1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/mm.h> 15 #include <linux/swap.h> 16 #include <linux/export.h> 17 #include <linux/pagemap.h> 18 #include <linux/highmem.h> 19 #include <linux/pagevec.h> 20 #include <linux/task_io_accounting_ops.h> 21 #include <linux/buffer_head.h> /* grr. try_to_release_page, 22 do_invalidatepage */ 23 #include <linux/shmem_fs.h> 24 #include <linux/cleancache.h> 25 #include <linux/rmap.h> 26 #include "internal.h" 27 28 /* 29 * Regular page slots are stabilized by the page lock even without the tree 30 * itself locked. These unlocked entries need verification under the tree 31 * lock. 32 */ 33 static inline void __clear_shadow_entry(struct address_space *mapping, 34 pgoff_t index, void *entry) 35 { 36 XA_STATE(xas, &mapping->i_pages, index); 37 38 xas_set_update(&xas, workingset_update_node); 39 if (xas_load(&xas) != entry) 40 return; 41 xas_store(&xas, NULL); 42 mapping->nrexceptional--; 43 } 44 45 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 46 void *entry) 47 { 48 xa_lock_irq(&mapping->i_pages); 49 __clear_shadow_entry(mapping, index, entry); 50 xa_unlock_irq(&mapping->i_pages); 51 } 52 53 /* 54 * Unconditionally remove exceptional entries. Usually called from truncate 55 * path. Note that the pagevec may be altered by this function by removing 56 * exceptional entries similar to what pagevec_remove_exceptionals does. 57 */ 58 static void truncate_exceptional_pvec_entries(struct address_space *mapping, 59 struct pagevec *pvec, pgoff_t *indices, 60 pgoff_t end) 61 { 62 int i, j; 63 bool dax, lock; 64 65 /* Handled by shmem itself */ 66 if (shmem_mapping(mapping)) 67 return; 68 69 for (j = 0; j < pagevec_count(pvec); j++) 70 if (xa_is_value(pvec->pages[j])) 71 break; 72 73 if (j == pagevec_count(pvec)) 74 return; 75 76 dax = dax_mapping(mapping); 77 lock = !dax && indices[j] < end; 78 if (lock) 79 xa_lock_irq(&mapping->i_pages); 80 81 for (i = j; i < pagevec_count(pvec); i++) { 82 struct page *page = pvec->pages[i]; 83 pgoff_t index = indices[i]; 84 85 if (!xa_is_value(page)) { 86 pvec->pages[j++] = page; 87 continue; 88 } 89 90 if (index >= end) 91 continue; 92 93 if (unlikely(dax)) { 94 dax_delete_mapping_entry(mapping, index); 95 continue; 96 } 97 98 __clear_shadow_entry(mapping, index, page); 99 } 100 101 if (lock) 102 xa_unlock_irq(&mapping->i_pages); 103 pvec->nr = j; 104 } 105 106 /* 107 * Invalidate exceptional entry if easily possible. This handles exceptional 108 * entries for invalidate_inode_pages(). 109 */ 110 static int invalidate_exceptional_entry(struct address_space *mapping, 111 pgoff_t index, void *entry) 112 { 113 /* Handled by shmem itself, or for DAX we do nothing. */ 114 if (shmem_mapping(mapping) || dax_mapping(mapping)) 115 return 1; 116 clear_shadow_entry(mapping, index, entry); 117 return 1; 118 } 119 120 /* 121 * Invalidate exceptional entry if clean. This handles exceptional entries for 122 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 123 */ 124 static int invalidate_exceptional_entry2(struct address_space *mapping, 125 pgoff_t index, void *entry) 126 { 127 /* Handled by shmem itself */ 128 if (shmem_mapping(mapping)) 129 return 1; 130 if (dax_mapping(mapping)) 131 return dax_invalidate_mapping_entry_sync(mapping, index); 132 clear_shadow_entry(mapping, index, entry); 133 return 1; 134 } 135 136 /** 137 * do_invalidatepage - invalidate part or all of a page 138 * @page: the page which is affected 139 * @offset: start of the range to invalidate 140 * @length: length of the range to invalidate 141 * 142 * do_invalidatepage() is called when all or part of the page has become 143 * invalidated by a truncate operation. 144 * 145 * do_invalidatepage() does not have to release all buffers, but it must 146 * ensure that no dirty buffer is left outside @offset and that no I/O 147 * is underway against any of the blocks which are outside the truncation 148 * point. Because the caller is about to free (and possibly reuse) those 149 * blocks on-disk. 150 */ 151 void do_invalidatepage(struct page *page, unsigned int offset, 152 unsigned int length) 153 { 154 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 155 156 invalidatepage = page->mapping->a_ops->invalidatepage; 157 #ifdef CONFIG_BLOCK 158 if (!invalidatepage) 159 invalidatepage = block_invalidatepage; 160 #endif 161 if (invalidatepage) 162 (*invalidatepage)(page, offset, length); 163 } 164 165 /* 166 * If truncate cannot remove the fs-private metadata from the page, the page 167 * becomes orphaned. It will be left on the LRU and may even be mapped into 168 * user pagetables if we're racing with filemap_fault(). 169 * 170 * We need to bale out if page->mapping is no longer equal to the original 171 * mapping. This happens a) when the VM reclaimed the page while we waited on 172 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 173 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 174 */ 175 static void 176 truncate_cleanup_page(struct address_space *mapping, struct page *page) 177 { 178 if (page_mapped(page)) { 179 pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1; 180 unmap_mapping_pages(mapping, page->index, nr, false); 181 } 182 183 if (page_has_private(page)) 184 do_invalidatepage(page, 0, PAGE_SIZE); 185 186 /* 187 * Some filesystems seem to re-dirty the page even after 188 * the VM has canceled the dirty bit (eg ext3 journaling). 189 * Hence dirty accounting check is placed after invalidation. 190 */ 191 cancel_dirty_page(page); 192 ClearPageMappedToDisk(page); 193 } 194 195 /* 196 * This is for invalidate_mapping_pages(). That function can be called at 197 * any time, and is not supposed to throw away dirty pages. But pages can 198 * be marked dirty at any time too, so use remove_mapping which safely 199 * discards clean, unused pages. 200 * 201 * Returns non-zero if the page was successfully invalidated. 202 */ 203 static int 204 invalidate_complete_page(struct address_space *mapping, struct page *page) 205 { 206 int ret; 207 208 if (page->mapping != mapping) 209 return 0; 210 211 if (page_has_private(page) && !try_to_release_page(page, 0)) 212 return 0; 213 214 ret = remove_mapping(mapping, page); 215 216 return ret; 217 } 218 219 int truncate_inode_page(struct address_space *mapping, struct page *page) 220 { 221 VM_BUG_ON_PAGE(PageTail(page), page); 222 223 if (page->mapping != mapping) 224 return -EIO; 225 226 truncate_cleanup_page(mapping, page); 227 delete_from_page_cache(page); 228 return 0; 229 } 230 231 /* 232 * Used to get rid of pages on hardware memory corruption. 233 */ 234 int generic_error_remove_page(struct address_space *mapping, struct page *page) 235 { 236 if (!mapping) 237 return -EINVAL; 238 /* 239 * Only punch for normal data pages for now. 240 * Handling other types like directories would need more auditing. 241 */ 242 if (!S_ISREG(mapping->host->i_mode)) 243 return -EIO; 244 return truncate_inode_page(mapping, page); 245 } 246 EXPORT_SYMBOL(generic_error_remove_page); 247 248 /* 249 * Safely invalidate one page from its pagecache mapping. 250 * It only drops clean, unused pages. The page must be locked. 251 * 252 * Returns 1 if the page is successfully invalidated, otherwise 0. 253 */ 254 int invalidate_inode_page(struct page *page) 255 { 256 struct address_space *mapping = page_mapping(page); 257 if (!mapping) 258 return 0; 259 if (PageDirty(page) || PageWriteback(page)) 260 return 0; 261 if (page_mapped(page)) 262 return 0; 263 return invalidate_complete_page(mapping, page); 264 } 265 266 /** 267 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 268 * @mapping: mapping to truncate 269 * @lstart: offset from which to truncate 270 * @lend: offset to which to truncate (inclusive) 271 * 272 * Truncate the page cache, removing the pages that are between 273 * specified offsets (and zeroing out partial pages 274 * if lstart or lend + 1 is not page aligned). 275 * 276 * Truncate takes two passes - the first pass is nonblocking. It will not 277 * block on page locks and it will not block on writeback. The second pass 278 * will wait. This is to prevent as much IO as possible in the affected region. 279 * The first pass will remove most pages, so the search cost of the second pass 280 * is low. 281 * 282 * We pass down the cache-hot hint to the page freeing code. Even if the 283 * mapping is large, it is probably the case that the final pages are the most 284 * recently touched, and freeing happens in ascending file offset order. 285 * 286 * Note that since ->invalidatepage() accepts range to invalidate 287 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 288 * page aligned properly. 289 */ 290 void truncate_inode_pages_range(struct address_space *mapping, 291 loff_t lstart, loff_t lend) 292 { 293 pgoff_t start; /* inclusive */ 294 pgoff_t end; /* exclusive */ 295 unsigned int partial_start; /* inclusive */ 296 unsigned int partial_end; /* exclusive */ 297 struct pagevec pvec; 298 pgoff_t indices[PAGEVEC_SIZE]; 299 pgoff_t index; 300 int i; 301 302 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 303 goto out; 304 305 /* Offsets within partial pages */ 306 partial_start = lstart & (PAGE_SIZE - 1); 307 partial_end = (lend + 1) & (PAGE_SIZE - 1); 308 309 /* 310 * 'start' and 'end' always covers the range of pages to be fully 311 * truncated. Partial pages are covered with 'partial_start' at the 312 * start of the range and 'partial_end' at the end of the range. 313 * Note that 'end' is exclusive while 'lend' is inclusive. 314 */ 315 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 316 if (lend == -1) 317 /* 318 * lend == -1 indicates end-of-file so we have to set 'end' 319 * to the highest possible pgoff_t and since the type is 320 * unsigned we're using -1. 321 */ 322 end = -1; 323 else 324 end = (lend + 1) >> PAGE_SHIFT; 325 326 pagevec_init(&pvec); 327 index = start; 328 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 329 min(end - index, (pgoff_t)PAGEVEC_SIZE), 330 indices)) { 331 /* 332 * Pagevec array has exceptional entries and we may also fail 333 * to lock some pages. So we store pages that can be deleted 334 * in a new pagevec. 335 */ 336 struct pagevec locked_pvec; 337 338 pagevec_init(&locked_pvec); 339 for (i = 0; i < pagevec_count(&pvec); i++) { 340 struct page *page = pvec.pages[i]; 341 342 /* We rely upon deletion not changing page->index */ 343 index = indices[i]; 344 if (index >= end) 345 break; 346 347 if (xa_is_value(page)) 348 continue; 349 350 if (!trylock_page(page)) 351 continue; 352 WARN_ON(page_to_index(page) != index); 353 if (PageWriteback(page)) { 354 unlock_page(page); 355 continue; 356 } 357 if (page->mapping != mapping) { 358 unlock_page(page); 359 continue; 360 } 361 pagevec_add(&locked_pvec, page); 362 } 363 for (i = 0; i < pagevec_count(&locked_pvec); i++) 364 truncate_cleanup_page(mapping, locked_pvec.pages[i]); 365 delete_from_page_cache_batch(mapping, &locked_pvec); 366 for (i = 0; i < pagevec_count(&locked_pvec); i++) 367 unlock_page(locked_pvec.pages[i]); 368 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); 369 pagevec_release(&pvec); 370 cond_resched(); 371 index++; 372 } 373 if (partial_start) { 374 struct page *page = find_lock_page(mapping, start - 1); 375 if (page) { 376 unsigned int top = PAGE_SIZE; 377 if (start > end) { 378 /* Truncation within a single page */ 379 top = partial_end; 380 partial_end = 0; 381 } 382 wait_on_page_writeback(page); 383 zero_user_segment(page, partial_start, top); 384 cleancache_invalidate_page(mapping, page); 385 if (page_has_private(page)) 386 do_invalidatepage(page, partial_start, 387 top - partial_start); 388 unlock_page(page); 389 put_page(page); 390 } 391 } 392 if (partial_end) { 393 struct page *page = find_lock_page(mapping, end); 394 if (page) { 395 wait_on_page_writeback(page); 396 zero_user_segment(page, 0, partial_end); 397 cleancache_invalidate_page(mapping, page); 398 if (page_has_private(page)) 399 do_invalidatepage(page, 0, 400 partial_end); 401 unlock_page(page); 402 put_page(page); 403 } 404 } 405 /* 406 * If the truncation happened within a single page no pages 407 * will be released, just zeroed, so we can bail out now. 408 */ 409 if (start >= end) 410 goto out; 411 412 index = start; 413 for ( ; ; ) { 414 cond_resched(); 415 if (!pagevec_lookup_entries(&pvec, mapping, index, 416 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 417 /* If all gone from start onwards, we're done */ 418 if (index == start) 419 break; 420 /* Otherwise restart to make sure all gone */ 421 index = start; 422 continue; 423 } 424 if (index == start && indices[0] >= end) { 425 /* All gone out of hole to be punched, we're done */ 426 pagevec_remove_exceptionals(&pvec); 427 pagevec_release(&pvec); 428 break; 429 } 430 431 for (i = 0; i < pagevec_count(&pvec); i++) { 432 struct page *page = pvec.pages[i]; 433 434 /* We rely upon deletion not changing page->index */ 435 index = indices[i]; 436 if (index >= end) { 437 /* Restart punch to make sure all gone */ 438 index = start - 1; 439 break; 440 } 441 442 if (xa_is_value(page)) 443 continue; 444 445 lock_page(page); 446 WARN_ON(page_to_index(page) != index); 447 wait_on_page_writeback(page); 448 truncate_inode_page(mapping, page); 449 unlock_page(page); 450 } 451 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); 452 pagevec_release(&pvec); 453 index++; 454 } 455 456 out: 457 cleancache_invalidate_inode(mapping); 458 } 459 EXPORT_SYMBOL(truncate_inode_pages_range); 460 461 /** 462 * truncate_inode_pages - truncate *all* the pages from an offset 463 * @mapping: mapping to truncate 464 * @lstart: offset from which to truncate 465 * 466 * Called under (and serialised by) inode->i_mutex. 467 * 468 * Note: When this function returns, there can be a page in the process of 469 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 470 * mapping->nrpages can be non-zero when this function returns even after 471 * truncation of the whole mapping. 472 */ 473 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 474 { 475 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 476 } 477 EXPORT_SYMBOL(truncate_inode_pages); 478 479 /** 480 * truncate_inode_pages_final - truncate *all* pages before inode dies 481 * @mapping: mapping to truncate 482 * 483 * Called under (and serialized by) inode->i_mutex. 484 * 485 * Filesystems have to use this in the .evict_inode path to inform the 486 * VM that this is the final truncate and the inode is going away. 487 */ 488 void truncate_inode_pages_final(struct address_space *mapping) 489 { 490 unsigned long nrexceptional; 491 unsigned long nrpages; 492 493 /* 494 * Page reclaim can not participate in regular inode lifetime 495 * management (can't call iput()) and thus can race with the 496 * inode teardown. Tell it when the address space is exiting, 497 * so that it does not install eviction information after the 498 * final truncate has begun. 499 */ 500 mapping_set_exiting(mapping); 501 502 /* 503 * When reclaim installs eviction entries, it increases 504 * nrexceptional first, then decreases nrpages. Make sure we see 505 * this in the right order or we might miss an entry. 506 */ 507 nrpages = mapping->nrpages; 508 smp_rmb(); 509 nrexceptional = mapping->nrexceptional; 510 511 if (nrpages || nrexceptional) { 512 /* 513 * As truncation uses a lockless tree lookup, cycle 514 * the tree lock to make sure any ongoing tree 515 * modification that does not see AS_EXITING is 516 * completed before starting the final truncate. 517 */ 518 xa_lock_irq(&mapping->i_pages); 519 xa_unlock_irq(&mapping->i_pages); 520 } 521 522 /* 523 * Cleancache needs notification even if there are no pages or shadow 524 * entries. 525 */ 526 truncate_inode_pages(mapping, 0); 527 } 528 EXPORT_SYMBOL(truncate_inode_pages_final); 529 530 /** 531 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 532 * @mapping: the address_space which holds the pages to invalidate 533 * @start: the offset 'from' which to invalidate 534 * @end: the offset 'to' which to invalidate (inclusive) 535 * 536 * This function only removes the unlocked pages, if you want to 537 * remove all the pages of one inode, you must call truncate_inode_pages. 538 * 539 * invalidate_mapping_pages() will not block on IO activity. It will not 540 * invalidate pages which are dirty, locked, under writeback or mapped into 541 * pagetables. 542 * 543 * Return: the number of the pages that were invalidated 544 */ 545 unsigned long invalidate_mapping_pages(struct address_space *mapping, 546 pgoff_t start, pgoff_t end) 547 { 548 pgoff_t indices[PAGEVEC_SIZE]; 549 struct pagevec pvec; 550 pgoff_t index = start; 551 unsigned long ret; 552 unsigned long count = 0; 553 int i; 554 555 pagevec_init(&pvec); 556 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 557 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 558 indices)) { 559 for (i = 0; i < pagevec_count(&pvec); i++) { 560 struct page *page = pvec.pages[i]; 561 562 /* We rely upon deletion not changing page->index */ 563 index = indices[i]; 564 if (index > end) 565 break; 566 567 if (xa_is_value(page)) { 568 invalidate_exceptional_entry(mapping, index, 569 page); 570 continue; 571 } 572 573 if (!trylock_page(page)) 574 continue; 575 576 WARN_ON(page_to_index(page) != index); 577 578 /* Middle of THP: skip */ 579 if (PageTransTail(page)) { 580 unlock_page(page); 581 continue; 582 } else if (PageTransHuge(page)) { 583 index += HPAGE_PMD_NR - 1; 584 i += HPAGE_PMD_NR - 1; 585 /* 586 * 'end' is in the middle of THP. Don't 587 * invalidate the page as the part outside of 588 * 'end' could be still useful. 589 */ 590 if (index > end) { 591 unlock_page(page); 592 continue; 593 } 594 } 595 596 ret = invalidate_inode_page(page); 597 unlock_page(page); 598 /* 599 * Invalidation is a hint that the page is no longer 600 * of interest and try to speed up its reclaim. 601 */ 602 if (!ret) 603 deactivate_file_page(page); 604 count += ret; 605 } 606 pagevec_remove_exceptionals(&pvec); 607 pagevec_release(&pvec); 608 cond_resched(); 609 index++; 610 } 611 return count; 612 } 613 EXPORT_SYMBOL(invalidate_mapping_pages); 614 615 /* 616 * This is like invalidate_complete_page(), except it ignores the page's 617 * refcount. We do this because invalidate_inode_pages2() needs stronger 618 * invalidation guarantees, and cannot afford to leave pages behind because 619 * shrink_page_list() has a temp ref on them, or because they're transiently 620 * sitting in the lru_cache_add() pagevecs. 621 */ 622 static int 623 invalidate_complete_page2(struct address_space *mapping, struct page *page) 624 { 625 unsigned long flags; 626 627 if (page->mapping != mapping) 628 return 0; 629 630 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 631 return 0; 632 633 xa_lock_irqsave(&mapping->i_pages, flags); 634 if (PageDirty(page)) 635 goto failed; 636 637 BUG_ON(page_has_private(page)); 638 __delete_from_page_cache(page, NULL); 639 xa_unlock_irqrestore(&mapping->i_pages, flags); 640 641 if (mapping->a_ops->freepage) 642 mapping->a_ops->freepage(page); 643 644 put_page(page); /* pagecache ref */ 645 return 1; 646 failed: 647 xa_unlock_irqrestore(&mapping->i_pages, flags); 648 return 0; 649 } 650 651 static int do_launder_page(struct address_space *mapping, struct page *page) 652 { 653 if (!PageDirty(page)) 654 return 0; 655 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 656 return 0; 657 return mapping->a_ops->launder_page(page); 658 } 659 660 /** 661 * invalidate_inode_pages2_range - remove range of pages from an address_space 662 * @mapping: the address_space 663 * @start: the page offset 'from' which to invalidate 664 * @end: the page offset 'to' which to invalidate (inclusive) 665 * 666 * Any pages which are found to be mapped into pagetables are unmapped prior to 667 * invalidation. 668 * 669 * Return: -EBUSY if any pages could not be invalidated. 670 */ 671 int invalidate_inode_pages2_range(struct address_space *mapping, 672 pgoff_t start, pgoff_t end) 673 { 674 pgoff_t indices[PAGEVEC_SIZE]; 675 struct pagevec pvec; 676 pgoff_t index; 677 int i; 678 int ret = 0; 679 int ret2 = 0; 680 int did_range_unmap = 0; 681 682 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 683 goto out; 684 685 pagevec_init(&pvec); 686 index = start; 687 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 688 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 689 indices)) { 690 for (i = 0; i < pagevec_count(&pvec); i++) { 691 struct page *page = pvec.pages[i]; 692 693 /* We rely upon deletion not changing page->index */ 694 index = indices[i]; 695 if (index > end) 696 break; 697 698 if (xa_is_value(page)) { 699 if (!invalidate_exceptional_entry2(mapping, 700 index, page)) 701 ret = -EBUSY; 702 continue; 703 } 704 705 lock_page(page); 706 WARN_ON(page_to_index(page) != index); 707 if (page->mapping != mapping) { 708 unlock_page(page); 709 continue; 710 } 711 wait_on_page_writeback(page); 712 if (page_mapped(page)) { 713 if (!did_range_unmap) { 714 /* 715 * Zap the rest of the file in one hit. 716 */ 717 unmap_mapping_pages(mapping, index, 718 (1 + end - index), false); 719 did_range_unmap = 1; 720 } else { 721 /* 722 * Just zap this page 723 */ 724 unmap_mapping_pages(mapping, index, 725 1, false); 726 } 727 } 728 BUG_ON(page_mapped(page)); 729 ret2 = do_launder_page(mapping, page); 730 if (ret2 == 0) { 731 if (!invalidate_complete_page2(mapping, page)) 732 ret2 = -EBUSY; 733 } 734 if (ret2 < 0) 735 ret = ret2; 736 unlock_page(page); 737 } 738 pagevec_remove_exceptionals(&pvec); 739 pagevec_release(&pvec); 740 cond_resched(); 741 index++; 742 } 743 /* 744 * For DAX we invalidate page tables after invalidating page cache. We 745 * could invalidate page tables while invalidating each entry however 746 * that would be expensive. And doing range unmapping before doesn't 747 * work as we have no cheap way to find whether page cache entry didn't 748 * get remapped later. 749 */ 750 if (dax_mapping(mapping)) { 751 unmap_mapping_pages(mapping, start, end - start + 1, false); 752 } 753 out: 754 cleancache_invalidate_inode(mapping); 755 return ret; 756 } 757 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 758 759 /** 760 * invalidate_inode_pages2 - remove all pages from an address_space 761 * @mapping: the address_space 762 * 763 * Any pages which are found to be mapped into pagetables are unmapped prior to 764 * invalidation. 765 * 766 * Return: -EBUSY if any pages could not be invalidated. 767 */ 768 int invalidate_inode_pages2(struct address_space *mapping) 769 { 770 return invalidate_inode_pages2_range(mapping, 0, -1); 771 } 772 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 773 774 /** 775 * truncate_pagecache - unmap and remove pagecache that has been truncated 776 * @inode: inode 777 * @newsize: new file size 778 * 779 * inode's new i_size must already be written before truncate_pagecache 780 * is called. 781 * 782 * This function should typically be called before the filesystem 783 * releases resources associated with the freed range (eg. deallocates 784 * blocks). This way, pagecache will always stay logically coherent 785 * with on-disk format, and the filesystem would not have to deal with 786 * situations such as writepage being called for a page that has already 787 * had its underlying blocks deallocated. 788 */ 789 void truncate_pagecache(struct inode *inode, loff_t newsize) 790 { 791 struct address_space *mapping = inode->i_mapping; 792 loff_t holebegin = round_up(newsize, PAGE_SIZE); 793 794 /* 795 * unmap_mapping_range is called twice, first simply for 796 * efficiency so that truncate_inode_pages does fewer 797 * single-page unmaps. However after this first call, and 798 * before truncate_inode_pages finishes, it is possible for 799 * private pages to be COWed, which remain after 800 * truncate_inode_pages finishes, hence the second 801 * unmap_mapping_range call must be made for correctness. 802 */ 803 unmap_mapping_range(mapping, holebegin, 0, 1); 804 truncate_inode_pages(mapping, newsize); 805 unmap_mapping_range(mapping, holebegin, 0, 1); 806 } 807 EXPORT_SYMBOL(truncate_pagecache); 808 809 /** 810 * truncate_setsize - update inode and pagecache for a new file size 811 * @inode: inode 812 * @newsize: new file size 813 * 814 * truncate_setsize updates i_size and performs pagecache truncation (if 815 * necessary) to @newsize. It will be typically be called from the filesystem's 816 * setattr function when ATTR_SIZE is passed in. 817 * 818 * Must be called with a lock serializing truncates and writes (generally 819 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 820 * specific block truncation has been performed. 821 */ 822 void truncate_setsize(struct inode *inode, loff_t newsize) 823 { 824 loff_t oldsize = inode->i_size; 825 826 i_size_write(inode, newsize); 827 if (newsize > oldsize) 828 pagecache_isize_extended(inode, oldsize, newsize); 829 truncate_pagecache(inode, newsize); 830 } 831 EXPORT_SYMBOL(truncate_setsize); 832 833 /** 834 * pagecache_isize_extended - update pagecache after extension of i_size 835 * @inode: inode for which i_size was extended 836 * @from: original inode size 837 * @to: new inode size 838 * 839 * Handle extension of inode size either caused by extending truncate or by 840 * write starting after current i_size. We mark the page straddling current 841 * i_size RO so that page_mkwrite() is called on the nearest write access to 842 * the page. This way filesystem can be sure that page_mkwrite() is called on 843 * the page before user writes to the page via mmap after the i_size has been 844 * changed. 845 * 846 * The function must be called after i_size is updated so that page fault 847 * coming after we unlock the page will already see the new i_size. 848 * The function must be called while we still hold i_mutex - this not only 849 * makes sure i_size is stable but also that userspace cannot observe new 850 * i_size value before we are prepared to store mmap writes at new inode size. 851 */ 852 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 853 { 854 int bsize = i_blocksize(inode); 855 loff_t rounded_from; 856 struct page *page; 857 pgoff_t index; 858 859 WARN_ON(to > inode->i_size); 860 861 if (from >= to || bsize == PAGE_SIZE) 862 return; 863 /* Page straddling @from will not have any hole block created? */ 864 rounded_from = round_up(from, bsize); 865 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 866 return; 867 868 index = from >> PAGE_SHIFT; 869 page = find_lock_page(inode->i_mapping, index); 870 /* Page not cached? Nothing to do */ 871 if (!page) 872 return; 873 /* 874 * See clear_page_dirty_for_io() for details why set_page_dirty() 875 * is needed. 876 */ 877 if (page_mkclean(page)) 878 set_page_dirty(page); 879 unlock_page(page); 880 put_page(page); 881 } 882 EXPORT_SYMBOL(pagecache_isize_extended); 883 884 /** 885 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 886 * @inode: inode 887 * @lstart: offset of beginning of hole 888 * @lend: offset of last byte of hole 889 * 890 * This function should typically be called before the filesystem 891 * releases resources associated with the freed range (eg. deallocates 892 * blocks). This way, pagecache will always stay logically coherent 893 * with on-disk format, and the filesystem would not have to deal with 894 * situations such as writepage being called for a page that has already 895 * had its underlying blocks deallocated. 896 */ 897 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 898 { 899 struct address_space *mapping = inode->i_mapping; 900 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 901 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 902 /* 903 * This rounding is currently just for example: unmap_mapping_range 904 * expands its hole outwards, whereas we want it to contract the hole 905 * inwards. However, existing callers of truncate_pagecache_range are 906 * doing their own page rounding first. Note that unmap_mapping_range 907 * allows holelen 0 for all, and we allow lend -1 for end of file. 908 */ 909 910 /* 911 * Unlike in truncate_pagecache, unmap_mapping_range is called only 912 * once (before truncating pagecache), and without "even_cows" flag: 913 * hole-punching should not remove private COWed pages from the hole. 914 */ 915 if ((u64)unmap_end > (u64)unmap_start) 916 unmap_mapping_range(mapping, unmap_start, 917 1 + unmap_end - unmap_start, 0); 918 truncate_inode_pages_range(mapping, lstart, lend); 919 } 920 EXPORT_SYMBOL(truncate_pagecache_range); 921