1 #include <linux/mm.h> 2 #include <linux/slab.h> 3 #include <linux/string.h> 4 #include <linux/compiler.h> 5 #include <linux/export.h> 6 #include <linux/err.h> 7 #include <linux/sched.h> 8 #include <linux/sched/mm.h> 9 #include <linux/security.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 #include <linux/mman.h> 13 #include <linux/hugetlb.h> 14 #include <linux/vmalloc.h> 15 #include <linux/userfaultfd_k.h> 16 17 #include <asm/sections.h> 18 #include <linux/uaccess.h> 19 20 #include "internal.h" 21 22 static inline int is_kernel_rodata(unsigned long addr) 23 { 24 return addr >= (unsigned long)__start_rodata && 25 addr < (unsigned long)__end_rodata; 26 } 27 28 /** 29 * kfree_const - conditionally free memory 30 * @x: pointer to the memory 31 * 32 * Function calls kfree only if @x is not in .rodata section. 33 */ 34 void kfree_const(const void *x) 35 { 36 if (!is_kernel_rodata((unsigned long)x)) 37 kfree(x); 38 } 39 EXPORT_SYMBOL(kfree_const); 40 41 /** 42 * kstrdup - allocate space for and copy an existing string 43 * @s: the string to duplicate 44 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 45 */ 46 char *kstrdup(const char *s, gfp_t gfp) 47 { 48 size_t len; 49 char *buf; 50 51 if (!s) 52 return NULL; 53 54 len = strlen(s) + 1; 55 buf = kmalloc_track_caller(len, gfp); 56 if (buf) 57 memcpy(buf, s, len); 58 return buf; 59 } 60 EXPORT_SYMBOL(kstrdup); 61 62 /** 63 * kstrdup_const - conditionally duplicate an existing const string 64 * @s: the string to duplicate 65 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 66 * 67 * Function returns source string if it is in .rodata section otherwise it 68 * fallbacks to kstrdup. 69 * Strings allocated by kstrdup_const should be freed by kfree_const. 70 */ 71 const char *kstrdup_const(const char *s, gfp_t gfp) 72 { 73 if (is_kernel_rodata((unsigned long)s)) 74 return s; 75 76 return kstrdup(s, gfp); 77 } 78 EXPORT_SYMBOL(kstrdup_const); 79 80 /** 81 * kstrndup - allocate space for and copy an existing string 82 * @s: the string to duplicate 83 * @max: read at most @max chars from @s 84 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 85 */ 86 char *kstrndup(const char *s, size_t max, gfp_t gfp) 87 { 88 size_t len; 89 char *buf; 90 91 if (!s) 92 return NULL; 93 94 len = strnlen(s, max); 95 buf = kmalloc_track_caller(len+1, gfp); 96 if (buf) { 97 memcpy(buf, s, len); 98 buf[len] = '\0'; 99 } 100 return buf; 101 } 102 EXPORT_SYMBOL(kstrndup); 103 104 /** 105 * kmemdup - duplicate region of memory 106 * 107 * @src: memory region to duplicate 108 * @len: memory region length 109 * @gfp: GFP mask to use 110 */ 111 void *kmemdup(const void *src, size_t len, gfp_t gfp) 112 { 113 void *p; 114 115 p = kmalloc_track_caller(len, gfp); 116 if (p) 117 memcpy(p, src, len); 118 return p; 119 } 120 EXPORT_SYMBOL(kmemdup); 121 122 /** 123 * memdup_user - duplicate memory region from user space 124 * 125 * @src: source address in user space 126 * @len: number of bytes to copy 127 * 128 * Returns an ERR_PTR() on failure. 129 */ 130 void *memdup_user(const void __user *src, size_t len) 131 { 132 void *p; 133 134 /* 135 * Always use GFP_KERNEL, since copy_from_user() can sleep and 136 * cause pagefault, which makes it pointless to use GFP_NOFS 137 * or GFP_ATOMIC. 138 */ 139 p = kmalloc_track_caller(len, GFP_KERNEL); 140 if (!p) 141 return ERR_PTR(-ENOMEM); 142 143 if (copy_from_user(p, src, len)) { 144 kfree(p); 145 return ERR_PTR(-EFAULT); 146 } 147 148 return p; 149 } 150 EXPORT_SYMBOL(memdup_user); 151 152 /* 153 * strndup_user - duplicate an existing string from user space 154 * @s: The string to duplicate 155 * @n: Maximum number of bytes to copy, including the trailing NUL. 156 */ 157 char *strndup_user(const char __user *s, long n) 158 { 159 char *p; 160 long length; 161 162 length = strnlen_user(s, n); 163 164 if (!length) 165 return ERR_PTR(-EFAULT); 166 167 if (length > n) 168 return ERR_PTR(-EINVAL); 169 170 p = memdup_user(s, length); 171 172 if (IS_ERR(p)) 173 return p; 174 175 p[length - 1] = '\0'; 176 177 return p; 178 } 179 EXPORT_SYMBOL(strndup_user); 180 181 /** 182 * memdup_user_nul - duplicate memory region from user space and NUL-terminate 183 * 184 * @src: source address in user space 185 * @len: number of bytes to copy 186 * 187 * Returns an ERR_PTR() on failure. 188 */ 189 void *memdup_user_nul(const void __user *src, size_t len) 190 { 191 char *p; 192 193 /* 194 * Always use GFP_KERNEL, since copy_from_user() can sleep and 195 * cause pagefault, which makes it pointless to use GFP_NOFS 196 * or GFP_ATOMIC. 197 */ 198 p = kmalloc_track_caller(len + 1, GFP_KERNEL); 199 if (!p) 200 return ERR_PTR(-ENOMEM); 201 202 if (copy_from_user(p, src, len)) { 203 kfree(p); 204 return ERR_PTR(-EFAULT); 205 } 206 p[len] = '\0'; 207 208 return p; 209 } 210 EXPORT_SYMBOL(memdup_user_nul); 211 212 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 213 struct vm_area_struct *prev, struct rb_node *rb_parent) 214 { 215 struct vm_area_struct *next; 216 217 vma->vm_prev = prev; 218 if (prev) { 219 next = prev->vm_next; 220 prev->vm_next = vma; 221 } else { 222 mm->mmap = vma; 223 if (rb_parent) 224 next = rb_entry(rb_parent, 225 struct vm_area_struct, vm_rb); 226 else 227 next = NULL; 228 } 229 vma->vm_next = next; 230 if (next) 231 next->vm_prev = vma; 232 } 233 234 /* Check if the vma is being used as a stack by this task */ 235 int vma_is_stack_for_current(struct vm_area_struct *vma) 236 { 237 struct task_struct * __maybe_unused t = current; 238 239 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 240 } 241 242 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 243 void arch_pick_mmap_layout(struct mm_struct *mm) 244 { 245 mm->mmap_base = TASK_UNMAPPED_BASE; 246 mm->get_unmapped_area = arch_get_unmapped_area; 247 } 248 #endif 249 250 /* 251 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall 252 * back to the regular GUP. 253 * If the architecture not support this function, simply return with no 254 * page pinned 255 */ 256 int __weak __get_user_pages_fast(unsigned long start, 257 int nr_pages, int write, struct page **pages) 258 { 259 return 0; 260 } 261 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 262 263 /** 264 * get_user_pages_fast() - pin user pages in memory 265 * @start: starting user address 266 * @nr_pages: number of pages from start to pin 267 * @write: whether pages will be written to 268 * @pages: array that receives pointers to the pages pinned. 269 * Should be at least nr_pages long. 270 * 271 * Returns number of pages pinned. This may be fewer than the number 272 * requested. If nr_pages is 0 or negative, returns 0. If no pages 273 * were pinned, returns -errno. 274 * 275 * get_user_pages_fast provides equivalent functionality to get_user_pages, 276 * operating on current and current->mm, with force=0 and vma=NULL. However 277 * unlike get_user_pages, it must be called without mmap_sem held. 278 * 279 * get_user_pages_fast may take mmap_sem and page table locks, so no 280 * assumptions can be made about lack of locking. get_user_pages_fast is to be 281 * implemented in a way that is advantageous (vs get_user_pages()) when the 282 * user memory area is already faulted in and present in ptes. However if the 283 * pages have to be faulted in, it may turn out to be slightly slower so 284 * callers need to carefully consider what to use. On many architectures, 285 * get_user_pages_fast simply falls back to get_user_pages. 286 */ 287 int __weak get_user_pages_fast(unsigned long start, 288 int nr_pages, int write, struct page **pages) 289 { 290 return get_user_pages_unlocked(start, nr_pages, pages, 291 write ? FOLL_WRITE : 0); 292 } 293 EXPORT_SYMBOL_GPL(get_user_pages_fast); 294 295 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 296 unsigned long len, unsigned long prot, 297 unsigned long flag, unsigned long pgoff) 298 { 299 unsigned long ret; 300 struct mm_struct *mm = current->mm; 301 unsigned long populate; 302 LIST_HEAD(uf); 303 304 ret = security_mmap_file(file, prot, flag); 305 if (!ret) { 306 if (down_write_killable(&mm->mmap_sem)) 307 return -EINTR; 308 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, 309 &populate, &uf); 310 up_write(&mm->mmap_sem); 311 userfaultfd_unmap_complete(mm, &uf); 312 if (populate) 313 mm_populate(ret, populate); 314 } 315 return ret; 316 } 317 318 unsigned long vm_mmap(struct file *file, unsigned long addr, 319 unsigned long len, unsigned long prot, 320 unsigned long flag, unsigned long offset) 321 { 322 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 323 return -EINVAL; 324 if (unlikely(offset_in_page(offset))) 325 return -EINVAL; 326 327 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 328 } 329 EXPORT_SYMBOL(vm_mmap); 330 331 void kvfree(const void *addr) 332 { 333 if (is_vmalloc_addr(addr)) 334 vfree(addr); 335 else 336 kfree(addr); 337 } 338 EXPORT_SYMBOL(kvfree); 339 340 static inline void *__page_rmapping(struct page *page) 341 { 342 unsigned long mapping; 343 344 mapping = (unsigned long)page->mapping; 345 mapping &= ~PAGE_MAPPING_FLAGS; 346 347 return (void *)mapping; 348 } 349 350 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 351 void *page_rmapping(struct page *page) 352 { 353 page = compound_head(page); 354 return __page_rmapping(page); 355 } 356 357 /* 358 * Return true if this page is mapped into pagetables. 359 * For compound page it returns true if any subpage of compound page is mapped. 360 */ 361 bool page_mapped(struct page *page) 362 { 363 int i; 364 365 if (likely(!PageCompound(page))) 366 return atomic_read(&page->_mapcount) >= 0; 367 page = compound_head(page); 368 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 369 return true; 370 if (PageHuge(page)) 371 return false; 372 for (i = 0; i < hpage_nr_pages(page); i++) { 373 if (atomic_read(&page[i]._mapcount) >= 0) 374 return true; 375 } 376 return false; 377 } 378 EXPORT_SYMBOL(page_mapped); 379 380 struct anon_vma *page_anon_vma(struct page *page) 381 { 382 unsigned long mapping; 383 384 page = compound_head(page); 385 mapping = (unsigned long)page->mapping; 386 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) 387 return NULL; 388 return __page_rmapping(page); 389 } 390 391 struct address_space *page_mapping(struct page *page) 392 { 393 struct address_space *mapping; 394 395 page = compound_head(page); 396 397 /* This happens if someone calls flush_dcache_page on slab page */ 398 if (unlikely(PageSlab(page))) 399 return NULL; 400 401 if (unlikely(PageSwapCache(page))) { 402 swp_entry_t entry; 403 404 entry.val = page_private(page); 405 return swap_address_space(entry); 406 } 407 408 mapping = page->mapping; 409 if ((unsigned long)mapping & PAGE_MAPPING_ANON) 410 return NULL; 411 412 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS); 413 } 414 EXPORT_SYMBOL(page_mapping); 415 416 /* Slow path of page_mapcount() for compound pages */ 417 int __page_mapcount(struct page *page) 418 { 419 int ret; 420 421 ret = atomic_read(&page->_mapcount) + 1; 422 /* 423 * For file THP page->_mapcount contains total number of mapping 424 * of the page: no need to look into compound_mapcount. 425 */ 426 if (!PageAnon(page) && !PageHuge(page)) 427 return ret; 428 page = compound_head(page); 429 ret += atomic_read(compound_mapcount_ptr(page)) + 1; 430 if (PageDoubleMap(page)) 431 ret--; 432 return ret; 433 } 434 EXPORT_SYMBOL_GPL(__page_mapcount); 435 436 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; 437 int sysctl_overcommit_ratio __read_mostly = 50; 438 unsigned long sysctl_overcommit_kbytes __read_mostly; 439 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; 440 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ 441 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ 442 443 int overcommit_ratio_handler(struct ctl_table *table, int write, 444 void __user *buffer, size_t *lenp, 445 loff_t *ppos) 446 { 447 int ret; 448 449 ret = proc_dointvec(table, write, buffer, lenp, ppos); 450 if (ret == 0 && write) 451 sysctl_overcommit_kbytes = 0; 452 return ret; 453 } 454 455 int overcommit_kbytes_handler(struct ctl_table *table, int write, 456 void __user *buffer, size_t *lenp, 457 loff_t *ppos) 458 { 459 int ret; 460 461 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 462 if (ret == 0 && write) 463 sysctl_overcommit_ratio = 0; 464 return ret; 465 } 466 467 /* 468 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 469 */ 470 unsigned long vm_commit_limit(void) 471 { 472 unsigned long allowed; 473 474 if (sysctl_overcommit_kbytes) 475 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 476 else 477 allowed = ((totalram_pages - hugetlb_total_pages()) 478 * sysctl_overcommit_ratio / 100); 479 allowed += total_swap_pages; 480 481 return allowed; 482 } 483 484 /* 485 * Make sure vm_committed_as in one cacheline and not cacheline shared with 486 * other variables. It can be updated by several CPUs frequently. 487 */ 488 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; 489 490 /* 491 * The global memory commitment made in the system can be a metric 492 * that can be used to drive ballooning decisions when Linux is hosted 493 * as a guest. On Hyper-V, the host implements a policy engine for dynamically 494 * balancing memory across competing virtual machines that are hosted. 495 * Several metrics drive this policy engine including the guest reported 496 * memory commitment. 497 */ 498 unsigned long vm_memory_committed(void) 499 { 500 return percpu_counter_read_positive(&vm_committed_as); 501 } 502 EXPORT_SYMBOL_GPL(vm_memory_committed); 503 504 /* 505 * Check that a process has enough memory to allocate a new virtual 506 * mapping. 0 means there is enough memory for the allocation to 507 * succeed and -ENOMEM implies there is not. 508 * 509 * We currently support three overcommit policies, which are set via the 510 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting 511 * 512 * Strict overcommit modes added 2002 Feb 26 by Alan Cox. 513 * Additional code 2002 Jul 20 by Robert Love. 514 * 515 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. 516 * 517 * Note this is a helper function intended to be used by LSMs which 518 * wish to use this logic. 519 */ 520 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) 521 { 522 long free, allowed, reserve; 523 524 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) < 525 -(s64)vm_committed_as_batch * num_online_cpus(), 526 "memory commitment underflow"); 527 528 vm_acct_memory(pages); 529 530 /* 531 * Sometimes we want to use more memory than we have 532 */ 533 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) 534 return 0; 535 536 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { 537 free = global_page_state(NR_FREE_PAGES); 538 free += global_node_page_state(NR_FILE_PAGES); 539 540 /* 541 * shmem pages shouldn't be counted as free in this 542 * case, they can't be purged, only swapped out, and 543 * that won't affect the overall amount of available 544 * memory in the system. 545 */ 546 free -= global_node_page_state(NR_SHMEM); 547 548 free += get_nr_swap_pages(); 549 550 /* 551 * Any slabs which are created with the 552 * SLAB_RECLAIM_ACCOUNT flag claim to have contents 553 * which are reclaimable, under pressure. The dentry 554 * cache and most inode caches should fall into this 555 */ 556 free += global_page_state(NR_SLAB_RECLAIMABLE); 557 558 /* 559 * Leave reserved pages. The pages are not for anonymous pages. 560 */ 561 if (free <= totalreserve_pages) 562 goto error; 563 else 564 free -= totalreserve_pages; 565 566 /* 567 * Reserve some for root 568 */ 569 if (!cap_sys_admin) 570 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 571 572 if (free > pages) 573 return 0; 574 575 goto error; 576 } 577 578 allowed = vm_commit_limit(); 579 /* 580 * Reserve some for root 581 */ 582 if (!cap_sys_admin) 583 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); 584 585 /* 586 * Don't let a single process grow so big a user can't recover 587 */ 588 if (mm) { 589 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); 590 allowed -= min_t(long, mm->total_vm / 32, reserve); 591 } 592 593 if (percpu_counter_read_positive(&vm_committed_as) < allowed) 594 return 0; 595 error: 596 vm_unacct_memory(pages); 597 598 return -ENOMEM; 599 } 600 601 /** 602 * get_cmdline() - copy the cmdline value to a buffer. 603 * @task: the task whose cmdline value to copy. 604 * @buffer: the buffer to copy to. 605 * @buflen: the length of the buffer. Larger cmdline values are truncated 606 * to this length. 607 * Returns the size of the cmdline field copied. Note that the copy does 608 * not guarantee an ending NULL byte. 609 */ 610 int get_cmdline(struct task_struct *task, char *buffer, int buflen) 611 { 612 int res = 0; 613 unsigned int len; 614 struct mm_struct *mm = get_task_mm(task); 615 unsigned long arg_start, arg_end, env_start, env_end; 616 if (!mm) 617 goto out; 618 if (!mm->arg_end) 619 goto out_mm; /* Shh! No looking before we're done */ 620 621 down_read(&mm->mmap_sem); 622 arg_start = mm->arg_start; 623 arg_end = mm->arg_end; 624 env_start = mm->env_start; 625 env_end = mm->env_end; 626 up_read(&mm->mmap_sem); 627 628 len = arg_end - arg_start; 629 630 if (len > buflen) 631 len = buflen; 632 633 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); 634 635 /* 636 * If the nul at the end of args has been overwritten, then 637 * assume application is using setproctitle(3). 638 */ 639 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 640 len = strnlen(buffer, res); 641 if (len < res) { 642 res = len; 643 } else { 644 len = env_end - env_start; 645 if (len > buflen - res) 646 len = buflen - res; 647 res += access_process_vm(task, env_start, 648 buffer+res, len, 649 FOLL_FORCE); 650 res = strnlen(buffer, res); 651 } 652 } 653 out_mm: 654 mmput(mm); 655 out: 656 return res; 657 } 658