xref: /openbmc/linux/mm/util.c (revision 2fe60ec9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 #include "swap.h"
31 
32 /**
33  * kfree_const - conditionally free memory
34  * @x: pointer to the memory
35  *
36  * Function calls kfree only if @x is not in .rodata section.
37  */
38 void kfree_const(const void *x)
39 {
40 	if (!is_kernel_rodata((unsigned long)x))
41 		kfree(x);
42 }
43 EXPORT_SYMBOL(kfree_const);
44 
45 /**
46  * kstrdup - allocate space for and copy an existing string
47  * @s: the string to duplicate
48  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49  *
50  * Return: newly allocated copy of @s or %NULL in case of error
51  */
52 char *kstrdup(const char *s, gfp_t gfp)
53 {
54 	size_t len;
55 	char *buf;
56 
57 	if (!s)
58 		return NULL;
59 
60 	len = strlen(s) + 1;
61 	buf = kmalloc_track_caller(len, gfp);
62 	if (buf)
63 		memcpy(buf, s, len);
64 	return buf;
65 }
66 EXPORT_SYMBOL(kstrdup);
67 
68 /**
69  * kstrdup_const - conditionally duplicate an existing const string
70  * @s: the string to duplicate
71  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
72  *
73  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
74  * must not be passed to krealloc().
75  *
76  * Return: source string if it is in .rodata section otherwise
77  * fallback to kstrdup.
78  */
79 const char *kstrdup_const(const char *s, gfp_t gfp)
80 {
81 	if (is_kernel_rodata((unsigned long)s))
82 		return s;
83 
84 	return kstrdup(s, gfp);
85 }
86 EXPORT_SYMBOL(kstrdup_const);
87 
88 /**
89  * kstrndup - allocate space for and copy an existing string
90  * @s: the string to duplicate
91  * @max: read at most @max chars from @s
92  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
93  *
94  * Note: Use kmemdup_nul() instead if the size is known exactly.
95  *
96  * Return: newly allocated copy of @s or %NULL in case of error
97  */
98 char *kstrndup(const char *s, size_t max, gfp_t gfp)
99 {
100 	size_t len;
101 	char *buf;
102 
103 	if (!s)
104 		return NULL;
105 
106 	len = strnlen(s, max);
107 	buf = kmalloc_track_caller(len+1, gfp);
108 	if (buf) {
109 		memcpy(buf, s, len);
110 		buf[len] = '\0';
111 	}
112 	return buf;
113 }
114 EXPORT_SYMBOL(kstrndup);
115 
116 /**
117  * kmemdup - duplicate region of memory
118  *
119  * @src: memory region to duplicate
120  * @len: memory region length
121  * @gfp: GFP mask to use
122  *
123  * Return: newly allocated copy of @src or %NULL in case of error
124  */
125 void *kmemdup(const void *src, size_t len, gfp_t gfp)
126 {
127 	void *p;
128 
129 	p = kmalloc_track_caller(len, gfp);
130 	if (p)
131 		memcpy(p, src, len);
132 	return p;
133 }
134 EXPORT_SYMBOL(kmemdup);
135 
136 /**
137  * kmemdup_nul - Create a NUL-terminated string from unterminated data
138  * @s: The data to stringify
139  * @len: The size of the data
140  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
141  *
142  * Return: newly allocated copy of @s with NUL-termination or %NULL in
143  * case of error
144  */
145 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
146 {
147 	char *buf;
148 
149 	if (!s)
150 		return NULL;
151 
152 	buf = kmalloc_track_caller(len + 1, gfp);
153 	if (buf) {
154 		memcpy(buf, s, len);
155 		buf[len] = '\0';
156 	}
157 	return buf;
158 }
159 EXPORT_SYMBOL(kmemdup_nul);
160 
161 /**
162  * memdup_user - duplicate memory region from user space
163  *
164  * @src: source address in user space
165  * @len: number of bytes to copy
166  *
167  * Return: an ERR_PTR() on failure.  Result is physically
168  * contiguous, to be freed by kfree().
169  */
170 void *memdup_user(const void __user *src, size_t len)
171 {
172 	void *p;
173 
174 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
175 	if (!p)
176 		return ERR_PTR(-ENOMEM);
177 
178 	if (copy_from_user(p, src, len)) {
179 		kfree(p);
180 		return ERR_PTR(-EFAULT);
181 	}
182 
183 	return p;
184 }
185 EXPORT_SYMBOL(memdup_user);
186 
187 /**
188  * vmemdup_user - duplicate memory region from user space
189  *
190  * @src: source address in user space
191  * @len: number of bytes to copy
192  *
193  * Return: an ERR_PTR() on failure.  Result may be not
194  * physically contiguous.  Use kvfree() to free.
195  */
196 void *vmemdup_user(const void __user *src, size_t len)
197 {
198 	void *p;
199 
200 	p = kvmalloc(len, GFP_USER);
201 	if (!p)
202 		return ERR_PTR(-ENOMEM);
203 
204 	if (copy_from_user(p, src, len)) {
205 		kvfree(p);
206 		return ERR_PTR(-EFAULT);
207 	}
208 
209 	return p;
210 }
211 EXPORT_SYMBOL(vmemdup_user);
212 
213 /**
214  * strndup_user - duplicate an existing string from user space
215  * @s: The string to duplicate
216  * @n: Maximum number of bytes to copy, including the trailing NUL.
217  *
218  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
219  */
220 char *strndup_user(const char __user *s, long n)
221 {
222 	char *p;
223 	long length;
224 
225 	length = strnlen_user(s, n);
226 
227 	if (!length)
228 		return ERR_PTR(-EFAULT);
229 
230 	if (length > n)
231 		return ERR_PTR(-EINVAL);
232 
233 	p = memdup_user(s, length);
234 
235 	if (IS_ERR(p))
236 		return p;
237 
238 	p[length - 1] = '\0';
239 
240 	return p;
241 }
242 EXPORT_SYMBOL(strndup_user);
243 
244 /**
245  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
246  *
247  * @src: source address in user space
248  * @len: number of bytes to copy
249  *
250  * Return: an ERR_PTR() on failure.
251  */
252 void *memdup_user_nul(const void __user *src, size_t len)
253 {
254 	char *p;
255 
256 	/*
257 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
258 	 * cause pagefault, which makes it pointless to use GFP_NOFS
259 	 * or GFP_ATOMIC.
260 	 */
261 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
262 	if (!p)
263 		return ERR_PTR(-ENOMEM);
264 
265 	if (copy_from_user(p, src, len)) {
266 		kfree(p);
267 		return ERR_PTR(-EFAULT);
268 	}
269 	p[len] = '\0';
270 
271 	return p;
272 }
273 EXPORT_SYMBOL(memdup_user_nul);
274 
275 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
276 		struct vm_area_struct *prev)
277 {
278 	struct vm_area_struct *next;
279 
280 	vma->vm_prev = prev;
281 	if (prev) {
282 		next = prev->vm_next;
283 		prev->vm_next = vma;
284 	} else {
285 		next = mm->mmap;
286 		mm->mmap = vma;
287 	}
288 	vma->vm_next = next;
289 	if (next)
290 		next->vm_prev = vma;
291 }
292 
293 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
294 {
295 	struct vm_area_struct *prev, *next;
296 
297 	next = vma->vm_next;
298 	prev = vma->vm_prev;
299 	if (prev)
300 		prev->vm_next = next;
301 	else
302 		mm->mmap = next;
303 	if (next)
304 		next->vm_prev = prev;
305 }
306 
307 /* Check if the vma is being used as a stack by this task */
308 int vma_is_stack_for_current(struct vm_area_struct *vma)
309 {
310 	struct task_struct * __maybe_unused t = current;
311 
312 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
313 }
314 
315 /*
316  * Change backing file, only valid to use during initial VMA setup.
317  */
318 void vma_set_file(struct vm_area_struct *vma, struct file *file)
319 {
320 	/* Changing an anonymous vma with this is illegal */
321 	get_file(file);
322 	swap(vma->vm_file, file);
323 	fput(file);
324 }
325 EXPORT_SYMBOL(vma_set_file);
326 
327 #ifndef STACK_RND_MASK
328 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
329 #endif
330 
331 unsigned long randomize_stack_top(unsigned long stack_top)
332 {
333 	unsigned long random_variable = 0;
334 
335 	if (current->flags & PF_RANDOMIZE) {
336 		random_variable = get_random_long();
337 		random_variable &= STACK_RND_MASK;
338 		random_variable <<= PAGE_SHIFT;
339 	}
340 #ifdef CONFIG_STACK_GROWSUP
341 	return PAGE_ALIGN(stack_top) + random_variable;
342 #else
343 	return PAGE_ALIGN(stack_top) - random_variable;
344 #endif
345 }
346 
347 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
348 unsigned long arch_randomize_brk(struct mm_struct *mm)
349 {
350 	/* Is the current task 32bit ? */
351 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
352 		return randomize_page(mm->brk, SZ_32M);
353 
354 	return randomize_page(mm->brk, SZ_1G);
355 }
356 
357 unsigned long arch_mmap_rnd(void)
358 {
359 	unsigned long rnd;
360 
361 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
362 	if (is_compat_task())
363 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
364 	else
365 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
366 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
367 
368 	return rnd << PAGE_SHIFT;
369 }
370 
371 static int mmap_is_legacy(struct rlimit *rlim_stack)
372 {
373 	if (current->personality & ADDR_COMPAT_LAYOUT)
374 		return 1;
375 
376 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
377 		return 1;
378 
379 	return sysctl_legacy_va_layout;
380 }
381 
382 /*
383  * Leave enough space between the mmap area and the stack to honour ulimit in
384  * the face of randomisation.
385  */
386 #define MIN_GAP		(SZ_128M)
387 #define MAX_GAP		(STACK_TOP / 6 * 5)
388 
389 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
390 {
391 	unsigned long gap = rlim_stack->rlim_cur;
392 	unsigned long pad = stack_guard_gap;
393 
394 	/* Account for stack randomization if necessary */
395 	if (current->flags & PF_RANDOMIZE)
396 		pad += (STACK_RND_MASK << PAGE_SHIFT);
397 
398 	/* Values close to RLIM_INFINITY can overflow. */
399 	if (gap + pad > gap)
400 		gap += pad;
401 
402 	if (gap < MIN_GAP)
403 		gap = MIN_GAP;
404 	else if (gap > MAX_GAP)
405 		gap = MAX_GAP;
406 
407 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
408 }
409 
410 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
411 {
412 	unsigned long random_factor = 0UL;
413 
414 	if (current->flags & PF_RANDOMIZE)
415 		random_factor = arch_mmap_rnd();
416 
417 	if (mmap_is_legacy(rlim_stack)) {
418 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
419 		mm->get_unmapped_area = arch_get_unmapped_area;
420 	} else {
421 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
422 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
423 	}
424 }
425 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
426 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
427 {
428 	mm->mmap_base = TASK_UNMAPPED_BASE;
429 	mm->get_unmapped_area = arch_get_unmapped_area;
430 }
431 #endif
432 
433 /**
434  * __account_locked_vm - account locked pages to an mm's locked_vm
435  * @mm:          mm to account against
436  * @pages:       number of pages to account
437  * @inc:         %true if @pages should be considered positive, %false if not
438  * @task:        task used to check RLIMIT_MEMLOCK
439  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
440  *
441  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
442  * that mmap_lock is held as writer.
443  *
444  * Return:
445  * * 0       on success
446  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
447  */
448 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
449 			struct task_struct *task, bool bypass_rlim)
450 {
451 	unsigned long locked_vm, limit;
452 	int ret = 0;
453 
454 	mmap_assert_write_locked(mm);
455 
456 	locked_vm = mm->locked_vm;
457 	if (inc) {
458 		if (!bypass_rlim) {
459 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
460 			if (locked_vm + pages > limit)
461 				ret = -ENOMEM;
462 		}
463 		if (!ret)
464 			mm->locked_vm = locked_vm + pages;
465 	} else {
466 		WARN_ON_ONCE(pages > locked_vm);
467 		mm->locked_vm = locked_vm - pages;
468 	}
469 
470 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
471 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
472 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
473 		 ret ? " - exceeded" : "");
474 
475 	return ret;
476 }
477 EXPORT_SYMBOL_GPL(__account_locked_vm);
478 
479 /**
480  * account_locked_vm - account locked pages to an mm's locked_vm
481  * @mm:          mm to account against, may be NULL
482  * @pages:       number of pages to account
483  * @inc:         %true if @pages should be considered positive, %false if not
484  *
485  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
486  *
487  * Return:
488  * * 0       on success, or if mm is NULL
489  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
490  */
491 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
492 {
493 	int ret;
494 
495 	if (pages == 0 || !mm)
496 		return 0;
497 
498 	mmap_write_lock(mm);
499 	ret = __account_locked_vm(mm, pages, inc, current,
500 				  capable(CAP_IPC_LOCK));
501 	mmap_write_unlock(mm);
502 
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(account_locked_vm);
506 
507 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
508 	unsigned long len, unsigned long prot,
509 	unsigned long flag, unsigned long pgoff)
510 {
511 	unsigned long ret;
512 	struct mm_struct *mm = current->mm;
513 	unsigned long populate;
514 	LIST_HEAD(uf);
515 
516 	ret = security_mmap_file(file, prot, flag);
517 	if (!ret) {
518 		if (mmap_write_lock_killable(mm))
519 			return -EINTR;
520 		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
521 			      &uf);
522 		mmap_write_unlock(mm);
523 		userfaultfd_unmap_complete(mm, &uf);
524 		if (populate)
525 			mm_populate(ret, populate);
526 	}
527 	return ret;
528 }
529 
530 unsigned long vm_mmap(struct file *file, unsigned long addr,
531 	unsigned long len, unsigned long prot,
532 	unsigned long flag, unsigned long offset)
533 {
534 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
535 		return -EINVAL;
536 	if (unlikely(offset_in_page(offset)))
537 		return -EINVAL;
538 
539 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
540 }
541 EXPORT_SYMBOL(vm_mmap);
542 
543 /**
544  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
545  * failure, fall back to non-contiguous (vmalloc) allocation.
546  * @size: size of the request.
547  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
548  * @node: numa node to allocate from
549  *
550  * Uses kmalloc to get the memory but if the allocation fails then falls back
551  * to the vmalloc allocator. Use kvfree for freeing the memory.
552  *
553  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
554  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
555  * preferable to the vmalloc fallback, due to visible performance drawbacks.
556  *
557  * Return: pointer to the allocated memory of %NULL in case of failure
558  */
559 void *kvmalloc_node(size_t size, gfp_t flags, int node)
560 {
561 	gfp_t kmalloc_flags = flags;
562 	void *ret;
563 
564 	/*
565 	 * We want to attempt a large physically contiguous block first because
566 	 * it is less likely to fragment multiple larger blocks and therefore
567 	 * contribute to a long term fragmentation less than vmalloc fallback.
568 	 * However make sure that larger requests are not too disruptive - no
569 	 * OOM killer and no allocation failure warnings as we have a fallback.
570 	 */
571 	if (size > PAGE_SIZE) {
572 		kmalloc_flags |= __GFP_NOWARN;
573 
574 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
575 			kmalloc_flags |= __GFP_NORETRY;
576 
577 		/* nofail semantic is implemented by the vmalloc fallback */
578 		kmalloc_flags &= ~__GFP_NOFAIL;
579 	}
580 
581 	ret = kmalloc_node(size, kmalloc_flags, node);
582 
583 	/*
584 	 * It doesn't really make sense to fallback to vmalloc for sub page
585 	 * requests
586 	 */
587 	if (ret || size <= PAGE_SIZE)
588 		return ret;
589 
590 	/* Don't even allow crazy sizes */
591 	if (unlikely(size > INT_MAX)) {
592 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
593 		return NULL;
594 	}
595 
596 	/*
597 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
598 	 * since the callers already cannot assume anything
599 	 * about the resulting pointer, and cannot play
600 	 * protection games.
601 	 */
602 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
603 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
604 			node, __builtin_return_address(0));
605 }
606 EXPORT_SYMBOL(kvmalloc_node);
607 
608 /**
609  * kvfree() - Free memory.
610  * @addr: Pointer to allocated memory.
611  *
612  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
613  * It is slightly more efficient to use kfree() or vfree() if you are certain
614  * that you know which one to use.
615  *
616  * Context: Either preemptible task context or not-NMI interrupt.
617  */
618 void kvfree(const void *addr)
619 {
620 	if (is_vmalloc_addr(addr))
621 		vfree(addr);
622 	else
623 		kfree(addr);
624 }
625 EXPORT_SYMBOL(kvfree);
626 
627 /**
628  * kvfree_sensitive - Free a data object containing sensitive information.
629  * @addr: address of the data object to be freed.
630  * @len: length of the data object.
631  *
632  * Use the special memzero_explicit() function to clear the content of a
633  * kvmalloc'ed object containing sensitive data to make sure that the
634  * compiler won't optimize out the data clearing.
635  */
636 void kvfree_sensitive(const void *addr, size_t len)
637 {
638 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
639 		memzero_explicit((void *)addr, len);
640 		kvfree(addr);
641 	}
642 }
643 EXPORT_SYMBOL(kvfree_sensitive);
644 
645 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
646 {
647 	void *newp;
648 
649 	if (oldsize >= newsize)
650 		return (void *)p;
651 	newp = kvmalloc(newsize, flags);
652 	if (!newp)
653 		return NULL;
654 	memcpy(newp, p, oldsize);
655 	kvfree(p);
656 	return newp;
657 }
658 EXPORT_SYMBOL(kvrealloc);
659 
660 /**
661  * __vmalloc_array - allocate memory for a virtually contiguous array.
662  * @n: number of elements.
663  * @size: element size.
664  * @flags: the type of memory to allocate (see kmalloc).
665  */
666 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
667 {
668 	size_t bytes;
669 
670 	if (unlikely(check_mul_overflow(n, size, &bytes)))
671 		return NULL;
672 	return __vmalloc(bytes, flags);
673 }
674 EXPORT_SYMBOL(__vmalloc_array);
675 
676 /**
677  * vmalloc_array - allocate memory for a virtually contiguous array.
678  * @n: number of elements.
679  * @size: element size.
680  */
681 void *vmalloc_array(size_t n, size_t size)
682 {
683 	return __vmalloc_array(n, size, GFP_KERNEL);
684 }
685 EXPORT_SYMBOL(vmalloc_array);
686 
687 /**
688  * __vcalloc - allocate and zero memory for a virtually contiguous array.
689  * @n: number of elements.
690  * @size: element size.
691  * @flags: the type of memory to allocate (see kmalloc).
692  */
693 void *__vcalloc(size_t n, size_t size, gfp_t flags)
694 {
695 	return __vmalloc_array(n, size, flags | __GFP_ZERO);
696 }
697 EXPORT_SYMBOL(__vcalloc);
698 
699 /**
700  * vcalloc - allocate and zero memory for a virtually contiguous array.
701  * @n: number of elements.
702  * @size: element size.
703  */
704 void *vcalloc(size_t n, size_t size)
705 {
706 	return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
707 }
708 EXPORT_SYMBOL(vcalloc);
709 
710 /* Neutral page->mapping pointer to address_space or anon_vma or other */
711 void *page_rmapping(struct page *page)
712 {
713 	return folio_raw_mapping(page_folio(page));
714 }
715 
716 /**
717  * folio_mapped - Is this folio mapped into userspace?
718  * @folio: The folio.
719  *
720  * Return: True if any page in this folio is referenced by user page tables.
721  */
722 bool folio_mapped(struct folio *folio)
723 {
724 	long i, nr;
725 
726 	if (!folio_test_large(folio))
727 		return atomic_read(&folio->_mapcount) >= 0;
728 	if (atomic_read(folio_mapcount_ptr(folio)) >= 0)
729 		return true;
730 	if (folio_test_hugetlb(folio))
731 		return false;
732 
733 	nr = folio_nr_pages(folio);
734 	for (i = 0; i < nr; i++) {
735 		if (atomic_read(&folio_page(folio, i)->_mapcount) >= 0)
736 			return true;
737 	}
738 	return false;
739 }
740 EXPORT_SYMBOL(folio_mapped);
741 
742 struct anon_vma *folio_anon_vma(struct folio *folio)
743 {
744 	unsigned long mapping = (unsigned long)folio->mapping;
745 
746 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
747 		return NULL;
748 	return (void *)(mapping - PAGE_MAPPING_ANON);
749 }
750 
751 /**
752  * folio_mapping - Find the mapping where this folio is stored.
753  * @folio: The folio.
754  *
755  * For folios which are in the page cache, return the mapping that this
756  * page belongs to.  Folios in the swap cache return the swap mapping
757  * this page is stored in (which is different from the mapping for the
758  * swap file or swap device where the data is stored).
759  *
760  * You can call this for folios which aren't in the swap cache or page
761  * cache and it will return NULL.
762  */
763 struct address_space *folio_mapping(struct folio *folio)
764 {
765 	struct address_space *mapping;
766 
767 	/* This happens if someone calls flush_dcache_page on slab page */
768 	if (unlikely(folio_test_slab(folio)))
769 		return NULL;
770 
771 	if (unlikely(folio_test_swapcache(folio)))
772 		return swap_address_space(folio_swap_entry(folio));
773 
774 	mapping = folio->mapping;
775 	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
776 		return NULL;
777 
778 	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
779 }
780 EXPORT_SYMBOL(folio_mapping);
781 
782 /* Slow path of page_mapcount() for compound pages */
783 int __page_mapcount(struct page *page)
784 {
785 	int ret;
786 
787 	ret = atomic_read(&page->_mapcount) + 1;
788 	/*
789 	 * For file THP page->_mapcount contains total number of mapping
790 	 * of the page: no need to look into compound_mapcount.
791 	 */
792 	if (!PageAnon(page) && !PageHuge(page))
793 		return ret;
794 	page = compound_head(page);
795 	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
796 	if (PageDoubleMap(page))
797 		ret--;
798 	return ret;
799 }
800 EXPORT_SYMBOL_GPL(__page_mapcount);
801 
802 /**
803  * folio_mapcount() - Calculate the number of mappings of this folio.
804  * @folio: The folio.
805  *
806  * A large folio tracks both how many times the entire folio is mapped,
807  * and how many times each individual page in the folio is mapped.
808  * This function calculates the total number of times the folio is
809  * mapped.
810  *
811  * Return: The number of times this folio is mapped.
812  */
813 int folio_mapcount(struct folio *folio)
814 {
815 	int i, compound, nr, ret;
816 
817 	if (likely(!folio_test_large(folio)))
818 		return atomic_read(&folio->_mapcount) + 1;
819 
820 	compound = folio_entire_mapcount(folio);
821 	nr = folio_nr_pages(folio);
822 	if (folio_test_hugetlb(folio))
823 		return compound;
824 	ret = compound;
825 	for (i = 0; i < nr; i++)
826 		ret += atomic_read(&folio_page(folio, i)->_mapcount) + 1;
827 	/* File pages has compound_mapcount included in _mapcount */
828 	if (!folio_test_anon(folio))
829 		return ret - compound * nr;
830 	if (folio_test_double_map(folio))
831 		ret -= nr;
832 	return ret;
833 }
834 
835 /**
836  * folio_copy - Copy the contents of one folio to another.
837  * @dst: Folio to copy to.
838  * @src: Folio to copy from.
839  *
840  * The bytes in the folio represented by @src are copied to @dst.
841  * Assumes the caller has validated that @dst is at least as large as @src.
842  * Can be called in atomic context for order-0 folios, but if the folio is
843  * larger, it may sleep.
844  */
845 void folio_copy(struct folio *dst, struct folio *src)
846 {
847 	long i = 0;
848 	long nr = folio_nr_pages(src);
849 
850 	for (;;) {
851 		copy_highpage(folio_page(dst, i), folio_page(src, i));
852 		if (++i == nr)
853 			break;
854 		cond_resched();
855 	}
856 }
857 
858 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
859 int sysctl_overcommit_ratio __read_mostly = 50;
860 unsigned long sysctl_overcommit_kbytes __read_mostly;
861 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
862 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
863 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
864 
865 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
866 		size_t *lenp, loff_t *ppos)
867 {
868 	int ret;
869 
870 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
871 	if (ret == 0 && write)
872 		sysctl_overcommit_kbytes = 0;
873 	return ret;
874 }
875 
876 static void sync_overcommit_as(struct work_struct *dummy)
877 {
878 	percpu_counter_sync(&vm_committed_as);
879 }
880 
881 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
882 		size_t *lenp, loff_t *ppos)
883 {
884 	struct ctl_table t;
885 	int new_policy = -1;
886 	int ret;
887 
888 	/*
889 	 * The deviation of sync_overcommit_as could be big with loose policy
890 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
891 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
892 	 * with the strict "NEVER", and to avoid possible race condition (even
893 	 * though user usually won't too frequently do the switching to policy
894 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
895 	 *	1. changing the batch
896 	 *	2. sync percpu count on each CPU
897 	 *	3. switch the policy
898 	 */
899 	if (write) {
900 		t = *table;
901 		t.data = &new_policy;
902 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
903 		if (ret || new_policy == -1)
904 			return ret;
905 
906 		mm_compute_batch(new_policy);
907 		if (new_policy == OVERCOMMIT_NEVER)
908 			schedule_on_each_cpu(sync_overcommit_as);
909 		sysctl_overcommit_memory = new_policy;
910 	} else {
911 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
912 	}
913 
914 	return ret;
915 }
916 
917 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
918 		size_t *lenp, loff_t *ppos)
919 {
920 	int ret;
921 
922 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
923 	if (ret == 0 && write)
924 		sysctl_overcommit_ratio = 0;
925 	return ret;
926 }
927 
928 /*
929  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
930  */
931 unsigned long vm_commit_limit(void)
932 {
933 	unsigned long allowed;
934 
935 	if (sysctl_overcommit_kbytes)
936 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
937 	else
938 		allowed = ((totalram_pages() - hugetlb_total_pages())
939 			   * sysctl_overcommit_ratio / 100);
940 	allowed += total_swap_pages;
941 
942 	return allowed;
943 }
944 
945 /*
946  * Make sure vm_committed_as in one cacheline and not cacheline shared with
947  * other variables. It can be updated by several CPUs frequently.
948  */
949 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
950 
951 /*
952  * The global memory commitment made in the system can be a metric
953  * that can be used to drive ballooning decisions when Linux is hosted
954  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
955  * balancing memory across competing virtual machines that are hosted.
956  * Several metrics drive this policy engine including the guest reported
957  * memory commitment.
958  *
959  * The time cost of this is very low for small platforms, and for big
960  * platform like a 2S/36C/72T Skylake server, in worst case where
961  * vm_committed_as's spinlock is under severe contention, the time cost
962  * could be about 30~40 microseconds.
963  */
964 unsigned long vm_memory_committed(void)
965 {
966 	return percpu_counter_sum_positive(&vm_committed_as);
967 }
968 EXPORT_SYMBOL_GPL(vm_memory_committed);
969 
970 /*
971  * Check that a process has enough memory to allocate a new virtual
972  * mapping. 0 means there is enough memory for the allocation to
973  * succeed and -ENOMEM implies there is not.
974  *
975  * We currently support three overcommit policies, which are set via the
976  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting.rst
977  *
978  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
979  * Additional code 2002 Jul 20 by Robert Love.
980  *
981  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
982  *
983  * Note this is a helper function intended to be used by LSMs which
984  * wish to use this logic.
985  */
986 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
987 {
988 	long allowed;
989 
990 	vm_acct_memory(pages);
991 
992 	/*
993 	 * Sometimes we want to use more memory than we have
994 	 */
995 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
996 		return 0;
997 
998 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
999 		if (pages > totalram_pages() + total_swap_pages)
1000 			goto error;
1001 		return 0;
1002 	}
1003 
1004 	allowed = vm_commit_limit();
1005 	/*
1006 	 * Reserve some for root
1007 	 */
1008 	if (!cap_sys_admin)
1009 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1010 
1011 	/*
1012 	 * Don't let a single process grow so big a user can't recover
1013 	 */
1014 	if (mm) {
1015 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1016 
1017 		allowed -= min_t(long, mm->total_vm / 32, reserve);
1018 	}
1019 
1020 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1021 		return 0;
1022 error:
1023 	vm_unacct_memory(pages);
1024 
1025 	return -ENOMEM;
1026 }
1027 
1028 /**
1029  * get_cmdline() - copy the cmdline value to a buffer.
1030  * @task:     the task whose cmdline value to copy.
1031  * @buffer:   the buffer to copy to.
1032  * @buflen:   the length of the buffer. Larger cmdline values are truncated
1033  *            to this length.
1034  *
1035  * Return: the size of the cmdline field copied. Note that the copy does
1036  * not guarantee an ending NULL byte.
1037  */
1038 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1039 {
1040 	int res = 0;
1041 	unsigned int len;
1042 	struct mm_struct *mm = get_task_mm(task);
1043 	unsigned long arg_start, arg_end, env_start, env_end;
1044 	if (!mm)
1045 		goto out;
1046 	if (!mm->arg_end)
1047 		goto out_mm;	/* Shh! No looking before we're done */
1048 
1049 	spin_lock(&mm->arg_lock);
1050 	arg_start = mm->arg_start;
1051 	arg_end = mm->arg_end;
1052 	env_start = mm->env_start;
1053 	env_end = mm->env_end;
1054 	spin_unlock(&mm->arg_lock);
1055 
1056 	len = arg_end - arg_start;
1057 
1058 	if (len > buflen)
1059 		len = buflen;
1060 
1061 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1062 
1063 	/*
1064 	 * If the nul at the end of args has been overwritten, then
1065 	 * assume application is using setproctitle(3).
1066 	 */
1067 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1068 		len = strnlen(buffer, res);
1069 		if (len < res) {
1070 			res = len;
1071 		} else {
1072 			len = env_end - env_start;
1073 			if (len > buflen - res)
1074 				len = buflen - res;
1075 			res += access_process_vm(task, env_start,
1076 						 buffer+res, len,
1077 						 FOLL_FORCE);
1078 			res = strnlen(buffer, res);
1079 		}
1080 	}
1081 out_mm:
1082 	mmput(mm);
1083 out:
1084 	return res;
1085 }
1086 
1087 int __weak memcmp_pages(struct page *page1, struct page *page2)
1088 {
1089 	char *addr1, *addr2;
1090 	int ret;
1091 
1092 	addr1 = kmap_atomic(page1);
1093 	addr2 = kmap_atomic(page2);
1094 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1095 	kunmap_atomic(addr2);
1096 	kunmap_atomic(addr1);
1097 	return ret;
1098 }
1099 
1100 #ifdef CONFIG_PRINTK
1101 /**
1102  * mem_dump_obj - Print available provenance information
1103  * @object: object for which to find provenance information.
1104  *
1105  * This function uses pr_cont(), so that the caller is expected to have
1106  * printed out whatever preamble is appropriate.  The provenance information
1107  * depends on the type of object and on how much debugging is enabled.
1108  * For example, for a slab-cache object, the slab name is printed, and,
1109  * if available, the return address and stack trace from the allocation
1110  * and last free path of that object.
1111  */
1112 void mem_dump_obj(void *object)
1113 {
1114 	const char *type;
1115 
1116 	if (kmem_valid_obj(object)) {
1117 		kmem_dump_obj(object);
1118 		return;
1119 	}
1120 
1121 	if (vmalloc_dump_obj(object))
1122 		return;
1123 
1124 	if (virt_addr_valid(object))
1125 		type = "non-slab/vmalloc memory";
1126 	else if (object == NULL)
1127 		type = "NULL pointer";
1128 	else if (object == ZERO_SIZE_PTR)
1129 		type = "zero-size pointer";
1130 	else
1131 		type = "non-paged memory";
1132 
1133 	pr_cont(" %s\n", type);
1134 }
1135 EXPORT_SYMBOL_GPL(mem_dump_obj);
1136 #endif
1137 
1138 /*
1139  * A driver might set a page logically offline -- PageOffline() -- and
1140  * turn the page inaccessible in the hypervisor; after that, access to page
1141  * content can be fatal.
1142  *
1143  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1144  * pages after checking PageOffline(); however, these PFN walkers can race
1145  * with drivers that set PageOffline().
1146  *
1147  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1148  * synchronize with such drivers, achieving that a page cannot be set
1149  * PageOffline() while frozen.
1150  *
1151  * page_offline_begin()/page_offline_end() is used by drivers that care about
1152  * such races when setting a page PageOffline().
1153  */
1154 static DECLARE_RWSEM(page_offline_rwsem);
1155 
1156 void page_offline_freeze(void)
1157 {
1158 	down_read(&page_offline_rwsem);
1159 }
1160 
1161 void page_offline_thaw(void)
1162 {
1163 	up_read(&page_offline_rwsem);
1164 }
1165 
1166 void page_offline_begin(void)
1167 {
1168 	down_write(&page_offline_rwsem);
1169 }
1170 EXPORT_SYMBOL(page_offline_begin);
1171 
1172 void page_offline_end(void)
1173 {
1174 	up_write(&page_offline_rwsem);
1175 }
1176 EXPORT_SYMBOL(page_offline_end);
1177 
1178 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
1179 void flush_dcache_folio(struct folio *folio)
1180 {
1181 	long i, nr = folio_nr_pages(folio);
1182 
1183 	for (i = 0; i < nr; i++)
1184 		flush_dcache_page(folio_page(folio, i));
1185 }
1186 EXPORT_SYMBOL(flush_dcache_folio);
1187 #endif
1188