xref: /openbmc/linux/mm/truncate.c (revision f42b3800)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	akpm@zip.com.au
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/swap.h>
14 #include <linux/module.h>
15 #include <linux/pagemap.h>
16 #include <linux/highmem.h>
17 #include <linux/pagevec.h>
18 #include <linux/task_io_accounting_ops.h>
19 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
20 				   do_invalidatepage */
21 
22 
23 /**
24  * do_invalidatepage - invalidate part or all of a page
25  * @page: the page which is affected
26  * @offset: the index of the truncation point
27  *
28  * do_invalidatepage() is called when all or part of the page has become
29  * invalidated by a truncate operation.
30  *
31  * do_invalidatepage() does not have to release all buffers, but it must
32  * ensure that no dirty buffer is left outside @offset and that no I/O
33  * is underway against any of the blocks which are outside the truncation
34  * point.  Because the caller is about to free (and possibly reuse) those
35  * blocks on-disk.
36  */
37 void do_invalidatepage(struct page *page, unsigned long offset)
38 {
39 	void (*invalidatepage)(struct page *, unsigned long);
40 	invalidatepage = page->mapping->a_ops->invalidatepage;
41 #ifdef CONFIG_BLOCK
42 	if (!invalidatepage)
43 		invalidatepage = block_invalidatepage;
44 #endif
45 	if (invalidatepage)
46 		(*invalidatepage)(page, offset);
47 }
48 
49 static inline void truncate_partial_page(struct page *page, unsigned partial)
50 {
51 	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
52 	if (PagePrivate(page))
53 		do_invalidatepage(page, partial);
54 }
55 
56 /*
57  * This cancels just the dirty bit on the kernel page itself, it
58  * does NOT actually remove dirty bits on any mmap's that may be
59  * around. It also leaves the page tagged dirty, so any sync
60  * activity will still find it on the dirty lists, and in particular,
61  * clear_page_dirty_for_io() will still look at the dirty bits in
62  * the VM.
63  *
64  * Doing this should *normally* only ever be done when a page
65  * is truncated, and is not actually mapped anywhere at all. However,
66  * fs/buffer.c does this when it notices that somebody has cleaned
67  * out all the buffers on a page without actually doing it through
68  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
69  */
70 void cancel_dirty_page(struct page *page, unsigned int account_size)
71 {
72 	if (TestClearPageDirty(page)) {
73 		struct address_space *mapping = page->mapping;
74 		if (mapping && mapping_cap_account_dirty(mapping)) {
75 			dec_zone_page_state(page, NR_FILE_DIRTY);
76 			dec_bdi_stat(mapping->backing_dev_info,
77 					BDI_RECLAIMABLE);
78 			if (account_size)
79 				task_io_account_cancelled_write(account_size);
80 		}
81 	}
82 }
83 EXPORT_SYMBOL(cancel_dirty_page);
84 
85 /*
86  * If truncate cannot remove the fs-private metadata from the page, the page
87  * becomes orphaned.  It will be left on the LRU and may even be mapped into
88  * user pagetables if we're racing with filemap_fault().
89  *
90  * We need to bale out if page->mapping is no longer equal to the original
91  * mapping.  This happens a) when the VM reclaimed the page while we waited on
92  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
93  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
94  */
95 static void
96 truncate_complete_page(struct address_space *mapping, struct page *page)
97 {
98 	if (page->mapping != mapping)
99 		return;
100 
101 	if (PagePrivate(page))
102 		do_invalidatepage(page, 0);
103 
104 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
105 
106 	remove_from_page_cache(page);
107 	ClearPageUptodate(page);
108 	ClearPageMappedToDisk(page);
109 	page_cache_release(page);	/* pagecache ref */
110 }
111 
112 /*
113  * This is for invalidate_mapping_pages().  That function can be called at
114  * any time, and is not supposed to throw away dirty pages.  But pages can
115  * be marked dirty at any time too, so use remove_mapping which safely
116  * discards clean, unused pages.
117  *
118  * Returns non-zero if the page was successfully invalidated.
119  */
120 static int
121 invalidate_complete_page(struct address_space *mapping, struct page *page)
122 {
123 	int ret;
124 
125 	if (page->mapping != mapping)
126 		return 0;
127 
128 	if (PagePrivate(page) && !try_to_release_page(page, 0))
129 		return 0;
130 
131 	ret = remove_mapping(mapping, page);
132 
133 	return ret;
134 }
135 
136 /**
137  * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
138  * @mapping: mapping to truncate
139  * @lstart: offset from which to truncate
140  * @lend: offset to which to truncate
141  *
142  * Truncate the page cache, removing the pages that are between
143  * specified offsets (and zeroing out partial page
144  * (if lstart is not page aligned)).
145  *
146  * Truncate takes two passes - the first pass is nonblocking.  It will not
147  * block on page locks and it will not block on writeback.  The second pass
148  * will wait.  This is to prevent as much IO as possible in the affected region.
149  * The first pass will remove most pages, so the search cost of the second pass
150  * is low.
151  *
152  * When looking at page->index outside the page lock we need to be careful to
153  * copy it into a local to avoid races (it could change at any time).
154  *
155  * We pass down the cache-hot hint to the page freeing code.  Even if the
156  * mapping is large, it is probably the case that the final pages are the most
157  * recently touched, and freeing happens in ascending file offset order.
158  */
159 void truncate_inode_pages_range(struct address_space *mapping,
160 				loff_t lstart, loff_t lend)
161 {
162 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
163 	pgoff_t end;
164 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
165 	struct pagevec pvec;
166 	pgoff_t next;
167 	int i;
168 
169 	if (mapping->nrpages == 0)
170 		return;
171 
172 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
173 	end = (lend >> PAGE_CACHE_SHIFT);
174 
175 	pagevec_init(&pvec, 0);
176 	next = start;
177 	while (next <= end &&
178 	       pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
179 		for (i = 0; i < pagevec_count(&pvec); i++) {
180 			struct page *page = pvec.pages[i];
181 			pgoff_t page_index = page->index;
182 
183 			if (page_index > end) {
184 				next = page_index;
185 				break;
186 			}
187 
188 			if (page_index > next)
189 				next = page_index;
190 			next++;
191 			if (TestSetPageLocked(page))
192 				continue;
193 			if (PageWriteback(page)) {
194 				unlock_page(page);
195 				continue;
196 			}
197 			if (page_mapped(page)) {
198 				unmap_mapping_range(mapping,
199 				  (loff_t)page_index<<PAGE_CACHE_SHIFT,
200 				  PAGE_CACHE_SIZE, 0);
201 			}
202 			truncate_complete_page(mapping, page);
203 			unlock_page(page);
204 		}
205 		pagevec_release(&pvec);
206 		cond_resched();
207 	}
208 
209 	if (partial) {
210 		struct page *page = find_lock_page(mapping, start - 1);
211 		if (page) {
212 			wait_on_page_writeback(page);
213 			truncate_partial_page(page, partial);
214 			unlock_page(page);
215 			page_cache_release(page);
216 		}
217 	}
218 
219 	next = start;
220 	for ( ; ; ) {
221 		cond_resched();
222 		if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
223 			if (next == start)
224 				break;
225 			next = start;
226 			continue;
227 		}
228 		if (pvec.pages[0]->index > end) {
229 			pagevec_release(&pvec);
230 			break;
231 		}
232 		for (i = 0; i < pagevec_count(&pvec); i++) {
233 			struct page *page = pvec.pages[i];
234 
235 			if (page->index > end)
236 				break;
237 			lock_page(page);
238 			wait_on_page_writeback(page);
239 			if (page_mapped(page)) {
240 				unmap_mapping_range(mapping,
241 				  (loff_t)page->index<<PAGE_CACHE_SHIFT,
242 				  PAGE_CACHE_SIZE, 0);
243 			}
244 			if (page->index > next)
245 				next = page->index;
246 			next++;
247 			truncate_complete_page(mapping, page);
248 			unlock_page(page);
249 		}
250 		pagevec_release(&pvec);
251 	}
252 }
253 EXPORT_SYMBOL(truncate_inode_pages_range);
254 
255 /**
256  * truncate_inode_pages - truncate *all* the pages from an offset
257  * @mapping: mapping to truncate
258  * @lstart: offset from which to truncate
259  *
260  * Called under (and serialised by) inode->i_mutex.
261  */
262 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
263 {
264 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
265 }
266 EXPORT_SYMBOL(truncate_inode_pages);
267 
268 unsigned long __invalidate_mapping_pages(struct address_space *mapping,
269 				pgoff_t start, pgoff_t end, bool be_atomic)
270 {
271 	struct pagevec pvec;
272 	pgoff_t next = start;
273 	unsigned long ret = 0;
274 	int i;
275 
276 	pagevec_init(&pvec, 0);
277 	while (next <= end &&
278 			pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
279 		for (i = 0; i < pagevec_count(&pvec); i++) {
280 			struct page *page = pvec.pages[i];
281 			pgoff_t index;
282 			int lock_failed;
283 
284 			lock_failed = TestSetPageLocked(page);
285 
286 			/*
287 			 * We really shouldn't be looking at the ->index of an
288 			 * unlocked page.  But we're not allowed to lock these
289 			 * pages.  So we rely upon nobody altering the ->index
290 			 * of this (pinned-by-us) page.
291 			 */
292 			index = page->index;
293 			if (index > next)
294 				next = index;
295 			next++;
296 			if (lock_failed)
297 				continue;
298 
299 			if (PageDirty(page) || PageWriteback(page))
300 				goto unlock;
301 			if (page_mapped(page))
302 				goto unlock;
303 			ret += invalidate_complete_page(mapping, page);
304 unlock:
305 			unlock_page(page);
306 			if (next > end)
307 				break;
308 		}
309 		pagevec_release(&pvec);
310 		if (likely(!be_atomic))
311 			cond_resched();
312 	}
313 	return ret;
314 }
315 
316 /**
317  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
318  * @mapping: the address_space which holds the pages to invalidate
319  * @start: the offset 'from' which to invalidate
320  * @end: the offset 'to' which to invalidate (inclusive)
321  *
322  * This function only removes the unlocked pages, if you want to
323  * remove all the pages of one inode, you must call truncate_inode_pages.
324  *
325  * invalidate_mapping_pages() will not block on IO activity. It will not
326  * invalidate pages which are dirty, locked, under writeback or mapped into
327  * pagetables.
328  */
329 unsigned long invalidate_mapping_pages(struct address_space *mapping,
330 				pgoff_t start, pgoff_t end)
331 {
332 	return __invalidate_mapping_pages(mapping, start, end, false);
333 }
334 EXPORT_SYMBOL(invalidate_mapping_pages);
335 
336 /*
337  * This is like invalidate_complete_page(), except it ignores the page's
338  * refcount.  We do this because invalidate_inode_pages2() needs stronger
339  * invalidation guarantees, and cannot afford to leave pages behind because
340  * shrink_page_list() has a temp ref on them, or because they're transiently
341  * sitting in the lru_cache_add() pagevecs.
342  */
343 static int
344 invalidate_complete_page2(struct address_space *mapping, struct page *page)
345 {
346 	if (page->mapping != mapping)
347 		return 0;
348 
349 	if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
350 		return 0;
351 
352 	write_lock_irq(&mapping->tree_lock);
353 	if (PageDirty(page))
354 		goto failed;
355 
356 	BUG_ON(PagePrivate(page));
357 	__remove_from_page_cache(page);
358 	write_unlock_irq(&mapping->tree_lock);
359 	ClearPageUptodate(page);
360 	page_cache_release(page);	/* pagecache ref */
361 	return 1;
362 failed:
363 	write_unlock_irq(&mapping->tree_lock);
364 	return 0;
365 }
366 
367 static int do_launder_page(struct address_space *mapping, struct page *page)
368 {
369 	if (!PageDirty(page))
370 		return 0;
371 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
372 		return 0;
373 	return mapping->a_ops->launder_page(page);
374 }
375 
376 /**
377  * invalidate_inode_pages2_range - remove range of pages from an address_space
378  * @mapping: the address_space
379  * @start: the page offset 'from' which to invalidate
380  * @end: the page offset 'to' which to invalidate (inclusive)
381  *
382  * Any pages which are found to be mapped into pagetables are unmapped prior to
383  * invalidation.
384  *
385  * Returns -EIO if any pages could not be invalidated.
386  */
387 int invalidate_inode_pages2_range(struct address_space *mapping,
388 				  pgoff_t start, pgoff_t end)
389 {
390 	struct pagevec pvec;
391 	pgoff_t next;
392 	int i;
393 	int ret = 0;
394 	int did_range_unmap = 0;
395 	int wrapped = 0;
396 
397 	pagevec_init(&pvec, 0);
398 	next = start;
399 	while (next <= end && !wrapped &&
400 		pagevec_lookup(&pvec, mapping, next,
401 			min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
402 		for (i = 0; i < pagevec_count(&pvec); i++) {
403 			struct page *page = pvec.pages[i];
404 			pgoff_t page_index;
405 
406 			lock_page(page);
407 			if (page->mapping != mapping) {
408 				unlock_page(page);
409 				continue;
410 			}
411 			page_index = page->index;
412 			next = page_index + 1;
413 			if (next == 0)
414 				wrapped = 1;
415 			if (page_index > end) {
416 				unlock_page(page);
417 				break;
418 			}
419 			wait_on_page_writeback(page);
420 			if (page_mapped(page)) {
421 				if (!did_range_unmap) {
422 					/*
423 					 * Zap the rest of the file in one hit.
424 					 */
425 					unmap_mapping_range(mapping,
426 					   (loff_t)page_index<<PAGE_CACHE_SHIFT,
427 					   (loff_t)(end - page_index + 1)
428 							<< PAGE_CACHE_SHIFT,
429 					    0);
430 					did_range_unmap = 1;
431 				} else {
432 					/*
433 					 * Just zap this page
434 					 */
435 					unmap_mapping_range(mapping,
436 					  (loff_t)page_index<<PAGE_CACHE_SHIFT,
437 					  PAGE_CACHE_SIZE, 0);
438 				}
439 			}
440 			BUG_ON(page_mapped(page));
441 			ret = do_launder_page(mapping, page);
442 			if (ret == 0 && !invalidate_complete_page2(mapping, page))
443 				ret = -EIO;
444 			unlock_page(page);
445 		}
446 		pagevec_release(&pvec);
447 		cond_resched();
448 	}
449 	return ret;
450 }
451 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
452 
453 /**
454  * invalidate_inode_pages2 - remove all pages from an address_space
455  * @mapping: the address_space
456  *
457  * Any pages which are found to be mapped into pagetables are unmapped prior to
458  * invalidation.
459  *
460  * Returns -EIO if any pages could not be invalidated.
461  */
462 int invalidate_inode_pages2(struct address_space *mapping)
463 {
464 	return invalidate_inode_pages2_range(mapping, 0, -1);
465 }
466 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
467