1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 akpm@zip.com.au 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/mm.h> 13 #include <linux/swap.h> 14 #include <linux/module.h> 15 #include <linux/pagemap.h> 16 #include <linux/highmem.h> 17 #include <linux/pagevec.h> 18 #include <linux/task_io_accounting_ops.h> 19 #include <linux/buffer_head.h> /* grr. try_to_release_page, 20 do_invalidatepage */ 21 22 23 /** 24 * do_invalidatepage - invalidate part or all of a page 25 * @page: the page which is affected 26 * @offset: the index of the truncation point 27 * 28 * do_invalidatepage() is called when all or part of the page has become 29 * invalidated by a truncate operation. 30 * 31 * do_invalidatepage() does not have to release all buffers, but it must 32 * ensure that no dirty buffer is left outside @offset and that no I/O 33 * is underway against any of the blocks which are outside the truncation 34 * point. Because the caller is about to free (and possibly reuse) those 35 * blocks on-disk. 36 */ 37 void do_invalidatepage(struct page *page, unsigned long offset) 38 { 39 void (*invalidatepage)(struct page *, unsigned long); 40 invalidatepage = page->mapping->a_ops->invalidatepage; 41 #ifdef CONFIG_BLOCK 42 if (!invalidatepage) 43 invalidatepage = block_invalidatepage; 44 #endif 45 if (invalidatepage) 46 (*invalidatepage)(page, offset); 47 } 48 49 static inline void truncate_partial_page(struct page *page, unsigned partial) 50 { 51 zero_user_segment(page, partial, PAGE_CACHE_SIZE); 52 if (PagePrivate(page)) 53 do_invalidatepage(page, partial); 54 } 55 56 /* 57 * This cancels just the dirty bit on the kernel page itself, it 58 * does NOT actually remove dirty bits on any mmap's that may be 59 * around. It also leaves the page tagged dirty, so any sync 60 * activity will still find it on the dirty lists, and in particular, 61 * clear_page_dirty_for_io() will still look at the dirty bits in 62 * the VM. 63 * 64 * Doing this should *normally* only ever be done when a page 65 * is truncated, and is not actually mapped anywhere at all. However, 66 * fs/buffer.c does this when it notices that somebody has cleaned 67 * out all the buffers on a page without actually doing it through 68 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 69 */ 70 void cancel_dirty_page(struct page *page, unsigned int account_size) 71 { 72 if (TestClearPageDirty(page)) { 73 struct address_space *mapping = page->mapping; 74 if (mapping && mapping_cap_account_dirty(mapping)) { 75 dec_zone_page_state(page, NR_FILE_DIRTY); 76 dec_bdi_stat(mapping->backing_dev_info, 77 BDI_RECLAIMABLE); 78 if (account_size) 79 task_io_account_cancelled_write(account_size); 80 } 81 } 82 } 83 EXPORT_SYMBOL(cancel_dirty_page); 84 85 /* 86 * If truncate cannot remove the fs-private metadata from the page, the page 87 * becomes orphaned. It will be left on the LRU and may even be mapped into 88 * user pagetables if we're racing with filemap_fault(). 89 * 90 * We need to bale out if page->mapping is no longer equal to the original 91 * mapping. This happens a) when the VM reclaimed the page while we waited on 92 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 93 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 94 */ 95 static void 96 truncate_complete_page(struct address_space *mapping, struct page *page) 97 { 98 if (page->mapping != mapping) 99 return; 100 101 if (PagePrivate(page)) 102 do_invalidatepage(page, 0); 103 104 cancel_dirty_page(page, PAGE_CACHE_SIZE); 105 106 remove_from_page_cache(page); 107 ClearPageUptodate(page); 108 ClearPageMappedToDisk(page); 109 page_cache_release(page); /* pagecache ref */ 110 } 111 112 /* 113 * This is for invalidate_mapping_pages(). That function can be called at 114 * any time, and is not supposed to throw away dirty pages. But pages can 115 * be marked dirty at any time too, so use remove_mapping which safely 116 * discards clean, unused pages. 117 * 118 * Returns non-zero if the page was successfully invalidated. 119 */ 120 static int 121 invalidate_complete_page(struct address_space *mapping, struct page *page) 122 { 123 int ret; 124 125 if (page->mapping != mapping) 126 return 0; 127 128 if (PagePrivate(page) && !try_to_release_page(page, 0)) 129 return 0; 130 131 ret = remove_mapping(mapping, page); 132 133 return ret; 134 } 135 136 /** 137 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets 138 * @mapping: mapping to truncate 139 * @lstart: offset from which to truncate 140 * @lend: offset to which to truncate 141 * 142 * Truncate the page cache, removing the pages that are between 143 * specified offsets (and zeroing out partial page 144 * (if lstart is not page aligned)). 145 * 146 * Truncate takes two passes - the first pass is nonblocking. It will not 147 * block on page locks and it will not block on writeback. The second pass 148 * will wait. This is to prevent as much IO as possible in the affected region. 149 * The first pass will remove most pages, so the search cost of the second pass 150 * is low. 151 * 152 * When looking at page->index outside the page lock we need to be careful to 153 * copy it into a local to avoid races (it could change at any time). 154 * 155 * We pass down the cache-hot hint to the page freeing code. Even if the 156 * mapping is large, it is probably the case that the final pages are the most 157 * recently touched, and freeing happens in ascending file offset order. 158 */ 159 void truncate_inode_pages_range(struct address_space *mapping, 160 loff_t lstart, loff_t lend) 161 { 162 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 163 pgoff_t end; 164 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1); 165 struct pagevec pvec; 166 pgoff_t next; 167 int i; 168 169 if (mapping->nrpages == 0) 170 return; 171 172 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1)); 173 end = (lend >> PAGE_CACHE_SHIFT); 174 175 pagevec_init(&pvec, 0); 176 next = start; 177 while (next <= end && 178 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 179 for (i = 0; i < pagevec_count(&pvec); i++) { 180 struct page *page = pvec.pages[i]; 181 pgoff_t page_index = page->index; 182 183 if (page_index > end) { 184 next = page_index; 185 break; 186 } 187 188 if (page_index > next) 189 next = page_index; 190 next++; 191 if (TestSetPageLocked(page)) 192 continue; 193 if (PageWriteback(page)) { 194 unlock_page(page); 195 continue; 196 } 197 if (page_mapped(page)) { 198 unmap_mapping_range(mapping, 199 (loff_t)page_index<<PAGE_CACHE_SHIFT, 200 PAGE_CACHE_SIZE, 0); 201 } 202 truncate_complete_page(mapping, page); 203 unlock_page(page); 204 } 205 pagevec_release(&pvec); 206 cond_resched(); 207 } 208 209 if (partial) { 210 struct page *page = find_lock_page(mapping, start - 1); 211 if (page) { 212 wait_on_page_writeback(page); 213 truncate_partial_page(page, partial); 214 unlock_page(page); 215 page_cache_release(page); 216 } 217 } 218 219 next = start; 220 for ( ; ; ) { 221 cond_resched(); 222 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 223 if (next == start) 224 break; 225 next = start; 226 continue; 227 } 228 if (pvec.pages[0]->index > end) { 229 pagevec_release(&pvec); 230 break; 231 } 232 for (i = 0; i < pagevec_count(&pvec); i++) { 233 struct page *page = pvec.pages[i]; 234 235 if (page->index > end) 236 break; 237 lock_page(page); 238 wait_on_page_writeback(page); 239 if (page_mapped(page)) { 240 unmap_mapping_range(mapping, 241 (loff_t)page->index<<PAGE_CACHE_SHIFT, 242 PAGE_CACHE_SIZE, 0); 243 } 244 if (page->index > next) 245 next = page->index; 246 next++; 247 truncate_complete_page(mapping, page); 248 unlock_page(page); 249 } 250 pagevec_release(&pvec); 251 } 252 } 253 EXPORT_SYMBOL(truncate_inode_pages_range); 254 255 /** 256 * truncate_inode_pages - truncate *all* the pages from an offset 257 * @mapping: mapping to truncate 258 * @lstart: offset from which to truncate 259 * 260 * Called under (and serialised by) inode->i_mutex. 261 */ 262 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 263 { 264 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 265 } 266 EXPORT_SYMBOL(truncate_inode_pages); 267 268 unsigned long __invalidate_mapping_pages(struct address_space *mapping, 269 pgoff_t start, pgoff_t end, bool be_atomic) 270 { 271 struct pagevec pvec; 272 pgoff_t next = start; 273 unsigned long ret = 0; 274 int i; 275 276 pagevec_init(&pvec, 0); 277 while (next <= end && 278 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) { 279 for (i = 0; i < pagevec_count(&pvec); i++) { 280 struct page *page = pvec.pages[i]; 281 pgoff_t index; 282 int lock_failed; 283 284 lock_failed = TestSetPageLocked(page); 285 286 /* 287 * We really shouldn't be looking at the ->index of an 288 * unlocked page. But we're not allowed to lock these 289 * pages. So we rely upon nobody altering the ->index 290 * of this (pinned-by-us) page. 291 */ 292 index = page->index; 293 if (index > next) 294 next = index; 295 next++; 296 if (lock_failed) 297 continue; 298 299 if (PageDirty(page) || PageWriteback(page)) 300 goto unlock; 301 if (page_mapped(page)) 302 goto unlock; 303 ret += invalidate_complete_page(mapping, page); 304 unlock: 305 unlock_page(page); 306 if (next > end) 307 break; 308 } 309 pagevec_release(&pvec); 310 if (likely(!be_atomic)) 311 cond_resched(); 312 } 313 return ret; 314 } 315 316 /** 317 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 318 * @mapping: the address_space which holds the pages to invalidate 319 * @start: the offset 'from' which to invalidate 320 * @end: the offset 'to' which to invalidate (inclusive) 321 * 322 * This function only removes the unlocked pages, if you want to 323 * remove all the pages of one inode, you must call truncate_inode_pages. 324 * 325 * invalidate_mapping_pages() will not block on IO activity. It will not 326 * invalidate pages which are dirty, locked, under writeback or mapped into 327 * pagetables. 328 */ 329 unsigned long invalidate_mapping_pages(struct address_space *mapping, 330 pgoff_t start, pgoff_t end) 331 { 332 return __invalidate_mapping_pages(mapping, start, end, false); 333 } 334 EXPORT_SYMBOL(invalidate_mapping_pages); 335 336 /* 337 * This is like invalidate_complete_page(), except it ignores the page's 338 * refcount. We do this because invalidate_inode_pages2() needs stronger 339 * invalidation guarantees, and cannot afford to leave pages behind because 340 * shrink_page_list() has a temp ref on them, or because they're transiently 341 * sitting in the lru_cache_add() pagevecs. 342 */ 343 static int 344 invalidate_complete_page2(struct address_space *mapping, struct page *page) 345 { 346 if (page->mapping != mapping) 347 return 0; 348 349 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL)) 350 return 0; 351 352 write_lock_irq(&mapping->tree_lock); 353 if (PageDirty(page)) 354 goto failed; 355 356 BUG_ON(PagePrivate(page)); 357 __remove_from_page_cache(page); 358 write_unlock_irq(&mapping->tree_lock); 359 ClearPageUptodate(page); 360 page_cache_release(page); /* pagecache ref */ 361 return 1; 362 failed: 363 write_unlock_irq(&mapping->tree_lock); 364 return 0; 365 } 366 367 static int do_launder_page(struct address_space *mapping, struct page *page) 368 { 369 if (!PageDirty(page)) 370 return 0; 371 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 372 return 0; 373 return mapping->a_ops->launder_page(page); 374 } 375 376 /** 377 * invalidate_inode_pages2_range - remove range of pages from an address_space 378 * @mapping: the address_space 379 * @start: the page offset 'from' which to invalidate 380 * @end: the page offset 'to' which to invalidate (inclusive) 381 * 382 * Any pages which are found to be mapped into pagetables are unmapped prior to 383 * invalidation. 384 * 385 * Returns -EIO if any pages could not be invalidated. 386 */ 387 int invalidate_inode_pages2_range(struct address_space *mapping, 388 pgoff_t start, pgoff_t end) 389 { 390 struct pagevec pvec; 391 pgoff_t next; 392 int i; 393 int ret = 0; 394 int did_range_unmap = 0; 395 int wrapped = 0; 396 397 pagevec_init(&pvec, 0); 398 next = start; 399 while (next <= end && !wrapped && 400 pagevec_lookup(&pvec, mapping, next, 401 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) { 402 for (i = 0; i < pagevec_count(&pvec); i++) { 403 struct page *page = pvec.pages[i]; 404 pgoff_t page_index; 405 406 lock_page(page); 407 if (page->mapping != mapping) { 408 unlock_page(page); 409 continue; 410 } 411 page_index = page->index; 412 next = page_index + 1; 413 if (next == 0) 414 wrapped = 1; 415 if (page_index > end) { 416 unlock_page(page); 417 break; 418 } 419 wait_on_page_writeback(page); 420 if (page_mapped(page)) { 421 if (!did_range_unmap) { 422 /* 423 * Zap the rest of the file in one hit. 424 */ 425 unmap_mapping_range(mapping, 426 (loff_t)page_index<<PAGE_CACHE_SHIFT, 427 (loff_t)(end - page_index + 1) 428 << PAGE_CACHE_SHIFT, 429 0); 430 did_range_unmap = 1; 431 } else { 432 /* 433 * Just zap this page 434 */ 435 unmap_mapping_range(mapping, 436 (loff_t)page_index<<PAGE_CACHE_SHIFT, 437 PAGE_CACHE_SIZE, 0); 438 } 439 } 440 BUG_ON(page_mapped(page)); 441 ret = do_launder_page(mapping, page); 442 if (ret == 0 && !invalidate_complete_page2(mapping, page)) 443 ret = -EIO; 444 unlock_page(page); 445 } 446 pagevec_release(&pvec); 447 cond_resched(); 448 } 449 return ret; 450 } 451 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 452 453 /** 454 * invalidate_inode_pages2 - remove all pages from an address_space 455 * @mapping: the address_space 456 * 457 * Any pages which are found to be mapped into pagetables are unmapped prior to 458 * invalidation. 459 * 460 * Returns -EIO if any pages could not be invalidated. 461 */ 462 int invalidate_inode_pages2(struct address_space *mapping) 463 { 464 return invalidate_inode_pages2_range(mapping, 0, -1); 465 } 466 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 467