xref: /openbmc/linux/mm/util.c (revision 224d80c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 #include "swap.h"
31 
32 /**
33  * kfree_const - conditionally free memory
34  * @x: pointer to the memory
35  *
36  * Function calls kfree only if @x is not in .rodata section.
37  */
38 void kfree_const(const void *x)
39 {
40 	if (!is_kernel_rodata((unsigned long)x))
41 		kfree(x);
42 }
43 EXPORT_SYMBOL(kfree_const);
44 
45 /**
46  * kstrdup - allocate space for and copy an existing string
47  * @s: the string to duplicate
48  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49  *
50  * Return: newly allocated copy of @s or %NULL in case of error
51  */
52 noinline
53 char *kstrdup(const char *s, gfp_t gfp)
54 {
55 	size_t len;
56 	char *buf;
57 
58 	if (!s)
59 		return NULL;
60 
61 	len = strlen(s) + 1;
62 	buf = kmalloc_track_caller(len, gfp);
63 	if (buf)
64 		memcpy(buf, s, len);
65 	return buf;
66 }
67 EXPORT_SYMBOL(kstrdup);
68 
69 /**
70  * kstrdup_const - conditionally duplicate an existing const string
71  * @s: the string to duplicate
72  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
73  *
74  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
75  * must not be passed to krealloc().
76  *
77  * Return: source string if it is in .rodata section otherwise
78  * fallback to kstrdup.
79  */
80 const char *kstrdup_const(const char *s, gfp_t gfp)
81 {
82 	if (is_kernel_rodata((unsigned long)s))
83 		return s;
84 
85 	return kstrdup(s, gfp);
86 }
87 EXPORT_SYMBOL(kstrdup_const);
88 
89 /**
90  * kstrndup - allocate space for and copy an existing string
91  * @s: the string to duplicate
92  * @max: read at most @max chars from @s
93  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
94  *
95  * Note: Use kmemdup_nul() instead if the size is known exactly.
96  *
97  * Return: newly allocated copy of @s or %NULL in case of error
98  */
99 char *kstrndup(const char *s, size_t max, gfp_t gfp)
100 {
101 	size_t len;
102 	char *buf;
103 
104 	if (!s)
105 		return NULL;
106 
107 	len = strnlen(s, max);
108 	buf = kmalloc_track_caller(len+1, gfp);
109 	if (buf) {
110 		memcpy(buf, s, len);
111 		buf[len] = '\0';
112 	}
113 	return buf;
114 }
115 EXPORT_SYMBOL(kstrndup);
116 
117 /**
118  * kmemdup - duplicate region of memory
119  *
120  * @src: memory region to duplicate
121  * @len: memory region length
122  * @gfp: GFP mask to use
123  *
124  * Return: newly allocated copy of @src or %NULL in case of error,
125  * result is physically contiguous. Use kfree() to free.
126  */
127 void *kmemdup(const void *src, size_t len, gfp_t gfp)
128 {
129 	void *p;
130 
131 	p = kmalloc_track_caller(len, gfp);
132 	if (p)
133 		memcpy(p, src, len);
134 	return p;
135 }
136 EXPORT_SYMBOL(kmemdup);
137 
138 /**
139  * kvmemdup - duplicate region of memory
140  *
141  * @src: memory region to duplicate
142  * @len: memory region length
143  * @gfp: GFP mask to use
144  *
145  * Return: newly allocated copy of @src or %NULL in case of error,
146  * result may be not physically contiguous. Use kvfree() to free.
147  */
148 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
149 {
150 	void *p;
151 
152 	p = kvmalloc(len, gfp);
153 	if (p)
154 		memcpy(p, src, len);
155 	return p;
156 }
157 EXPORT_SYMBOL(kvmemdup);
158 
159 /**
160  * kmemdup_nul - Create a NUL-terminated string from unterminated data
161  * @s: The data to stringify
162  * @len: The size of the data
163  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
164  *
165  * Return: newly allocated copy of @s with NUL-termination or %NULL in
166  * case of error
167  */
168 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
169 {
170 	char *buf;
171 
172 	if (!s)
173 		return NULL;
174 
175 	buf = kmalloc_track_caller(len + 1, gfp);
176 	if (buf) {
177 		memcpy(buf, s, len);
178 		buf[len] = '\0';
179 	}
180 	return buf;
181 }
182 EXPORT_SYMBOL(kmemdup_nul);
183 
184 /**
185  * memdup_user - duplicate memory region from user space
186  *
187  * @src: source address in user space
188  * @len: number of bytes to copy
189  *
190  * Return: an ERR_PTR() on failure.  Result is physically
191  * contiguous, to be freed by kfree().
192  */
193 void *memdup_user(const void __user *src, size_t len)
194 {
195 	void *p;
196 
197 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
198 	if (!p)
199 		return ERR_PTR(-ENOMEM);
200 
201 	if (copy_from_user(p, src, len)) {
202 		kfree(p);
203 		return ERR_PTR(-EFAULT);
204 	}
205 
206 	return p;
207 }
208 EXPORT_SYMBOL(memdup_user);
209 
210 /**
211  * vmemdup_user - duplicate memory region from user space
212  *
213  * @src: source address in user space
214  * @len: number of bytes to copy
215  *
216  * Return: an ERR_PTR() on failure.  Result may be not
217  * physically contiguous.  Use kvfree() to free.
218  */
219 void *vmemdup_user(const void __user *src, size_t len)
220 {
221 	void *p;
222 
223 	p = kvmalloc(len, GFP_USER);
224 	if (!p)
225 		return ERR_PTR(-ENOMEM);
226 
227 	if (copy_from_user(p, src, len)) {
228 		kvfree(p);
229 		return ERR_PTR(-EFAULT);
230 	}
231 
232 	return p;
233 }
234 EXPORT_SYMBOL(vmemdup_user);
235 
236 /**
237  * strndup_user - duplicate an existing string from user space
238  * @s: The string to duplicate
239  * @n: Maximum number of bytes to copy, including the trailing NUL.
240  *
241  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
242  */
243 char *strndup_user(const char __user *s, long n)
244 {
245 	char *p;
246 	long length;
247 
248 	length = strnlen_user(s, n);
249 
250 	if (!length)
251 		return ERR_PTR(-EFAULT);
252 
253 	if (length > n)
254 		return ERR_PTR(-EINVAL);
255 
256 	p = memdup_user(s, length);
257 
258 	if (IS_ERR(p))
259 		return p;
260 
261 	p[length - 1] = '\0';
262 
263 	return p;
264 }
265 EXPORT_SYMBOL(strndup_user);
266 
267 /**
268  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
269  *
270  * @src: source address in user space
271  * @len: number of bytes to copy
272  *
273  * Return: an ERR_PTR() on failure.
274  */
275 void *memdup_user_nul(const void __user *src, size_t len)
276 {
277 	char *p;
278 
279 	/*
280 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
281 	 * cause pagefault, which makes it pointless to use GFP_NOFS
282 	 * or GFP_ATOMIC.
283 	 */
284 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
285 	if (!p)
286 		return ERR_PTR(-ENOMEM);
287 
288 	if (copy_from_user(p, src, len)) {
289 		kfree(p);
290 		return ERR_PTR(-EFAULT);
291 	}
292 	p[len] = '\0';
293 
294 	return p;
295 }
296 EXPORT_SYMBOL(memdup_user_nul);
297 
298 /* Check if the vma is being used as a stack by this task */
299 int vma_is_stack_for_current(struct vm_area_struct *vma)
300 {
301 	struct task_struct * __maybe_unused t = current;
302 
303 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
304 }
305 
306 /*
307  * Change backing file, only valid to use during initial VMA setup.
308  */
309 void vma_set_file(struct vm_area_struct *vma, struct file *file)
310 {
311 	/* Changing an anonymous vma with this is illegal */
312 	get_file(file);
313 	swap(vma->vm_file, file);
314 	fput(file);
315 }
316 EXPORT_SYMBOL(vma_set_file);
317 
318 #ifndef STACK_RND_MASK
319 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
320 #endif
321 
322 unsigned long randomize_stack_top(unsigned long stack_top)
323 {
324 	unsigned long random_variable = 0;
325 
326 	if (current->flags & PF_RANDOMIZE) {
327 		random_variable = get_random_long();
328 		random_variable &= STACK_RND_MASK;
329 		random_variable <<= PAGE_SHIFT;
330 	}
331 #ifdef CONFIG_STACK_GROWSUP
332 	return PAGE_ALIGN(stack_top) + random_variable;
333 #else
334 	return PAGE_ALIGN(stack_top) - random_variable;
335 #endif
336 }
337 
338 /**
339  * randomize_page - Generate a random, page aligned address
340  * @start:	The smallest acceptable address the caller will take.
341  * @range:	The size of the area, starting at @start, within which the
342  *		random address must fall.
343  *
344  * If @start + @range would overflow, @range is capped.
345  *
346  * NOTE: Historical use of randomize_range, which this replaces, presumed that
347  * @start was already page aligned.  We now align it regardless.
348  *
349  * Return: A page aligned address within [start, start + range).  On error,
350  * @start is returned.
351  */
352 unsigned long randomize_page(unsigned long start, unsigned long range)
353 {
354 	if (!PAGE_ALIGNED(start)) {
355 		range -= PAGE_ALIGN(start) - start;
356 		start = PAGE_ALIGN(start);
357 	}
358 
359 	if (start > ULONG_MAX - range)
360 		range = ULONG_MAX - start;
361 
362 	range >>= PAGE_SHIFT;
363 
364 	if (range == 0)
365 		return start;
366 
367 	return start + (get_random_long() % range << PAGE_SHIFT);
368 }
369 
370 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
371 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
372 {
373 	/* Is the current task 32bit ? */
374 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
375 		return randomize_page(mm->brk, SZ_32M);
376 
377 	return randomize_page(mm->brk, SZ_1G);
378 }
379 
380 unsigned long arch_mmap_rnd(void)
381 {
382 	unsigned long rnd;
383 
384 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
385 	if (is_compat_task())
386 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
387 	else
388 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
389 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
390 
391 	return rnd << PAGE_SHIFT;
392 }
393 
394 static int mmap_is_legacy(struct rlimit *rlim_stack)
395 {
396 	if (current->personality & ADDR_COMPAT_LAYOUT)
397 		return 1;
398 
399 	if (rlim_stack->rlim_cur == RLIM_INFINITY)
400 		return 1;
401 
402 	return sysctl_legacy_va_layout;
403 }
404 
405 /*
406  * Leave enough space between the mmap area and the stack to honour ulimit in
407  * the face of randomisation.
408  */
409 #define MIN_GAP		(SZ_128M)
410 #define MAX_GAP		(STACK_TOP / 6 * 5)
411 
412 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
413 {
414 	unsigned long gap = rlim_stack->rlim_cur;
415 	unsigned long pad = stack_guard_gap;
416 
417 	/* Account for stack randomization if necessary */
418 	if (current->flags & PF_RANDOMIZE)
419 		pad += (STACK_RND_MASK << PAGE_SHIFT);
420 
421 	/* Values close to RLIM_INFINITY can overflow. */
422 	if (gap + pad > gap)
423 		gap += pad;
424 
425 	if (gap < MIN_GAP)
426 		gap = MIN_GAP;
427 	else if (gap > MAX_GAP)
428 		gap = MAX_GAP;
429 
430 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
431 }
432 
433 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
434 {
435 	unsigned long random_factor = 0UL;
436 
437 	if (current->flags & PF_RANDOMIZE)
438 		random_factor = arch_mmap_rnd();
439 
440 	if (mmap_is_legacy(rlim_stack)) {
441 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
442 		mm->get_unmapped_area = arch_get_unmapped_area;
443 	} else {
444 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
445 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
446 	}
447 }
448 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
449 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
450 {
451 	mm->mmap_base = TASK_UNMAPPED_BASE;
452 	mm->get_unmapped_area = arch_get_unmapped_area;
453 }
454 #endif
455 
456 /**
457  * __account_locked_vm - account locked pages to an mm's locked_vm
458  * @mm:          mm to account against
459  * @pages:       number of pages to account
460  * @inc:         %true if @pages should be considered positive, %false if not
461  * @task:        task used to check RLIMIT_MEMLOCK
462  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
463  *
464  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
465  * that mmap_lock is held as writer.
466  *
467  * Return:
468  * * 0       on success
469  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
470  */
471 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
472 			struct task_struct *task, bool bypass_rlim)
473 {
474 	unsigned long locked_vm, limit;
475 	int ret = 0;
476 
477 	mmap_assert_write_locked(mm);
478 
479 	locked_vm = mm->locked_vm;
480 	if (inc) {
481 		if (!bypass_rlim) {
482 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
483 			if (locked_vm + pages > limit)
484 				ret = -ENOMEM;
485 		}
486 		if (!ret)
487 			mm->locked_vm = locked_vm + pages;
488 	} else {
489 		WARN_ON_ONCE(pages > locked_vm);
490 		mm->locked_vm = locked_vm - pages;
491 	}
492 
493 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
494 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
495 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
496 		 ret ? " - exceeded" : "");
497 
498 	return ret;
499 }
500 EXPORT_SYMBOL_GPL(__account_locked_vm);
501 
502 /**
503  * account_locked_vm - account locked pages to an mm's locked_vm
504  * @mm:          mm to account against, may be NULL
505  * @pages:       number of pages to account
506  * @inc:         %true if @pages should be considered positive, %false if not
507  *
508  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
509  *
510  * Return:
511  * * 0       on success, or if mm is NULL
512  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
513  */
514 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
515 {
516 	int ret;
517 
518 	if (pages == 0 || !mm)
519 		return 0;
520 
521 	mmap_write_lock(mm);
522 	ret = __account_locked_vm(mm, pages, inc, current,
523 				  capable(CAP_IPC_LOCK));
524 	mmap_write_unlock(mm);
525 
526 	return ret;
527 }
528 EXPORT_SYMBOL_GPL(account_locked_vm);
529 
530 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
531 	unsigned long len, unsigned long prot,
532 	unsigned long flag, unsigned long pgoff)
533 {
534 	unsigned long ret;
535 	struct mm_struct *mm = current->mm;
536 	unsigned long populate;
537 	LIST_HEAD(uf);
538 
539 	ret = security_mmap_file(file, prot, flag);
540 	if (!ret) {
541 		if (mmap_write_lock_killable(mm))
542 			return -EINTR;
543 		ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
544 			      &uf);
545 		mmap_write_unlock(mm);
546 		userfaultfd_unmap_complete(mm, &uf);
547 		if (populate)
548 			mm_populate(ret, populate);
549 	}
550 	return ret;
551 }
552 
553 unsigned long vm_mmap(struct file *file, unsigned long addr,
554 	unsigned long len, unsigned long prot,
555 	unsigned long flag, unsigned long offset)
556 {
557 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
558 		return -EINVAL;
559 	if (unlikely(offset_in_page(offset)))
560 		return -EINVAL;
561 
562 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
563 }
564 EXPORT_SYMBOL(vm_mmap);
565 
566 /**
567  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
568  * failure, fall back to non-contiguous (vmalloc) allocation.
569  * @size: size of the request.
570  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
571  * @node: numa node to allocate from
572  *
573  * Uses kmalloc to get the memory but if the allocation fails then falls back
574  * to the vmalloc allocator. Use kvfree for freeing the memory.
575  *
576  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
577  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
578  * preferable to the vmalloc fallback, due to visible performance drawbacks.
579  *
580  * Return: pointer to the allocated memory of %NULL in case of failure
581  */
582 void *kvmalloc_node(size_t size, gfp_t flags, int node)
583 {
584 	gfp_t kmalloc_flags = flags;
585 	void *ret;
586 
587 	/*
588 	 * We want to attempt a large physically contiguous block first because
589 	 * it is less likely to fragment multiple larger blocks and therefore
590 	 * contribute to a long term fragmentation less than vmalloc fallback.
591 	 * However make sure that larger requests are not too disruptive - no
592 	 * OOM killer and no allocation failure warnings as we have a fallback.
593 	 */
594 	if (size > PAGE_SIZE) {
595 		kmalloc_flags |= __GFP_NOWARN;
596 
597 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
598 			kmalloc_flags |= __GFP_NORETRY;
599 
600 		/* nofail semantic is implemented by the vmalloc fallback */
601 		kmalloc_flags &= ~__GFP_NOFAIL;
602 	}
603 
604 	ret = kmalloc_node(size, kmalloc_flags, node);
605 
606 	/*
607 	 * It doesn't really make sense to fallback to vmalloc for sub page
608 	 * requests
609 	 */
610 	if (ret || size <= PAGE_SIZE)
611 		return ret;
612 
613 	/* non-sleeping allocations are not supported by vmalloc */
614 	if (!gfpflags_allow_blocking(flags))
615 		return NULL;
616 
617 	/* Don't even allow crazy sizes */
618 	if (unlikely(size > INT_MAX)) {
619 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
620 		return NULL;
621 	}
622 
623 	/*
624 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
625 	 * since the callers already cannot assume anything
626 	 * about the resulting pointer, and cannot play
627 	 * protection games.
628 	 */
629 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
630 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
631 			node, __builtin_return_address(0));
632 }
633 EXPORT_SYMBOL(kvmalloc_node);
634 
635 /**
636  * kvfree() - Free memory.
637  * @addr: Pointer to allocated memory.
638  *
639  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
640  * It is slightly more efficient to use kfree() or vfree() if you are certain
641  * that you know which one to use.
642  *
643  * Context: Either preemptible task context or not-NMI interrupt.
644  */
645 void kvfree(const void *addr)
646 {
647 	if (is_vmalloc_addr(addr))
648 		vfree(addr);
649 	else
650 		kfree(addr);
651 }
652 EXPORT_SYMBOL(kvfree);
653 
654 /**
655  * kvfree_sensitive - Free a data object containing sensitive information.
656  * @addr: address of the data object to be freed.
657  * @len: length of the data object.
658  *
659  * Use the special memzero_explicit() function to clear the content of a
660  * kvmalloc'ed object containing sensitive data to make sure that the
661  * compiler won't optimize out the data clearing.
662  */
663 void kvfree_sensitive(const void *addr, size_t len)
664 {
665 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
666 		memzero_explicit((void *)addr, len);
667 		kvfree(addr);
668 	}
669 }
670 EXPORT_SYMBOL(kvfree_sensitive);
671 
672 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
673 {
674 	void *newp;
675 
676 	if (oldsize >= newsize)
677 		return (void *)p;
678 	newp = kvmalloc(newsize, flags);
679 	if (!newp)
680 		return NULL;
681 	memcpy(newp, p, oldsize);
682 	kvfree(p);
683 	return newp;
684 }
685 EXPORT_SYMBOL(kvrealloc);
686 
687 /**
688  * __vmalloc_array - allocate memory for a virtually contiguous array.
689  * @n: number of elements.
690  * @size: element size.
691  * @flags: the type of memory to allocate (see kmalloc).
692  */
693 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
694 {
695 	size_t bytes;
696 
697 	if (unlikely(check_mul_overflow(n, size, &bytes)))
698 		return NULL;
699 	return __vmalloc(bytes, flags);
700 }
701 EXPORT_SYMBOL(__vmalloc_array);
702 
703 /**
704  * vmalloc_array - allocate memory for a virtually contiguous array.
705  * @n: number of elements.
706  * @size: element size.
707  */
708 void *vmalloc_array(size_t n, size_t size)
709 {
710 	return __vmalloc_array(n, size, GFP_KERNEL);
711 }
712 EXPORT_SYMBOL(vmalloc_array);
713 
714 /**
715  * __vcalloc - allocate and zero memory for a virtually contiguous array.
716  * @n: number of elements.
717  * @size: element size.
718  * @flags: the type of memory to allocate (see kmalloc).
719  */
720 void *__vcalloc(size_t n, size_t size, gfp_t flags)
721 {
722 	return __vmalloc_array(n, size, flags | __GFP_ZERO);
723 }
724 EXPORT_SYMBOL(__vcalloc);
725 
726 /**
727  * vcalloc - allocate and zero memory for a virtually contiguous array.
728  * @n: number of elements.
729  * @size: element size.
730  */
731 void *vcalloc(size_t n, size_t size)
732 {
733 	return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
734 }
735 EXPORT_SYMBOL(vcalloc);
736 
737 /* Neutral page->mapping pointer to address_space or anon_vma or other */
738 void *page_rmapping(struct page *page)
739 {
740 	return folio_raw_mapping(page_folio(page));
741 }
742 
743 struct anon_vma *folio_anon_vma(struct folio *folio)
744 {
745 	unsigned long mapping = (unsigned long)folio->mapping;
746 
747 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
748 		return NULL;
749 	return (void *)(mapping - PAGE_MAPPING_ANON);
750 }
751 
752 /**
753  * folio_mapping - Find the mapping where this folio is stored.
754  * @folio: The folio.
755  *
756  * For folios which are in the page cache, return the mapping that this
757  * page belongs to.  Folios in the swap cache return the swap mapping
758  * this page is stored in (which is different from the mapping for the
759  * swap file or swap device where the data is stored).
760  *
761  * You can call this for folios which aren't in the swap cache or page
762  * cache and it will return NULL.
763  */
764 struct address_space *folio_mapping(struct folio *folio)
765 {
766 	struct address_space *mapping;
767 
768 	/* This happens if someone calls flush_dcache_page on slab page */
769 	if (unlikely(folio_test_slab(folio)))
770 		return NULL;
771 
772 	if (unlikely(folio_test_swapcache(folio)))
773 		return swap_address_space(folio_swap_entry(folio));
774 
775 	mapping = folio->mapping;
776 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
777 		return NULL;
778 
779 	return mapping;
780 }
781 EXPORT_SYMBOL(folio_mapping);
782 
783 /**
784  * folio_copy - Copy the contents of one folio to another.
785  * @dst: Folio to copy to.
786  * @src: Folio to copy from.
787  *
788  * The bytes in the folio represented by @src are copied to @dst.
789  * Assumes the caller has validated that @dst is at least as large as @src.
790  * Can be called in atomic context for order-0 folios, but if the folio is
791  * larger, it may sleep.
792  */
793 void folio_copy(struct folio *dst, struct folio *src)
794 {
795 	long i = 0;
796 	long nr = folio_nr_pages(src);
797 
798 	for (;;) {
799 		copy_highpage(folio_page(dst, i), folio_page(src, i));
800 		if (++i == nr)
801 			break;
802 		cond_resched();
803 	}
804 }
805 
806 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
807 int sysctl_overcommit_ratio __read_mostly = 50;
808 unsigned long sysctl_overcommit_kbytes __read_mostly;
809 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
810 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
811 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
812 
813 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
814 		size_t *lenp, loff_t *ppos)
815 {
816 	int ret;
817 
818 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
819 	if (ret == 0 && write)
820 		sysctl_overcommit_kbytes = 0;
821 	return ret;
822 }
823 
824 static void sync_overcommit_as(struct work_struct *dummy)
825 {
826 	percpu_counter_sync(&vm_committed_as);
827 }
828 
829 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
830 		size_t *lenp, loff_t *ppos)
831 {
832 	struct ctl_table t;
833 	int new_policy = -1;
834 	int ret;
835 
836 	/*
837 	 * The deviation of sync_overcommit_as could be big with loose policy
838 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
839 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
840 	 * with the strict "NEVER", and to avoid possible race condition (even
841 	 * though user usually won't too frequently do the switching to policy
842 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
843 	 *	1. changing the batch
844 	 *	2. sync percpu count on each CPU
845 	 *	3. switch the policy
846 	 */
847 	if (write) {
848 		t = *table;
849 		t.data = &new_policy;
850 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
851 		if (ret || new_policy == -1)
852 			return ret;
853 
854 		mm_compute_batch(new_policy);
855 		if (new_policy == OVERCOMMIT_NEVER)
856 			schedule_on_each_cpu(sync_overcommit_as);
857 		sysctl_overcommit_memory = new_policy;
858 	} else {
859 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
860 	}
861 
862 	return ret;
863 }
864 
865 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
866 		size_t *lenp, loff_t *ppos)
867 {
868 	int ret;
869 
870 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
871 	if (ret == 0 && write)
872 		sysctl_overcommit_ratio = 0;
873 	return ret;
874 }
875 
876 /*
877  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
878  */
879 unsigned long vm_commit_limit(void)
880 {
881 	unsigned long allowed;
882 
883 	if (sysctl_overcommit_kbytes)
884 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
885 	else
886 		allowed = ((totalram_pages() - hugetlb_total_pages())
887 			   * sysctl_overcommit_ratio / 100);
888 	allowed += total_swap_pages;
889 
890 	return allowed;
891 }
892 
893 /*
894  * Make sure vm_committed_as in one cacheline and not cacheline shared with
895  * other variables. It can be updated by several CPUs frequently.
896  */
897 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
898 
899 /*
900  * The global memory commitment made in the system can be a metric
901  * that can be used to drive ballooning decisions when Linux is hosted
902  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
903  * balancing memory across competing virtual machines that are hosted.
904  * Several metrics drive this policy engine including the guest reported
905  * memory commitment.
906  *
907  * The time cost of this is very low for small platforms, and for big
908  * platform like a 2S/36C/72T Skylake server, in worst case where
909  * vm_committed_as's spinlock is under severe contention, the time cost
910  * could be about 30~40 microseconds.
911  */
912 unsigned long vm_memory_committed(void)
913 {
914 	return percpu_counter_sum_positive(&vm_committed_as);
915 }
916 EXPORT_SYMBOL_GPL(vm_memory_committed);
917 
918 /*
919  * Check that a process has enough memory to allocate a new virtual
920  * mapping. 0 means there is enough memory for the allocation to
921  * succeed and -ENOMEM implies there is not.
922  *
923  * We currently support three overcommit policies, which are set via the
924  * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
925  *
926  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
927  * Additional code 2002 Jul 20 by Robert Love.
928  *
929  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
930  *
931  * Note this is a helper function intended to be used by LSMs which
932  * wish to use this logic.
933  */
934 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
935 {
936 	long allowed;
937 
938 	vm_acct_memory(pages);
939 
940 	/*
941 	 * Sometimes we want to use more memory than we have
942 	 */
943 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
944 		return 0;
945 
946 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
947 		if (pages > totalram_pages() + total_swap_pages)
948 			goto error;
949 		return 0;
950 	}
951 
952 	allowed = vm_commit_limit();
953 	/*
954 	 * Reserve some for root
955 	 */
956 	if (!cap_sys_admin)
957 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
958 
959 	/*
960 	 * Don't let a single process grow so big a user can't recover
961 	 */
962 	if (mm) {
963 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
964 
965 		allowed -= min_t(long, mm->total_vm / 32, reserve);
966 	}
967 
968 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
969 		return 0;
970 error:
971 	pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n",
972 			    __func__, current->pid, current->comm);
973 	vm_unacct_memory(pages);
974 
975 	return -ENOMEM;
976 }
977 
978 /**
979  * get_cmdline() - copy the cmdline value to a buffer.
980  * @task:     the task whose cmdline value to copy.
981  * @buffer:   the buffer to copy to.
982  * @buflen:   the length of the buffer. Larger cmdline values are truncated
983  *            to this length.
984  *
985  * Return: the size of the cmdline field copied. Note that the copy does
986  * not guarantee an ending NULL byte.
987  */
988 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
989 {
990 	int res = 0;
991 	unsigned int len;
992 	struct mm_struct *mm = get_task_mm(task);
993 	unsigned long arg_start, arg_end, env_start, env_end;
994 	if (!mm)
995 		goto out;
996 	if (!mm->arg_end)
997 		goto out_mm;	/* Shh! No looking before we're done */
998 
999 	spin_lock(&mm->arg_lock);
1000 	arg_start = mm->arg_start;
1001 	arg_end = mm->arg_end;
1002 	env_start = mm->env_start;
1003 	env_end = mm->env_end;
1004 	spin_unlock(&mm->arg_lock);
1005 
1006 	len = arg_end - arg_start;
1007 
1008 	if (len > buflen)
1009 		len = buflen;
1010 
1011 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1012 
1013 	/*
1014 	 * If the nul at the end of args has been overwritten, then
1015 	 * assume application is using setproctitle(3).
1016 	 */
1017 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1018 		len = strnlen(buffer, res);
1019 		if (len < res) {
1020 			res = len;
1021 		} else {
1022 			len = env_end - env_start;
1023 			if (len > buflen - res)
1024 				len = buflen - res;
1025 			res += access_process_vm(task, env_start,
1026 						 buffer+res, len,
1027 						 FOLL_FORCE);
1028 			res = strnlen(buffer, res);
1029 		}
1030 	}
1031 out_mm:
1032 	mmput(mm);
1033 out:
1034 	return res;
1035 }
1036 
1037 int __weak memcmp_pages(struct page *page1, struct page *page2)
1038 {
1039 	char *addr1, *addr2;
1040 	int ret;
1041 
1042 	addr1 = kmap_atomic(page1);
1043 	addr2 = kmap_atomic(page2);
1044 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1045 	kunmap_atomic(addr2);
1046 	kunmap_atomic(addr1);
1047 	return ret;
1048 }
1049 
1050 #ifdef CONFIG_PRINTK
1051 /**
1052  * mem_dump_obj - Print available provenance information
1053  * @object: object for which to find provenance information.
1054  *
1055  * This function uses pr_cont(), so that the caller is expected to have
1056  * printed out whatever preamble is appropriate.  The provenance information
1057  * depends on the type of object and on how much debugging is enabled.
1058  * For example, for a slab-cache object, the slab name is printed, and,
1059  * if available, the return address and stack trace from the allocation
1060  * and last free path of that object.
1061  */
1062 void mem_dump_obj(void *object)
1063 {
1064 	const char *type;
1065 
1066 	if (kmem_valid_obj(object)) {
1067 		kmem_dump_obj(object);
1068 		return;
1069 	}
1070 
1071 	if (vmalloc_dump_obj(object))
1072 		return;
1073 
1074 	if (virt_addr_valid(object))
1075 		type = "non-slab/vmalloc memory";
1076 	else if (object == NULL)
1077 		type = "NULL pointer";
1078 	else if (object == ZERO_SIZE_PTR)
1079 		type = "zero-size pointer";
1080 	else
1081 		type = "non-paged memory";
1082 
1083 	pr_cont(" %s\n", type);
1084 }
1085 EXPORT_SYMBOL_GPL(mem_dump_obj);
1086 #endif
1087 
1088 /*
1089  * A driver might set a page logically offline -- PageOffline() -- and
1090  * turn the page inaccessible in the hypervisor; after that, access to page
1091  * content can be fatal.
1092  *
1093  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1094  * pages after checking PageOffline(); however, these PFN walkers can race
1095  * with drivers that set PageOffline().
1096  *
1097  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1098  * synchronize with such drivers, achieving that a page cannot be set
1099  * PageOffline() while frozen.
1100  *
1101  * page_offline_begin()/page_offline_end() is used by drivers that care about
1102  * such races when setting a page PageOffline().
1103  */
1104 static DECLARE_RWSEM(page_offline_rwsem);
1105 
1106 void page_offline_freeze(void)
1107 {
1108 	down_read(&page_offline_rwsem);
1109 }
1110 
1111 void page_offline_thaw(void)
1112 {
1113 	up_read(&page_offline_rwsem);
1114 }
1115 
1116 void page_offline_begin(void)
1117 {
1118 	down_write(&page_offline_rwsem);
1119 }
1120 EXPORT_SYMBOL(page_offline_begin);
1121 
1122 void page_offline_end(void)
1123 {
1124 	up_write(&page_offline_rwsem);
1125 }
1126 EXPORT_SYMBOL(page_offline_end);
1127 
1128 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_FOLIO
1129 void flush_dcache_folio(struct folio *folio)
1130 {
1131 	long i, nr = folio_nr_pages(folio);
1132 
1133 	for (i = 0; i < nr; i++)
1134 		flush_dcache_page(folio_page(folio, i));
1135 }
1136 EXPORT_SYMBOL(flush_dcache_folio);
1137 #endif
1138