xref: /openbmc/linux/mm/util.c (revision 2455f0e1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 #include "swap.h"
31 
32 /**
33  * kfree_const - conditionally free memory
34  * @x: pointer to the memory
35  *
36  * Function calls kfree only if @x is not in .rodata section.
37  */
38 void kfree_const(const void *x)
39 {
40 	if (!is_kernel_rodata((unsigned long)x))
41 		kfree(x);
42 }
43 EXPORT_SYMBOL(kfree_const);
44 
45 /**
46  * kstrdup - allocate space for and copy an existing string
47  * @s: the string to duplicate
48  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49  *
50  * Return: newly allocated copy of @s or %NULL in case of error
51  */
52 char *kstrdup(const char *s, gfp_t gfp)
53 {
54 	size_t len;
55 	char *buf;
56 
57 	if (!s)
58 		return NULL;
59 
60 	len = strlen(s) + 1;
61 	buf = kmalloc_track_caller(len, gfp);
62 	if (buf)
63 		memcpy(buf, s, len);
64 	return buf;
65 }
66 EXPORT_SYMBOL(kstrdup);
67 
68 /**
69  * kstrdup_const - conditionally duplicate an existing const string
70  * @s: the string to duplicate
71  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
72  *
73  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
74  * must not be passed to krealloc().
75  *
76  * Return: source string if it is in .rodata section otherwise
77  * fallback to kstrdup.
78  */
79 const char *kstrdup_const(const char *s, gfp_t gfp)
80 {
81 	if (is_kernel_rodata((unsigned long)s))
82 		return s;
83 
84 	return kstrdup(s, gfp);
85 }
86 EXPORT_SYMBOL(kstrdup_const);
87 
88 /**
89  * kstrndup - allocate space for and copy an existing string
90  * @s: the string to duplicate
91  * @max: read at most @max chars from @s
92  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
93  *
94  * Note: Use kmemdup_nul() instead if the size is known exactly.
95  *
96  * Return: newly allocated copy of @s or %NULL in case of error
97  */
98 char *kstrndup(const char *s, size_t max, gfp_t gfp)
99 {
100 	size_t len;
101 	char *buf;
102 
103 	if (!s)
104 		return NULL;
105 
106 	len = strnlen(s, max);
107 	buf = kmalloc_track_caller(len+1, gfp);
108 	if (buf) {
109 		memcpy(buf, s, len);
110 		buf[len] = '\0';
111 	}
112 	return buf;
113 }
114 EXPORT_SYMBOL(kstrndup);
115 
116 /**
117  * kmemdup - duplicate region of memory
118  *
119  * @src: memory region to duplicate
120  * @len: memory region length
121  * @gfp: GFP mask to use
122  *
123  * Return: newly allocated copy of @src or %NULL in case of error
124  */
125 void *kmemdup(const void *src, size_t len, gfp_t gfp)
126 {
127 	void *p;
128 
129 	p = kmalloc_track_caller(len, gfp);
130 	if (p)
131 		memcpy(p, src, len);
132 	return p;
133 }
134 EXPORT_SYMBOL(kmemdup);
135 
136 /**
137  * kmemdup_nul - Create a NUL-terminated string from unterminated data
138  * @s: The data to stringify
139  * @len: The size of the data
140  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
141  *
142  * Return: newly allocated copy of @s with NUL-termination or %NULL in
143  * case of error
144  */
145 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
146 {
147 	char *buf;
148 
149 	if (!s)
150 		return NULL;
151 
152 	buf = kmalloc_track_caller(len + 1, gfp);
153 	if (buf) {
154 		memcpy(buf, s, len);
155 		buf[len] = '\0';
156 	}
157 	return buf;
158 }
159 EXPORT_SYMBOL(kmemdup_nul);
160 
161 /**
162  * memdup_user - duplicate memory region from user space
163  *
164  * @src: source address in user space
165  * @len: number of bytes to copy
166  *
167  * Return: an ERR_PTR() on failure.  Result is physically
168  * contiguous, to be freed by kfree().
169  */
170 void *memdup_user(const void __user *src, size_t len)
171 {
172 	void *p;
173 
174 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
175 	if (!p)
176 		return ERR_PTR(-ENOMEM);
177 
178 	if (copy_from_user(p, src, len)) {
179 		kfree(p);
180 		return ERR_PTR(-EFAULT);
181 	}
182 
183 	return p;
184 }
185 EXPORT_SYMBOL(memdup_user);
186 
187 /**
188  * vmemdup_user - duplicate memory region from user space
189  *
190  * @src: source address in user space
191  * @len: number of bytes to copy
192  *
193  * Return: an ERR_PTR() on failure.  Result may be not
194  * physically contiguous.  Use kvfree() to free.
195  */
196 void *vmemdup_user(const void __user *src, size_t len)
197 {
198 	void *p;
199 
200 	p = kvmalloc(len, GFP_USER);
201 	if (!p)
202 		return ERR_PTR(-ENOMEM);
203 
204 	if (copy_from_user(p, src, len)) {
205 		kvfree(p);
206 		return ERR_PTR(-EFAULT);
207 	}
208 
209 	return p;
210 }
211 EXPORT_SYMBOL(vmemdup_user);
212 
213 /**
214  * strndup_user - duplicate an existing string from user space
215  * @s: The string to duplicate
216  * @n: Maximum number of bytes to copy, including the trailing NUL.
217  *
218  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
219  */
220 char *strndup_user(const char __user *s, long n)
221 {
222 	char *p;
223 	long length;
224 
225 	length = strnlen_user(s, n);
226 
227 	if (!length)
228 		return ERR_PTR(-EFAULT);
229 
230 	if (length > n)
231 		return ERR_PTR(-EINVAL);
232 
233 	p = memdup_user(s, length);
234 
235 	if (IS_ERR(p))
236 		return p;
237 
238 	p[length - 1] = '\0';
239 
240 	return p;
241 }
242 EXPORT_SYMBOL(strndup_user);
243 
244 /**
245  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
246  *
247  * @src: source address in user space
248  * @len: number of bytes to copy
249  *
250  * Return: an ERR_PTR() on failure.
251  */
252 void *memdup_user_nul(const void __user *src, size_t len)
253 {
254 	char *p;
255 
256 	/*
257 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
258 	 * cause pagefault, which makes it pointless to use GFP_NOFS
259 	 * or GFP_ATOMIC.
260 	 */
261 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
262 	if (!p)
263 		return ERR_PTR(-ENOMEM);
264 
265 	if (copy_from_user(p, src, len)) {
266 		kfree(p);
267 		return ERR_PTR(-EFAULT);
268 	}
269 	p[len] = '\0';
270 
271 	return p;
272 }
273 EXPORT_SYMBOL(memdup_user_nul);
274 
275 /* Check if the vma is being used as a stack by this task */
276 int vma_is_stack_for_current(struct vm_area_struct *vma)
277 {
278 	struct task_struct * __maybe_unused t = current;
279 
280 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
281 }
282 
283 /*
284  * Change backing file, only valid to use during initial VMA setup.
285  */
286 void vma_set_file(struct vm_area_struct *vma, struct file *file)
287 {
288 	/* Changing an anonymous vma with this is illegal */
289 	get_file(file);
290 	swap(vma->vm_file, file);
291 	fput(file);
292 }
293 EXPORT_SYMBOL(vma_set_file);
294 
295 #ifndef STACK_RND_MASK
296 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
297 #endif
298 
299 unsigned long randomize_stack_top(unsigned long stack_top)
300 {
301 	unsigned long random_variable = 0;
302 
303 	if (current->flags & PF_RANDOMIZE) {
304 		random_variable = get_random_long();
305 		random_variable &= STACK_RND_MASK;
306 		random_variable <<= PAGE_SHIFT;
307 	}
308 #ifdef CONFIG_STACK_GROWSUP
309 	return PAGE_ALIGN(stack_top) + random_variable;
310 #else
311 	return PAGE_ALIGN(stack_top) - random_variable;
312 #endif
313 }
314 
315 /**
316  * randomize_page - Generate a random, page aligned address
317  * @start:	The smallest acceptable address the caller will take.
318  * @range:	The size of the area, starting at @start, within which the
319  *		random address must fall.
320  *
321  * If @start + @range would overflow, @range is capped.
322  *
323  * NOTE: Historical use of randomize_range, which this replaces, presumed that
324  * @start was already page aligned.  We now align it regardless.
325  *
326  * Return: A page aligned address within [start, start + range).  On error,
327  * @start is returned.
328  */
329 unsigned long randomize_page(unsigned long start, unsigned long range)
330 {
331 	if (!PAGE_ALIGNED(start)) {
332 		range -= PAGE_ALIGN(start) - start;
333 		start = PAGE_ALIGN(start);
334 	}
335 
336 	if (start > ULONG_MAX - range)
337 		range = ULONG_MAX - start;
338 
339 	range >>= PAGE_SHIFT;
340 
341 	if (range == 0)
342 		return start;
343 
344 	return start + (get_random_long() % range << PAGE_SHIFT);
345 }
346 
347 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
348 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
349 {
350 	/* Is the current task 32bit ? */
351 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
352 		return randomize_page(mm->brk, SZ_32M);
353 
354 	return randomize_page(mm->brk, SZ_1G);
355 }
356 
357 unsigned long arch_mmap_rnd(void)
358 {
359 	unsigned long rnd;
360 
361 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
362 	if (is_compat_task())
363 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
364 	else
365 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
366 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
367 
368 	return rnd << PAGE_SHIFT;
369 }
370 
371 static int mmap_is_legacy(struct rlimit *rlim_stack)
372 {
373 	if (current->personality & ADDR_COMPAT_LAYOUT)
374 		return 1;
375 
376 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
377 		return 1;
378 
379 	return sysctl_legacy_va_layout;
380 }
381 
382 /*
383  * Leave enough space between the mmap area and the stack to honour ulimit in
384  * the face of randomisation.
385  */
386 #define MIN_GAP		(SZ_128M)
387 #define MAX_GAP		(STACK_TOP / 6 * 5)
388 
389 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
390 {
391 	unsigned long gap = rlim_stack->rlim_cur;
392 	unsigned long pad = stack_guard_gap;
393 
394 	/* Account for stack randomization if necessary */
395 	if (current->flags & PF_RANDOMIZE)
396 		pad += (STACK_RND_MASK << PAGE_SHIFT);
397 
398 	/* Values close to RLIM_INFINITY can overflow. */
399 	if (gap + pad > gap)
400 		gap += pad;
401 
402 	if (gap < MIN_GAP)
403 		gap = MIN_GAP;
404 	else if (gap > MAX_GAP)
405 		gap = MAX_GAP;
406 
407 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
408 }
409 
410 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
411 {
412 	unsigned long random_factor = 0UL;
413 
414 	if (current->flags & PF_RANDOMIZE)
415 		random_factor = arch_mmap_rnd();
416 
417 	if (mmap_is_legacy(rlim_stack)) {
418 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
419 		mm->get_unmapped_area = arch_get_unmapped_area;
420 	} else {
421 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
422 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
423 	}
424 }
425 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
426 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
427 {
428 	mm->mmap_base = TASK_UNMAPPED_BASE;
429 	mm->get_unmapped_area = arch_get_unmapped_area;
430 }
431 #endif
432 
433 /**
434  * __account_locked_vm - account locked pages to an mm's locked_vm
435  * @mm:          mm to account against
436  * @pages:       number of pages to account
437  * @inc:         %true if @pages should be considered positive, %false if not
438  * @task:        task used to check RLIMIT_MEMLOCK
439  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
440  *
441  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
442  * that mmap_lock is held as writer.
443  *
444  * Return:
445  * * 0       on success
446  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
447  */
448 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
449 			struct task_struct *task, bool bypass_rlim)
450 {
451 	unsigned long locked_vm, limit;
452 	int ret = 0;
453 
454 	mmap_assert_write_locked(mm);
455 
456 	locked_vm = mm->locked_vm;
457 	if (inc) {
458 		if (!bypass_rlim) {
459 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
460 			if (locked_vm + pages > limit)
461 				ret = -ENOMEM;
462 		}
463 		if (!ret)
464 			mm->locked_vm = locked_vm + pages;
465 	} else {
466 		WARN_ON_ONCE(pages > locked_vm);
467 		mm->locked_vm = locked_vm - pages;
468 	}
469 
470 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
471 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
472 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
473 		 ret ? " - exceeded" : "");
474 
475 	return ret;
476 }
477 EXPORT_SYMBOL_GPL(__account_locked_vm);
478 
479 /**
480  * account_locked_vm - account locked pages to an mm's locked_vm
481  * @mm:          mm to account against, may be NULL
482  * @pages:       number of pages to account
483  * @inc:         %true if @pages should be considered positive, %false if not
484  *
485  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
486  *
487  * Return:
488  * * 0       on success, or if mm is NULL
489  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
490  */
491 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
492 {
493 	int ret;
494 
495 	if (pages == 0 || !mm)
496 		return 0;
497 
498 	mmap_write_lock(mm);
499 	ret = __account_locked_vm(mm, pages, inc, current,
500 				  capable(CAP_IPC_LOCK));
501 	mmap_write_unlock(mm);
502 
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(account_locked_vm);
506 
507 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
508 	unsigned long len, unsigned long prot,
509 	unsigned long flag, unsigned long pgoff)
510 {
511 	unsigned long ret;
512 	struct mm_struct *mm = current->mm;
513 	unsigned long populate;
514 	LIST_HEAD(uf);
515 
516 	ret = security_mmap_file(file, prot, flag);
517 	if (!ret) {
518 		if (mmap_write_lock_killable(mm))
519 			return -EINTR;
520 		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
521 			      &uf);
522 		mmap_write_unlock(mm);
523 		userfaultfd_unmap_complete(mm, &uf);
524 		if (populate)
525 			mm_populate(ret, populate);
526 	}
527 	return ret;
528 }
529 
530 unsigned long vm_mmap(struct file *file, unsigned long addr,
531 	unsigned long len, unsigned long prot,
532 	unsigned long flag, unsigned long offset)
533 {
534 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
535 		return -EINVAL;
536 	if (unlikely(offset_in_page(offset)))
537 		return -EINVAL;
538 
539 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
540 }
541 EXPORT_SYMBOL(vm_mmap);
542 
543 /**
544  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
545  * failure, fall back to non-contiguous (vmalloc) allocation.
546  * @size: size of the request.
547  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
548  * @node: numa node to allocate from
549  *
550  * Uses kmalloc to get the memory but if the allocation fails then falls back
551  * to the vmalloc allocator. Use kvfree for freeing the memory.
552  *
553  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
554  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
555  * preferable to the vmalloc fallback, due to visible performance drawbacks.
556  *
557  * Return: pointer to the allocated memory of %NULL in case of failure
558  */
559 void *kvmalloc_node(size_t size, gfp_t flags, int node)
560 {
561 	gfp_t kmalloc_flags = flags;
562 	void *ret;
563 
564 	/*
565 	 * We want to attempt a large physically contiguous block first because
566 	 * it is less likely to fragment multiple larger blocks and therefore
567 	 * contribute to a long term fragmentation less than vmalloc fallback.
568 	 * However make sure that larger requests are not too disruptive - no
569 	 * OOM killer and no allocation failure warnings as we have a fallback.
570 	 */
571 	if (size > PAGE_SIZE) {
572 		kmalloc_flags |= __GFP_NOWARN;
573 
574 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
575 			kmalloc_flags |= __GFP_NORETRY;
576 
577 		/* nofail semantic is implemented by the vmalloc fallback */
578 		kmalloc_flags &= ~__GFP_NOFAIL;
579 	}
580 
581 	ret = kmalloc_node(size, kmalloc_flags, node);
582 
583 	/*
584 	 * It doesn't really make sense to fallback to vmalloc for sub page
585 	 * requests
586 	 */
587 	if (ret || size <= PAGE_SIZE)
588 		return ret;
589 
590 	/* non-sleeping allocations are not supported by vmalloc */
591 	if (!gfpflags_allow_blocking(flags))
592 		return NULL;
593 
594 	/* Don't even allow crazy sizes */
595 	if (unlikely(size > INT_MAX)) {
596 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
597 		return NULL;
598 	}
599 
600 	/*
601 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
602 	 * since the callers already cannot assume anything
603 	 * about the resulting pointer, and cannot play
604 	 * protection games.
605 	 */
606 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
607 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
608 			node, __builtin_return_address(0));
609 }
610 EXPORT_SYMBOL(kvmalloc_node);
611 
612 /**
613  * kvfree() - Free memory.
614  * @addr: Pointer to allocated memory.
615  *
616  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
617  * It is slightly more efficient to use kfree() or vfree() if you are certain
618  * that you know which one to use.
619  *
620  * Context: Either preemptible task context or not-NMI interrupt.
621  */
622 void kvfree(const void *addr)
623 {
624 	if (is_vmalloc_addr(addr))
625 		vfree(addr);
626 	else
627 		kfree(addr);
628 }
629 EXPORT_SYMBOL(kvfree);
630 
631 /**
632  * kvfree_sensitive - Free a data object containing sensitive information.
633  * @addr: address of the data object to be freed.
634  * @len: length of the data object.
635  *
636  * Use the special memzero_explicit() function to clear the content of a
637  * kvmalloc'ed object containing sensitive data to make sure that the
638  * compiler won't optimize out the data clearing.
639  */
640 void kvfree_sensitive(const void *addr, size_t len)
641 {
642 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
643 		memzero_explicit((void *)addr, len);
644 		kvfree(addr);
645 	}
646 }
647 EXPORT_SYMBOL(kvfree_sensitive);
648 
649 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
650 {
651 	void *newp;
652 
653 	if (oldsize >= newsize)
654 		return (void *)p;
655 	newp = kvmalloc(newsize, flags);
656 	if (!newp)
657 		return NULL;
658 	memcpy(newp, p, oldsize);
659 	kvfree(p);
660 	return newp;
661 }
662 EXPORT_SYMBOL(kvrealloc);
663 
664 /**
665  * __vmalloc_array - allocate memory for a virtually contiguous array.
666  * @n: number of elements.
667  * @size: element size.
668  * @flags: the type of memory to allocate (see kmalloc).
669  */
670 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
671 {
672 	size_t bytes;
673 
674 	if (unlikely(check_mul_overflow(n, size, &bytes)))
675 		return NULL;
676 	return __vmalloc(bytes, flags);
677 }
678 EXPORT_SYMBOL(__vmalloc_array);
679 
680 /**
681  * vmalloc_array - allocate memory for a virtually contiguous array.
682  * @n: number of elements.
683  * @size: element size.
684  */
685 void *vmalloc_array(size_t n, size_t size)
686 {
687 	return __vmalloc_array(n, size, GFP_KERNEL);
688 }
689 EXPORT_SYMBOL(vmalloc_array);
690 
691 /**
692  * __vcalloc - allocate and zero memory for a virtually contiguous array.
693  * @n: number of elements.
694  * @size: element size.
695  * @flags: the type of memory to allocate (see kmalloc).
696  */
697 void *__vcalloc(size_t n, size_t size, gfp_t flags)
698 {
699 	return __vmalloc_array(n, size, flags | __GFP_ZERO);
700 }
701 EXPORT_SYMBOL(__vcalloc);
702 
703 /**
704  * vcalloc - allocate and zero memory for a virtually contiguous array.
705  * @n: number of elements.
706  * @size: element size.
707  */
708 void *vcalloc(size_t n, size_t size)
709 {
710 	return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
711 }
712 EXPORT_SYMBOL(vcalloc);
713 
714 /* Neutral page->mapping pointer to address_space or anon_vma or other */
715 void *page_rmapping(struct page *page)
716 {
717 	return folio_raw_mapping(page_folio(page));
718 }
719 
720 struct anon_vma *folio_anon_vma(struct folio *folio)
721 {
722 	unsigned long mapping = (unsigned long)folio->mapping;
723 
724 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
725 		return NULL;
726 	return (void *)(mapping - PAGE_MAPPING_ANON);
727 }
728 
729 /**
730  * folio_mapping - Find the mapping where this folio is stored.
731  * @folio: The folio.
732  *
733  * For folios which are in the page cache, return the mapping that this
734  * page belongs to.  Folios in the swap cache return the swap mapping
735  * this page is stored in (which is different from the mapping for the
736  * swap file or swap device where the data is stored).
737  *
738  * You can call this for folios which aren't in the swap cache or page
739  * cache and it will return NULL.
740  */
741 struct address_space *folio_mapping(struct folio *folio)
742 {
743 	struct address_space *mapping;
744 
745 	/* This happens if someone calls flush_dcache_page on slab page */
746 	if (unlikely(folio_test_slab(folio)))
747 		return NULL;
748 
749 	if (unlikely(folio_test_swapcache(folio)))
750 		return swap_address_space(folio_swap_entry(folio));
751 
752 	mapping = folio->mapping;
753 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
754 		return NULL;
755 
756 	return mapping;
757 }
758 EXPORT_SYMBOL(folio_mapping);
759 
760 /**
761  * folio_copy - Copy the contents of one folio to another.
762  * @dst: Folio to copy to.
763  * @src: Folio to copy from.
764  *
765  * The bytes in the folio represented by @src are copied to @dst.
766  * Assumes the caller has validated that @dst is at least as large as @src.
767  * Can be called in atomic context for order-0 folios, but if the folio is
768  * larger, it may sleep.
769  */
770 void folio_copy(struct folio *dst, struct folio *src)
771 {
772 	long i = 0;
773 	long nr = folio_nr_pages(src);
774 
775 	for (;;) {
776 		copy_highpage(folio_page(dst, i), folio_page(src, i));
777 		if (++i == nr)
778 			break;
779 		cond_resched();
780 	}
781 }
782 
783 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
784 int sysctl_overcommit_ratio __read_mostly = 50;
785 unsigned long sysctl_overcommit_kbytes __read_mostly;
786 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
787 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
788 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
789 
790 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
791 		size_t *lenp, loff_t *ppos)
792 {
793 	int ret;
794 
795 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
796 	if (ret == 0 && write)
797 		sysctl_overcommit_kbytes = 0;
798 	return ret;
799 }
800 
801 static void sync_overcommit_as(struct work_struct *dummy)
802 {
803 	percpu_counter_sync(&vm_committed_as);
804 }
805 
806 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
807 		size_t *lenp, loff_t *ppos)
808 {
809 	struct ctl_table t;
810 	int new_policy = -1;
811 	int ret;
812 
813 	/*
814 	 * The deviation of sync_overcommit_as could be big with loose policy
815 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
816 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
817 	 * with the strict "NEVER", and to avoid possible race condition (even
818 	 * though user usually won't too frequently do the switching to policy
819 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
820 	 *	1. changing the batch
821 	 *	2. sync percpu count on each CPU
822 	 *	3. switch the policy
823 	 */
824 	if (write) {
825 		t = *table;
826 		t.data = &new_policy;
827 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
828 		if (ret || new_policy == -1)
829 			return ret;
830 
831 		mm_compute_batch(new_policy);
832 		if (new_policy == OVERCOMMIT_NEVER)
833 			schedule_on_each_cpu(sync_overcommit_as);
834 		sysctl_overcommit_memory = new_policy;
835 	} else {
836 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
837 	}
838 
839 	return ret;
840 }
841 
842 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
843 		size_t *lenp, loff_t *ppos)
844 {
845 	int ret;
846 
847 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
848 	if (ret == 0 && write)
849 		sysctl_overcommit_ratio = 0;
850 	return ret;
851 }
852 
853 /*
854  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
855  */
856 unsigned long vm_commit_limit(void)
857 {
858 	unsigned long allowed;
859 
860 	if (sysctl_overcommit_kbytes)
861 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
862 	else
863 		allowed = ((totalram_pages() - hugetlb_total_pages())
864 			   * sysctl_overcommit_ratio / 100);
865 	allowed += total_swap_pages;
866 
867 	return allowed;
868 }
869 
870 /*
871  * Make sure vm_committed_as in one cacheline and not cacheline shared with
872  * other variables. It can be updated by several CPUs frequently.
873  */
874 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
875 
876 /*
877  * The global memory commitment made in the system can be a metric
878  * that can be used to drive ballooning decisions when Linux is hosted
879  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
880  * balancing memory across competing virtual machines that are hosted.
881  * Several metrics drive this policy engine including the guest reported
882  * memory commitment.
883  *
884  * The time cost of this is very low for small platforms, and for big
885  * platform like a 2S/36C/72T Skylake server, in worst case where
886  * vm_committed_as's spinlock is under severe contention, the time cost
887  * could be about 30~40 microseconds.
888  */
889 unsigned long vm_memory_committed(void)
890 {
891 	return percpu_counter_sum_positive(&vm_committed_as);
892 }
893 EXPORT_SYMBOL_GPL(vm_memory_committed);
894 
895 /*
896  * Check that a process has enough memory to allocate a new virtual
897  * mapping. 0 means there is enough memory for the allocation to
898  * succeed and -ENOMEM implies there is not.
899  *
900  * We currently support three overcommit policies, which are set via the
901  * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
902  *
903  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
904  * Additional code 2002 Jul 20 by Robert Love.
905  *
906  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
907  *
908  * Note this is a helper function intended to be used by LSMs which
909  * wish to use this logic.
910  */
911 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
912 {
913 	long allowed;
914 
915 	vm_acct_memory(pages);
916 
917 	/*
918 	 * Sometimes we want to use more memory than we have
919 	 */
920 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
921 		return 0;
922 
923 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
924 		if (pages > totalram_pages() + total_swap_pages)
925 			goto error;
926 		return 0;
927 	}
928 
929 	allowed = vm_commit_limit();
930 	/*
931 	 * Reserve some for root
932 	 */
933 	if (!cap_sys_admin)
934 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
935 
936 	/*
937 	 * Don't let a single process grow so big a user can't recover
938 	 */
939 	if (mm) {
940 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
941 
942 		allowed -= min_t(long, mm->total_vm / 32, reserve);
943 	}
944 
945 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
946 		return 0;
947 error:
948 	pr_warn_ratelimited("%s: pid: %d, comm: %s, no enough memory for the allocation\n",
949 			    __func__, current->pid, current->comm);
950 	vm_unacct_memory(pages);
951 
952 	return -ENOMEM;
953 }
954 
955 /**
956  * get_cmdline() - copy the cmdline value to a buffer.
957  * @task:     the task whose cmdline value to copy.
958  * @buffer:   the buffer to copy to.
959  * @buflen:   the length of the buffer. Larger cmdline values are truncated
960  *            to this length.
961  *
962  * Return: the size of the cmdline field copied. Note that the copy does
963  * not guarantee an ending NULL byte.
964  */
965 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
966 {
967 	int res = 0;
968 	unsigned int len;
969 	struct mm_struct *mm = get_task_mm(task);
970 	unsigned long arg_start, arg_end, env_start, env_end;
971 	if (!mm)
972 		goto out;
973 	if (!mm->arg_end)
974 		goto out_mm;	/* Shh! No looking before we're done */
975 
976 	spin_lock(&mm->arg_lock);
977 	arg_start = mm->arg_start;
978 	arg_end = mm->arg_end;
979 	env_start = mm->env_start;
980 	env_end = mm->env_end;
981 	spin_unlock(&mm->arg_lock);
982 
983 	len = arg_end - arg_start;
984 
985 	if (len > buflen)
986 		len = buflen;
987 
988 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
989 
990 	/*
991 	 * If the nul at the end of args has been overwritten, then
992 	 * assume application is using setproctitle(3).
993 	 */
994 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
995 		len = strnlen(buffer, res);
996 		if (len < res) {
997 			res = len;
998 		} else {
999 			len = env_end - env_start;
1000 			if (len > buflen - res)
1001 				len = buflen - res;
1002 			res += access_process_vm(task, env_start,
1003 						 buffer+res, len,
1004 						 FOLL_FORCE);
1005 			res = strnlen(buffer, res);
1006 		}
1007 	}
1008 out_mm:
1009 	mmput(mm);
1010 out:
1011 	return res;
1012 }
1013 
1014 int __weak memcmp_pages(struct page *page1, struct page *page2)
1015 {
1016 	char *addr1, *addr2;
1017 	int ret;
1018 
1019 	addr1 = kmap_atomic(page1);
1020 	addr2 = kmap_atomic(page2);
1021 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1022 	kunmap_atomic(addr2);
1023 	kunmap_atomic(addr1);
1024 	return ret;
1025 }
1026 
1027 #ifdef CONFIG_PRINTK
1028 /**
1029  * mem_dump_obj - Print available provenance information
1030  * @object: object for which to find provenance information.
1031  *
1032  * This function uses pr_cont(), so that the caller is expected to have
1033  * printed out whatever preamble is appropriate.  The provenance information
1034  * depends on the type of object and on how much debugging is enabled.
1035  * For example, for a slab-cache object, the slab name is printed, and,
1036  * if available, the return address and stack trace from the allocation
1037  * and last free path of that object.
1038  */
1039 void mem_dump_obj(void *object)
1040 {
1041 	const char *type;
1042 
1043 	if (kmem_valid_obj(object)) {
1044 		kmem_dump_obj(object);
1045 		return;
1046 	}
1047 
1048 	if (vmalloc_dump_obj(object))
1049 		return;
1050 
1051 	if (virt_addr_valid(object))
1052 		type = "non-slab/vmalloc memory";
1053 	else if (object == NULL)
1054 		type = "NULL pointer";
1055 	else if (object == ZERO_SIZE_PTR)
1056 		type = "zero-size pointer";
1057 	else
1058 		type = "non-paged memory";
1059 
1060 	pr_cont(" %s\n", type);
1061 }
1062 EXPORT_SYMBOL_GPL(mem_dump_obj);
1063 #endif
1064 
1065 /*
1066  * A driver might set a page logically offline -- PageOffline() -- and
1067  * turn the page inaccessible in the hypervisor; after that, access to page
1068  * content can be fatal.
1069  *
1070  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1071  * pages after checking PageOffline(); however, these PFN walkers can race
1072  * with drivers that set PageOffline().
1073  *
1074  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1075  * synchronize with such drivers, achieving that a page cannot be set
1076  * PageOffline() while frozen.
1077  *
1078  * page_offline_begin()/page_offline_end() is used by drivers that care about
1079  * such races when setting a page PageOffline().
1080  */
1081 static DECLARE_RWSEM(page_offline_rwsem);
1082 
1083 void page_offline_freeze(void)
1084 {
1085 	down_read(&page_offline_rwsem);
1086 }
1087 
1088 void page_offline_thaw(void)
1089 {
1090 	up_read(&page_offline_rwsem);
1091 }
1092 
1093 void page_offline_begin(void)
1094 {
1095 	down_write(&page_offline_rwsem);
1096 }
1097 EXPORT_SYMBOL(page_offline_begin);
1098 
1099 void page_offline_end(void)
1100 {
1101 	up_write(&page_offline_rwsem);
1102 }
1103 EXPORT_SYMBOL(page_offline_end);
1104 
1105 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
1106 void flush_dcache_folio(struct folio *folio)
1107 {
1108 	long i, nr = folio_nr_pages(folio);
1109 
1110 	for (i = 0; i < nr; i++)
1111 		flush_dcache_page(folio_page(folio, i));
1112 }
1113 EXPORT_SYMBOL(flush_dcache_folio);
1114 #endif
1115