xref: /openbmc/linux/mm/util.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 #include "swap.h"
31 
32 /**
33  * kfree_const - conditionally free memory
34  * @x: pointer to the memory
35  *
36  * Function calls kfree only if @x is not in .rodata section.
37  */
38 void kfree_const(const void *x)
39 {
40 	if (!is_kernel_rodata((unsigned long)x))
41 		kfree(x);
42 }
43 EXPORT_SYMBOL(kfree_const);
44 
45 /**
46  * kstrdup - allocate space for and copy an existing string
47  * @s: the string to duplicate
48  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49  *
50  * Return: newly allocated copy of @s or %NULL in case of error
51  */
52 noinline
53 char *kstrdup(const char *s, gfp_t gfp)
54 {
55 	size_t len;
56 	char *buf;
57 
58 	if (!s)
59 		return NULL;
60 
61 	len = strlen(s) + 1;
62 	buf = kmalloc_track_caller(len, gfp);
63 	if (buf)
64 		memcpy(buf, s, len);
65 	return buf;
66 }
67 EXPORT_SYMBOL(kstrdup);
68 
69 /**
70  * kstrdup_const - conditionally duplicate an existing const string
71  * @s: the string to duplicate
72  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
73  *
74  * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
75  * must not be passed to krealloc().
76  *
77  * Return: source string if it is in .rodata section otherwise
78  * fallback to kstrdup.
79  */
80 const char *kstrdup_const(const char *s, gfp_t gfp)
81 {
82 	if (is_kernel_rodata((unsigned long)s))
83 		return s;
84 
85 	return kstrdup(s, gfp);
86 }
87 EXPORT_SYMBOL(kstrdup_const);
88 
89 /**
90  * kstrndup - allocate space for and copy an existing string
91  * @s: the string to duplicate
92  * @max: read at most @max chars from @s
93  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
94  *
95  * Note: Use kmemdup_nul() instead if the size is known exactly.
96  *
97  * Return: newly allocated copy of @s or %NULL in case of error
98  */
99 char *kstrndup(const char *s, size_t max, gfp_t gfp)
100 {
101 	size_t len;
102 	char *buf;
103 
104 	if (!s)
105 		return NULL;
106 
107 	len = strnlen(s, max);
108 	buf = kmalloc_track_caller(len+1, gfp);
109 	if (buf) {
110 		memcpy(buf, s, len);
111 		buf[len] = '\0';
112 	}
113 	return buf;
114 }
115 EXPORT_SYMBOL(kstrndup);
116 
117 /**
118  * kmemdup - duplicate region of memory
119  *
120  * @src: memory region to duplicate
121  * @len: memory region length
122  * @gfp: GFP mask to use
123  *
124  * Return: newly allocated copy of @src or %NULL in case of error,
125  * result is physically contiguous. Use kfree() to free.
126  */
127 void *kmemdup(const void *src, size_t len, gfp_t gfp)
128 {
129 	void *p;
130 
131 	p = kmalloc_track_caller(len, gfp);
132 	if (p)
133 		memcpy(p, src, len);
134 	return p;
135 }
136 EXPORT_SYMBOL(kmemdup);
137 
138 /**
139  * kvmemdup - duplicate region of memory
140  *
141  * @src: memory region to duplicate
142  * @len: memory region length
143  * @gfp: GFP mask to use
144  *
145  * Return: newly allocated copy of @src or %NULL in case of error,
146  * result may be not physically contiguous. Use kvfree() to free.
147  */
148 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
149 {
150 	void *p;
151 
152 	p = kvmalloc(len, gfp);
153 	if (p)
154 		memcpy(p, src, len);
155 	return p;
156 }
157 EXPORT_SYMBOL(kvmemdup);
158 
159 /**
160  * kmemdup_nul - Create a NUL-terminated string from unterminated data
161  * @s: The data to stringify
162  * @len: The size of the data
163  * @gfp: the GFP mask used in the kmalloc() call when allocating memory
164  *
165  * Return: newly allocated copy of @s with NUL-termination or %NULL in
166  * case of error
167  */
168 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
169 {
170 	char *buf;
171 
172 	if (!s)
173 		return NULL;
174 
175 	buf = kmalloc_track_caller(len + 1, gfp);
176 	if (buf) {
177 		memcpy(buf, s, len);
178 		buf[len] = '\0';
179 	}
180 	return buf;
181 }
182 EXPORT_SYMBOL(kmemdup_nul);
183 
184 /**
185  * memdup_user - duplicate memory region from user space
186  *
187  * @src: source address in user space
188  * @len: number of bytes to copy
189  *
190  * Return: an ERR_PTR() on failure.  Result is physically
191  * contiguous, to be freed by kfree().
192  */
193 void *memdup_user(const void __user *src, size_t len)
194 {
195 	void *p;
196 
197 	p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
198 	if (!p)
199 		return ERR_PTR(-ENOMEM);
200 
201 	if (copy_from_user(p, src, len)) {
202 		kfree(p);
203 		return ERR_PTR(-EFAULT);
204 	}
205 
206 	return p;
207 }
208 EXPORT_SYMBOL(memdup_user);
209 
210 /**
211  * vmemdup_user - duplicate memory region from user space
212  *
213  * @src: source address in user space
214  * @len: number of bytes to copy
215  *
216  * Return: an ERR_PTR() on failure.  Result may be not
217  * physically contiguous.  Use kvfree() to free.
218  */
219 void *vmemdup_user(const void __user *src, size_t len)
220 {
221 	void *p;
222 
223 	p = kvmalloc(len, GFP_USER);
224 	if (!p)
225 		return ERR_PTR(-ENOMEM);
226 
227 	if (copy_from_user(p, src, len)) {
228 		kvfree(p);
229 		return ERR_PTR(-EFAULT);
230 	}
231 
232 	return p;
233 }
234 EXPORT_SYMBOL(vmemdup_user);
235 
236 /**
237  * strndup_user - duplicate an existing string from user space
238  * @s: The string to duplicate
239  * @n: Maximum number of bytes to copy, including the trailing NUL.
240  *
241  * Return: newly allocated copy of @s or an ERR_PTR() in case of error
242  */
243 char *strndup_user(const char __user *s, long n)
244 {
245 	char *p;
246 	long length;
247 
248 	length = strnlen_user(s, n);
249 
250 	if (!length)
251 		return ERR_PTR(-EFAULT);
252 
253 	if (length > n)
254 		return ERR_PTR(-EINVAL);
255 
256 	p = memdup_user(s, length);
257 
258 	if (IS_ERR(p))
259 		return p;
260 
261 	p[length - 1] = '\0';
262 
263 	return p;
264 }
265 EXPORT_SYMBOL(strndup_user);
266 
267 /**
268  * memdup_user_nul - duplicate memory region from user space and NUL-terminate
269  *
270  * @src: source address in user space
271  * @len: number of bytes to copy
272  *
273  * Return: an ERR_PTR() on failure.
274  */
275 void *memdup_user_nul(const void __user *src, size_t len)
276 {
277 	char *p;
278 
279 	/*
280 	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
281 	 * cause pagefault, which makes it pointless to use GFP_NOFS
282 	 * or GFP_ATOMIC.
283 	 */
284 	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
285 	if (!p)
286 		return ERR_PTR(-ENOMEM);
287 
288 	if (copy_from_user(p, src, len)) {
289 		kfree(p);
290 		return ERR_PTR(-EFAULT);
291 	}
292 	p[len] = '\0';
293 
294 	return p;
295 }
296 EXPORT_SYMBOL(memdup_user_nul);
297 
298 /* Check if the vma is being used as a stack by this task */
299 int vma_is_stack_for_current(struct vm_area_struct *vma)
300 {
301 	struct task_struct * __maybe_unused t = current;
302 
303 	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
304 }
305 
306 /*
307  * Change backing file, only valid to use during initial VMA setup.
308  */
309 void vma_set_file(struct vm_area_struct *vma, struct file *file)
310 {
311 	/* Changing an anonymous vma with this is illegal */
312 	get_file(file);
313 	swap(vma->vm_file, file);
314 	fput(file);
315 }
316 EXPORT_SYMBOL(vma_set_file);
317 
318 #ifndef STACK_RND_MASK
319 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
320 #endif
321 
322 unsigned long randomize_stack_top(unsigned long stack_top)
323 {
324 	unsigned long random_variable = 0;
325 
326 	if (current->flags & PF_RANDOMIZE) {
327 		random_variable = get_random_long();
328 		random_variable &= STACK_RND_MASK;
329 		random_variable <<= PAGE_SHIFT;
330 	}
331 #ifdef CONFIG_STACK_GROWSUP
332 	return PAGE_ALIGN(stack_top) + random_variable;
333 #else
334 	return PAGE_ALIGN(stack_top) - random_variable;
335 #endif
336 }
337 
338 /**
339  * randomize_page - Generate a random, page aligned address
340  * @start:	The smallest acceptable address the caller will take.
341  * @range:	The size of the area, starting at @start, within which the
342  *		random address must fall.
343  *
344  * If @start + @range would overflow, @range is capped.
345  *
346  * NOTE: Historical use of randomize_range, which this replaces, presumed that
347  * @start was already page aligned.  We now align it regardless.
348  *
349  * Return: A page aligned address within [start, start + range).  On error,
350  * @start is returned.
351  */
352 unsigned long randomize_page(unsigned long start, unsigned long range)
353 {
354 	if (!PAGE_ALIGNED(start)) {
355 		range -= PAGE_ALIGN(start) - start;
356 		start = PAGE_ALIGN(start);
357 	}
358 
359 	if (start > ULONG_MAX - range)
360 		range = ULONG_MAX - start;
361 
362 	range >>= PAGE_SHIFT;
363 
364 	if (range == 0)
365 		return start;
366 
367 	return start + (get_random_long() % range << PAGE_SHIFT);
368 }
369 
370 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
371 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
372 {
373 	/* Is the current task 32bit ? */
374 	if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
375 		return randomize_page(mm->brk, SZ_32M);
376 
377 	return randomize_page(mm->brk, SZ_1G);
378 }
379 
380 unsigned long arch_mmap_rnd(void)
381 {
382 	unsigned long rnd;
383 
384 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
385 	if (is_compat_task())
386 		rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
387 	else
388 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
389 		rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
390 
391 	return rnd << PAGE_SHIFT;
392 }
393 
394 static int mmap_is_legacy(struct rlimit *rlim_stack)
395 {
396 	if (current->personality & ADDR_COMPAT_LAYOUT)
397 		return 1;
398 
399 	/* On parisc the stack always grows up - so a unlimited stack should
400 	 * not be an indicator to use the legacy memory layout. */
401 	if (rlim_stack->rlim_cur == RLIM_INFINITY &&
402 		!IS_ENABLED(CONFIG_STACK_GROWSUP))
403 		return 1;
404 
405 	return sysctl_legacy_va_layout;
406 }
407 
408 /*
409  * Leave enough space between the mmap area and the stack to honour ulimit in
410  * the face of randomisation.
411  */
412 #define MIN_GAP		(SZ_128M)
413 #define MAX_GAP		(STACK_TOP / 6 * 5)
414 
415 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
416 {
417 #ifdef CONFIG_STACK_GROWSUP
418 	/*
419 	 * For an upwards growing stack the calculation is much simpler.
420 	 * Memory for the maximum stack size is reserved at the top of the
421 	 * task. mmap_base starts directly below the stack and grows
422 	 * downwards.
423 	 */
424 	return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
425 #else
426 	unsigned long gap = rlim_stack->rlim_cur;
427 	unsigned long pad = stack_guard_gap;
428 
429 	/* Account for stack randomization if necessary */
430 	if (current->flags & PF_RANDOMIZE)
431 		pad += (STACK_RND_MASK << PAGE_SHIFT);
432 
433 	/* Values close to RLIM_INFINITY can overflow. */
434 	if (gap + pad > gap)
435 		gap += pad;
436 
437 	if (gap < MIN_GAP)
438 		gap = MIN_GAP;
439 	else if (gap > MAX_GAP)
440 		gap = MAX_GAP;
441 
442 	return PAGE_ALIGN(STACK_TOP - gap - rnd);
443 #endif
444 }
445 
446 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
447 {
448 	unsigned long random_factor = 0UL;
449 
450 	if (current->flags & PF_RANDOMIZE)
451 		random_factor = arch_mmap_rnd();
452 
453 	if (mmap_is_legacy(rlim_stack)) {
454 		mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
455 		mm->get_unmapped_area = arch_get_unmapped_area;
456 	} else {
457 		mm->mmap_base = mmap_base(random_factor, rlim_stack);
458 		mm->get_unmapped_area = arch_get_unmapped_area_topdown;
459 	}
460 }
461 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
462 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
463 {
464 	mm->mmap_base = TASK_UNMAPPED_BASE;
465 	mm->get_unmapped_area = arch_get_unmapped_area;
466 }
467 #endif
468 
469 /**
470  * __account_locked_vm - account locked pages to an mm's locked_vm
471  * @mm:          mm to account against
472  * @pages:       number of pages to account
473  * @inc:         %true if @pages should be considered positive, %false if not
474  * @task:        task used to check RLIMIT_MEMLOCK
475  * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
476  *
477  * Assumes @task and @mm are valid (i.e. at least one reference on each), and
478  * that mmap_lock is held as writer.
479  *
480  * Return:
481  * * 0       on success
482  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
483  */
484 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
485 			struct task_struct *task, bool bypass_rlim)
486 {
487 	unsigned long locked_vm, limit;
488 	int ret = 0;
489 
490 	mmap_assert_write_locked(mm);
491 
492 	locked_vm = mm->locked_vm;
493 	if (inc) {
494 		if (!bypass_rlim) {
495 			limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
496 			if (locked_vm + pages > limit)
497 				ret = -ENOMEM;
498 		}
499 		if (!ret)
500 			mm->locked_vm = locked_vm + pages;
501 	} else {
502 		WARN_ON_ONCE(pages > locked_vm);
503 		mm->locked_vm = locked_vm - pages;
504 	}
505 
506 	pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
507 		 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
508 		 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
509 		 ret ? " - exceeded" : "");
510 
511 	return ret;
512 }
513 EXPORT_SYMBOL_GPL(__account_locked_vm);
514 
515 /**
516  * account_locked_vm - account locked pages to an mm's locked_vm
517  * @mm:          mm to account against, may be NULL
518  * @pages:       number of pages to account
519  * @inc:         %true if @pages should be considered positive, %false if not
520  *
521  * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
522  *
523  * Return:
524  * * 0       on success, or if mm is NULL
525  * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
526  */
527 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
528 {
529 	int ret;
530 
531 	if (pages == 0 || !mm)
532 		return 0;
533 
534 	mmap_write_lock(mm);
535 	ret = __account_locked_vm(mm, pages, inc, current,
536 				  capable(CAP_IPC_LOCK));
537 	mmap_write_unlock(mm);
538 
539 	return ret;
540 }
541 EXPORT_SYMBOL_GPL(account_locked_vm);
542 
543 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
544 	unsigned long len, unsigned long prot,
545 	unsigned long flag, unsigned long pgoff)
546 {
547 	unsigned long ret;
548 	struct mm_struct *mm = current->mm;
549 	unsigned long populate;
550 	LIST_HEAD(uf);
551 
552 	ret = security_mmap_file(file, prot, flag);
553 	if (!ret) {
554 		if (mmap_write_lock_killable(mm))
555 			return -EINTR;
556 		ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
557 			      &uf);
558 		mmap_write_unlock(mm);
559 		userfaultfd_unmap_complete(mm, &uf);
560 		if (populate)
561 			mm_populate(ret, populate);
562 	}
563 	return ret;
564 }
565 
566 unsigned long vm_mmap(struct file *file, unsigned long addr,
567 	unsigned long len, unsigned long prot,
568 	unsigned long flag, unsigned long offset)
569 {
570 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
571 		return -EINVAL;
572 	if (unlikely(offset_in_page(offset)))
573 		return -EINVAL;
574 
575 	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
576 }
577 EXPORT_SYMBOL(vm_mmap);
578 
579 /**
580  * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
581  * failure, fall back to non-contiguous (vmalloc) allocation.
582  * @size: size of the request.
583  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
584  * @node: numa node to allocate from
585  *
586  * Uses kmalloc to get the memory but if the allocation fails then falls back
587  * to the vmalloc allocator. Use kvfree for freeing the memory.
588  *
589  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
590  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
591  * preferable to the vmalloc fallback, due to visible performance drawbacks.
592  *
593  * Return: pointer to the allocated memory of %NULL in case of failure
594  */
595 void *kvmalloc_node(size_t size, gfp_t flags, int node)
596 {
597 	gfp_t kmalloc_flags = flags;
598 	void *ret;
599 
600 	/*
601 	 * We want to attempt a large physically contiguous block first because
602 	 * it is less likely to fragment multiple larger blocks and therefore
603 	 * contribute to a long term fragmentation less than vmalloc fallback.
604 	 * However make sure that larger requests are not too disruptive - no
605 	 * OOM killer and no allocation failure warnings as we have a fallback.
606 	 */
607 	if (size > PAGE_SIZE) {
608 		kmalloc_flags |= __GFP_NOWARN;
609 
610 		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
611 			kmalloc_flags |= __GFP_NORETRY;
612 
613 		/* nofail semantic is implemented by the vmalloc fallback */
614 		kmalloc_flags &= ~__GFP_NOFAIL;
615 	}
616 
617 	ret = kmalloc_node(size, kmalloc_flags, node);
618 
619 	/*
620 	 * It doesn't really make sense to fallback to vmalloc for sub page
621 	 * requests
622 	 */
623 	if (ret || size <= PAGE_SIZE)
624 		return ret;
625 
626 	/* non-sleeping allocations are not supported by vmalloc */
627 	if (!gfpflags_allow_blocking(flags))
628 		return NULL;
629 
630 	/* Don't even allow crazy sizes */
631 	if (unlikely(size > INT_MAX)) {
632 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
633 		return NULL;
634 	}
635 
636 	/*
637 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
638 	 * since the callers already cannot assume anything
639 	 * about the resulting pointer, and cannot play
640 	 * protection games.
641 	 */
642 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
643 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
644 			node, __builtin_return_address(0));
645 }
646 EXPORT_SYMBOL(kvmalloc_node);
647 
648 /**
649  * kvfree() - Free memory.
650  * @addr: Pointer to allocated memory.
651  *
652  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
653  * It is slightly more efficient to use kfree() or vfree() if you are certain
654  * that you know which one to use.
655  *
656  * Context: Either preemptible task context or not-NMI interrupt.
657  */
658 void kvfree(const void *addr)
659 {
660 	if (is_vmalloc_addr(addr))
661 		vfree(addr);
662 	else
663 		kfree(addr);
664 }
665 EXPORT_SYMBOL(kvfree);
666 
667 /**
668  * kvfree_sensitive - Free a data object containing sensitive information.
669  * @addr: address of the data object to be freed.
670  * @len: length of the data object.
671  *
672  * Use the special memzero_explicit() function to clear the content of a
673  * kvmalloc'ed object containing sensitive data to make sure that the
674  * compiler won't optimize out the data clearing.
675  */
676 void kvfree_sensitive(const void *addr, size_t len)
677 {
678 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
679 		memzero_explicit((void *)addr, len);
680 		kvfree(addr);
681 	}
682 }
683 EXPORT_SYMBOL(kvfree_sensitive);
684 
685 void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
686 {
687 	void *newp;
688 
689 	if (oldsize >= newsize)
690 		return (void *)p;
691 	newp = kvmalloc(newsize, flags);
692 	if (!newp)
693 		return NULL;
694 	memcpy(newp, p, oldsize);
695 	kvfree(p);
696 	return newp;
697 }
698 EXPORT_SYMBOL(kvrealloc);
699 
700 /**
701  * __vmalloc_array - allocate memory for a virtually contiguous array.
702  * @n: number of elements.
703  * @size: element size.
704  * @flags: the type of memory to allocate (see kmalloc).
705  */
706 void *__vmalloc_array(size_t n, size_t size, gfp_t flags)
707 {
708 	size_t bytes;
709 
710 	if (unlikely(check_mul_overflow(n, size, &bytes)))
711 		return NULL;
712 	return __vmalloc(bytes, flags);
713 }
714 EXPORT_SYMBOL(__vmalloc_array);
715 
716 /**
717  * vmalloc_array - allocate memory for a virtually contiguous array.
718  * @n: number of elements.
719  * @size: element size.
720  */
721 void *vmalloc_array(size_t n, size_t size)
722 {
723 	return __vmalloc_array(n, size, GFP_KERNEL);
724 }
725 EXPORT_SYMBOL(vmalloc_array);
726 
727 /**
728  * __vcalloc - allocate and zero memory for a virtually contiguous array.
729  * @n: number of elements.
730  * @size: element size.
731  * @flags: the type of memory to allocate (see kmalloc).
732  */
733 void *__vcalloc(size_t n, size_t size, gfp_t flags)
734 {
735 	return __vmalloc_array(n, size, flags | __GFP_ZERO);
736 }
737 EXPORT_SYMBOL(__vcalloc);
738 
739 /**
740  * vcalloc - allocate and zero memory for a virtually contiguous array.
741  * @n: number of elements.
742  * @size: element size.
743  */
744 void *vcalloc(size_t n, size_t size)
745 {
746 	return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
747 }
748 EXPORT_SYMBOL(vcalloc);
749 
750 struct anon_vma *folio_anon_vma(struct folio *folio)
751 {
752 	unsigned long mapping = (unsigned long)folio->mapping;
753 
754 	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
755 		return NULL;
756 	return (void *)(mapping - PAGE_MAPPING_ANON);
757 }
758 
759 /**
760  * folio_mapping - Find the mapping where this folio is stored.
761  * @folio: The folio.
762  *
763  * For folios which are in the page cache, return the mapping that this
764  * page belongs to.  Folios in the swap cache return the swap mapping
765  * this page is stored in (which is different from the mapping for the
766  * swap file or swap device where the data is stored).
767  *
768  * You can call this for folios which aren't in the swap cache or page
769  * cache and it will return NULL.
770  */
771 struct address_space *folio_mapping(struct folio *folio)
772 {
773 	struct address_space *mapping;
774 
775 	/* This happens if someone calls flush_dcache_page on slab page */
776 	if (unlikely(folio_test_slab(folio)))
777 		return NULL;
778 
779 	if (unlikely(folio_test_swapcache(folio)))
780 		return swap_address_space(folio->swap);
781 
782 	mapping = folio->mapping;
783 	if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
784 		return NULL;
785 
786 	return mapping;
787 }
788 EXPORT_SYMBOL(folio_mapping);
789 
790 /**
791  * folio_copy - Copy the contents of one folio to another.
792  * @dst: Folio to copy to.
793  * @src: Folio to copy from.
794  *
795  * The bytes in the folio represented by @src are copied to @dst.
796  * Assumes the caller has validated that @dst is at least as large as @src.
797  * Can be called in atomic context for order-0 folios, but if the folio is
798  * larger, it may sleep.
799  */
800 void folio_copy(struct folio *dst, struct folio *src)
801 {
802 	long i = 0;
803 	long nr = folio_nr_pages(src);
804 
805 	for (;;) {
806 		copy_highpage(folio_page(dst, i), folio_page(src, i));
807 		if (++i == nr)
808 			break;
809 		cond_resched();
810 	}
811 }
812 
813 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
814 int sysctl_overcommit_ratio __read_mostly = 50;
815 unsigned long sysctl_overcommit_kbytes __read_mostly;
816 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
817 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
818 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
819 
820 int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
821 		size_t *lenp, loff_t *ppos)
822 {
823 	int ret;
824 
825 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
826 	if (ret == 0 && write)
827 		sysctl_overcommit_kbytes = 0;
828 	return ret;
829 }
830 
831 static void sync_overcommit_as(struct work_struct *dummy)
832 {
833 	percpu_counter_sync(&vm_committed_as);
834 }
835 
836 int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
837 		size_t *lenp, loff_t *ppos)
838 {
839 	struct ctl_table t;
840 	int new_policy = -1;
841 	int ret;
842 
843 	/*
844 	 * The deviation of sync_overcommit_as could be big with loose policy
845 	 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
846 	 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
847 	 * with the strict "NEVER", and to avoid possible race condition (even
848 	 * though user usually won't too frequently do the switching to policy
849 	 * OVERCOMMIT_NEVER), the switch is done in the following order:
850 	 *	1. changing the batch
851 	 *	2. sync percpu count on each CPU
852 	 *	3. switch the policy
853 	 */
854 	if (write) {
855 		t = *table;
856 		t.data = &new_policy;
857 		ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
858 		if (ret || new_policy == -1)
859 			return ret;
860 
861 		mm_compute_batch(new_policy);
862 		if (new_policy == OVERCOMMIT_NEVER)
863 			schedule_on_each_cpu(sync_overcommit_as);
864 		sysctl_overcommit_memory = new_policy;
865 	} else {
866 		ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
867 	}
868 
869 	return ret;
870 }
871 
872 int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
873 		size_t *lenp, loff_t *ppos)
874 {
875 	int ret;
876 
877 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
878 	if (ret == 0 && write)
879 		sysctl_overcommit_ratio = 0;
880 	return ret;
881 }
882 
883 /*
884  * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
885  */
886 unsigned long vm_commit_limit(void)
887 {
888 	unsigned long allowed;
889 
890 	if (sysctl_overcommit_kbytes)
891 		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
892 	else
893 		allowed = ((totalram_pages() - hugetlb_total_pages())
894 			   * sysctl_overcommit_ratio / 100);
895 	allowed += total_swap_pages;
896 
897 	return allowed;
898 }
899 
900 /*
901  * Make sure vm_committed_as in one cacheline and not cacheline shared with
902  * other variables. It can be updated by several CPUs frequently.
903  */
904 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
905 
906 /*
907  * The global memory commitment made in the system can be a metric
908  * that can be used to drive ballooning decisions when Linux is hosted
909  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
910  * balancing memory across competing virtual machines that are hosted.
911  * Several metrics drive this policy engine including the guest reported
912  * memory commitment.
913  *
914  * The time cost of this is very low for small platforms, and for big
915  * platform like a 2S/36C/72T Skylake server, in worst case where
916  * vm_committed_as's spinlock is under severe contention, the time cost
917  * could be about 30~40 microseconds.
918  */
919 unsigned long vm_memory_committed(void)
920 {
921 	return percpu_counter_sum_positive(&vm_committed_as);
922 }
923 EXPORT_SYMBOL_GPL(vm_memory_committed);
924 
925 /*
926  * Check that a process has enough memory to allocate a new virtual
927  * mapping. 0 means there is enough memory for the allocation to
928  * succeed and -ENOMEM implies there is not.
929  *
930  * We currently support three overcommit policies, which are set via the
931  * vm.overcommit_memory sysctl.  See Documentation/mm/overcommit-accounting.rst
932  *
933  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
934  * Additional code 2002 Jul 20 by Robert Love.
935  *
936  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
937  *
938  * Note this is a helper function intended to be used by LSMs which
939  * wish to use this logic.
940  */
941 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
942 {
943 	long allowed;
944 
945 	vm_acct_memory(pages);
946 
947 	/*
948 	 * Sometimes we want to use more memory than we have
949 	 */
950 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
951 		return 0;
952 
953 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
954 		if (pages > totalram_pages() + total_swap_pages)
955 			goto error;
956 		return 0;
957 	}
958 
959 	allowed = vm_commit_limit();
960 	/*
961 	 * Reserve some for root
962 	 */
963 	if (!cap_sys_admin)
964 		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
965 
966 	/*
967 	 * Don't let a single process grow so big a user can't recover
968 	 */
969 	if (mm) {
970 		long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
971 
972 		allowed -= min_t(long, mm->total_vm / 32, reserve);
973 	}
974 
975 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
976 		return 0;
977 error:
978 	pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n",
979 			    __func__, current->pid, current->comm);
980 	vm_unacct_memory(pages);
981 
982 	return -ENOMEM;
983 }
984 
985 /**
986  * get_cmdline() - copy the cmdline value to a buffer.
987  * @task:     the task whose cmdline value to copy.
988  * @buffer:   the buffer to copy to.
989  * @buflen:   the length of the buffer. Larger cmdline values are truncated
990  *            to this length.
991  *
992  * Return: the size of the cmdline field copied. Note that the copy does
993  * not guarantee an ending NULL byte.
994  */
995 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
996 {
997 	int res = 0;
998 	unsigned int len;
999 	struct mm_struct *mm = get_task_mm(task);
1000 	unsigned long arg_start, arg_end, env_start, env_end;
1001 	if (!mm)
1002 		goto out;
1003 	if (!mm->arg_end)
1004 		goto out_mm;	/* Shh! No looking before we're done */
1005 
1006 	spin_lock(&mm->arg_lock);
1007 	arg_start = mm->arg_start;
1008 	arg_end = mm->arg_end;
1009 	env_start = mm->env_start;
1010 	env_end = mm->env_end;
1011 	spin_unlock(&mm->arg_lock);
1012 
1013 	len = arg_end - arg_start;
1014 
1015 	if (len > buflen)
1016 		len = buflen;
1017 
1018 	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1019 
1020 	/*
1021 	 * If the nul at the end of args has been overwritten, then
1022 	 * assume application is using setproctitle(3).
1023 	 */
1024 	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1025 		len = strnlen(buffer, res);
1026 		if (len < res) {
1027 			res = len;
1028 		} else {
1029 			len = env_end - env_start;
1030 			if (len > buflen - res)
1031 				len = buflen - res;
1032 			res += access_process_vm(task, env_start,
1033 						 buffer+res, len,
1034 						 FOLL_FORCE);
1035 			res = strnlen(buffer, res);
1036 		}
1037 	}
1038 out_mm:
1039 	mmput(mm);
1040 out:
1041 	return res;
1042 }
1043 
1044 int __weak memcmp_pages(struct page *page1, struct page *page2)
1045 {
1046 	char *addr1, *addr2;
1047 	int ret;
1048 
1049 	addr1 = kmap_atomic(page1);
1050 	addr2 = kmap_atomic(page2);
1051 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1052 	kunmap_atomic(addr2);
1053 	kunmap_atomic(addr1);
1054 	return ret;
1055 }
1056 
1057 #ifdef CONFIG_PRINTK
1058 /**
1059  * mem_dump_obj - Print available provenance information
1060  * @object: object for which to find provenance information.
1061  *
1062  * This function uses pr_cont(), so that the caller is expected to have
1063  * printed out whatever preamble is appropriate.  The provenance information
1064  * depends on the type of object and on how much debugging is enabled.
1065  * For example, for a slab-cache object, the slab name is printed, and,
1066  * if available, the return address and stack trace from the allocation
1067  * and last free path of that object.
1068  */
1069 void mem_dump_obj(void *object)
1070 {
1071 	const char *type;
1072 
1073 	if (kmem_valid_obj(object)) {
1074 		kmem_dump_obj(object);
1075 		return;
1076 	}
1077 
1078 	if (vmalloc_dump_obj(object))
1079 		return;
1080 
1081 	if (is_vmalloc_addr(object))
1082 		type = "vmalloc memory";
1083 	else if (virt_addr_valid(object))
1084 		type = "non-slab/vmalloc memory";
1085 	else if (object == NULL)
1086 		type = "NULL pointer";
1087 	else if (object == ZERO_SIZE_PTR)
1088 		type = "zero-size pointer";
1089 	else
1090 		type = "non-paged memory";
1091 
1092 	pr_cont(" %s\n", type);
1093 }
1094 EXPORT_SYMBOL_GPL(mem_dump_obj);
1095 #endif
1096 
1097 /*
1098  * A driver might set a page logically offline -- PageOffline() -- and
1099  * turn the page inaccessible in the hypervisor; after that, access to page
1100  * content can be fatal.
1101  *
1102  * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1103  * pages after checking PageOffline(); however, these PFN walkers can race
1104  * with drivers that set PageOffline().
1105  *
1106  * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1107  * synchronize with such drivers, achieving that a page cannot be set
1108  * PageOffline() while frozen.
1109  *
1110  * page_offline_begin()/page_offline_end() is used by drivers that care about
1111  * such races when setting a page PageOffline().
1112  */
1113 static DECLARE_RWSEM(page_offline_rwsem);
1114 
1115 void page_offline_freeze(void)
1116 {
1117 	down_read(&page_offline_rwsem);
1118 }
1119 
1120 void page_offline_thaw(void)
1121 {
1122 	up_read(&page_offline_rwsem);
1123 }
1124 
1125 void page_offline_begin(void)
1126 {
1127 	down_write(&page_offline_rwsem);
1128 }
1129 EXPORT_SYMBOL(page_offline_begin);
1130 
1131 void page_offline_end(void)
1132 {
1133 	up_write(&page_offline_rwsem);
1134 }
1135 EXPORT_SYMBOL(page_offline_end);
1136 
1137 #ifndef flush_dcache_folio
1138 void flush_dcache_folio(struct folio *folio)
1139 {
1140 	long i, nr = folio_nr_pages(folio);
1141 
1142 	for (i = 0; i < nr; i++)
1143 		flush_dcache_page(folio_page(folio, i));
1144 }
1145 EXPORT_SYMBOL(flush_dcache_folio);
1146 #endif
1147