xref: /openbmc/linux/mm/truncate.c (revision e983940270f10fe8551baf0098be76ea478294a3)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
22 				   do_invalidatepage */
23 #include <linux/cleancache.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26 
27 static void clear_exceptional_entry(struct address_space *mapping,
28 				    pgoff_t index, void *entry)
29 {
30 	struct radix_tree_node *node;
31 	void **slot;
32 
33 	/* Handled by shmem itself */
34 	if (shmem_mapping(mapping))
35 		return;
36 
37 	if (dax_mapping(mapping)) {
38 		dax_delete_mapping_entry(mapping, index);
39 		return;
40 	}
41 	spin_lock_irq(&mapping->tree_lock);
42 	/*
43 	 * Regular page slots are stabilized by the page lock even
44 	 * without the tree itself locked.  These unlocked entries
45 	 * need verification under the tree lock.
46 	 */
47 	if (!__radix_tree_lookup(&mapping->page_tree, index, &node,
48 				&slot))
49 		goto unlock;
50 	if (*slot != entry)
51 		goto unlock;
52 	radix_tree_replace_slot(slot, NULL);
53 	mapping->nrexceptional--;
54 	if (!node)
55 		goto unlock;
56 	workingset_node_shadows_dec(node);
57 	/*
58 	 * Don't track node without shadow entries.
59 	 *
60 	 * Avoid acquiring the list_lru lock if already untracked.
61 	 * The list_empty() test is safe as node->private_list is
62 	 * protected by mapping->tree_lock.
63 	 */
64 	if (!workingset_node_shadows(node) &&
65 	    !list_empty(&node->private_list))
66 		list_lru_del(&workingset_shadow_nodes,
67 				&node->private_list);
68 	__radix_tree_delete_node(&mapping->page_tree, node);
69 unlock:
70 	spin_unlock_irq(&mapping->tree_lock);
71 }
72 
73 /**
74  * do_invalidatepage - invalidate part or all of a page
75  * @page: the page which is affected
76  * @offset: start of the range to invalidate
77  * @length: length of the range to invalidate
78  *
79  * do_invalidatepage() is called when all or part of the page has become
80  * invalidated by a truncate operation.
81  *
82  * do_invalidatepage() does not have to release all buffers, but it must
83  * ensure that no dirty buffer is left outside @offset and that no I/O
84  * is underway against any of the blocks which are outside the truncation
85  * point.  Because the caller is about to free (and possibly reuse) those
86  * blocks on-disk.
87  */
88 void do_invalidatepage(struct page *page, unsigned int offset,
89 		       unsigned int length)
90 {
91 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
92 
93 	invalidatepage = page->mapping->a_ops->invalidatepage;
94 #ifdef CONFIG_BLOCK
95 	if (!invalidatepage)
96 		invalidatepage = block_invalidatepage;
97 #endif
98 	if (invalidatepage)
99 		(*invalidatepage)(page, offset, length);
100 }
101 
102 /*
103  * If truncate cannot remove the fs-private metadata from the page, the page
104  * becomes orphaned.  It will be left on the LRU and may even be mapped into
105  * user pagetables if we're racing with filemap_fault().
106  *
107  * We need to bale out if page->mapping is no longer equal to the original
108  * mapping.  This happens a) when the VM reclaimed the page while we waited on
109  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
110  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
111  */
112 static int
113 truncate_complete_page(struct address_space *mapping, struct page *page)
114 {
115 	if (page->mapping != mapping)
116 		return -EIO;
117 
118 	if (page_has_private(page))
119 		do_invalidatepage(page, 0, PAGE_SIZE);
120 
121 	/*
122 	 * Some filesystems seem to re-dirty the page even after
123 	 * the VM has canceled the dirty bit (eg ext3 journaling).
124 	 * Hence dirty accounting check is placed after invalidation.
125 	 */
126 	cancel_dirty_page(page);
127 	ClearPageMappedToDisk(page);
128 	delete_from_page_cache(page);
129 	return 0;
130 }
131 
132 /*
133  * This is for invalidate_mapping_pages().  That function can be called at
134  * any time, and is not supposed to throw away dirty pages.  But pages can
135  * be marked dirty at any time too, so use remove_mapping which safely
136  * discards clean, unused pages.
137  *
138  * Returns non-zero if the page was successfully invalidated.
139  */
140 static int
141 invalidate_complete_page(struct address_space *mapping, struct page *page)
142 {
143 	int ret;
144 
145 	if (page->mapping != mapping)
146 		return 0;
147 
148 	if (page_has_private(page) && !try_to_release_page(page, 0))
149 		return 0;
150 
151 	ret = remove_mapping(mapping, page);
152 
153 	return ret;
154 }
155 
156 int truncate_inode_page(struct address_space *mapping, struct page *page)
157 {
158 	loff_t holelen;
159 	VM_BUG_ON_PAGE(PageTail(page), page);
160 
161 	holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
162 	if (page_mapped(page)) {
163 		unmap_mapping_range(mapping,
164 				   (loff_t)page->index << PAGE_SHIFT,
165 				   holelen, 0);
166 	}
167 	return truncate_complete_page(mapping, page);
168 }
169 
170 /*
171  * Used to get rid of pages on hardware memory corruption.
172  */
173 int generic_error_remove_page(struct address_space *mapping, struct page *page)
174 {
175 	if (!mapping)
176 		return -EINVAL;
177 	/*
178 	 * Only punch for normal data pages for now.
179 	 * Handling other types like directories would need more auditing.
180 	 */
181 	if (!S_ISREG(mapping->host->i_mode))
182 		return -EIO;
183 	return truncate_inode_page(mapping, page);
184 }
185 EXPORT_SYMBOL(generic_error_remove_page);
186 
187 /*
188  * Safely invalidate one page from its pagecache mapping.
189  * It only drops clean, unused pages. The page must be locked.
190  *
191  * Returns 1 if the page is successfully invalidated, otherwise 0.
192  */
193 int invalidate_inode_page(struct page *page)
194 {
195 	struct address_space *mapping = page_mapping(page);
196 	if (!mapping)
197 		return 0;
198 	if (PageDirty(page) || PageWriteback(page))
199 		return 0;
200 	if (page_mapped(page))
201 		return 0;
202 	return invalidate_complete_page(mapping, page);
203 }
204 
205 /**
206  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
207  * @mapping: mapping to truncate
208  * @lstart: offset from which to truncate
209  * @lend: offset to which to truncate (inclusive)
210  *
211  * Truncate the page cache, removing the pages that are between
212  * specified offsets (and zeroing out partial pages
213  * if lstart or lend + 1 is not page aligned).
214  *
215  * Truncate takes two passes - the first pass is nonblocking.  It will not
216  * block on page locks and it will not block on writeback.  The second pass
217  * will wait.  This is to prevent as much IO as possible in the affected region.
218  * The first pass will remove most pages, so the search cost of the second pass
219  * is low.
220  *
221  * We pass down the cache-hot hint to the page freeing code.  Even if the
222  * mapping is large, it is probably the case that the final pages are the most
223  * recently touched, and freeing happens in ascending file offset order.
224  *
225  * Note that since ->invalidatepage() accepts range to invalidate
226  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
227  * page aligned properly.
228  */
229 void truncate_inode_pages_range(struct address_space *mapping,
230 				loff_t lstart, loff_t lend)
231 {
232 	pgoff_t		start;		/* inclusive */
233 	pgoff_t		end;		/* exclusive */
234 	unsigned int	partial_start;	/* inclusive */
235 	unsigned int	partial_end;	/* exclusive */
236 	struct pagevec	pvec;
237 	pgoff_t		indices[PAGEVEC_SIZE];
238 	pgoff_t		index;
239 	int		i;
240 
241 	cleancache_invalidate_inode(mapping);
242 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
243 		return;
244 
245 	/* Offsets within partial pages */
246 	partial_start = lstart & (PAGE_SIZE - 1);
247 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
248 
249 	/*
250 	 * 'start' and 'end' always covers the range of pages to be fully
251 	 * truncated. Partial pages are covered with 'partial_start' at the
252 	 * start of the range and 'partial_end' at the end of the range.
253 	 * Note that 'end' is exclusive while 'lend' is inclusive.
254 	 */
255 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
256 	if (lend == -1)
257 		/*
258 		 * lend == -1 indicates end-of-file so we have to set 'end'
259 		 * to the highest possible pgoff_t and since the type is
260 		 * unsigned we're using -1.
261 		 */
262 		end = -1;
263 	else
264 		end = (lend + 1) >> PAGE_SHIFT;
265 
266 	pagevec_init(&pvec, 0);
267 	index = start;
268 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
269 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
270 			indices)) {
271 		for (i = 0; i < pagevec_count(&pvec); i++) {
272 			struct page *page = pvec.pages[i];
273 
274 			/* We rely upon deletion not changing page->index */
275 			index = indices[i];
276 			if (index >= end)
277 				break;
278 
279 			if (radix_tree_exceptional_entry(page)) {
280 				clear_exceptional_entry(mapping, index, page);
281 				continue;
282 			}
283 
284 			if (!trylock_page(page))
285 				continue;
286 			WARN_ON(page_to_pgoff(page) != index);
287 			if (PageWriteback(page)) {
288 				unlock_page(page);
289 				continue;
290 			}
291 			truncate_inode_page(mapping, page);
292 			unlock_page(page);
293 		}
294 		pagevec_remove_exceptionals(&pvec);
295 		pagevec_release(&pvec);
296 		cond_resched();
297 		index++;
298 	}
299 
300 	if (partial_start) {
301 		struct page *page = find_lock_page(mapping, start - 1);
302 		if (page) {
303 			unsigned int top = PAGE_SIZE;
304 			if (start > end) {
305 				/* Truncation within a single page */
306 				top = partial_end;
307 				partial_end = 0;
308 			}
309 			wait_on_page_writeback(page);
310 			zero_user_segment(page, partial_start, top);
311 			cleancache_invalidate_page(mapping, page);
312 			if (page_has_private(page))
313 				do_invalidatepage(page, partial_start,
314 						  top - partial_start);
315 			unlock_page(page);
316 			put_page(page);
317 		}
318 	}
319 	if (partial_end) {
320 		struct page *page = find_lock_page(mapping, end);
321 		if (page) {
322 			wait_on_page_writeback(page);
323 			zero_user_segment(page, 0, partial_end);
324 			cleancache_invalidate_page(mapping, page);
325 			if (page_has_private(page))
326 				do_invalidatepage(page, 0,
327 						  partial_end);
328 			unlock_page(page);
329 			put_page(page);
330 		}
331 	}
332 	/*
333 	 * If the truncation happened within a single page no pages
334 	 * will be released, just zeroed, so we can bail out now.
335 	 */
336 	if (start >= end)
337 		return;
338 
339 	index = start;
340 	for ( ; ; ) {
341 		cond_resched();
342 		if (!pagevec_lookup_entries(&pvec, mapping, index,
343 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
344 			/* If all gone from start onwards, we're done */
345 			if (index == start)
346 				break;
347 			/* Otherwise restart to make sure all gone */
348 			index = start;
349 			continue;
350 		}
351 		if (index == start && indices[0] >= end) {
352 			/* All gone out of hole to be punched, we're done */
353 			pagevec_remove_exceptionals(&pvec);
354 			pagevec_release(&pvec);
355 			break;
356 		}
357 		for (i = 0; i < pagevec_count(&pvec); i++) {
358 			struct page *page = pvec.pages[i];
359 
360 			/* We rely upon deletion not changing page->index */
361 			index = indices[i];
362 			if (index >= end) {
363 				/* Restart punch to make sure all gone */
364 				index = start - 1;
365 				break;
366 			}
367 
368 			if (radix_tree_exceptional_entry(page)) {
369 				clear_exceptional_entry(mapping, index, page);
370 				continue;
371 			}
372 
373 			lock_page(page);
374 			WARN_ON(page_to_pgoff(page) != index);
375 			wait_on_page_writeback(page);
376 			truncate_inode_page(mapping, page);
377 			unlock_page(page);
378 		}
379 		pagevec_remove_exceptionals(&pvec);
380 		pagevec_release(&pvec);
381 		index++;
382 	}
383 	cleancache_invalidate_inode(mapping);
384 }
385 EXPORT_SYMBOL(truncate_inode_pages_range);
386 
387 /**
388  * truncate_inode_pages - truncate *all* the pages from an offset
389  * @mapping: mapping to truncate
390  * @lstart: offset from which to truncate
391  *
392  * Called under (and serialised by) inode->i_mutex.
393  *
394  * Note: When this function returns, there can be a page in the process of
395  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
396  * mapping->nrpages can be non-zero when this function returns even after
397  * truncation of the whole mapping.
398  */
399 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
400 {
401 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
402 }
403 EXPORT_SYMBOL(truncate_inode_pages);
404 
405 /**
406  * truncate_inode_pages_final - truncate *all* pages before inode dies
407  * @mapping: mapping to truncate
408  *
409  * Called under (and serialized by) inode->i_mutex.
410  *
411  * Filesystems have to use this in the .evict_inode path to inform the
412  * VM that this is the final truncate and the inode is going away.
413  */
414 void truncate_inode_pages_final(struct address_space *mapping)
415 {
416 	unsigned long nrexceptional;
417 	unsigned long nrpages;
418 
419 	/*
420 	 * Page reclaim can not participate in regular inode lifetime
421 	 * management (can't call iput()) and thus can race with the
422 	 * inode teardown.  Tell it when the address space is exiting,
423 	 * so that it does not install eviction information after the
424 	 * final truncate has begun.
425 	 */
426 	mapping_set_exiting(mapping);
427 
428 	/*
429 	 * When reclaim installs eviction entries, it increases
430 	 * nrexceptional first, then decreases nrpages.  Make sure we see
431 	 * this in the right order or we might miss an entry.
432 	 */
433 	nrpages = mapping->nrpages;
434 	smp_rmb();
435 	nrexceptional = mapping->nrexceptional;
436 
437 	if (nrpages || nrexceptional) {
438 		/*
439 		 * As truncation uses a lockless tree lookup, cycle
440 		 * the tree lock to make sure any ongoing tree
441 		 * modification that does not see AS_EXITING is
442 		 * completed before starting the final truncate.
443 		 */
444 		spin_lock_irq(&mapping->tree_lock);
445 		spin_unlock_irq(&mapping->tree_lock);
446 
447 		truncate_inode_pages(mapping, 0);
448 	}
449 }
450 EXPORT_SYMBOL(truncate_inode_pages_final);
451 
452 /**
453  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
454  * @mapping: the address_space which holds the pages to invalidate
455  * @start: the offset 'from' which to invalidate
456  * @end: the offset 'to' which to invalidate (inclusive)
457  *
458  * This function only removes the unlocked pages, if you want to
459  * remove all the pages of one inode, you must call truncate_inode_pages.
460  *
461  * invalidate_mapping_pages() will not block on IO activity. It will not
462  * invalidate pages which are dirty, locked, under writeback or mapped into
463  * pagetables.
464  */
465 unsigned long invalidate_mapping_pages(struct address_space *mapping,
466 		pgoff_t start, pgoff_t end)
467 {
468 	pgoff_t indices[PAGEVEC_SIZE];
469 	struct pagevec pvec;
470 	pgoff_t index = start;
471 	unsigned long ret;
472 	unsigned long count = 0;
473 	int i;
474 
475 	pagevec_init(&pvec, 0);
476 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
477 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
478 			indices)) {
479 		for (i = 0; i < pagevec_count(&pvec); i++) {
480 			struct page *page = pvec.pages[i];
481 
482 			/* We rely upon deletion not changing page->index */
483 			index = indices[i];
484 			if (index > end)
485 				break;
486 
487 			if (radix_tree_exceptional_entry(page)) {
488 				clear_exceptional_entry(mapping, index, page);
489 				continue;
490 			}
491 
492 			if (!trylock_page(page))
493 				continue;
494 
495 			WARN_ON(page_to_pgoff(page) != index);
496 
497 			/* Middle of THP: skip */
498 			if (PageTransTail(page)) {
499 				unlock_page(page);
500 				continue;
501 			} else if (PageTransHuge(page)) {
502 				index += HPAGE_PMD_NR - 1;
503 				i += HPAGE_PMD_NR - 1;
504 				/* 'end' is in the middle of THP */
505 				if (index ==  round_down(end, HPAGE_PMD_NR))
506 					continue;
507 			}
508 
509 			ret = invalidate_inode_page(page);
510 			unlock_page(page);
511 			/*
512 			 * Invalidation is a hint that the page is no longer
513 			 * of interest and try to speed up its reclaim.
514 			 */
515 			if (!ret)
516 				deactivate_file_page(page);
517 			count += ret;
518 		}
519 		pagevec_remove_exceptionals(&pvec);
520 		pagevec_release(&pvec);
521 		cond_resched();
522 		index++;
523 	}
524 	return count;
525 }
526 EXPORT_SYMBOL(invalidate_mapping_pages);
527 
528 /*
529  * This is like invalidate_complete_page(), except it ignores the page's
530  * refcount.  We do this because invalidate_inode_pages2() needs stronger
531  * invalidation guarantees, and cannot afford to leave pages behind because
532  * shrink_page_list() has a temp ref on them, or because they're transiently
533  * sitting in the lru_cache_add() pagevecs.
534  */
535 static int
536 invalidate_complete_page2(struct address_space *mapping, struct page *page)
537 {
538 	unsigned long flags;
539 
540 	if (page->mapping != mapping)
541 		return 0;
542 
543 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
544 		return 0;
545 
546 	spin_lock_irqsave(&mapping->tree_lock, flags);
547 	if (PageDirty(page))
548 		goto failed;
549 
550 	BUG_ON(page_has_private(page));
551 	__delete_from_page_cache(page, NULL);
552 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
553 
554 	if (mapping->a_ops->freepage)
555 		mapping->a_ops->freepage(page);
556 
557 	put_page(page);	/* pagecache ref */
558 	return 1;
559 failed:
560 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
561 	return 0;
562 }
563 
564 static int do_launder_page(struct address_space *mapping, struct page *page)
565 {
566 	if (!PageDirty(page))
567 		return 0;
568 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
569 		return 0;
570 	return mapping->a_ops->launder_page(page);
571 }
572 
573 /**
574  * invalidate_inode_pages2_range - remove range of pages from an address_space
575  * @mapping: the address_space
576  * @start: the page offset 'from' which to invalidate
577  * @end: the page offset 'to' which to invalidate (inclusive)
578  *
579  * Any pages which are found to be mapped into pagetables are unmapped prior to
580  * invalidation.
581  *
582  * Returns -EBUSY if any pages could not be invalidated.
583  */
584 int invalidate_inode_pages2_range(struct address_space *mapping,
585 				  pgoff_t start, pgoff_t end)
586 {
587 	pgoff_t indices[PAGEVEC_SIZE];
588 	struct pagevec pvec;
589 	pgoff_t index;
590 	int i;
591 	int ret = 0;
592 	int ret2 = 0;
593 	int did_range_unmap = 0;
594 
595 	cleancache_invalidate_inode(mapping);
596 	pagevec_init(&pvec, 0);
597 	index = start;
598 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
599 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
600 			indices)) {
601 		for (i = 0; i < pagevec_count(&pvec); i++) {
602 			struct page *page = pvec.pages[i];
603 
604 			/* We rely upon deletion not changing page->index */
605 			index = indices[i];
606 			if (index > end)
607 				break;
608 
609 			if (radix_tree_exceptional_entry(page)) {
610 				clear_exceptional_entry(mapping, index, page);
611 				continue;
612 			}
613 
614 			lock_page(page);
615 			WARN_ON(page_to_pgoff(page) != index);
616 			if (page->mapping != mapping) {
617 				unlock_page(page);
618 				continue;
619 			}
620 			wait_on_page_writeback(page);
621 			if (page_mapped(page)) {
622 				if (!did_range_unmap) {
623 					/*
624 					 * Zap the rest of the file in one hit.
625 					 */
626 					unmap_mapping_range(mapping,
627 					   (loff_t)index << PAGE_SHIFT,
628 					   (loff_t)(1 + end - index)
629 							 << PAGE_SHIFT,
630 							 0);
631 					did_range_unmap = 1;
632 				} else {
633 					/*
634 					 * Just zap this page
635 					 */
636 					unmap_mapping_range(mapping,
637 					   (loff_t)index << PAGE_SHIFT,
638 					   PAGE_SIZE, 0);
639 				}
640 			}
641 			BUG_ON(page_mapped(page));
642 			ret2 = do_launder_page(mapping, page);
643 			if (ret2 == 0) {
644 				if (!invalidate_complete_page2(mapping, page))
645 					ret2 = -EBUSY;
646 			}
647 			if (ret2 < 0)
648 				ret = ret2;
649 			unlock_page(page);
650 		}
651 		pagevec_remove_exceptionals(&pvec);
652 		pagevec_release(&pvec);
653 		cond_resched();
654 		index++;
655 	}
656 	cleancache_invalidate_inode(mapping);
657 	return ret;
658 }
659 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
660 
661 /**
662  * invalidate_inode_pages2 - remove all pages from an address_space
663  * @mapping: the address_space
664  *
665  * Any pages which are found to be mapped into pagetables are unmapped prior to
666  * invalidation.
667  *
668  * Returns -EBUSY if any pages could not be invalidated.
669  */
670 int invalidate_inode_pages2(struct address_space *mapping)
671 {
672 	return invalidate_inode_pages2_range(mapping, 0, -1);
673 }
674 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
675 
676 /**
677  * truncate_pagecache - unmap and remove pagecache that has been truncated
678  * @inode: inode
679  * @newsize: new file size
680  *
681  * inode's new i_size must already be written before truncate_pagecache
682  * is called.
683  *
684  * This function should typically be called before the filesystem
685  * releases resources associated with the freed range (eg. deallocates
686  * blocks). This way, pagecache will always stay logically coherent
687  * with on-disk format, and the filesystem would not have to deal with
688  * situations such as writepage being called for a page that has already
689  * had its underlying blocks deallocated.
690  */
691 void truncate_pagecache(struct inode *inode, loff_t newsize)
692 {
693 	struct address_space *mapping = inode->i_mapping;
694 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
695 
696 	/*
697 	 * unmap_mapping_range is called twice, first simply for
698 	 * efficiency so that truncate_inode_pages does fewer
699 	 * single-page unmaps.  However after this first call, and
700 	 * before truncate_inode_pages finishes, it is possible for
701 	 * private pages to be COWed, which remain after
702 	 * truncate_inode_pages finishes, hence the second
703 	 * unmap_mapping_range call must be made for correctness.
704 	 */
705 	unmap_mapping_range(mapping, holebegin, 0, 1);
706 	truncate_inode_pages(mapping, newsize);
707 	unmap_mapping_range(mapping, holebegin, 0, 1);
708 }
709 EXPORT_SYMBOL(truncate_pagecache);
710 
711 /**
712  * truncate_setsize - update inode and pagecache for a new file size
713  * @inode: inode
714  * @newsize: new file size
715  *
716  * truncate_setsize updates i_size and performs pagecache truncation (if
717  * necessary) to @newsize. It will be typically be called from the filesystem's
718  * setattr function when ATTR_SIZE is passed in.
719  *
720  * Must be called with a lock serializing truncates and writes (generally
721  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
722  * specific block truncation has been performed.
723  */
724 void truncate_setsize(struct inode *inode, loff_t newsize)
725 {
726 	loff_t oldsize = inode->i_size;
727 
728 	i_size_write(inode, newsize);
729 	if (newsize > oldsize)
730 		pagecache_isize_extended(inode, oldsize, newsize);
731 	truncate_pagecache(inode, newsize);
732 }
733 EXPORT_SYMBOL(truncate_setsize);
734 
735 /**
736  * pagecache_isize_extended - update pagecache after extension of i_size
737  * @inode:	inode for which i_size was extended
738  * @from:	original inode size
739  * @to:		new inode size
740  *
741  * Handle extension of inode size either caused by extending truncate or by
742  * write starting after current i_size. We mark the page straddling current
743  * i_size RO so that page_mkwrite() is called on the nearest write access to
744  * the page.  This way filesystem can be sure that page_mkwrite() is called on
745  * the page before user writes to the page via mmap after the i_size has been
746  * changed.
747  *
748  * The function must be called after i_size is updated so that page fault
749  * coming after we unlock the page will already see the new i_size.
750  * The function must be called while we still hold i_mutex - this not only
751  * makes sure i_size is stable but also that userspace cannot observe new
752  * i_size value before we are prepared to store mmap writes at new inode size.
753  */
754 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
755 {
756 	int bsize = 1 << inode->i_blkbits;
757 	loff_t rounded_from;
758 	struct page *page;
759 	pgoff_t index;
760 
761 	WARN_ON(to > inode->i_size);
762 
763 	if (from >= to || bsize == PAGE_SIZE)
764 		return;
765 	/* Page straddling @from will not have any hole block created? */
766 	rounded_from = round_up(from, bsize);
767 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
768 		return;
769 
770 	index = from >> PAGE_SHIFT;
771 	page = find_lock_page(inode->i_mapping, index);
772 	/* Page not cached? Nothing to do */
773 	if (!page)
774 		return;
775 	/*
776 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
777 	 * is needed.
778 	 */
779 	if (page_mkclean(page))
780 		set_page_dirty(page);
781 	unlock_page(page);
782 	put_page(page);
783 }
784 EXPORT_SYMBOL(pagecache_isize_extended);
785 
786 /**
787  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
788  * @inode: inode
789  * @lstart: offset of beginning of hole
790  * @lend: offset of last byte of hole
791  *
792  * This function should typically be called before the filesystem
793  * releases resources associated with the freed range (eg. deallocates
794  * blocks). This way, pagecache will always stay logically coherent
795  * with on-disk format, and the filesystem would not have to deal with
796  * situations such as writepage being called for a page that has already
797  * had its underlying blocks deallocated.
798  */
799 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
800 {
801 	struct address_space *mapping = inode->i_mapping;
802 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
803 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
804 	/*
805 	 * This rounding is currently just for example: unmap_mapping_range
806 	 * expands its hole outwards, whereas we want it to contract the hole
807 	 * inwards.  However, existing callers of truncate_pagecache_range are
808 	 * doing their own page rounding first.  Note that unmap_mapping_range
809 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
810 	 */
811 
812 	/*
813 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
814 	 * once (before truncating pagecache), and without "even_cows" flag:
815 	 * hole-punching should not remove private COWed pages from the hole.
816 	 */
817 	if ((u64)unmap_end > (u64)unmap_start)
818 		unmap_mapping_range(mapping, unmap_start,
819 				    1 + unmap_end - unmap_start, 0);
820 	truncate_inode_pages_range(mapping, lstart, lend);
821 }
822 EXPORT_SYMBOL(truncate_pagecache_range);
823