xref: /openbmc/linux/mm/truncate.c (revision f4b1e98aa93d548e5d51c8c5272ea08562fc71c1)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/module.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
21 				   do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include "internal.h"
24 
25 
26 /**
27  * do_invalidatepage - invalidate part or all of a page
28  * @page: the page which is affected
29  * @offset: the index of the truncation point
30  *
31  * do_invalidatepage() is called when all or part of the page has become
32  * invalidated by a truncate operation.
33  *
34  * do_invalidatepage() does not have to release all buffers, but it must
35  * ensure that no dirty buffer is left outside @offset and that no I/O
36  * is underway against any of the blocks which are outside the truncation
37  * point.  Because the caller is about to free (and possibly reuse) those
38  * blocks on-disk.
39  */
40 void do_invalidatepage(struct page *page, unsigned long offset)
41 {
42 	void (*invalidatepage)(struct page *, unsigned long);
43 	invalidatepage = page->mapping->a_ops->invalidatepage;
44 #ifdef CONFIG_BLOCK
45 	if (!invalidatepage)
46 		invalidatepage = block_invalidatepage;
47 #endif
48 	if (invalidatepage)
49 		(*invalidatepage)(page, offset);
50 }
51 
52 static inline void truncate_partial_page(struct page *page, unsigned partial)
53 {
54 	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
55 	cleancache_flush_page(page->mapping, page);
56 	if (page_has_private(page))
57 		do_invalidatepage(page, partial);
58 }
59 
60 /*
61  * This cancels just the dirty bit on the kernel page itself, it
62  * does NOT actually remove dirty bits on any mmap's that may be
63  * around. It also leaves the page tagged dirty, so any sync
64  * activity will still find it on the dirty lists, and in particular,
65  * clear_page_dirty_for_io() will still look at the dirty bits in
66  * the VM.
67  *
68  * Doing this should *normally* only ever be done when a page
69  * is truncated, and is not actually mapped anywhere at all. However,
70  * fs/buffer.c does this when it notices that somebody has cleaned
71  * out all the buffers on a page without actually doing it through
72  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
73  */
74 void cancel_dirty_page(struct page *page, unsigned int account_size)
75 {
76 	if (TestClearPageDirty(page)) {
77 		struct address_space *mapping = page->mapping;
78 		if (mapping && mapping_cap_account_dirty(mapping)) {
79 			dec_zone_page_state(page, NR_FILE_DIRTY);
80 			dec_bdi_stat(mapping->backing_dev_info,
81 					BDI_RECLAIMABLE);
82 			if (account_size)
83 				task_io_account_cancelled_write(account_size);
84 		}
85 	}
86 }
87 EXPORT_SYMBOL(cancel_dirty_page);
88 
89 /*
90  * If truncate cannot remove the fs-private metadata from the page, the page
91  * becomes orphaned.  It will be left on the LRU and may even be mapped into
92  * user pagetables if we're racing with filemap_fault().
93  *
94  * We need to bale out if page->mapping is no longer equal to the original
95  * mapping.  This happens a) when the VM reclaimed the page while we waited on
96  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
97  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
98  */
99 static int
100 truncate_complete_page(struct address_space *mapping, struct page *page)
101 {
102 	if (page->mapping != mapping)
103 		return -EIO;
104 
105 	if (page_has_private(page))
106 		do_invalidatepage(page, 0);
107 
108 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
109 
110 	clear_page_mlock(page);
111 	ClearPageMappedToDisk(page);
112 	delete_from_page_cache(page);
113 	return 0;
114 }
115 
116 /*
117  * This is for invalidate_mapping_pages().  That function can be called at
118  * any time, and is not supposed to throw away dirty pages.  But pages can
119  * be marked dirty at any time too, so use remove_mapping which safely
120  * discards clean, unused pages.
121  *
122  * Returns non-zero if the page was successfully invalidated.
123  */
124 static int
125 invalidate_complete_page(struct address_space *mapping, struct page *page)
126 {
127 	int ret;
128 
129 	if (page->mapping != mapping)
130 		return 0;
131 
132 	if (page_has_private(page) && !try_to_release_page(page, 0))
133 		return 0;
134 
135 	clear_page_mlock(page);
136 	ret = remove_mapping(mapping, page);
137 
138 	return ret;
139 }
140 
141 int truncate_inode_page(struct address_space *mapping, struct page *page)
142 {
143 	if (page_mapped(page)) {
144 		unmap_mapping_range(mapping,
145 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
146 				   PAGE_CACHE_SIZE, 0);
147 	}
148 	return truncate_complete_page(mapping, page);
149 }
150 
151 /*
152  * Used to get rid of pages on hardware memory corruption.
153  */
154 int generic_error_remove_page(struct address_space *mapping, struct page *page)
155 {
156 	if (!mapping)
157 		return -EINVAL;
158 	/*
159 	 * Only punch for normal data pages for now.
160 	 * Handling other types like directories would need more auditing.
161 	 */
162 	if (!S_ISREG(mapping->host->i_mode))
163 		return -EIO;
164 	return truncate_inode_page(mapping, page);
165 }
166 EXPORT_SYMBOL(generic_error_remove_page);
167 
168 /*
169  * Safely invalidate one page from its pagecache mapping.
170  * It only drops clean, unused pages. The page must be locked.
171  *
172  * Returns 1 if the page is successfully invalidated, otherwise 0.
173  */
174 int invalidate_inode_page(struct page *page)
175 {
176 	struct address_space *mapping = page_mapping(page);
177 	if (!mapping)
178 		return 0;
179 	if (PageDirty(page) || PageWriteback(page))
180 		return 0;
181 	if (page_mapped(page))
182 		return 0;
183 	return invalidate_complete_page(mapping, page);
184 }
185 
186 /**
187  * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
188  * @mapping: mapping to truncate
189  * @lstart: offset from which to truncate
190  * @lend: offset to which to truncate
191  *
192  * Truncate the page cache, removing the pages that are between
193  * specified offsets (and zeroing out partial page
194  * (if lstart is not page aligned)).
195  *
196  * Truncate takes two passes - the first pass is nonblocking.  It will not
197  * block on page locks and it will not block on writeback.  The second pass
198  * will wait.  This is to prevent as much IO as possible in the affected region.
199  * The first pass will remove most pages, so the search cost of the second pass
200  * is low.
201  *
202  * When looking at page->index outside the page lock we need to be careful to
203  * copy it into a local to avoid races (it could change at any time).
204  *
205  * We pass down the cache-hot hint to the page freeing code.  Even if the
206  * mapping is large, it is probably the case that the final pages are the most
207  * recently touched, and freeing happens in ascending file offset order.
208  */
209 void truncate_inode_pages_range(struct address_space *mapping,
210 				loff_t lstart, loff_t lend)
211 {
212 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
213 	pgoff_t end;
214 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
215 	struct pagevec pvec;
216 	pgoff_t next;
217 	int i;
218 
219 	cleancache_flush_inode(mapping);
220 	if (mapping->nrpages == 0)
221 		return;
222 
223 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
224 	end = (lend >> PAGE_CACHE_SHIFT);
225 
226 	pagevec_init(&pvec, 0);
227 	next = start;
228 	while (next <= end &&
229 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
230 		mem_cgroup_uncharge_start();
231 		for (i = 0; i < pagevec_count(&pvec); i++) {
232 			struct page *page = pvec.pages[i];
233 			pgoff_t page_index = page->index;
234 
235 			if (page_index > end) {
236 				next = page_index;
237 				break;
238 			}
239 
240 			if (page_index > next)
241 				next = page_index;
242 			next++;
243 			if (!trylock_page(page))
244 				continue;
245 			if (PageWriteback(page)) {
246 				unlock_page(page);
247 				continue;
248 			}
249 			truncate_inode_page(mapping, page);
250 			unlock_page(page);
251 		}
252 		pagevec_release(&pvec);
253 		mem_cgroup_uncharge_end();
254 		cond_resched();
255 	}
256 
257 	if (partial) {
258 		struct page *page = find_lock_page(mapping, start - 1);
259 		if (page) {
260 			wait_on_page_writeback(page);
261 			truncate_partial_page(page, partial);
262 			unlock_page(page);
263 			page_cache_release(page);
264 		}
265 	}
266 
267 	next = start;
268 	for ( ; ; ) {
269 		cond_resched();
270 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
271 			if (next == start)
272 				break;
273 			next = start;
274 			continue;
275 		}
276 		if (pvec.pages[0]->index > end) {
277 			pagevec_release(&pvec);
278 			break;
279 		}
280 		mem_cgroup_uncharge_start();
281 		for (i = 0; i < pagevec_count(&pvec); i++) {
282 			struct page *page = pvec.pages[i];
283 
284 			if (page->index > end)
285 				break;
286 			lock_page(page);
287 			wait_on_page_writeback(page);
288 			truncate_inode_page(mapping, page);
289 			if (page->index > next)
290 				next = page->index;
291 			next++;
292 			unlock_page(page);
293 		}
294 		pagevec_release(&pvec);
295 		mem_cgroup_uncharge_end();
296 	}
297 	cleancache_flush_inode(mapping);
298 }
299 EXPORT_SYMBOL(truncate_inode_pages_range);
300 
301 /**
302  * truncate_inode_pages - truncate *all* the pages from an offset
303  * @mapping: mapping to truncate
304  * @lstart: offset from which to truncate
305  *
306  * Called under (and serialised by) inode->i_mutex.
307  */
308 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
309 {
310 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
311 }
312 EXPORT_SYMBOL(truncate_inode_pages);
313 
314 /**
315  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
316  * @mapping: the address_space which holds the pages to invalidate
317  * @start: the offset 'from' which to invalidate
318  * @end: the offset 'to' which to invalidate (inclusive)
319  *
320  * This function only removes the unlocked pages, if you want to
321  * remove all the pages of one inode, you must call truncate_inode_pages.
322  *
323  * invalidate_mapping_pages() will not block on IO activity. It will not
324  * invalidate pages which are dirty, locked, under writeback or mapped into
325  * pagetables.
326  */
327 unsigned long invalidate_mapping_pages(struct address_space *mapping,
328 		pgoff_t start, pgoff_t end)
329 {
330 	struct pagevec pvec;
331 	pgoff_t next = start;
332 	unsigned long ret;
333 	unsigned long count = 0;
334 	int i;
335 
336 	pagevec_init(&pvec, 0);
337 	while (next <= end &&
338 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
339 		mem_cgroup_uncharge_start();
340 		for (i = 0; i < pagevec_count(&pvec); i++) {
341 			struct page *page = pvec.pages[i];
342 			pgoff_t index;
343 			int lock_failed;
344 
345 			lock_failed = !trylock_page(page);
346 
347 			/*
348 			 * We really shouldn't be looking at the ->index of an
349 			 * unlocked page.  But we're not allowed to lock these
350 			 * pages.  So we rely upon nobody altering the ->index
351 			 * of this (pinned-by-us) page.
352 			 */
353 			index = page->index;
354 			if (index > next)
355 				next = index;
356 			next++;
357 			if (lock_failed)
358 				continue;
359 
360 			ret = invalidate_inode_page(page);
361 			unlock_page(page);
362 			/*
363 			 * Invalidation is a hint that the page is no longer
364 			 * of interest and try to speed up its reclaim.
365 			 */
366 			if (!ret)
367 				deactivate_page(page);
368 			count += ret;
369 			if (next > end)
370 				break;
371 		}
372 		pagevec_release(&pvec);
373 		mem_cgroup_uncharge_end();
374 		cond_resched();
375 	}
376 	return count;
377 }
378 EXPORT_SYMBOL(invalidate_mapping_pages);
379 
380 /*
381  * This is like invalidate_complete_page(), except it ignores the page's
382  * refcount.  We do this because invalidate_inode_pages2() needs stronger
383  * invalidation guarantees, and cannot afford to leave pages behind because
384  * shrink_page_list() has a temp ref on them, or because they're transiently
385  * sitting in the lru_cache_add() pagevecs.
386  */
387 static int
388 invalidate_complete_page2(struct address_space *mapping, struct page *page)
389 {
390 	if (page->mapping != mapping)
391 		return 0;
392 
393 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
394 		return 0;
395 
396 	spin_lock_irq(&mapping->tree_lock);
397 	if (PageDirty(page))
398 		goto failed;
399 
400 	clear_page_mlock(page);
401 	BUG_ON(page_has_private(page));
402 	__delete_from_page_cache(page);
403 	spin_unlock_irq(&mapping->tree_lock);
404 	mem_cgroup_uncharge_cache_page(page);
405 
406 	if (mapping->a_ops->freepage)
407 		mapping->a_ops->freepage(page);
408 
409 	page_cache_release(page);	/* pagecache ref */
410 	return 1;
411 failed:
412 	spin_unlock_irq(&mapping->tree_lock);
413 	return 0;
414 }
415 
416 static int do_launder_page(struct address_space *mapping, struct page *page)
417 {
418 	if (!PageDirty(page))
419 		return 0;
420 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
421 		return 0;
422 	return mapping->a_ops->launder_page(page);
423 }
424 
425 /**
426  * invalidate_inode_pages2_range - remove range of pages from an address_space
427  * @mapping: the address_space
428  * @start: the page offset 'from' which to invalidate
429  * @end: the page offset 'to' which to invalidate (inclusive)
430  *
431  * Any pages which are found to be mapped into pagetables are unmapped prior to
432  * invalidation.
433  *
434  * Returns -EBUSY if any pages could not be invalidated.
435  */
436 int invalidate_inode_pages2_range(struct address_space *mapping,
437 				  pgoff_t start, pgoff_t end)
438 {
439 	struct pagevec pvec;
440 	pgoff_t next;
441 	int i;
442 	int ret = 0;
443 	int ret2 = 0;
444 	int did_range_unmap = 0;
445 	int wrapped = 0;
446 
447 	cleancache_flush_inode(mapping);
448 	pagevec_init(&pvec, 0);
449 	next = start;
450 	while (next <= end && !wrapped &&
451 		pagevec_lookup(&pvec, mapping, next,
452 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
453 		mem_cgroup_uncharge_start();
454 		for (i = 0; i < pagevec_count(&pvec); i++) {
455 			struct page *page = pvec.pages[i];
456 			pgoff_t page_index;
457 
458 			lock_page(page);
459 			if (page->mapping != mapping) {
460 				unlock_page(page);
461 				continue;
462 			}
463 			page_index = page->index;
464 			next = page_index + 1;
465 			if (next == 0)
466 				wrapped = 1;
467 			if (page_index > end) {
468 				unlock_page(page);
469 				break;
470 			}
471 			wait_on_page_writeback(page);
472 			if (page_mapped(page)) {
473 				if (!did_range_unmap) {
474 					/*
475 					 * Zap the rest of the file in one hit.
476 					 */
477 					unmap_mapping_range(mapping,
478 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
479 					   (loff_t)(end - page_index + 1)
480 							<< PAGE_CACHE_SHIFT,
481 					    0);
482 					did_range_unmap = 1;
483 				} else {
484 					/*
485 					 * Just zap this page
486 					 */
487 					unmap_mapping_range(mapping,
488 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
489 					  PAGE_CACHE_SIZE, 0);
490 				}
491 			}
492 			BUG_ON(page_mapped(page));
493 			ret2 = do_launder_page(mapping, page);
494 			if (ret2 == 0) {
495 				if (!invalidate_complete_page2(mapping, page))
496 					ret2 = -EBUSY;
497 			}
498 			if (ret2 < 0)
499 				ret = ret2;
500 			unlock_page(page);
501 		}
502 		pagevec_release(&pvec);
503 		mem_cgroup_uncharge_end();
504 		cond_resched();
505 	}
506 	cleancache_flush_inode(mapping);
507 	return ret;
508 }
509 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
510 
511 /**
512  * invalidate_inode_pages2 - remove all pages from an address_space
513  * @mapping: the address_space
514  *
515  * Any pages which are found to be mapped into pagetables are unmapped prior to
516  * invalidation.
517  *
518  * Returns -EBUSY if any pages could not be invalidated.
519  */
520 int invalidate_inode_pages2(struct address_space *mapping)
521 {
522 	return invalidate_inode_pages2_range(mapping, 0, -1);
523 }
524 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
525 
526 /**
527  * truncate_pagecache - unmap and remove pagecache that has been truncated
528  * @inode: inode
529  * @old: old file offset
530  * @new: new file offset
531  *
532  * inode's new i_size must already be written before truncate_pagecache
533  * is called.
534  *
535  * This function should typically be called before the filesystem
536  * releases resources associated with the freed range (eg. deallocates
537  * blocks). This way, pagecache will always stay logically coherent
538  * with on-disk format, and the filesystem would not have to deal with
539  * situations such as writepage being called for a page that has already
540  * had its underlying blocks deallocated.
541  */
542 void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
543 {
544 	struct address_space *mapping = inode->i_mapping;
545 
546 	/*
547 	 * unmap_mapping_range is called twice, first simply for
548 	 * efficiency so that truncate_inode_pages does fewer
549 	 * single-page unmaps.  However after this first call, and
550 	 * before truncate_inode_pages finishes, it is possible for
551 	 * private pages to be COWed, which remain after
552 	 * truncate_inode_pages finishes, hence the second
553 	 * unmap_mapping_range call must be made for correctness.
554 	 */
555 	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
556 	truncate_inode_pages(mapping, new);
557 	unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
558 }
559 EXPORT_SYMBOL(truncate_pagecache);
560 
561 /**
562  * truncate_setsize - update inode and pagecache for a new file size
563  * @inode: inode
564  * @newsize: new file size
565  *
566  * truncate_setsize updates i_size and performs pagecache truncation (if
567  * necessary) to @newsize. It will be typically be called from the filesystem's
568  * setattr function when ATTR_SIZE is passed in.
569  *
570  * Must be called with inode_mutex held and before all filesystem specific
571  * block truncation has been performed.
572  */
573 void truncate_setsize(struct inode *inode, loff_t newsize)
574 {
575 	loff_t oldsize;
576 
577 	oldsize = inode->i_size;
578 	i_size_write(inode, newsize);
579 
580 	truncate_pagecache(inode, oldsize, newsize);
581 }
582 EXPORT_SYMBOL(truncate_setsize);
583 
584 /**
585  * vmtruncate - unmap mappings "freed" by truncate() syscall
586  * @inode: inode of the file used
587  * @offset: file offset to start truncating
588  *
589  * This function is deprecated and truncate_setsize or truncate_pagecache
590  * should be used instead, together with filesystem specific block truncation.
591  */
592 int vmtruncate(struct inode *inode, loff_t offset)
593 {
594 	int error;
595 
596 	error = inode_newsize_ok(inode, offset);
597 	if (error)
598 		return error;
599 
600 	truncate_setsize(inode, offset);
601 	if (inode->i_op->truncate)
602 		inode->i_op->truncate(inode);
603 	return 0;
604 }
605 EXPORT_SYMBOL(vmtruncate);
606