For file THP page->_mapcount contains total number of mapping 420 * of the page: no need to look into compound_mapcount. 421 */ 422 if (!PageAnon(page) && !PageHuge(page)) 423 return ret; 424 page = compound_head(page); 425 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 426 if (PageDoubleMap(page)) 427 ret--; 428 return ret; 429 } 430 EXPORT_SYMBOL_GPL(__page_mapcount); 431 432 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 433 int sysctl_overcommit_ratio __read_mostly = 50; 434 unsigned long sysctl_overcommit_kbytes __read_mostly; 435 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 436 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 437 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 438 439 int overcommit_ratio_handler(struct ctl_table *table, int write, 440 void __user *buffer, size_t *lenp, 441 loff_t *ppos) 442 { 443 int ret; 444 445 ret = proc_dointvec(table, write, buffer, lenp, ppos); 446 if (ret == 0 && write) 447 sysctl_overcommit_kbytes = 0; 448 return ret; 449 } 450 451 int overcommit_kbytes_handler(struct ctl_table *table, int write, 452 void __user *buffer, size_t *lenp, 453 loff_t *ppos) 454 { 455 int ret; 456 457 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 458 if (ret == 0 && write) 459 sysctl_overcommit_ratio = 0; 460 return ret; 461 } 462 463 /* 464 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 465 */ 466 unsigned long vm_commit_limit(void) 467 { 468 unsigned long allowed; 469 470 if (sysctl_overcommit_kbytes) 471 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 472 else 473 allowed = ((totalram_pages - hugetlb_total_pages()) 474 * sysctl_overcommit_ratio / 100); 475 allowed += total_swap_pages; 476 477 return allowed; 478 } 479 480 /* 481 * Make sure vm_committed_as in one cacheline and not cacheline shared with 482 * other variables. It can be updated by several CPUs frequently. 483 */ 484 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 485 486 /* 487 * The global memory commitment made in the system can be a metric 488 * that can be used to drive ballooning decisions when Linux is hosted 489 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 490 * balancing memory across competing virtual machines that are hosted. 491 * Several metrics drive this policy engine including the guest reported 492 * memory commitment. 493 */ 494 unsigned long vm_memory_committed(void) 495 { 496 return percpu_counter_read_positive(&vm_committed_as); 497 } 498 EXPORT_SYMBOL_GPL(vm_memory_committed); 499 500 /* 501 * Check that a process has enough memory to allocate a new virtual 502 * mapping. 0 means there is enough memory for the allocation to 503 * succeed and -ENOMEM implies there is not. 504 * 505 * We currently support three overcommit policies, which are set via the 506 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 507 * 508 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 509 * Additional code 2002 Jul 20 by Robert Love. 510 * 511 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 512 * 513 * Note this is a helper function intended to be used by LSMs which 514 * wish to use this logic. 515 */ 516 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 517 { 518 long free, allowed, reserve; 519 520 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 521 -(s64)vm_committed_as_batch * num_online_cpus(), 522 "memory commitment underflow"); 523 524 vm_acct_memory(pages); 525 526 /* 527 * Sometimes we want to use more memory than we have 528 */ 529 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 530 return 0; 531 532 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 533 free = global_page_state(NR_FREE_PAGES); 534 free += global_node_page_state(NR_FILE_PAGES); 535 536 /* 537 * shmem pages shouldn't be counted as free in this 538 * case, they can't be purged, only swapped out, and 539 * that won't affect the overall amount of available 540 * memory in the system. 541 */ 542 free -= global_node_page_state(NR_SHMEM); 543 544 free += get_nr_swap_pages(); 545 546 /* 547 * Any slabs which are created with the 548 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 549 * which are reclaimable, under pressure. The dentry 550 * cache and most inode caches should fall into this 551 */ 552 free += global_page_state(NR_SLAB_RECLAIMABLE); 553 554 /* 555 * Leave reserved pages. The pages are not for anonymous pages. 556 */ 557 if (free <= totalreserve_pages) 558 goto error; 559 else 560 free -= totalreserve_pages; 561 562 /* 563 * Reserve some for root 564 */ 565 if (!cap_sys_admin) 566 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 567 568 if (free > pages) 569 return 0; 570 571 goto error; 572 } 573 574 allowed = vm_commit_limit(); 575 /* 576 * Reserve some for root 577 */ 578 if (!cap_sys_admin) 579 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 580 581 /* 582 * Don't let a single process grow so big a user can't recover 583 */ 584 if (mm) { 585 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 586 allowed -= min_t(long, mm->total_vm / 32, reserve); 587 } 588 589 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 590 return 0; 591 error: 592 vm_unacct_memory(pages); 593 594 return -ENOMEM; 595 } 596 597 /** 598 * get_cmdline() - copy the cmdline value to a buffer. 599 * @task: the task whose cmdline value to copy. 600 * @buffer: the buffer to copy to. 601 * @buflen: the length of the buffer. Larger cmdline values are truncated 602 * to this length. 603 * Returns the size of the cmdline field copied. Note that the copy does 604 * not guarantee an ending NULL byte. 605 */ 606 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 607 { 608 int res = 0; 609 unsigned int len; 610 struct mm_struct *mm = get_task_mm(task); 611 unsigned long arg_start, arg_end, env_start, env_end; 612 if (!mm) 613 goto out; 614 if (!mm->arg_end) 615 goto out_mm; /* Shh! No looking before we're done */ 616 617 down_read(&mm->mmap_sem); 618 arg_start = mm->arg_start; 619 arg_end = mm->arg_end; 620 env_start = mm->env_start; 621 env_end = mm->env_end; 622 up_read(&mm->mmap_sem); 623 624 len = arg_end - arg_start; 625 626 if (len > buflen) 627 len = buflen; 628 629 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 630 631 /* 632 * If the nul at the end of args has been overwritten, then 633 * assume application is using setproctitle(3). 634 */ 635 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 636 len = strnlen(buffer, res); 637 if (len < res) { 638 res = len; 639 } else { 640 len = env_end - env_start; 641 if (len > buflen - res) 642 len = buflen - res; 643 res += access_process_vm(task, env_start, 644 buffer+res, len, 645 FOLL_FORCE); 646 res = strnlen(buffer, res); 647 } 648 } 649 out_mm: 650 mmput(mm); 651 out: 652 return res; 653 } 654