1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/mm.h> 15 #include <linux/swap.h> 16 #include <linux/export.h> 17 #include <linux/pagemap.h> 18 #include <linux/highmem.h> 19 #include <linux/pagevec.h> 20 #include <linux/task_io_accounting_ops.h> 21 #include <linux/buffer_head.h> /* grr. try_to_release_page, 22 do_invalidatepage */ 23 #include <linux/shmem_fs.h> 24 #include <linux/cleancache.h> 25 #include <linux/rmap.h> 26 #include "internal.h" 27 28 /* 29 * Regular page slots are stabilized by the page lock even without the tree 30 * itself locked. These unlocked entries need verification under the tree 31 * lock. 32 */ 33 static inline void __clear_shadow_entry(struct address_space *mapping, 34 pgoff_t index, void *entry) 35 { 36 struct radix_tree_node *node; 37 void **slot; 38 39 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 40 return; 41 if (*slot != entry) 42 return; 43 __radix_tree_replace(&mapping->page_tree, node, slot, NULL, 44 workingset_update_node); 45 mapping->nrexceptional--; 46 } 47 48 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 49 void *entry) 50 { 51 spin_lock_irq(&mapping->tree_lock); 52 __clear_shadow_entry(mapping, index, entry); 53 spin_unlock_irq(&mapping->tree_lock); 54 } 55 56 /* 57 * Unconditionally remove exceptional entries. Usually called from truncate 58 * path. Note that the pagevec may be altered by this function by removing 59 * exceptional entries similar to what pagevec_remove_exceptionals does. 60 */ 61 static void truncate_exceptional_pvec_entries(struct address_space *mapping, 62 struct pagevec *pvec, pgoff_t *indices, 63 pgoff_t end) 64 { 65 int i, j; 66 bool dax, lock; 67 68 /* Handled by shmem itself */ 69 if (shmem_mapping(mapping)) 70 return; 71 72 for (j = 0; j < pagevec_count(pvec); j++) 73 if (radix_tree_exceptional_entry(pvec->pages[j])) 74 break; 75 76 if (j == pagevec_count(pvec)) 77 return; 78 79 dax = dax_mapping(mapping); 80 lock = !dax && indices[j] < end; 81 if (lock) 82 spin_lock_irq(&mapping->tree_lock); 83 84 for (i = j; i < pagevec_count(pvec); i++) { 85 struct page *page = pvec->pages[i]; 86 pgoff_t index = indices[i]; 87 88 if (!radix_tree_exceptional_entry(page)) { 89 pvec->pages[j++] = page; 90 continue; 91 } 92 93 if (index >= end) 94 continue; 95 96 if (unlikely(dax)) { 97 dax_delete_mapping_entry(mapping, index); 98 continue; 99 } 100 101 __clear_shadow_entry(mapping, index, page); 102 } 103 104 if (lock) 105 spin_unlock_irq(&mapping->tree_lock); 106 pvec->nr = j; 107 } 108 109 /* 110 * Invalidate exceptional entry if easily possible. This handles exceptional 111 * entries for invalidate_inode_pages(). 112 */ 113 static int invalidate_exceptional_entry(struct address_space *mapping, 114 pgoff_t index, void *entry) 115 { 116 /* Handled by shmem itself, or for DAX we do nothing. */ 117 if (shmem_mapping(mapping) || dax_mapping(mapping)) 118 return 1; 119 clear_shadow_entry(mapping, index, entry); 120 return 1; 121 } 122 123 /* 124 * Invalidate exceptional entry if clean. This handles exceptional entries for 125 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 126 */ 127 static int invalidate_exceptional_entry2(struct address_space *mapping, 128 pgoff_t index, void *entry) 129 { 130 /* Handled by shmem itself */ 131 if (shmem_mapping(mapping)) 132 return 1; 133 if (dax_mapping(mapping)) 134 return dax_invalidate_mapping_entry_sync(mapping, index); 135 clear_shadow_entry(mapping, index, entry); 136 return 1; 137 } 138 139 /** 140 * do_invalidatepage - invalidate part or all of a page 141 * @page: the page which is affected 142 * @offset: start of the range to invalidate 143 * @length: length of the range to invalidate 144 * 145 * do_invalidatepage() is called when all or part of the page has become 146 * invalidated by a truncate operation. 147 * 148 * do_invalidatepage() does not have to release all buffers, but it must 149 * ensure that no dirty buffer is left outside @offset and that no I/O 150 * is underway against any of the blocks which are outside the truncation 151 * point. Because the caller is about to free (and possibly reuse) those 152 * blocks on-disk. 153 */ 154 void do_invalidatepage(struct page *page, unsigned int offset, 155 unsigned int length) 156 { 157 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 158 159 invalidatepage = page->mapping->a_ops->invalidatepage; 160 #ifdef CONFIG_BLOCK 161 if (!invalidatepage) 162 invalidatepage = block_invalidatepage; 163 #endif 164 if (invalidatepage) 165 (*invalidatepage)(page, offset, length); 166 } 167 168 /* 169 * If truncate cannot remove the fs-private metadata from the page, the page 170 * becomes orphaned. It will be left on the LRU and may even be mapped into 171 * user pagetables if we're racing with filemap_fault(). 172 * 173 * We need to bale out if page->mapping is no longer equal to the original 174 * mapping. This happens a) when the VM reclaimed the page while we waited on 175 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 176 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 177 */ 178 static void 179 truncate_cleanup_page(struct address_space *mapping, struct page *page) 180 { 181 if (page_mapped(page)) { 182 pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1; 183 unmap_mapping_pages(mapping, page->index, nr, false); 184 } 185 186 if (page_has_private(page)) 187 do_invalidatepage(page, 0, PAGE_SIZE); 188 189 /* 190 * Some filesystems seem to re-dirty the page even after 191 * the VM has canceled the dirty bit (eg ext3 journaling). 192 * Hence dirty accounting check is placed after invalidation. 193 */ 194 cancel_dirty_page(page); 195 ClearPageMappedToDisk(page); 196 } 197 198 /* 199 * This is for invalidate_mapping_pages(). That function can be called at 200 * any time, and is not supposed to throw away dirty pages. But pages can 201 * be marked dirty at any time too, so use remove_mapping which safely 202 * discards clean, unused pages. 203 * 204 * Returns non-zero if the page was successfully invalidated. 205 */ 206 static int 207 invalidate_complete_page(struct address_space *mapping, struct page *page) 208 { 209 int ret; 210 211 if (page->mapping != mapping) 212 return 0; 213 214 if (page_has_private(page) && !try_to_release_page(page, 0)) 215 return 0; 216 217 ret = remove_mapping(mapping, page); 218 219 return ret; 220 } 221 222 int truncate_inode_page(struct address_space *mapping, struct page *page) 223 { 224 VM_BUG_ON_PAGE(PageTail(page), page); 225 226 if (page->mapping != mapping) 227 return -EIO; 228 229 truncate_cleanup_page(mapping, page); 230 delete_from_page_cache(page); 231 return 0; 232 } 233 234 /* 235 * Used to get rid of pages on hardware memory corruption. 236 */ 237 int generic_error_remove_page(struct address_space *mapping, struct page *page) 238 { 239 if (!mapping) 240 return -EINVAL; 241 /* 242 * Only punch for normal data pages for now. 243 * Handling other types like directories would need more auditing. 244 */ 245 if (!S_ISREG(mapping->host->i_mode)) 246 return -EIO; 247 return truncate_inode_page(mapping, page); 248 } 249 EXPORT_SYMBOL(generic_error_remove_page); 250 251 /* 252 * Safely invalidate one page from its pagecache mapping. 253 * It only drops clean, unused pages. The page must be locked. 254 * 255 * Returns 1 if the page is successfully invalidated, otherwise 0. 256 */ 257 int invalidate_inode_page(struct page *page) 258 { 259 struct address_space *mapping = page_mapping(page); 260 if (!mapping) 261 return 0; 262 if (PageDirty(page) || PageWriteback(page)) 263 return 0; 264 if (page_mapped(page)) 265 return 0; 266 return invalidate_complete_page(mapping, page); 267 } 268 269 /** 270 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 271 * @mapping: mapping to truncate 272 * @lstart: offset from which to truncate 273 * @lend: offset to which to truncate (inclusive) 274 * 275 * Truncate the page cache, removing the pages that are between 276 * specified offsets (and zeroing out partial pages 277 * if lstart or lend + 1 is not page aligned). 278 * 279 * Truncate takes two passes - the first pass is nonblocking. It will not 280 * block on page locks and it will not block on writeback. The second pass 281 * will wait. This is to prevent as much IO as possible in the affected region. 282 * The first pass will remove most pages, so the search cost of the second pass 283 * is low. 284 * 285 * We pass down the cache-hot hint to the page freeing code. Even if the 286 * mapping is large, it is probably the case that the final pages are the most 287 * recently touched, and freeing happens in ascending file offset order. 288 * 289 * Note that since ->invalidatepage() accepts range to invalidate 290 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 291 * page aligned properly. 292 */ 293 void truncate_inode_pages_range(struct address_space *mapping, 294 loff_t lstart, loff_t lend) 295 { 296 pgoff_t start; /* inclusive */ 297 pgoff_t end; /* exclusive */ 298 unsigned int partial_start; /* inclusive */ 299 unsigned int partial_end; /* exclusive */ 300 struct pagevec pvec; 301 pgoff_t indices[PAGEVEC_SIZE]; 302 pgoff_t index; 303 int i; 304 305 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 306 goto out; 307 308 /* Offsets within partial pages */ 309 partial_start = lstart & (PAGE_SIZE - 1); 310 partial_end = (lend + 1) & (PAGE_SIZE - 1); 311 312 /* 313 * 'start' and 'end' always covers the range of pages to be fully 314 * truncated. Partial pages are covered with 'partial_start' at the 315 * start of the range and 'partial_end' at the end of the range. 316 * Note that 'end' is exclusive while 'lend' is inclusive. 317 */ 318 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 319 if (lend == -1) 320 /* 321 * lend == -1 indicates end-of-file so we have to set 'end' 322 * to the highest possible pgoff_t and since the type is 323 * unsigned we're using -1. 324 */ 325 end = -1; 326 else 327 end = (lend + 1) >> PAGE_SHIFT; 328 329 pagevec_init(&pvec); 330 index = start; 331 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 332 min(end - index, (pgoff_t)PAGEVEC_SIZE), 333 indices)) { 334 /* 335 * Pagevec array has exceptional entries and we may also fail 336 * to lock some pages. So we store pages that can be deleted 337 * in a new pagevec. 338 */ 339 struct pagevec locked_pvec; 340 341 pagevec_init(&locked_pvec); 342 for (i = 0; i < pagevec_count(&pvec); i++) { 343 struct page *page = pvec.pages[i]; 344 345 /* We rely upon deletion not changing page->index */ 346 index = indices[i]; 347 if (index >= end) 348 break; 349 350 if (radix_tree_exceptional_entry(page)) 351 continue; 352 353 if (!trylock_page(page)) 354 continue; 355 WARN_ON(page_to_index(page) != index); 356 if (PageWriteback(page)) { 357 unlock_page(page); 358 continue; 359 } 360 if (page->mapping != mapping) { 361 unlock_page(page); 362 continue; 363 } 364 pagevec_add(&locked_pvec, page); 365 } 366 for (i = 0; i < pagevec_count(&locked_pvec); i++) 367 truncate_cleanup_page(mapping, locked_pvec.pages[i]); 368 delete_from_page_cache_batch(mapping, &locked_pvec); 369 for (i = 0; i < pagevec_count(&locked_pvec); i++) 370 unlock_page(locked_pvec.pages[i]); 371 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); 372 pagevec_release(&pvec); 373 cond_resched(); 374 index++; 375 } 376 if (partial_start) { 377 struct page *page = find_lock_page(mapping, start - 1); 378 if (page) { 379 unsigned int top = PAGE_SIZE; 380 if (start > end) { 381 /* Truncation within a single page */ 382 top = partial_end; 383 partial_end = 0; 384 } 385 wait_on_page_writeback(page); 386 zero_user_segment(page, partial_start, top); 387 cleancache_invalidate_page(mapping, page); 388 if (page_has_private(page)) 389 do_invalidatepage(page, partial_start, 390 top - partial_start); 391 unlock_page(page); 392 put_page(page); 393 } 394 } 395 if (partial_end) { 396 struct page *page = find_lock_page(mapping, end); 397 if (page) { 398 wait_on_page_writeback(page); 399 zero_user_segment(page, 0, partial_end); 400 cleancache_invalidate_page(mapping, page); 401 if (page_has_private(page)) 402 do_invalidatepage(page, 0, 403 partial_end); 404 unlock_page(page); 405 put_page(page); 406 } 407 } 408 /* 409 * If the truncation happened within a single page no pages 410 * will be released, just zeroed, so we can bail out now. 411 */ 412 if (start >= end) 413 goto out; 414 415 index = start; 416 for ( ; ; ) { 417 cond_resched(); 418 if (!pagevec_lookup_entries(&pvec, mapping, index, 419 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 420 /* If all gone from start onwards, we're done */ 421 if (index == start) 422 break; 423 /* Otherwise restart to make sure all gone */ 424 index = start; 425 continue; 426 } 427 if (index == start && indices[0] >= end) { 428 /* All gone out of hole to be punched, we're done */ 429 pagevec_remove_exceptionals(&pvec); 430 pagevec_release(&pvec); 431 break; 432 } 433 434 for (i = 0; i < pagevec_count(&pvec); i++) { 435 struct page *page = pvec.pages[i]; 436 437 /* We rely upon deletion not changing page->index */ 438 index = indices[i]; 439 if (index >= end) { 440 /* Restart punch to make sure all gone */ 441 index = start - 1; 442 break; 443 } 444 445 if (radix_tree_exceptional_entry(page)) 446 continue; 447 448 lock_page(page); 449 WARN_ON(page_to_index(page) != index); 450 wait_on_page_writeback(page); 451 truncate_inode_page(mapping, page); 452 unlock_page(page); 453 } 454 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); 455 pagevec_release(&pvec); 456 index++; 457 } 458 459 out: 460 cleancache_invalidate_inode(mapping); 461 } 462 EXPORT_SYMBOL(truncate_inode_pages_range); 463 464 /** 465 * truncate_inode_pages - truncate *all* the pages from an offset 466 * @mapping: mapping to truncate 467 * @lstart: offset from which to truncate 468 * 469 * Called under (and serialised by) inode->i_mutex. 470 * 471 * Note: When this function returns, there can be a page in the process of 472 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 473 * mapping->nrpages can be non-zero when this function returns even after 474 * truncation of the whole mapping. 475 */ 476 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 477 { 478 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 479 } 480 EXPORT_SYMBOL(truncate_inode_pages); 481 482 /** 483 * truncate_inode_pages_final - truncate *all* pages before inode dies 484 * @mapping: mapping to truncate 485 * 486 * Called under (and serialized by) inode->i_mutex. 487 * 488 * Filesystems have to use this in the .evict_inode path to inform the 489 * VM that this is the final truncate and the inode is going away. 490 */ 491 void truncate_inode_pages_final(struct address_space *mapping) 492 { 493 unsigned long nrexceptional; 494 unsigned long nrpages; 495 496 /* 497 * Page reclaim can not participate in regular inode lifetime 498 * management (can't call iput()) and thus can race with the 499 * inode teardown. Tell it when the address space is exiting, 500 * so that it does not install eviction information after the 501 * final truncate has begun. 502 */ 503 mapping_set_exiting(mapping); 504 505 /* 506 * When reclaim installs eviction entries, it increases 507 * nrexceptional first, then decreases nrpages. Make sure we see 508 * this in the right order or we might miss an entry. 509 */ 510 nrpages = mapping->nrpages; 511 smp_rmb(); 512 nrexceptional = mapping->nrexceptional; 513 514 if (nrpages || nrexceptional) { 515 /* 516 * As truncation uses a lockless tree lookup, cycle 517 * the tree lock to make sure any ongoing tree 518 * modification that does not see AS_EXITING is 519 * completed before starting the final truncate. 520 */ 521 spin_lock_irq(&mapping->tree_lock); 522 spin_unlock_irq(&mapping->tree_lock); 523 524 truncate_inode_pages(mapping, 0); 525 } 526 } 527 EXPORT_SYMBOL(truncate_inode_pages_final); 528 529 /** 530 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 531 * @mapping: the address_space which holds the pages to invalidate 532 * @start: the offset 'from' which to invalidate 533 * @end: the offset 'to' which to invalidate (inclusive) 534 * 535 * This function only removes the unlocked pages, if you want to 536 * remove all the pages of one inode, you must call truncate_inode_pages. 537 * 538 * invalidate_mapping_pages() will not block on IO activity. It will not 539 * invalidate pages which are dirty, locked, under writeback or mapped into 540 * pagetables. 541 */ 542 unsigned long invalidate_mapping_pages(struct address_space *mapping, 543 pgoff_t start, pgoff_t end) 544 { 545 pgoff_t indices[PAGEVEC_SIZE]; 546 struct pagevec pvec; 547 pgoff_t index = start; 548 unsigned long ret; 549 unsigned long count = 0; 550 int i; 551 552 pagevec_init(&pvec); 553 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 554 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 555 indices)) { 556 for (i = 0; i < pagevec_count(&pvec); i++) { 557 struct page *page = pvec.pages[i]; 558 559 /* We rely upon deletion not changing page->index */ 560 index = indices[i]; 561 if (index > end) 562 break; 563 564 if (radix_tree_exceptional_entry(page)) { 565 invalidate_exceptional_entry(mapping, index, 566 page); 567 continue; 568 } 569 570 if (!trylock_page(page)) 571 continue; 572 573 WARN_ON(page_to_index(page) != index); 574 575 /* Middle of THP: skip */ 576 if (PageTransTail(page)) { 577 unlock_page(page); 578 continue; 579 } else if (PageTransHuge(page)) { 580 index += HPAGE_PMD_NR - 1; 581 i += HPAGE_PMD_NR - 1; 582 /* 583 * 'end' is in the middle of THP. Don't 584 * invalidate the page as the part outside of 585 * 'end' could be still useful. 586 */ 587 if (index > end) { 588 unlock_page(page); 589 continue; 590 } 591 } 592 593 ret = invalidate_inode_page(page); 594 unlock_page(page); 595 /* 596 * Invalidation is a hint that the page is no longer 597 * of interest and try to speed up its reclaim. 598 */ 599 if (!ret) 600 deactivate_file_page(page); 601 count += ret; 602 } 603 pagevec_remove_exceptionals(&pvec); 604 pagevec_release(&pvec); 605 cond_resched(); 606 index++; 607 } 608 return count; 609 } 610 EXPORT_SYMBOL(invalidate_mapping_pages); 611 612 /* 613 * This is like invalidate_complete_page(), except it ignores the page's 614 * refcount. We do this because invalidate_inode_pages2() needs stronger 615 * invalidation guarantees, and cannot afford to leave pages behind because 616 * shrink_page_list() has a temp ref on them, or because they're transiently 617 * sitting in the lru_cache_add() pagevecs. 618 */ 619 static int 620 invalidate_complete_page2(struct address_space *mapping, struct page *page) 621 { 622 unsigned long flags; 623 624 if (page->mapping != mapping) 625 return 0; 626 627 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 628 return 0; 629 630 spin_lock_irqsave(&mapping->tree_lock, flags); 631 if (PageDirty(page)) 632 goto failed; 633 634 BUG_ON(page_has_private(page)); 635 __delete_from_page_cache(page, NULL); 636 spin_unlock_irqrestore(&mapping->tree_lock, flags); 637 638 if (mapping->a_ops->freepage) 639 mapping->a_ops->freepage(page); 640 641 put_page(page); /* pagecache ref */ 642 return 1; 643 failed: 644 spin_unlock_irqrestore(&mapping->tree_lock, flags); 645 return 0; 646 } 647 648 static int do_launder_page(struct address_space *mapping, struct page *page) 649 { 650 if (!PageDirty(page)) 651 return 0; 652 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 653 return 0; 654 return mapping->a_ops->launder_page(page); 655 } 656 657 /** 658 * invalidate_inode_pages2_range - remove range of pages from an address_space 659 * @mapping: the address_space 660 * @start: the page offset 'from' which to invalidate 661 * @end: the page offset 'to' which to invalidate (inclusive) 662 * 663 * Any pages which are found to be mapped into pagetables are unmapped prior to 664 * invalidation. 665 * 666 * Returns -EBUSY if any pages could not be invalidated. 667 */ 668 int invalidate_inode_pages2_range(struct address_space *mapping, 669 pgoff_t start, pgoff_t end) 670 { 671 pgoff_t indices[PAGEVEC_SIZE]; 672 struct pagevec pvec; 673 pgoff_t index; 674 int i; 675 int ret = 0; 676 int ret2 = 0; 677 int did_range_unmap = 0; 678 679 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 680 goto out; 681 682 pagevec_init(&pvec); 683 index = start; 684 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 685 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 686 indices)) { 687 for (i = 0; i < pagevec_count(&pvec); i++) { 688 struct page *page = pvec.pages[i]; 689 690 /* We rely upon deletion not changing page->index */ 691 index = indices[i]; 692 if (index > end) 693 break; 694 695 if (radix_tree_exceptional_entry(page)) { 696 if (!invalidate_exceptional_entry2(mapping, 697 index, page)) 698 ret = -EBUSY; 699 continue; 700 } 701 702 lock_page(page); 703 WARN_ON(page_to_index(page) != index); 704 if (page->mapping != mapping) { 705 unlock_page(page); 706 continue; 707 } 708 wait_on_page_writeback(page); 709 if (page_mapped(page)) { 710 if (!did_range_unmap) { 711 /* 712 * Zap the rest of the file in one hit. 713 */ 714 unmap_mapping_pages(mapping, index, 715 (1 + end - index), false); 716 did_range_unmap = 1; 717 } else { 718 /* 719 * Just zap this page 720 */ 721 unmap_mapping_pages(mapping, index, 722 1, false); 723 } 724 } 725 BUG_ON(page_mapped(page)); 726 ret2 = do_launder_page(mapping, page); 727 if (ret2 == 0) { 728 if (!invalidate_complete_page2(mapping, page)) 729 ret2 = -EBUSY; 730 } 731 if (ret2 < 0) 732 ret = ret2; 733 unlock_page(page); 734 } 735 pagevec_remove_exceptionals(&pvec); 736 pagevec_release(&pvec); 737 cond_resched(); 738 index++; 739 } 740 /* 741 * For DAX we invalidate page tables after invalidating radix tree. We 742 * could invalidate page tables while invalidating each entry however 743 * that would be expensive. And doing range unmapping before doesn't 744 * work as we have no cheap way to find whether radix tree entry didn't 745 * get remapped later. 746 */ 747 if (dax_mapping(mapping)) { 748 unmap_mapping_pages(mapping, start, end - start + 1, false); 749 } 750 out: 751 cleancache_invalidate_inode(mapping); 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 755 756 /** 757 * invalidate_inode_pages2 - remove all pages from an address_space 758 * @mapping: the address_space 759 * 760 * Any pages which are found to be mapped into pagetables are unmapped prior to 761 * invalidation. 762 * 763 * Returns -EBUSY if any pages could not be invalidated. 764 */ 765 int invalidate_inode_pages2(struct address_space *mapping) 766 { 767 return invalidate_inode_pages2_range(mapping, 0, -1); 768 } 769 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 770 771 /** 772 * truncate_pagecache - unmap and remove pagecache that has been truncated 773 * @inode: inode 774 * @newsize: new file size 775 * 776 * inode's new i_size must already be written before truncate_pagecache 777 * is called. 778 * 779 * This function should typically be called before the filesystem 780 * releases resources associated with the freed range (eg. deallocates 781 * blocks). This way, pagecache will always stay logically coherent 782 * with on-disk format, and the filesystem would not have to deal with 783 * situations such as writepage being called for a page that has already 784 * had its underlying blocks deallocated. 785 */ 786 void truncate_pagecache(struct inode *inode, loff_t newsize) 787 { 788 struct address_space *mapping = inode->i_mapping; 789 loff_t holebegin = round_up(newsize, PAGE_SIZE); 790 791 /* 792 * unmap_mapping_range is called twice, first simply for 793 * efficiency so that truncate_inode_pages does fewer 794 * single-page unmaps. However after this first call, and 795 * before truncate_inode_pages finishes, it is possible for 796 * private pages to be COWed, which remain after 797 * truncate_inode_pages finishes, hence the second 798 * unmap_mapping_range call must be made for correctness. 799 */ 800 unmap_mapping_range(mapping, holebegin, 0, 1); 801 truncate_inode_pages(mapping, newsize); 802 unmap_mapping_range(mapping, holebegin, 0, 1); 803 } 804 EXPORT_SYMBOL(truncate_pagecache); 805 806 /** 807 * truncate_setsize - update inode and pagecache for a new file size 808 * @inode: inode 809 * @newsize: new file size 810 * 811 * truncate_setsize updates i_size and performs pagecache truncation (if 812 * necessary) to @newsize. It will be typically be called from the filesystem's 813 * setattr function when ATTR_SIZE is passed in. 814 * 815 * Must be called with a lock serializing truncates and writes (generally 816 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 817 * specific block truncation has been performed. 818 */ 819 void truncate_setsize(struct inode *inode, loff_t newsize) 820 { 821 loff_t oldsize = inode->i_size; 822 823 i_size_write(inode, newsize); 824 if (newsize > oldsize) 825 pagecache_isize_extended(inode, oldsize, newsize); 826 truncate_pagecache(inode, newsize); 827 } 828 EXPORT_SYMBOL(truncate_setsize); 829 830 /** 831 * pagecache_isize_extended - update pagecache after extension of i_size 832 * @inode: inode for which i_size was extended 833 * @from: original inode size 834 * @to: new inode size 835 * 836 * Handle extension of inode size either caused by extending truncate or by 837 * write starting after current i_size. We mark the page straddling current 838 * i_size RO so that page_mkwrite() is called on the nearest write access to 839 * the page. This way filesystem can be sure that page_mkwrite() is called on 840 * the page before user writes to the page via mmap after the i_size has been 841 * changed. 842 * 843 * The function must be called after i_size is updated so that page fault 844 * coming after we unlock the page will already see the new i_size. 845 * The function must be called while we still hold i_mutex - this not only 846 * makes sure i_size is stable but also that userspace cannot observe new 847 * i_size value before we are prepared to store mmap writes at new inode size. 848 */ 849 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 850 { 851 int bsize = i_blocksize(inode); 852 loff_t rounded_from; 853 struct page *page; 854 pgoff_t index; 855 856 WARN_ON(to > inode->i_size); 857 858 if (from >= to || bsize == PAGE_SIZE) 859 return; 860 /* Page straddling @from will not have any hole block created? */ 861 rounded_from = round_up(from, bsize); 862 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 863 return; 864 865 index = from >> PAGE_SHIFT; 866 page = find_lock_page(inode->i_mapping, index); 867 /* Page not cached? Nothing to do */ 868 if (!page) 869 return; 870 /* 871 * See clear_page_dirty_for_io() for details why set_page_dirty() 872 * is needed. 873 */ 874 if (page_mkclean(page)) 875 set_page_dirty(page); 876 unlock_page(page); 877 put_page(page); 878 } 879 EXPORT_SYMBOL(pagecache_isize_extended); 880 881 /** 882 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 883 * @inode: inode 884 * @lstart: offset of beginning of hole 885 * @lend: offset of last byte of hole 886 * 887 * This function should typically be called before the filesystem 888 * releases resources associated with the freed range (eg. deallocates 889 * blocks). This way, pagecache will always stay logically coherent 890 * with on-disk format, and the filesystem would not have to deal with 891 * situations such as writepage being called for a page that has already 892 * had its underlying blocks deallocated. 893 */ 894 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 895 { 896 struct address_space *mapping = inode->i_mapping; 897 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 898 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 899 /* 900 * This rounding is currently just for example: unmap_mapping_range 901 * expands its hole outwards, whereas we want it to contract the hole 902 * inwards. However, existing callers of truncate_pagecache_range are 903 * doing their own page rounding first. Note that unmap_mapping_range 904 * allows holelen 0 for all, and we allow lend -1 for end of file. 905 */ 906 907 /* 908 * Unlike in truncate_pagecache, unmap_mapping_range is called only 909 * once (before truncating pagecache), and without "even_cows" flag: 910 * hole-punching should not remove private COWed pages from the hole. 911 */ 912 if ((u64)unmap_end > (u64)unmap_start) 913 unmap_mapping_range(mapping, unmap_start, 914 1 + unmap_end - unmap_start, 0); 915 truncate_inode_pages_range(mapping, lstart, lend); 916 } 917 EXPORT_SYMBOL(truncate_pagecache_range); 918