1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/gfp.h> 13 #include <linux/mm.h> 14 #include <linux/swap.h> 15 #include <linux/export.h> 16 #include <linux/pagemap.h> 17 #include <linux/highmem.h> 18 #include <linux/pagevec.h> 19 #include <linux/task_io_accounting_ops.h> 20 #include <linux/buffer_head.h> /* grr. try_to_release_page, 21 do_invalidatepage */ 22 #include <linux/cleancache.h> 23 #include "internal.h" 24 25 26 /** 27 * do_invalidatepage - invalidate part or all of a page 28 * @page: the page which is affected 29 * @offset: start of the range to invalidate 30 * @length: length of the range to invalidate 31 * 32 * do_invalidatepage() is called when all or part of the page has become 33 * invalidated by a truncate operation. 34 * 35 * do_invalidatepage() does not have to release all buffers, but it must 36 * ensure that no dirty buffer is left outside @offset and that no I/O 37 * is underway against any of the blocks which are outside the truncation 38 * point. Because the caller is about to free (and possibly reuse) those 39 * blocks on-disk. 40 */ 41 void do_invalidatepage(struct page *page, unsigned int offset, 42 unsigned int length) 43 { 44 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 45 46 invalidatepage = page->mapping->a_ops->invalidatepage; 47 #ifdef CONFIG_BLOCK 48 if (!invalidatepage) 49 invalidatepage = block_invalidatepage; 50 #endif 51 if (invalidatepage) 52 (*invalidatepage)(page, offset, length); 53 } 54 55 /* 56 * This cancels just the dirty bit on the kernel page itself, it 57 * does NOT actually remove dirty bits on any mmap's that may be 58 * around. It also leaves the page tagged dirty, so any sync 59 * activity will still find it on the dirty lists, and in particular, 60 * clear_page_dirty_for_io() will still look at the dirty bits in 61 * the VM. 62 * 63 * Doing this should *normally* only ever be done when a page 64 * is truncated, and is not actually mapped anywhere at all. However, 65 * fs/buffer.c does this when it notices that somebody has cleaned 66 * out all the buffers on a page without actually doing it through 67 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 68 */ 69 void cancel_dirty_page(struct page *page, unsigned int account_size) 70 { 71 if (TestClearPageDirty(page)) { 72 struct address_space *mapping = page->mapping; 73 if (mapping && mapping_cap_account_dirty(mapping)) { 74 dec_zone_page_state(page, NR_FILE_DIRTY); 75 dec_bdi_stat(mapping->backing_dev_info, 76 BDI_RECLAIMABLE); 77 if (account_size) 78 task_io_account_cancelled_write(account_size); 79 } 80 } 81 } 82 EXPORT_SYMBOL(cancel_dirty_page); 83 84 /* 85 * If truncate cannot remove the fs-private metadata from the page, the page 86 * becomes orphaned. It will be left on the LRU and may even be mapped into 87 * user pagetables if we're racing with filemap_fault(). 88 * 89 * We need to bale out if page->mapping is no longer equal to the original 90 * mapping. This happens a) when the VM reclaimed the page while we waited on 91 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 92 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 93 */ 94 static int 95 truncate_complete_page(struct address_space *mapping, struct page *page) 96 { 97 if (page->mapping != mapping) 98 return -EIO; 99 100 if (page_has_private(page)) 101 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 102 103 cancel_dirty_page(page, PAGE_CACHE_SIZE); 104 105 ClearPageMappedToDisk(page); 106 delete_from_page_cache(page); 107 return 0; 108 } 109 110 /* 111 * This is for invalidate_mapping_pages(). That function can be called at 112 * any time, and is not supposed to throw away dirty pages. But pages can 113 * be marked dirty at any time too, so use remove_mapping which safely 114 * discards clean, unused pages. 115 * 116 * Returns non-zero if the page was successfully invalidated. 117 */ 118 static int 119 invalidate_complete_page(struct address_space *mapping, struct page *page) 120 { 121 int ret; 122 123 if (page->mapping != mapping) 124 return 0; 125 126 if (page_has_private(page) && !try_to_release_page(page, 0)) 127 return 0; 128 129 ret = remove_mapping(mapping, page); 130 131 return ret; 132 } 133 134 int truncate_inode_page(struct address_space *mapping, struct page *page) 135 { 136 if (page_mapped(page)) { 137 unmap_mapping_range(mapping, 138 (loff_t)page->index << PAGE_CACHE_SHIFT, 139 PAGE_CACHE_SIZE, 0); 140 } 141 return truncate_complete_page(mapping, page); 142 } 143 144 /* 145 * Used to get rid of pages on hardware memory corruption. 146 */ 147 int generic_error_remove_page(struct address_space *mapping, struct page *page) 148 { 149 if (!mapping) 150 return -EINVAL; 151 /* 152 * Only punch for normal data pages for now. 153 * Handling other types like directories would need more auditing. 154 */ 155 if (!S_ISREG(mapping->host->i_mode)) 156 return -EIO; 157 return truncate_inode_page(mapping, page); 158 } 159 EXPORT_SYMBOL(generic_error_remove_page); 160 161 /* 162 * Safely invalidate one page from its pagecache mapping. 163 * It only drops clean, unused pages. The page must be locked. 164 * 165 * Returns 1 if the page is successfully invalidated, otherwise 0. 166 */ 167 int invalidate_inode_page(struct page *page) 168 { 169 struct address_space *mapping = page_mapping(page); 170 if (!mapping) 171 return 0; 172 if (PageDirty(page) || PageWriteback(page)) 173 return 0; 174 if (page_mapped(page)) 175 return 0; 176 return invalidate_complete_page(mapping, page); 177 } 178 179 /** 180 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 181 * @mapping: mapping to truncate 182 * @lstart: offset from which to truncate 183 * @lend: offset to which to truncate (inclusive) 184 * 185 * Truncate the page cache, removing the pages that are between 186 * specified offsets (and zeroing out partial pages 187 * if lstart or lend + 1 is not page aligned). 188 * 189 * Truncate takes two passes - the first pass is nonblocking. It will not 190 * block on page locks and it will not block on writeback. The second pass 191 * will wait. This is to prevent as much IO as possible in the affected region. 192 * The first pass will remove most pages, so the search cost of the second pass 193 * is low. 194 * 195 * We pass down the cache-hot hint to the page freeing code. Even if the 196 * mapping is large, it is probably the case that the final pages are the most 197 * recently touched, and freeing happens in ascending file offset order. 198 * 199 * Note that since ->invalidatepage() accepts range to invalidate 200 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 201 * page aligned properly. 202 */ 203 void truncate_inode_pages_range(struct address_space *mapping, 204 loff_t lstart, loff_t lend) 205 { 206 pgoff_t start; /* inclusive */ 207 pgoff_t end; /* exclusive */ 208 unsigned int partial_start; /* inclusive */ 209 unsigned int partial_end; /* exclusive */ 210 struct pagevec pvec; 211 pgoff_t index; 212 int i; 213 214 cleancache_invalidate_inode(mapping); 215 if (mapping->nrpages == 0) 216 return; 217 218 /* Offsets within partial pages */ 219 partial_start = lstart & (PAGE_CACHE_SIZE - 1); 220 partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 221 222 /* 223 * 'start' and 'end' always covers the range of pages to be fully 224 * truncated. Partial pages are covered with 'partial_start' at the 225 * start of the range and 'partial_end' at the end of the range. 226 * Note that 'end' is exclusive while 'lend' is inclusive. 227 */ 228 start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 229 if (lend == -1) 230 /* 231 * lend == -1 indicates end-of-file so we have to set 'end' 232 * to the highest possible pgoff_t and since the type is 233 * unsigned we're using -1. 234 */ 235 end = -1; 236 else 237 end = (lend + 1) >> PAGE_CACHE_SHIFT; 238 239 pagevec_init(&pvec, 0); 240 index = start; 241 while (index < end && pagevec_lookup(&pvec, mapping, index, 242 min(end - index, (pgoff_t)PAGEVEC_SIZE))) { 243 mem_cgroup_uncharge_start(); 244 for (i = 0; i < pagevec_count(&pvec); i++) { 245 struct page *page = pvec.pages[i]; 246 247 /* We rely upon deletion not changing page->index */ 248 index = page->index; 249 if (index >= end) 250 break; 251 252 if (!trylock_page(page)) 253 continue; 254 WARN_ON(page->index != index); 255 if (PageWriteback(page)) { 256 unlock_page(page); 257 continue; 258 } 259 truncate_inode_page(mapping, page); 260 unlock_page(page); 261 } 262 pagevec_release(&pvec); 263 mem_cgroup_uncharge_end(); 264 cond_resched(); 265 index++; 266 } 267 268 if (partial_start) { 269 struct page *page = find_lock_page(mapping, start - 1); 270 if (page) { 271 unsigned int top = PAGE_CACHE_SIZE; 272 if (start > end) { 273 /* Truncation within a single page */ 274 top = partial_end; 275 partial_end = 0; 276 } 277 wait_on_page_writeback(page); 278 zero_user_segment(page, partial_start, top); 279 cleancache_invalidate_page(mapping, page); 280 if (page_has_private(page)) 281 do_invalidatepage(page, partial_start, 282 top - partial_start); 283 unlock_page(page); 284 page_cache_release(page); 285 } 286 } 287 if (partial_end) { 288 struct page *page = find_lock_page(mapping, end); 289 if (page) { 290 wait_on_page_writeback(page); 291 zero_user_segment(page, 0, partial_end); 292 cleancache_invalidate_page(mapping, page); 293 if (page_has_private(page)) 294 do_invalidatepage(page, 0, 295 partial_end); 296 unlock_page(page); 297 page_cache_release(page); 298 } 299 } 300 /* 301 * If the truncation happened within a single page no pages 302 * will be released, just zeroed, so we can bail out now. 303 */ 304 if (start >= end) 305 return; 306 307 index = start; 308 for ( ; ; ) { 309 cond_resched(); 310 if (!pagevec_lookup(&pvec, mapping, index, 311 min(end - index, (pgoff_t)PAGEVEC_SIZE))) { 312 if (index == start) 313 break; 314 index = start; 315 continue; 316 } 317 if (index == start && pvec.pages[0]->index >= end) { 318 pagevec_release(&pvec); 319 break; 320 } 321 mem_cgroup_uncharge_start(); 322 for (i = 0; i < pagevec_count(&pvec); i++) { 323 struct page *page = pvec.pages[i]; 324 325 /* We rely upon deletion not changing page->index */ 326 index = page->index; 327 if (index >= end) 328 break; 329 330 lock_page(page); 331 WARN_ON(page->index != index); 332 wait_on_page_writeback(page); 333 truncate_inode_page(mapping, page); 334 unlock_page(page); 335 } 336 pagevec_release(&pvec); 337 mem_cgroup_uncharge_end(); 338 index++; 339 } 340 cleancache_invalidate_inode(mapping); 341 } 342 EXPORT_SYMBOL(truncate_inode_pages_range); 343 344 /** 345 * truncate_inode_pages - truncate *all* the pages from an offset 346 * @mapping: mapping to truncate 347 * @lstart: offset from which to truncate 348 * 349 * Called under (and serialised by) inode->i_mutex. 350 * 351 * Note: When this function returns, there can be a page in the process of 352 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 353 * mapping->nrpages can be non-zero when this function returns even after 354 * truncation of the whole mapping. 355 */ 356 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 357 { 358 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 359 } 360 EXPORT_SYMBOL(truncate_inode_pages); 361 362 /** 363 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 364 * @mapping: the address_space which holds the pages to invalidate 365 * @start: the offset 'from' which to invalidate 366 * @end: the offset 'to' which to invalidate (inclusive) 367 * 368 * This function only removes the unlocked pages, if you want to 369 * remove all the pages of one inode, you must call truncate_inode_pages. 370 * 371 * invalidate_mapping_pages() will not block on IO activity. It will not 372 * invalidate pages which are dirty, locked, under writeback or mapped into 373 * pagetables. 374 */ 375 unsigned long invalidate_mapping_pages(struct address_space *mapping, 376 pgoff_t start, pgoff_t end) 377 { 378 struct pagevec pvec; 379 pgoff_t index = start; 380 unsigned long ret; 381 unsigned long count = 0; 382 int i; 383 384 /* 385 * Note: this function may get called on a shmem/tmpfs mapping: 386 * pagevec_lookup() might then return 0 prematurely (because it 387 * got a gangful of swap entries); but it's hardly worth worrying 388 * about - it can rarely have anything to free from such a mapping 389 * (most pages are dirty), and already skips over any difficulties. 390 */ 391 392 pagevec_init(&pvec, 0); 393 while (index <= end && pagevec_lookup(&pvec, mapping, index, 394 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 395 mem_cgroup_uncharge_start(); 396 for (i = 0; i < pagevec_count(&pvec); i++) { 397 struct page *page = pvec.pages[i]; 398 399 /* We rely upon deletion not changing page->index */ 400 index = page->index; 401 if (index > end) 402 break; 403 404 if (!trylock_page(page)) 405 continue; 406 WARN_ON(page->index != index); 407 ret = invalidate_inode_page(page); 408 unlock_page(page); 409 /* 410 * Invalidation is a hint that the page is no longer 411 * of interest and try to speed up its reclaim. 412 */ 413 if (!ret) 414 deactivate_page(page); 415 count += ret; 416 } 417 pagevec_release(&pvec); 418 mem_cgroup_uncharge_end(); 419 cond_resched(); 420 index++; 421 } 422 return count; 423 } 424 EXPORT_SYMBOL(invalidate_mapping_pages); 425 426 /* 427 * This is like invalidate_complete_page(), except it ignores the page's 428 * refcount. We do this because invalidate_inode_pages2() needs stronger 429 * invalidation guarantees, and cannot afford to leave pages behind because 430 * shrink_page_list() has a temp ref on them, or because they're transiently 431 * sitting in the lru_cache_add() pagevecs. 432 */ 433 static int 434 invalidate_complete_page2(struct address_space *mapping, struct page *page) 435 { 436 if (page->mapping != mapping) 437 return 0; 438 439 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 440 return 0; 441 442 spin_lock_irq(&mapping->tree_lock); 443 if (PageDirty(page)) 444 goto failed; 445 446 BUG_ON(page_has_private(page)); 447 __delete_from_page_cache(page); 448 spin_unlock_irq(&mapping->tree_lock); 449 mem_cgroup_uncharge_cache_page(page); 450 451 if (mapping->a_ops->freepage) 452 mapping->a_ops->freepage(page); 453 454 page_cache_release(page); /* pagecache ref */ 455 return 1; 456 failed: 457 spin_unlock_irq(&mapping->tree_lock); 458 return 0; 459 } 460 461 static int do_launder_page(struct address_space *mapping, struct page *page) 462 { 463 if (!PageDirty(page)) 464 return 0; 465 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 466 return 0; 467 return mapping->a_ops->launder_page(page); 468 } 469 470 /** 471 * invalidate_inode_pages2_range - remove range of pages from an address_space 472 * @mapping: the address_space 473 * @start: the page offset 'from' which to invalidate 474 * @end: the page offset 'to' which to invalidate (inclusive) 475 * 476 * Any pages which are found to be mapped into pagetables are unmapped prior to 477 * invalidation. 478 * 479 * Returns -EBUSY if any pages could not be invalidated. 480 */ 481 int invalidate_inode_pages2_range(struct address_space *mapping, 482 pgoff_t start, pgoff_t end) 483 { 484 struct pagevec pvec; 485 pgoff_t index; 486 int i; 487 int ret = 0; 488 int ret2 = 0; 489 int did_range_unmap = 0; 490 491 cleancache_invalidate_inode(mapping); 492 pagevec_init(&pvec, 0); 493 index = start; 494 while (index <= end && pagevec_lookup(&pvec, mapping, index, 495 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 496 mem_cgroup_uncharge_start(); 497 for (i = 0; i < pagevec_count(&pvec); i++) { 498 struct page *page = pvec.pages[i]; 499 500 /* We rely upon deletion not changing page->index */ 501 index = page->index; 502 if (index > end) 503 break; 504 505 lock_page(page); 506 WARN_ON(page->index != index); 507 if (page->mapping != mapping) { 508 unlock_page(page); 509 continue; 510 } 511 wait_on_page_writeback(page); 512 if (page_mapped(page)) { 513 if (!did_range_unmap) { 514 /* 515 * Zap the rest of the file in one hit. 516 */ 517 unmap_mapping_range(mapping, 518 (loff_t)index << PAGE_CACHE_SHIFT, 519 (loff_t)(1 + end - index) 520 << PAGE_CACHE_SHIFT, 521 0); 522 did_range_unmap = 1; 523 } else { 524 /* 525 * Just zap this page 526 */ 527 unmap_mapping_range(mapping, 528 (loff_t)index << PAGE_CACHE_SHIFT, 529 PAGE_CACHE_SIZE, 0); 530 } 531 } 532 BUG_ON(page_mapped(page)); 533 ret2 = do_launder_page(mapping, page); 534 if (ret2 == 0) { 535 if (!invalidate_complete_page2(mapping, page)) 536 ret2 = -EBUSY; 537 } 538 if (ret2 < 0) 539 ret = ret2; 540 unlock_page(page); 541 } 542 pagevec_release(&pvec); 543 mem_cgroup_uncharge_end(); 544 cond_resched(); 545 index++; 546 } 547 cleancache_invalidate_inode(mapping); 548 return ret; 549 } 550 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 551 552 /** 553 * invalidate_inode_pages2 - remove all pages from an address_space 554 * @mapping: the address_space 555 * 556 * Any pages which are found to be mapped into pagetables are unmapped prior to 557 * invalidation. 558 * 559 * Returns -EBUSY if any pages could not be invalidated. 560 */ 561 int invalidate_inode_pages2(struct address_space *mapping) 562 { 563 return invalidate_inode_pages2_range(mapping, 0, -1); 564 } 565 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 566 567 /** 568 * truncate_pagecache - unmap and remove pagecache that has been truncated 569 * @inode: inode 570 * @oldsize: old file size 571 * @newsize: new file size 572 * 573 * inode's new i_size must already be written before truncate_pagecache 574 * is called. 575 * 576 * This function should typically be called before the filesystem 577 * releases resources associated with the freed range (eg. deallocates 578 * blocks). This way, pagecache will always stay logically coherent 579 * with on-disk format, and the filesystem would not have to deal with 580 * situations such as writepage being called for a page that has already 581 * had its underlying blocks deallocated. 582 */ 583 void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize) 584 { 585 struct address_space *mapping = inode->i_mapping; 586 loff_t holebegin = round_up(newsize, PAGE_SIZE); 587 588 /* 589 * unmap_mapping_range is called twice, first simply for 590 * efficiency so that truncate_inode_pages does fewer 591 * single-page unmaps. However after this first call, and 592 * before truncate_inode_pages finishes, it is possible for 593 * private pages to be COWed, which remain after 594 * truncate_inode_pages finishes, hence the second 595 * unmap_mapping_range call must be made for correctness. 596 */ 597 unmap_mapping_range(mapping, holebegin, 0, 1); 598 truncate_inode_pages(mapping, newsize); 599 unmap_mapping_range(mapping, holebegin, 0, 1); 600 } 601 EXPORT_SYMBOL(truncate_pagecache); 602 603 /** 604 * truncate_setsize - update inode and pagecache for a new file size 605 * @inode: inode 606 * @newsize: new file size 607 * 608 * truncate_setsize updates i_size and performs pagecache truncation (if 609 * necessary) to @newsize. It will be typically be called from the filesystem's 610 * setattr function when ATTR_SIZE is passed in. 611 * 612 * Must be called with inode_mutex held and before all filesystem specific 613 * block truncation has been performed. 614 */ 615 void truncate_setsize(struct inode *inode, loff_t newsize) 616 { 617 loff_t oldsize; 618 619 oldsize = inode->i_size; 620 i_size_write(inode, newsize); 621 622 truncate_pagecache(inode, oldsize, newsize); 623 } 624 EXPORT_SYMBOL(truncate_setsize); 625 626 /** 627 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 628 * @inode: inode 629 * @lstart: offset of beginning of hole 630 * @lend: offset of last byte of hole 631 * 632 * This function should typically be called before the filesystem 633 * releases resources associated with the freed range (eg. deallocates 634 * blocks). This way, pagecache will always stay logically coherent 635 * with on-disk format, and the filesystem would not have to deal with 636 * situations such as writepage being called for a page that has already 637 * had its underlying blocks deallocated. 638 */ 639 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 640 { 641 struct address_space *mapping = inode->i_mapping; 642 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 643 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 644 /* 645 * This rounding is currently just for example: unmap_mapping_range 646 * expands its hole outwards, whereas we want it to contract the hole 647 * inwards. However, existing callers of truncate_pagecache_range are 648 * doing their own page rounding first. Note that unmap_mapping_range 649 * allows holelen 0 for all, and we allow lend -1 for end of file. 650 */ 651 652 /* 653 * Unlike in truncate_pagecache, unmap_mapping_range is called only 654 * once (before truncating pagecache), and without "even_cows" flag: 655 * hole-punching should not remove private COWed pages from the hole. 656 */ 657 if ((u64)unmap_end > (u64)unmap_start) 658 unmap_mapping_range(mapping, unmap_start, 659 1 + unmap_end - unmap_start, 0); 660 truncate_inode_pages_range(mapping, lstart, lend); 661 } 662 EXPORT_SYMBOL(truncate_pagecache_range); 663