xref: /openbmc/linux/mm/util.c (revision 32981ea5)
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
14 
15 #include <asm/sections.h>
16 #include <asm/uaccess.h>
17 
18 #include "internal.h"
19 
20 static inline int is_kernel_rodata(unsigned long addr)
21 {
22 	return addr >= (unsigned long)__start_rodata &&
23 		addr < (unsigned long)__end_rodata;
24 }
25 
26 /**
27  * kfree_const - conditionally free memory
28  * @x: pointer to the memory
29  *
30  * Function calls kfree only if @x is not in .rodata section.
31  */
32 void kfree_const(const void *x)
33 {
34 	if (!is_kernel_rodata((unsigned long)x))
35 		kfree(x);
36 }
37 EXPORT_SYMBOL(kfree_const);
38 
39 /**
40  * kstrdup - allocate space for and copy an existing string
41  * @s: the string to duplicate
42  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
43  */
44 char *kstrdup(const char *s, gfp_t gfp)
45 {
46 	size_t len;
47 	char *buf;
48 
49 	if (!s)
50 		return NULL;
51 
52 	len = strlen(s) + 1;
53 	buf = kmalloc_track_caller(len, gfp);
54 	if (buf)
55 		memcpy(buf, s, len);
56 	return buf;
57 }
58 EXPORT_SYMBOL(kstrdup);
59 
60 /**
61  * kstrdup_const - conditionally duplicate an existing const string
62  * @s: the string to duplicate
63  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
64  *
65  * Function returns source string if it is in .rodata section otherwise it
66  * fallbacks to kstrdup.
67  * Strings allocated by kstrdup_const should be freed by kfree_const.
68  */
69 const char *kstrdup_const(const char *s, gfp_t gfp)
70 {
71 	if (is_kernel_rodata((unsigned long)s))
72 		return s;
73 
74 	return kstrdup(s, gfp);
75 }
76 EXPORT_SYMBOL(kstrdup_const);
77 
78 /**
79  * kstrndup - allocate space for and copy an existing string
80  * @s: the string to duplicate
81  * @max: read at most @max chars from @s
82  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
83  */
84 char *kstrndup(const char *s, size_t max, gfp_t gfp)
85 {
86 	size_t len;
87 	char *buf;
88 
89 	if (!s)
90 		return NULL;
91 
92 	len = strnlen(s, max);
93 	buf = kmalloc_track_caller(len+1, gfp);
94 	if (buf) {
95 		memcpy(buf, s, len);
96 		buf[len] = '\0';
97 	}
98 	return buf;
99 }
100 EXPORT_SYMBOL(kstrndup);
101 
102 /**
103  * kmemdup - duplicate region of memory
104  *
105  * @src: memory region to duplicate
106  * @len: memory region length
107  * @gfp: GFP mask to use
108  */
109 void *kmemdup(const void *src, size_t len, gfp_t gfp)
110 {
111 	void *p;
112 
113 	p = kmalloc_track_caller(len, gfp);
114 	if (p)
115 		memcpy(p, src, len);
116 	return p;
117 }
118 EXPORT_SYMBOL(kmemdup);
119 
120 /**
121  * memdup_user - duplicate memory region from user space
122  *
123  * @src: source address in user space
124  * @len: number of bytes to copy
125  *
126  * Returns an ERR_PTR() on failure.
127  */
128 void *memdup_user(const void __user *src, size_t len)
129 {
130 	void *p;
131 
132 	/*
133 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
134 	 * cause pagefault, which makes it pointless to use GFP_NOFS
135 	 * or GFP_ATOMIC.
136 	 */
137 	p = kmalloc_track_caller(len, GFP_KERNEL);
138 	if (!p)
139 		return ERR_PTR(-ENOMEM);
140 
141 	if (copy_from_user(p, src, len)) {
142 		kfree(p);
143 		return ERR_PTR(-EFAULT);
144 	}
145 
146 	return p;
147 }
148 EXPORT_SYMBOL(memdup_user);
149 
150 /*
151  * strndup_user - duplicate an existing string from user space
152  * @s: The string to duplicate
153  * @n: Maximum number of bytes to copy, including the trailing NUL.
154  */
155 char *strndup_user(const char __user *s, long n)
156 {
157 	char *p;
158 	long length;
159 
160 	length = strnlen_user(s, n);
161 
162 	if (!length)
163 		return ERR_PTR(-EFAULT);
164 
165 	if (length > n)
166 		return ERR_PTR(-EINVAL);
167 
168 	p = memdup_user(s, length);
169 
170 	if (IS_ERR(p))
171 		return p;
172 
173 	p[length - 1] = '\0';
174 
175 	return p;
176 }
177 EXPORT_SYMBOL(strndup_user);
178 
179 /**
180  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
181  *
182  * @src: source address in user space
183  * @len: number of bytes to copy
184  *
185  * Returns an ERR_PTR() on failure.
186  */
187 void *memdup_user_nul(const void __user *src, size_t len)
188 {
189 	char *p;
190 
191 	/*
192 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
193 	 * cause pagefault, which makes it pointless to use GFP_NOFS
194 	 * or GFP_ATOMIC.
195 	 */
196 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
197 	if (!p)
198 		return ERR_PTR(-ENOMEM);
199 
200 	if (copy_from_user(p, src, len)) {
201 		kfree(p);
202 		return ERR_PTR(-EFAULT);
203 	}
204 	p[len] = '\0';
205 
206 	return p;
207 }
208 EXPORT_SYMBOL(memdup_user_nul);
209 
210 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
211 		struct vm_area_struct *prev, struct rb_node *rb_parent)
212 {
213 	struct vm_area_struct *next;
214 
215 	vma->vm_prev = prev;
216 	if (prev) {
217 		next = prev->vm_next;
218 		prev->vm_next = vma;
219 	} else {
220 		mm->mmap = vma;
221 		if (rb_parent)
222 			next = rb_entry(rb_parent,
223 					struct vm_area_struct, vm_rb);
224 		else
225 			next = NULL;
226 	}
227 	vma->vm_next = next;
228 	if (next)
229 		next->vm_prev = vma;
230 }
231 
232 /* Check if the vma is being used as a stack by this task */
233 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t)
234 {
235 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
236 }
237 
238 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
239 void arch_pick_mmap_layout(struct mm_struct *mm)
240 {
241 	mm->mmap_base = TASK_UNMAPPED_BASE;
242 	mm->get_unmapped_area = arch_get_unmapped_area;
243 }
244 #endif
245 
246 /*
247  * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
248  * back to the regular GUP.
249  * If the architecture not support this function, simply return with no
250  * page pinned
251  */
252 int __weak __get_user_pages_fast(unsigned long start,
253 				 int nr_pages, int write, struct page **pages)
254 {
255 	return 0;
256 }
257 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
258 
259 /**
260  * get_user_pages_fast() - pin user pages in memory
261  * @start:	starting user address
262  * @nr_pages:	number of pages from start to pin
263  * @write:	whether pages will be written to
264  * @pages:	array that receives pointers to the pages pinned.
265  *		Should be at least nr_pages long.
266  *
267  * Returns number of pages pinned. This may be fewer than the number
268  * requested. If nr_pages is 0 or negative, returns 0. If no pages
269  * were pinned, returns -errno.
270  *
271  * get_user_pages_fast provides equivalent functionality to get_user_pages,
272  * operating on current and current->mm, with force=0 and vma=NULL. However
273  * unlike get_user_pages, it must be called without mmap_sem held.
274  *
275  * get_user_pages_fast may take mmap_sem and page table locks, so no
276  * assumptions can be made about lack of locking. get_user_pages_fast is to be
277  * implemented in a way that is advantageous (vs get_user_pages()) when the
278  * user memory area is already faulted in and present in ptes. However if the
279  * pages have to be faulted in, it may turn out to be slightly slower so
280  * callers need to carefully consider what to use. On many architectures,
281  * get_user_pages_fast simply falls back to get_user_pages.
282  */
283 int __weak get_user_pages_fast(unsigned long start,
284 				int nr_pages, int write, struct page **pages)
285 {
286 	return get_user_pages_unlocked(start, nr_pages, write, 0, pages);
287 }
288 EXPORT_SYMBOL_GPL(get_user_pages_fast);
289 
290 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
291 	unsigned long len, unsigned long prot,
292 	unsigned long flag, unsigned long pgoff)
293 {
294 	unsigned long ret;
295 	struct mm_struct *mm = current->mm;
296 	unsigned long populate;
297 
298 	ret = security_mmap_file(file, prot, flag);
299 	if (!ret) {
300 		if (down_write_killable(&mm->mmap_sem))
301 			return -EINTR;
302 		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
303 				    &populate);
304 		up_write(&mm->mmap_sem);
305 		if (populate)
306 			mm_populate(ret, populate);
307 	}
308 	return ret;
309 }
310 
311 unsigned long vm_mmap(struct file *file, unsigned long addr,
312 	unsigned long len, unsigned long prot,
313 	unsigned long flag, unsigned long offset)
314 {
315 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
316 		return -EINVAL;
317 	if (unlikely(offset_in_page(offset)))
318 		return -EINVAL;
319 
320 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
321 }
322 EXPORT_SYMBOL(vm_mmap);
323 
324 void kvfree(const void *addr)
325 {
326 	if (is_vmalloc_addr(addr))
327 		vfree(addr);
328 	else
329 		kfree(addr);
330 }
331 EXPORT_SYMBOL(kvfree);
332 
333 static inline void *__page_rmapping(struct page *page)
334 {
335 	unsigned long mapping;
336 
337 	mapping = (unsigned long)page->mapping;
338 	mapping &= ~PAGE_MAPPING_FLAGS;
339 
340 	return (void *)mapping;
341 }
342 
343 /* Neutral page->mapping pointer to address_space or anon_vma or other */
344 void *page_rmapping(struct page *page)
345 {
346 	page = compound_head(page);
347 	return __page_rmapping(page);
348 }
349 
350 /*
351  * Return true if this page is mapped into pagetables.
352  * For compound page it returns true if any subpage of compound page is mapped.
353  */
354 bool page_mapped(struct page *page)
355 {
356 	int i;
357 
358 	if (likely(!PageCompound(page)))
359 		return atomic_read(&page->_mapcount) >= 0;
360 	page = compound_head(page);
361 	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
362 		return true;
363 	if (PageHuge(page))
364 		return false;
365 	for (i = 0; i < hpage_nr_pages(page); i++) {
366 		if (atomic_read(&page[i]._mapcount) >= 0)
367 			return true;
368 	}
369 	return false;
370 }
371 EXPORT_SYMBOL(page_mapped);
372 
373 struct anon_vma *page_anon_vma(struct page *page)
374 {
375 	unsigned long mapping;
376 
377 	page = compound_head(page);
378 	mapping = (unsigned long)page->mapping;
379 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
380 		return NULL;
381 	return __page_rmapping(page);
382 }
383 
384 struct address_space *page_mapping(struct page *page)
385 {
386 	struct address_space *mapping;
387 
388 	page = compound_head(page);
389 
390 	/* This happens if someone calls flush_dcache_page on slab page */
391 	if (unlikely(PageSlab(page)))
392 		return NULL;
393 
394 	if (unlikely(PageSwapCache(page))) {
395 		swp_entry_t entry;
396 
397 		entry.val = page_private(page);
398 		return swap_address_space(entry);
399 	}
400 
401 	mapping = page->mapping;
402 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
403 		return NULL;
404 	return mapping;
405 }
406 
407 /* Slow path of page_mapcount() for compound pages */
408 int __page_mapcount(struct page *page)
409 {
410 	int ret;
411 
412 	ret = atomic_read(&page->_mapcount) + 1;
413 	page = compound_head(page);
414 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
415 	if (PageDoubleMap(page))
416 		ret--;
417 	return ret;
418 }
419 EXPORT_SYMBOL_GPL(__page_mapcount);
420 
421 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
422 int sysctl_overcommit_ratio __read_mostly = 50;
423 unsigned long sysctl_overcommit_kbytes __read_mostly;
424 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
425 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
426 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
427 
428 int overcommit_ratio_handler(struct ctl_table *table, int write,
429 			     void __user *buffer, size_t *lenp,
430 			     loff_t *ppos)
431 {
432 	int ret;
433 
434 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
435 	if (ret == 0 && write)
436 		sysctl_overcommit_kbytes = 0;
437 	return ret;
438 }
439 
440 int overcommit_kbytes_handler(struct ctl_table *table, int write,
441 			     void __user *buffer, size_t *lenp,
442 			     loff_t *ppos)
443 {
444 	int ret;
445 
446 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
447 	if (ret == 0 && write)
448 		sysctl_overcommit_ratio = 0;
449 	return ret;
450 }
451 
452 /*
453  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
454  */
455 unsigned long vm_commit_limit(void)
456 {
457 	unsigned long allowed;
458 
459 	if (sysctl_overcommit_kbytes)
460 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
461 	else
462 		allowed = ((totalram_pages - hugetlb_total_pages())
463 			   * sysctl_overcommit_ratio / 100);
464 	allowed += total_swap_pages;
465 
466 	return allowed;
467 }
468 
469 /*
470  * Make sure vm_committed_as in one cacheline and not cacheline shared with
471  * other variables. It can be updated by several CPUs frequently.
472  */
473 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
474 
475 /*
476  * The global memory commitment made in the system can be a metric
477  * that can be used to drive ballooning decisions when Linux is hosted
478  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
479  * balancing memory across competing virtual machines that are hosted.
480  * Several metrics drive this policy engine including the guest reported
481  * memory commitment.
482  */
483 unsigned long vm_memory_committed(void)
484 {
485 	return percpu_counter_read_positive(&vm_committed_as);
486 }
487 EXPORT_SYMBOL_GPL(vm_memory_committed);
488 
489 /*
490  * Check that a process has enough memory to allocate a new virtual
491  * mapping. 0 means there is enough memory for the allocation to
492  * succeed and -ENOMEM implies there is not.
493  *
494  * We currently support three overcommit policies, which are set via the
495  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
496  *
497  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
498  * Additional code 2002 Jul 20 by Robert Love.
499  *
500  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
501  *
502  * Note this is a helper function intended to be used by LSMs which
503  * wish to use this logic.
504  */
505 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
506 {
507 	long free, allowed, reserve;
508 
509 	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
510 			-(s64)vm_committed_as_batch * num_online_cpus(),
511 			"memory commitment underflow");
512 
513 	vm_acct_memory(pages);
514 
515 	/*
516 	 * Sometimes we want to use more memory than we have
517 	 */
518 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
519 		return 0;
520 
521 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
522 		free = global_page_state(NR_FREE_PAGES);
523 		free += global_page_state(NR_FILE_PAGES);
524 
525 		/*
526 		 * shmem pages shouldn't be counted as free in this
527 		 * case, they can't be purged, only swapped out, and
528 		 * that won't affect the overall amount of available
529 		 * memory in the system.
530 		 */
531 		free -= global_page_state(NR_SHMEM);
532 
533 		free += get_nr_swap_pages();
534 
535 		/*
536 		 * Any slabs which are created with the
537 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
538 		 * which are reclaimable, under pressure.  The dentry
539 		 * cache and most inode caches should fall into this
540 		 */
541 		free += global_page_state(NR_SLAB_RECLAIMABLE);
542 
543 		/*
544 		 * Leave reserved pages. The pages are not for anonymous pages.
545 		 */
546 		if (free <= totalreserve_pages)
547 			goto error;
548 		else
549 			free -= totalreserve_pages;
550 
551 		/*
552 		 * Reserve some for root
553 		 */
554 		if (!cap_sys_admin)
555 			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
556 
557 		if (free > pages)
558 			return 0;
559 
560 		goto error;
561 	}
562 
563 	allowed = vm_commit_limit();
564 	/*
565 	 * Reserve some for root
566 	 */
567 	if (!cap_sys_admin)
568 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
569 
570 	/*
571 	 * Don't let a single process grow so big a user can't recover
572 	 */
573 	if (mm) {
574 		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
575 		allowed -= min_t(long, mm->total_vm / 32, reserve);
576 	}
577 
578 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
579 		return 0;
580 error:
581 	vm_unacct_memory(pages);
582 
583 	return -ENOMEM;
584 }
585 
586 /**
587  * get_cmdline() - copy the cmdline value to a buffer.
588  * @task:     the task whose cmdline value to copy.
589  * @buffer:   the buffer to copy to.
590  * @buflen:   the length of the buffer. Larger cmdline values are truncated
591  *            to this length.
592  * Returns the size of the cmdline field copied. Note that the copy does
593  * not guarantee an ending NULL byte.
594  */
595 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
596 {
597 	int res = 0;
598 	unsigned int len;
599 	struct mm_struct *mm = get_task_mm(task);
600 	unsigned long arg_start, arg_end, env_start, env_end;
601 	if (!mm)
602 		goto out;
603 	if (!mm->arg_end)
604 		goto out_mm;	/* Shh! No looking before we're done */
605 
606 	down_read(&mm->mmap_sem);
607 	arg_start = mm->arg_start;
608 	arg_end = mm->arg_end;
609 	env_start = mm->env_start;
610 	env_end = mm->env_end;
611 	up_read(&mm->mmap_sem);
612 
613 	len = arg_end - arg_start;
614 
615 	if (len > buflen)
616 		len = buflen;
617 
618 	res = access_process_vm(task, arg_start, buffer, len, 0);
619 
620 	/*
621 	 * If the nul at the end of args has been overwritten, then
622 	 * assume application is using setproctitle(3).
623 	 */
624 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
625 		len = strnlen(buffer, res);
626 		if (len < res) {
627 			res = len;
628 		} else {
629 			len = env_end - env_start;
630 			if (len > buflen - res)
631 				len = buflen - res;
632 			res += access_process_vm(task, env_start,
633 						 buffer+res, len, 0);
634 			res = strnlen(buffer, res);
635 		}
636 	}
637 out_mm:
638 	mmput(mm);
639 out:
640 	return res;
641 }
642