1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/mm.h> 3 #include <linux/slab.h> 4 #include <linux/string.h> 5 #include <linux/compiler.h> 6 #include <linux/export.h> 7 #include <linux/err.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/task_stack.h> 12 #include <linux/security.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mman.h> 16 #include <linux/hugetlb.h> 17 #include <linux/vmalloc.h> 18 #include <linux/userfaultfd_k.h> 19 #include <linux/elf.h> 20 #include <linux/elf-randomize.h> 21 #include <linux/personality.h> 22 #include <linux/random.h> 23 #include <linux/processor.h> 24 #include <linux/sizes.h> 25 #include <linux/compat.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 /** 32 * kfree_const - conditionally free memory 33 * @x: pointer to the memory 34 * 35 * Function calls kfree only if @x is not in .rodata section. 36 */ 37 void kfree_const(const void *x) 38 { 39 if (!is_kernel_rodata((unsigned long)x)) 40 kfree(x); 41 } 42 EXPORT_SYMBOL(kfree_const); 43 44 /** 45 * kstrdup - allocate space for and copy an existing string 46 * @s: the string to duplicate 47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 48 * 49 * Return: newly allocated copy of @s or %NULL in case of error 50 */ 51 char *kstrdup(const char *s, gfp_t gfp) 52 { 53 size_t len; 54 char *buf; 55 56 if (!s) 57 return NULL; 58 59 len = strlen(s) + 1; 60 buf = kmalloc_track_caller(len, gfp); 61 if (buf) 62 memcpy(buf, s, len); 63 return buf; 64 } 65 EXPORT_SYMBOL(kstrdup); 66 67 /** 68 * kstrdup_const - conditionally duplicate an existing const string 69 * @s: the string to duplicate 70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 71 * 72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and 73 * must not be passed to krealloc(). 74 * 75 * Return: source string if it is in .rodata section otherwise 76 * fallback to kstrdup. 77 */ 78 const char *kstrdup_const(const char *s, gfp_t gfp) 79 { 80 if (is_kernel_rodata((unsigned long)s)) 81 return s; 82 83 return kstrdup(s, gfp); 84 } 85 EXPORT_SYMBOL(kstrdup_const); 86 87 /** 88 * kstrndup - allocate space for and copy an existing string 89 * @s: the string to duplicate 90 * @max: read at most @max chars from @s 91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 92 * 93 * Note: Use kmemdup_nul() instead if the size is known exactly. 94 * 95 * Return: newly allocated copy of @s or %NULL in case of error 96 */ 97 char *kstrndup(const char *s, size_t max, gfp_t gfp) 98 { 99 size_t len; 100 char *buf; 101 102 if (!s) 103 return NULL; 104 105 len = strnlen(s, max); 106 buf = kmalloc_track_caller(len+1, gfp); 107 if (buf) { 108 memcpy(buf, s, len); 109 buf[len] = '\0'; 110 } 111 return buf; 112 } 113 EXPORT_SYMBOL(kstrndup); 114 115 /** 116 * kmemdup - duplicate region of memory 117 * 118 * @src: memory region to duplicate 119 * @len: memory region length 120 * @gfp: GFP mask to use 121 * 122 * Return: newly allocated copy of @src or %NULL in case of error 123 */ 124 void *kmemdup(const void *src, size_t len, gfp_t gfp) 125 { 126 void *p; 127 128 p = kmalloc_track_caller(len, gfp); 129 if (p) 130 memcpy(p, src, len); 131 return p; 132 } 133 EXPORT_SYMBOL(kmemdup); 134 135 /** 136 * kmemdup_nul - Create a NUL-terminated string from unterminated data 137 * @s: The data to stringify 138 * @len: The size of the data 139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 140 * 141 * Return: newly allocated copy of @s with NUL-termination or %NULL in 142 * case of error 143 */ 144 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) 145 { 146 char *buf; 147 148 if (!s) 149 return NULL; 150 151 buf = kmalloc_track_caller(len + 1, gfp); 152 if (buf) { 153 memcpy(buf, s, len); 154 buf[len] = '\0'; 155 } 156 return buf; 157 } 158 EXPORT_SYMBOL(kmemdup_nul); 159 160 /** 161 * memdup_user - duplicate memory region from user space 162 * 163 * @src: source address in user space 164 * @len: number of bytes to copy 165 * 166 * Return: an ERR_PTR() on failure. Result is physically 167 * contiguous, to be freed by kfree(). 168 */ 169 void *memdup_user(const void __user *src, size_t len) 170 { 171 void *p; 172 173 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); 174 if (!p) 175 return ERR_PTR(-ENOMEM); 176 177 if (copy_from_user(p, src, len)) { 178 kfree(p); 179 return ERR_PTR(-EFAULT); 180 } 181 182 return p; 183 } 184 EXPORT_SYMBOL(memdup_user); 185 186 /** 187 * vmemdup_user - duplicate memory region from user space 188 * 189 * @src: source address in user space 190 * @len: number of bytes to copy 191 * 192 * Return: an ERR_PTR() on failure. Result may be not 193 * physically contiguous. Use kvfree() to free. 194 */ 195 void *vmemdup_user(const void __user *src, size_t len) 196 { 197 void *p; 198 199 p = kvmalloc(len, GFP_USER); 200 if (!p) 201 return ERR_PTR(-ENOMEM); 202 203 if (copy_from_user(p, src, len)) { 204 kvfree(p); 205 return ERR_PTR(-EFAULT); 206 } 207 208 return p; 209 } 210 EXPORT_SYMBOL(vmemdup_user); 211 212 /** 213 * strndup_user - duplicate an existing string from user space 214 * @s: The string to duplicate 215 * @n: Maximum number of bytes to copy, including the trailing NUL. 216 * 217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error 218 */ 219 char *strndup_user(const char __user *s, long n) 220 { 221 char *p; 222 long length; 223 224 length = strnlen_user(s, n); 225 226 if (!length) 227 return ERR_PTR(-EFAULT); 228 229 if (length > n) 230 return ERR_PTR(-EINVAL); 231 232 p = memdup_user(s, length); 233 234 if (IS_ERR(p)) 235 return p; 236 237 p[length - 1] = '\0'; 238 239 return p; 240 } 241 EXPORT_SYMBOL(strndup_user); 242 243 /** 244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 245 * 246 * @src: source address in user space 247 * @len: number of bytes to copy 248 * 249 * Return: an ERR_PTR() on failure. 250 */ 251 void *memdup_user_nul(const void __user *src, size_t len) 252 { 253 char *p; 254 255 /* 256 * Always use GFP_KERNEL, since copy_from_user() can sleep and 257 * cause pagefault, which makes it pointless to use GFP_NOFS 258 * or GFP_ATOMIC. 259 */ 260 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 261 if (!p) 262 return ERR_PTR(-ENOMEM); 263 264 if (copy_from_user(p, src, len)) { 265 kfree(p); 266 return ERR_PTR(-EFAULT); 267 } 268 p[len] = '\0'; 269 270 return p; 271 } 272 EXPORT_SYMBOL(memdup_user_nul); 273 274 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 275 struct vm_area_struct *prev) 276 { 277 struct vm_area_struct *next; 278 279 vma->vm_prev = prev; 280 if (prev) { 281 next = prev->vm_next; 282 prev->vm_next = vma; 283 } else { 284 next = mm->mmap; 285 mm->mmap = vma; 286 } 287 vma->vm_next = next; 288 if (next) 289 next->vm_prev = vma; 290 } 291 292 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma) 293 { 294 struct vm_area_struct *prev, *next; 295 296 next = vma->vm_next; 297 prev = vma->vm_prev; 298 if (prev) 299 prev->vm_next = next; 300 else 301 mm->mmap = next; 302 if (next) 303 next->vm_prev = prev; 304 } 305 306 /* Check if the vma is being used as a stack by this task */ 307 int vma_is_stack_for_current(struct vm_area_struct *vma) 308 { 309 struct task_struct * __maybe_unused t = current; 310 311 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 312 } 313 314 /* 315 * Change backing file, only valid to use during initial VMA setup. 316 */ 317 void vma_set_file(struct vm_area_struct *vma, struct file *file) 318 { 319 /* Changing an anonymous vma with this is illegal */ 320 get_file(file); 321 swap(vma->vm_file, file); 322 fput(file); 323 } 324 EXPORT_SYMBOL(vma_set_file); 325 326 #ifndef STACK_RND_MASK 327 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ 328 #endif 329 330 unsigned long randomize_stack_top(unsigned long stack_top) 331 { 332 unsigned long random_variable = 0; 333 334 if (current->flags & PF_RANDOMIZE) { 335 random_variable = get_random_long(); 336 random_variable &= STACK_RND_MASK; 337 random_variable <<= PAGE_SHIFT; 338 } 339 #ifdef CONFIG_STACK_GROWSUP 340 return PAGE_ALIGN(stack_top) + random_variable; 341 #else 342 return PAGE_ALIGN(stack_top) - random_variable; 343 #endif 344 } 345 346 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 347 unsigned long arch_randomize_brk(struct mm_struct *mm) 348 { 349 /* Is the current task 32bit ? */ 350 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) 351 return randomize_page(mm->brk, SZ_32M); 352 353 return randomize_page(mm->brk, SZ_1G); 354 } 355 356 unsigned long arch_mmap_rnd(void) 357 { 358 unsigned long rnd; 359 360 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 361 if (is_compat_task()) 362 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); 363 else 364 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ 365 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); 366 367 return rnd << PAGE_SHIFT; 368 } 369 370 static int mmap_is_legacy(struct rlimit *rlim_stack) 371 { 372 if (current->personality & ADDR_COMPAT_LAYOUT) 373 return 1; 374 375 if (rlim_stack->rlim_cur == RLIM_INFINITY) 376 return 1; 377 378 return sysctl_legacy_va_layout; 379 } 380 381 /* 382 * Leave enough space between the mmap area and the stack to honour ulimit in 383 * the face of randomisation. 384 */ 385 #define MIN_GAP (SZ_128M) 386 #define MAX_GAP (STACK_TOP / 6 * 5) 387 388 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) 389 { 390 unsigned long gap = rlim_stack->rlim_cur; 391 unsigned long pad = stack_guard_gap; 392 393 /* Account for stack randomization if necessary */ 394 if (current->flags & PF_RANDOMIZE) 395 pad += (STACK_RND_MASK << PAGE_SHIFT); 396 397 /* Values close to RLIM_INFINITY can overflow. */ 398 if (gap + pad > gap) 399 gap += pad; 400 401 if (gap < MIN_GAP) 402 gap = MIN_GAP; 403 else if (gap > MAX_GAP) 404 gap = MAX_GAP; 405 406 return PAGE_ALIGN(STACK_TOP - gap - rnd); 407 } 408 409 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 410 { 411 unsigned long random_factor = 0UL; 412 413 if (current->flags & PF_RANDOMIZE) 414 random_factor = arch_mmap_rnd(); 415 416 if (mmap_is_legacy(rlim_stack)) { 417 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; 418 mm->get_unmapped_area = arch_get_unmapped_area; 419 } else { 420 mm->mmap_base = mmap_base(random_factor, rlim_stack); 421 mm->get_unmapped_area = arch_get_unmapped_area_topdown; 422 } 423 } 424 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 425 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) 426 { 427 mm->mmap_base = TASK_UNMAPPED_BASE; 428 mm->get_unmapped_area = arch_get_unmapped_area; 429 } 430 #endif 431 432 /** 433 * __account_locked_vm - account locked pages to an mm's locked_vm 434 * @mm: mm to account against 435 * @pages: number of pages to account 436 * @inc: %true if @pages should be considered positive, %false if not 437 * @task: task used to check RLIMIT_MEMLOCK 438 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped 439 * 440 * Assumes @task and @mm are valid (i.e. at least one reference on each), and 441 * that mmap_lock is held as writer. 442 * 443 * Return: 444 * * 0 on success 445 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 446 */ 447 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 448 struct task_struct *task, bool bypass_rlim) 449 { 450 unsigned long locked_vm, limit; 451 int ret = 0; 452 453 mmap_assert_write_locked(mm); 454 455 locked_vm = mm->locked_vm; 456 if (inc) { 457 if (!bypass_rlim) { 458 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; 459 if (locked_vm + pages > limit) 460 ret = -ENOMEM; 461 } 462 if (!ret) 463 mm->locked_vm = locked_vm + pages; 464 } else { 465 WARN_ON_ONCE(pages > locked_vm); 466 mm->locked_vm = locked_vm - pages; 467 } 468 469 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, 470 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, 471 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), 472 ret ? " - exceeded" : ""); 473 474 return ret; 475 } 476 EXPORT_SYMBOL_GPL(__account_locked_vm); 477 478 /** 479 * account_locked_vm - account locked pages to an mm's locked_vm 480 * @mm: mm to account against, may be NULL 481 * @pages: number of pages to account 482 * @inc: %true if @pages should be considered positive, %false if not 483 * 484 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). 485 * 486 * Return: 487 * * 0 on success, or if mm is NULL 488 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. 489 */ 490 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) 491 { 492 int ret; 493 494 if (pages == 0 || !mm) 495 return 0; 496 497 mmap_write_lock(mm); 498 ret = __account_locked_vm(mm, pages, inc, current, 499 capable(CAP_IPC_LOCK)); 500 mmap_write_unlock(mm); 501 502 return ret; 503 } 504 EXPORT_SYMBOL_GPL(account_locked_vm); 505 506 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 507 unsigned long len, unsigned long prot, 508 unsigned long flag, unsigned long pgoff) 509 { 510 unsigned long ret; 511 struct mm_struct *mm = current->mm; 512 unsigned long populate; 513 LIST_HEAD(uf); 514 515 ret = security_mmap_file(file, prot, flag); 516 if (!ret) { 517 if (mmap_write_lock_killable(mm)) 518 return -EINTR; 519 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate, 520 &uf); 521 mmap_write_unlock(mm); 522 userfaultfd_unmap_complete(mm, &uf); 523 if (populate) 524 mm_populate(ret, populate); 525 } 526 return ret; 527 } 528 529 unsigned long vm_mmap(struct file *file, unsigned long addr, 530 unsigned long len, unsigned long prot, 531 unsigned long flag, unsigned long offset) 532 { 533 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 534 return -EINVAL; 535 if (unlikely(offset_in_page(offset))) 536 return -EINVAL; 537 538 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 539 } 540 EXPORT_SYMBOL(vm_mmap); 541 542 /** 543 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon 544 * failure, fall back to non-contiguous (vmalloc) allocation. 545 * @size: size of the request. 546 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. 547 * @node: numa node to allocate from 548 * 549 * Uses kmalloc to get the memory but if the allocation fails then falls back 550 * to the vmalloc allocator. Use kvfree for freeing the memory. 551 * 552 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported. 553 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is 554 * preferable to the vmalloc fallback, due to visible performance drawbacks. 555 * 556 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not 557 * fall back to vmalloc. 558 * 559 * Return: pointer to the allocated memory of %NULL in case of failure 560 */ 561 void *kvmalloc_node(size_t size, gfp_t flags, int node) 562 { 563 gfp_t kmalloc_flags = flags; 564 void *ret; 565 566 /* 567 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables) 568 * so the given set of flags has to be compatible. 569 */ 570 if ((flags & GFP_KERNEL) != GFP_KERNEL) 571 return kmalloc_node(size, flags, node); 572 573 /* 574 * We want to attempt a large physically contiguous block first because 575 * it is less likely to fragment multiple larger blocks and therefore 576 * contribute to a long term fragmentation less than vmalloc fallback. 577 * However make sure that larger requests are not too disruptive - no 578 * OOM killer and no allocation failure warnings as we have a fallback. 579 */ 580 if (size > PAGE_SIZE) { 581 kmalloc_flags |= __GFP_NOWARN; 582 583 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) 584 kmalloc_flags |= __GFP_NORETRY; 585 } 586 587 ret = kmalloc_node(size, kmalloc_flags, node); 588 589 /* 590 * It doesn't really make sense to fallback to vmalloc for sub page 591 * requests 592 */ 593 if (ret || size <= PAGE_SIZE) 594 return ret; 595 596 return __vmalloc_node(size, 1, flags, node, 597 __builtin_return_address(0)); 598 } 599 EXPORT_SYMBOL(kvmalloc_node); 600 601 /** 602 * kvfree() - Free memory. 603 * @addr: Pointer to allocated memory. 604 * 605 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). 606 * It is slightly more efficient to use kfree() or vfree() if you are certain 607 * that you know which one to use. 608 * 609 * Context: Either preemptible task context or not-NMI interrupt. 610 */ 611 void kvfree(const void *addr) 612 { 613 if (is_vmalloc_addr(addr)) 614 vfree(addr); 615 else 616 kfree(addr); 617 } 618 EXPORT_SYMBOL(kvfree); 619 620 /** 621 * kvfree_sensitive - Free a data object containing sensitive information. 622 * @addr: address of the data object to be freed. 623 * @len: length of the data object. 624 * 625 * Use the special memzero_explicit() function to clear the content of a 626 * kvmalloc'ed object containing sensitive data to make sure that the 627 * compiler won't optimize out the data clearing. 628 */ 629 void kvfree_sensitive(const void *addr, size_t len) 630 { 631 if (likely(!ZERO_OR_NULL_PTR(addr))) { 632 memzero_explicit((void *)addr, len); 633 kvfree(addr); 634 } 635 } 636 EXPORT_SYMBOL(kvfree_sensitive); 637 638 static inline void *__page_rmapping(struct page *page) 639 { 640 unsigned long mapping; 641 642 mapping = (unsigned long)page->mapping; 643 mapping &= ~PAGE_MAPPING_FLAGS; 644 645 return (void *)mapping; 646 } 647 648 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 649 void *page_rmapping(struct page *page) 650 { 651 page = compound_head(page); 652 return __page_rmapping(page); 653 } 654 655 /* 656 * Return true if this page is mapped into pagetables. 657 * For compound page it returns true if any subpage of compound page is mapped. 658 */ 659 bool page_mapped(struct page *page) 660 { 661 int i; 662 663 if (likely(!PageCompound(page))) 664 return atomic_read(&page->_mapcount) >= 0; 665 page = compound_head(page); 666 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 667 return true; 668 if (PageHuge(page)) 669 return false; 670 for (i = 0; i < compound_nr(page); i++) { 671 if (atomic_read(&page[i]._mapcount) >= 0) 672 return true; 673 } 674 return false; 675 } 676 EXPORT_SYMBOL(page_mapped); 677 678 struct anon_vma *page_anon_vma(struct page *page) 679 { 680 unsigned long mapping; 681 682 page = compound_head(page); 683 mapping = (unsigned long)page->mapping; 684 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 685 return NULL; 686 return __page_rmapping(page); 687 } 688 689 struct address_space *page_mapping(struct page *page) 690 { 691 struct address_space *mapping; 692 693 page = compound_head(page); 694 695 /* This happens if someone calls flush_dcache_page on slab page */ 696 if (unlikely(PageSlab(page))) 697 return NULL; 698 699 if (unlikely(PageSwapCache(page))) { 700 swp_entry_t entry; 701 702 entry.val = page_private(page); 703 return swap_address_space(entry); 704 } 705 706 mapping = page->mapping; 707 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 708 return NULL; 709 710 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 711 } 712 EXPORT_SYMBOL(page_mapping); 713 714 /* Slow path of page_mapcount() for compound pages */ 715 int __page_mapcount(struct page *page) 716 { 717 int ret; 718 719 ret = atomic_read(&page->_mapcount) + 1; 720 /* 721 * For file THP page->_mapcount contains total number of mapping 722 * of the page: no need to look into compound_mapcount. 723 */ 724 if (!PageAnon(page) && !PageHuge(page)) 725 return ret; 726 page = compound_head(page); 727 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 728 if (PageDoubleMap(page)) 729 ret--; 730 return ret; 731 } 732 EXPORT_SYMBOL_GPL(__page_mapcount); 733 734 void copy_huge_page(struct page *dst, struct page *src) 735 { 736 unsigned i, nr = compound_nr(src); 737 738 for (i = 0; i < nr; i++) { 739 cond_resched(); 740 copy_highpage(nth_page(dst, i), nth_page(src, i)); 741 } 742 } 743 744 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 745 int sysctl_overcommit_ratio __read_mostly = 50; 746 unsigned long sysctl_overcommit_kbytes __read_mostly; 747 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 748 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 749 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 750 751 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, 752 size_t *lenp, loff_t *ppos) 753 { 754 int ret; 755 756 ret = proc_dointvec(table, write, buffer, lenp, ppos); 757 if (ret == 0 && write) 758 sysctl_overcommit_kbytes = 0; 759 return ret; 760 } 761 762 static void sync_overcommit_as(struct work_struct *dummy) 763 { 764 percpu_counter_sync(&vm_committed_as); 765 } 766 767 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, 768 size_t *lenp, loff_t *ppos) 769 { 770 struct ctl_table t; 771 int new_policy; 772 int ret; 773 774 /* 775 * The deviation of sync_overcommit_as could be big with loose policy 776 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to 777 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply 778 * with the strict "NEVER", and to avoid possible race condition (even 779 * though user usually won't too frequently do the switching to policy 780 * OVERCOMMIT_NEVER), the switch is done in the following order: 781 * 1. changing the batch 782 * 2. sync percpu count on each CPU 783 * 3. switch the policy 784 */ 785 if (write) { 786 t = *table; 787 t.data = &new_policy; 788 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 789 if (ret) 790 return ret; 791 792 mm_compute_batch(new_policy); 793 if (new_policy == OVERCOMMIT_NEVER) 794 schedule_on_each_cpu(sync_overcommit_as); 795 sysctl_overcommit_memory = new_policy; 796 } else { 797 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 798 } 799 800 return ret; 801 } 802 803 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, 804 size_t *lenp, loff_t *ppos) 805 { 806 int ret; 807 808 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 809 if (ret == 0 && write) 810 sysctl_overcommit_ratio = 0; 811 return ret; 812 } 813 814 /* 815 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 816 */ 817 unsigned long vm_commit_limit(void) 818 { 819 unsigned long allowed; 820 821 if (sysctl_overcommit_kbytes) 822 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 823 else 824 allowed = ((totalram_pages() - hugetlb_total_pages()) 825 * sysctl_overcommit_ratio / 100); 826 allowed += total_swap_pages; 827 828 return allowed; 829 } 830 831 /* 832 * Make sure vm_committed_as in one cacheline and not cacheline shared with 833 * other variables. It can be updated by several CPUs frequently. 834 */ 835 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 836 837 /* 838 * The global memory commitment made in the system can be a metric 839 * that can be used to drive ballooning decisions when Linux is hosted 840 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 841 * balancing memory across competing virtual machines that are hosted. 842 * Several metrics drive this policy engine including the guest reported 843 * memory commitment. 844 * 845 * The time cost of this is very low for small platforms, and for big 846 * platform like a 2S/36C/72T Skylake server, in worst case where 847 * vm_committed_as's spinlock is under severe contention, the time cost 848 * could be about 30~40 microseconds. 849 */ 850 unsigned long vm_memory_committed(void) 851 { 852 return percpu_counter_sum_positive(&vm_committed_as); 853 } 854 EXPORT_SYMBOL_GPL(vm_memory_committed); 855 856 /* 857 * Check that a process has enough memory to allocate a new virtual 858 * mapping. 0 means there is enough memory for the allocation to 859 * succeed and -ENOMEM implies there is not. 860 * 861 * We currently support three overcommit policies, which are set via the 862 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst 863 * 864 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 865 * Additional code 2002 Jul 20 by Robert Love. 866 * 867 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 868 * 869 * Note this is a helper function intended to be used by LSMs which 870 * wish to use this logic. 871 */ 872 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 873 { 874 long allowed; 875 876 vm_acct_memory(pages); 877 878 /* 879 * Sometimes we want to use more memory than we have 880 */ 881 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 882 return 0; 883 884 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 885 if (pages > totalram_pages() + total_swap_pages) 886 goto error; 887 return 0; 888 } 889 890 allowed = vm_commit_limit(); 891 /* 892 * Reserve some for root 893 */ 894 if (!cap_sys_admin) 895 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 896 897 /* 898 * Don't let a single process grow so big a user can't recover 899 */ 900 if (mm) { 901 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 902 903 allowed -= min_t(long, mm->total_vm / 32, reserve); 904 } 905 906 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 907 return 0; 908 error: 909 vm_unacct_memory(pages); 910 911 return -ENOMEM; 912 } 913 914 /** 915 * get_cmdline() - copy the cmdline value to a buffer. 916 * @task: the task whose cmdline value to copy. 917 * @buffer: the buffer to copy to. 918 * @buflen: the length of the buffer. Larger cmdline values are truncated 919 * to this length. 920 * 921 * Return: the size of the cmdline field copied. Note that the copy does 922 * not guarantee an ending NULL byte. 923 */ 924 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 925 { 926 int res = 0; 927 unsigned int len; 928 struct mm_struct *mm = get_task_mm(task); 929 unsigned long arg_start, arg_end, env_start, env_end; 930 if (!mm) 931 goto out; 932 if (!mm->arg_end) 933 goto out_mm; /* Shh! No looking before we're done */ 934 935 spin_lock(&mm->arg_lock); 936 arg_start = mm->arg_start; 937 arg_end = mm->arg_end; 938 env_start = mm->env_start; 939 env_end = mm->env_end; 940 spin_unlock(&mm->arg_lock); 941 942 len = arg_end - arg_start; 943 944 if (len > buflen) 945 len = buflen; 946 947 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 948 949 /* 950 * If the nul at the end of args has been overwritten, then 951 * assume application is using setproctitle(3). 952 */ 953 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 954 len = strnlen(buffer, res); 955 if (len < res) { 956 res = len; 957 } else { 958 len = env_end - env_start; 959 if (len > buflen - res) 960 len = buflen - res; 961 res += access_process_vm(task, env_start, 962 buffer+res, len, 963 FOLL_FORCE); 964 res = strnlen(buffer, res); 965 } 966 } 967 out_mm: 968 mmput(mm); 969 out: 970 return res; 971 } 972 973 int __weak memcmp_pages(struct page *page1, struct page *page2) 974 { 975 char *addr1, *addr2; 976 int ret; 977 978 addr1 = kmap_atomic(page1); 979 addr2 = kmap_atomic(page2); 980 ret = memcmp(addr1, addr2, PAGE_SIZE); 981 kunmap_atomic(addr2); 982 kunmap_atomic(addr1); 983 return ret; 984 } 985 986 #ifdef CONFIG_PRINTK 987 /** 988 * mem_dump_obj - Print available provenance information 989 * @object: object for which to find provenance information. 990 * 991 * This function uses pr_cont(), so that the caller is expected to have 992 * printed out whatever preamble is appropriate. The provenance information 993 * depends on the type of object and on how much debugging is enabled. 994 * For example, for a slab-cache object, the slab name is printed, and, 995 * if available, the return address and stack trace from the allocation 996 * and last free path of that object. 997 */ 998 void mem_dump_obj(void *object) 999 { 1000 const char *type; 1001 1002 if (kmem_valid_obj(object)) { 1003 kmem_dump_obj(object); 1004 return; 1005 } 1006 1007 if (vmalloc_dump_obj(object)) 1008 return; 1009 1010 if (virt_addr_valid(object)) 1011 type = "non-slab/vmalloc memory"; 1012 else if (object == NULL) 1013 type = "NULL pointer"; 1014 else if (object == ZERO_SIZE_PTR) 1015 type = "zero-size pointer"; 1016 else 1017 type = "non-paged memory"; 1018 1019 pr_cont(" %s\n", type); 1020 } 1021 EXPORT_SYMBOL_GPL(mem_dump_obj); 1022 #endif 1023 1024 /* 1025 * A driver might set a page logically offline -- PageOffline() -- and 1026 * turn the page inaccessible in the hypervisor; after that, access to page 1027 * content can be fatal. 1028 * 1029 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random 1030 * pages after checking PageOffline(); however, these PFN walkers can race 1031 * with drivers that set PageOffline(). 1032 * 1033 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to 1034 * synchronize with such drivers, achieving that a page cannot be set 1035 * PageOffline() while frozen. 1036 * 1037 * page_offline_begin()/page_offline_end() is used by drivers that care about 1038 * such races when setting a page PageOffline(). 1039 */ 1040 static DECLARE_RWSEM(page_offline_rwsem); 1041 1042 void page_offline_freeze(void) 1043 { 1044 down_read(&page_offline_rwsem); 1045 } 1046 1047 void page_offline_thaw(void) 1048 { 1049 up_read(&page_offline_rwsem); 1050 } 1051 1052 void page_offline_begin(void) 1053 { 1054 down_write(&page_offline_rwsem); 1055 } 1056 EXPORT_SYMBOL(page_offline_begin); 1057 1058 void page_offline_end(void) 1059 { 1060 up_write(&page_offline_rwsem); 1061 } 1062 EXPORT_SYMBOL(page_offline_end); 1063