1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/truncate.c - code for taking down pages from address_spaces 4 * 5 * Copyright (C) 2002, Linus Torvalds 6 * 7 * 10Sep2002 Andrew Morton 8 * Initial version. 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/backing-dev.h> 13 #include <linux/dax.h> 14 #include <linux/gfp.h> 15 #include <linux/mm.h> 16 #include <linux/swap.h> 17 #include <linux/export.h> 18 #include <linux/pagemap.h> 19 #include <linux/highmem.h> 20 #include <linux/pagevec.h> 21 #include <linux/task_io_accounting_ops.h> 22 #include <linux/buffer_head.h> /* grr. try_to_release_page, 23 do_invalidatepage */ 24 #include <linux/shmem_fs.h> 25 #include <linux/cleancache.h> 26 #include <linux/rmap.h> 27 #include "internal.h" 28 29 /* 30 * Regular page slots are stabilized by the page lock even without the tree 31 * itself locked. These unlocked entries need verification under the tree 32 * lock. 33 */ 34 static inline void __clear_shadow_entry(struct address_space *mapping, 35 pgoff_t index, void *entry) 36 { 37 XA_STATE(xas, &mapping->i_pages, index); 38 39 xas_set_update(&xas, workingset_update_node); 40 if (xas_load(&xas) != entry) 41 return; 42 xas_store(&xas, NULL); 43 mapping->nrexceptional--; 44 } 45 46 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 47 void *entry) 48 { 49 xa_lock_irq(&mapping->i_pages); 50 __clear_shadow_entry(mapping, index, entry); 51 xa_unlock_irq(&mapping->i_pages); 52 } 53 54 /* 55 * Unconditionally remove exceptional entries. Usually called from truncate 56 * path. Note that the pagevec may be altered by this function by removing 57 * exceptional entries similar to what pagevec_remove_exceptionals does. 58 */ 59 static void truncate_exceptional_pvec_entries(struct address_space *mapping, 60 struct pagevec *pvec, pgoff_t *indices, 61 pgoff_t end) 62 { 63 int i, j; 64 bool dax, lock; 65 66 /* Handled by shmem itself */ 67 if (shmem_mapping(mapping)) 68 return; 69 70 for (j = 0; j < pagevec_count(pvec); j++) 71 if (xa_is_value(pvec->pages[j])) 72 break; 73 74 if (j == pagevec_count(pvec)) 75 return; 76 77 dax = dax_mapping(mapping); 78 lock = !dax && indices[j] < end; 79 if (lock) 80 xa_lock_irq(&mapping->i_pages); 81 82 for (i = j; i < pagevec_count(pvec); i++) { 83 struct page *page = pvec->pages[i]; 84 pgoff_t index = indices[i]; 85 86 if (!xa_is_value(page)) { 87 pvec->pages[j++] = page; 88 continue; 89 } 90 91 if (index >= end) 92 continue; 93 94 if (unlikely(dax)) { 95 dax_delete_mapping_entry(mapping, index); 96 continue; 97 } 98 99 __clear_shadow_entry(mapping, index, page); 100 } 101 102 if (lock) 103 xa_unlock_irq(&mapping->i_pages); 104 pvec->nr = j; 105 } 106 107 /* 108 * Invalidate exceptional entry if easily possible. This handles exceptional 109 * entries for invalidate_inode_pages(). 110 */ 111 static int invalidate_exceptional_entry(struct address_space *mapping, 112 pgoff_t index, void *entry) 113 { 114 /* Handled by shmem itself, or for DAX we do nothing. */ 115 if (shmem_mapping(mapping) || dax_mapping(mapping)) 116 return 1; 117 clear_shadow_entry(mapping, index, entry); 118 return 1; 119 } 120 121 /* 122 * Invalidate exceptional entry if clean. This handles exceptional entries for 123 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 124 */ 125 static int invalidate_exceptional_entry2(struct address_space *mapping, 126 pgoff_t index, void *entry) 127 { 128 /* Handled by shmem itself */ 129 if (shmem_mapping(mapping)) 130 return 1; 131 if (dax_mapping(mapping)) 132 return dax_invalidate_mapping_entry_sync(mapping, index); 133 clear_shadow_entry(mapping, index, entry); 134 return 1; 135 } 136 137 /** 138 * do_invalidatepage - invalidate part or all of a page 139 * @page: the page which is affected 140 * @offset: start of the range to invalidate 141 * @length: length of the range to invalidate 142 * 143 * do_invalidatepage() is called when all or part of the page has become 144 * invalidated by a truncate operation. 145 * 146 * do_invalidatepage() does not have to release all buffers, but it must 147 * ensure that no dirty buffer is left outside @offset and that no I/O 148 * is underway against any of the blocks which are outside the truncation 149 * point. Because the caller is about to free (and possibly reuse) those 150 * blocks on-disk. 151 */ 152 void do_invalidatepage(struct page *page, unsigned int offset, 153 unsigned int length) 154 { 155 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 156 157 invalidatepage = page->mapping->a_ops->invalidatepage; 158 #ifdef CONFIG_BLOCK 159 if (!invalidatepage) 160 invalidatepage = block_invalidatepage; 161 #endif 162 if (invalidatepage) 163 (*invalidatepage)(page, offset, length); 164 } 165 166 /* 167 * If truncate cannot remove the fs-private metadata from the page, the page 168 * becomes orphaned. It will be left on the LRU and may even be mapped into 169 * user pagetables if we're racing with filemap_fault(). 170 * 171 * We need to bail out if page->mapping is no longer equal to the original 172 * mapping. This happens a) when the VM reclaimed the page while we waited on 173 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 174 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 175 */ 176 static void 177 truncate_cleanup_page(struct address_space *mapping, struct page *page) 178 { 179 if (page_mapped(page)) { 180 unsigned int nr = thp_nr_pages(page); 181 unmap_mapping_pages(mapping, page->index, nr, false); 182 } 183 184 if (page_has_private(page)) 185 do_invalidatepage(page, 0, thp_size(page)); 186 187 /* 188 * Some filesystems seem to re-dirty the page even after 189 * the VM has canceled the dirty bit (eg ext3 journaling). 190 * Hence dirty accounting check is placed after invalidation. 191 */ 192 cancel_dirty_page(page); 193 ClearPageMappedToDisk(page); 194 } 195 196 /* 197 * This is for invalidate_mapping_pages(). That function can be called at 198 * any time, and is not supposed to throw away dirty pages. But pages can 199 * be marked dirty at any time too, so use remove_mapping which safely 200 * discards clean, unused pages. 201 * 202 * Returns non-zero if the page was successfully invalidated. 203 */ 204 static int 205 invalidate_complete_page(struct address_space *mapping, struct page *page) 206 { 207 int ret; 208 209 if (page->mapping != mapping) 210 return 0; 211 212 if (page_has_private(page) && !try_to_release_page(page, 0)) 213 return 0; 214 215 ret = remove_mapping(mapping, page); 216 217 return ret; 218 } 219 220 int truncate_inode_page(struct address_space *mapping, struct page *page) 221 { 222 VM_BUG_ON_PAGE(PageTail(page), page); 223 224 if (page->mapping != mapping) 225 return -EIO; 226 227 truncate_cleanup_page(mapping, page); 228 delete_from_page_cache(page); 229 return 0; 230 } 231 232 /* 233 * Used to get rid of pages on hardware memory corruption. 234 */ 235 int generic_error_remove_page(struct address_space *mapping, struct page *page) 236 { 237 if (!mapping) 238 return -EINVAL; 239 /* 240 * Only punch for normal data pages for now. 241 * Handling other types like directories would need more auditing. 242 */ 243 if (!S_ISREG(mapping->host->i_mode)) 244 return -EIO; 245 return truncate_inode_page(mapping, page); 246 } 247 EXPORT_SYMBOL(generic_error_remove_page); 248 249 /* 250 * Safely invalidate one page from its pagecache mapping. 251 * It only drops clean, unused pages. The page must be locked. 252 * 253 * Returns 1 if the page is successfully invalidated, otherwise 0. 254 */ 255 int invalidate_inode_page(struct page *page) 256 { 257 struct address_space *mapping = page_mapping(page); 258 if (!mapping) 259 return 0; 260 if (PageDirty(page) || PageWriteback(page)) 261 return 0; 262 if (page_mapped(page)) 263 return 0; 264 return invalidate_complete_page(mapping, page); 265 } 266 267 /** 268 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 269 * @mapping: mapping to truncate 270 * @lstart: offset from which to truncate 271 * @lend: offset to which to truncate (inclusive) 272 * 273 * Truncate the page cache, removing the pages that are between 274 * specified offsets (and zeroing out partial pages 275 * if lstart or lend + 1 is not page aligned). 276 * 277 * Truncate takes two passes - the first pass is nonblocking. It will not 278 * block on page locks and it will not block on writeback. The second pass 279 * will wait. This is to prevent as much IO as possible in the affected region. 280 * The first pass will remove most pages, so the search cost of the second pass 281 * is low. 282 * 283 * We pass down the cache-hot hint to the page freeing code. Even if the 284 * mapping is large, it is probably the case that the final pages are the most 285 * recently touched, and freeing happens in ascending file offset order. 286 * 287 * Note that since ->invalidatepage() accepts range to invalidate 288 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 289 * page aligned properly. 290 */ 291 void truncate_inode_pages_range(struct address_space *mapping, 292 loff_t lstart, loff_t lend) 293 { 294 pgoff_t start; /* inclusive */ 295 pgoff_t end; /* exclusive */ 296 unsigned int partial_start; /* inclusive */ 297 unsigned int partial_end; /* exclusive */ 298 struct pagevec pvec; 299 pgoff_t indices[PAGEVEC_SIZE]; 300 pgoff_t index; 301 int i; 302 303 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 304 goto out; 305 306 /* Offsets within partial pages */ 307 partial_start = lstart & (PAGE_SIZE - 1); 308 partial_end = (lend + 1) & (PAGE_SIZE - 1); 309 310 /* 311 * 'start' and 'end' always covers the range of pages to be fully 312 * truncated. Partial pages are covered with 'partial_start' at the 313 * start of the range and 'partial_end' at the end of the range. 314 * Note that 'end' is exclusive while 'lend' is inclusive. 315 */ 316 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 317 if (lend == -1) 318 /* 319 * lend == -1 indicates end-of-file so we have to set 'end' 320 * to the highest possible pgoff_t and since the type is 321 * unsigned we're using -1. 322 */ 323 end = -1; 324 else 325 end = (lend + 1) >> PAGE_SHIFT; 326 327 pagevec_init(&pvec); 328 index = start; 329 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 330 min(end - index, (pgoff_t)PAGEVEC_SIZE), 331 indices)) { 332 /* 333 * Pagevec array has exceptional entries and we may also fail 334 * to lock some pages. So we store pages that can be deleted 335 * in a new pagevec. 336 */ 337 struct pagevec locked_pvec; 338 339 pagevec_init(&locked_pvec); 340 for (i = 0; i < pagevec_count(&pvec); i++) { 341 struct page *page = pvec.pages[i]; 342 343 /* We rely upon deletion not changing page->index */ 344 index = indices[i]; 345 if (index >= end) 346 break; 347 348 if (xa_is_value(page)) 349 continue; 350 351 if (!trylock_page(page)) 352 continue; 353 WARN_ON(page_to_index(page) != index); 354 if (PageWriteback(page)) { 355 unlock_page(page); 356 continue; 357 } 358 if (page->mapping != mapping) { 359 unlock_page(page); 360 continue; 361 } 362 pagevec_add(&locked_pvec, page); 363 } 364 for (i = 0; i < pagevec_count(&locked_pvec); i++) 365 truncate_cleanup_page(mapping, locked_pvec.pages[i]); 366 delete_from_page_cache_batch(mapping, &locked_pvec); 367 for (i = 0; i < pagevec_count(&locked_pvec); i++) 368 unlock_page(locked_pvec.pages[i]); 369 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); 370 pagevec_release(&pvec); 371 cond_resched(); 372 index++; 373 } 374 if (partial_start) { 375 struct page *page = find_lock_page(mapping, start - 1); 376 if (page) { 377 unsigned int top = PAGE_SIZE; 378 if (start > end) { 379 /* Truncation within a single page */ 380 top = partial_end; 381 partial_end = 0; 382 } 383 wait_on_page_writeback(page); 384 zero_user_segment(page, partial_start, top); 385 cleancache_invalidate_page(mapping, page); 386 if (page_has_private(page)) 387 do_invalidatepage(page, partial_start, 388 top - partial_start); 389 unlock_page(page); 390 put_page(page); 391 } 392 } 393 if (partial_end) { 394 struct page *page = find_lock_page(mapping, end); 395 if (page) { 396 wait_on_page_writeback(page); 397 zero_user_segment(page, 0, partial_end); 398 cleancache_invalidate_page(mapping, page); 399 if (page_has_private(page)) 400 do_invalidatepage(page, 0, 401 partial_end); 402 unlock_page(page); 403 put_page(page); 404 } 405 } 406 /* 407 * If the truncation happened within a single page no pages 408 * will be released, just zeroed, so we can bail out now. 409 */ 410 if (start >= end) 411 goto out; 412 413 index = start; 414 for ( ; ; ) { 415 cond_resched(); 416 if (!pagevec_lookup_entries(&pvec, mapping, index, 417 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 418 /* If all gone from start onwards, we're done */ 419 if (index == start) 420 break; 421 /* Otherwise restart to make sure all gone */ 422 index = start; 423 continue; 424 } 425 if (index == start && indices[0] >= end) { 426 /* All gone out of hole to be punched, we're done */ 427 pagevec_remove_exceptionals(&pvec); 428 pagevec_release(&pvec); 429 break; 430 } 431 432 for (i = 0; i < pagevec_count(&pvec); i++) { 433 struct page *page = pvec.pages[i]; 434 435 /* We rely upon deletion not changing page->index */ 436 index = indices[i]; 437 if (index >= end) { 438 /* Restart punch to make sure all gone */ 439 index = start - 1; 440 break; 441 } 442 443 if (xa_is_value(page)) 444 continue; 445 446 lock_page(page); 447 WARN_ON(page_to_index(page) != index); 448 wait_on_page_writeback(page); 449 truncate_inode_page(mapping, page); 450 unlock_page(page); 451 } 452 truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); 453 pagevec_release(&pvec); 454 index++; 455 } 456 457 out: 458 cleancache_invalidate_inode(mapping); 459 } 460 EXPORT_SYMBOL(truncate_inode_pages_range); 461 462 /** 463 * truncate_inode_pages - truncate *all* the pages from an offset 464 * @mapping: mapping to truncate 465 * @lstart: offset from which to truncate 466 * 467 * Called under (and serialised by) inode->i_mutex. 468 * 469 * Note: When this function returns, there can be a page in the process of 470 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 471 * mapping->nrpages can be non-zero when this function returns even after 472 * truncation of the whole mapping. 473 */ 474 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 475 { 476 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 477 } 478 EXPORT_SYMBOL(truncate_inode_pages); 479 480 /** 481 * truncate_inode_pages_final - truncate *all* pages before inode dies 482 * @mapping: mapping to truncate 483 * 484 * Called under (and serialized by) inode->i_mutex. 485 * 486 * Filesystems have to use this in the .evict_inode path to inform the 487 * VM that this is the final truncate and the inode is going away. 488 */ 489 void truncate_inode_pages_final(struct address_space *mapping) 490 { 491 unsigned long nrexceptional; 492 unsigned long nrpages; 493 494 /* 495 * Page reclaim can not participate in regular inode lifetime 496 * management (can't call iput()) and thus can race with the 497 * inode teardown. Tell it when the address space is exiting, 498 * so that it does not install eviction information after the 499 * final truncate has begun. 500 */ 501 mapping_set_exiting(mapping); 502 503 /* 504 * When reclaim installs eviction entries, it increases 505 * nrexceptional first, then decreases nrpages. Make sure we see 506 * this in the right order or we might miss an entry. 507 */ 508 nrpages = mapping->nrpages; 509 smp_rmb(); 510 nrexceptional = mapping->nrexceptional; 511 512 if (nrpages || nrexceptional) { 513 /* 514 * As truncation uses a lockless tree lookup, cycle 515 * the tree lock to make sure any ongoing tree 516 * modification that does not see AS_EXITING is 517 * completed before starting the final truncate. 518 */ 519 xa_lock_irq(&mapping->i_pages); 520 xa_unlock_irq(&mapping->i_pages); 521 } 522 523 /* 524 * Cleancache needs notification even if there are no pages or shadow 525 * entries. 526 */ 527 truncate_inode_pages(mapping, 0); 528 } 529 EXPORT_SYMBOL(truncate_inode_pages_final); 530 531 unsigned long __invalidate_mapping_pages(struct address_space *mapping, 532 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) 533 { 534 pgoff_t indices[PAGEVEC_SIZE]; 535 struct pagevec pvec; 536 pgoff_t index = start; 537 unsigned long ret; 538 unsigned long count = 0; 539 int i; 540 541 pagevec_init(&pvec); 542 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 543 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 544 indices)) { 545 for (i = 0; i < pagevec_count(&pvec); i++) { 546 struct page *page = pvec.pages[i]; 547 548 /* We rely upon deletion not changing page->index */ 549 index = indices[i]; 550 if (index > end) 551 break; 552 553 if (xa_is_value(page)) { 554 invalidate_exceptional_entry(mapping, index, 555 page); 556 continue; 557 } 558 559 if (!trylock_page(page)) 560 continue; 561 562 WARN_ON(page_to_index(page) != index); 563 564 /* Middle of THP: skip */ 565 if (PageTransTail(page)) { 566 unlock_page(page); 567 continue; 568 } else if (PageTransHuge(page)) { 569 index += HPAGE_PMD_NR - 1; 570 i += HPAGE_PMD_NR - 1; 571 /* 572 * 'end' is in the middle of THP. Don't 573 * invalidate the page as the part outside of 574 * 'end' could be still useful. 575 */ 576 if (index > end) { 577 unlock_page(page); 578 continue; 579 } 580 581 /* Take a pin outside pagevec */ 582 get_page(page); 583 584 /* 585 * Drop extra pins before trying to invalidate 586 * the huge page. 587 */ 588 pagevec_remove_exceptionals(&pvec); 589 pagevec_release(&pvec); 590 } 591 592 ret = invalidate_inode_page(page); 593 unlock_page(page); 594 /* 595 * Invalidation is a hint that the page is no longer 596 * of interest and try to speed up its reclaim. 597 */ 598 if (!ret) { 599 deactivate_file_page(page); 600 /* It is likely on the pagevec of a remote CPU */ 601 if (nr_pagevec) 602 (*nr_pagevec)++; 603 } 604 605 if (PageTransHuge(page)) 606 put_page(page); 607 count += ret; 608 } 609 pagevec_remove_exceptionals(&pvec); 610 pagevec_release(&pvec); 611 cond_resched(); 612 index++; 613 } 614 return count; 615 } 616 617 /** 618 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 619 * @mapping: the address_space which holds the pages to invalidate 620 * @start: the offset 'from' which to invalidate 621 * @end: the offset 'to' which to invalidate (inclusive) 622 * 623 * This function only removes the unlocked pages, if you want to 624 * remove all the pages of one inode, you must call truncate_inode_pages. 625 * 626 * invalidate_mapping_pages() will not block on IO activity. It will not 627 * invalidate pages which are dirty, locked, under writeback or mapped into 628 * pagetables. 629 * 630 * Return: the number of the pages that were invalidated 631 */ 632 unsigned long invalidate_mapping_pages(struct address_space *mapping, 633 pgoff_t start, pgoff_t end) 634 { 635 return __invalidate_mapping_pages(mapping, start, end, NULL); 636 } 637 EXPORT_SYMBOL(invalidate_mapping_pages); 638 639 /** 640 * This helper is similar with the above one, except that it accounts for pages 641 * that are likely on a pagevec and count them in @nr_pagevec, which will used by 642 * the caller. 643 */ 644 void invalidate_mapping_pagevec(struct address_space *mapping, 645 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec) 646 { 647 __invalidate_mapping_pages(mapping, start, end, nr_pagevec); 648 } 649 650 /* 651 * This is like invalidate_complete_page(), except it ignores the page's 652 * refcount. We do this because invalidate_inode_pages2() needs stronger 653 * invalidation guarantees, and cannot afford to leave pages behind because 654 * shrink_page_list() has a temp ref on them, or because they're transiently 655 * sitting in the lru_cache_add() pagevecs. 656 */ 657 static int 658 invalidate_complete_page2(struct address_space *mapping, struct page *page) 659 { 660 unsigned long flags; 661 662 if (page->mapping != mapping) 663 return 0; 664 665 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 666 return 0; 667 668 xa_lock_irqsave(&mapping->i_pages, flags); 669 if (PageDirty(page)) 670 goto failed; 671 672 BUG_ON(page_has_private(page)); 673 __delete_from_page_cache(page, NULL); 674 xa_unlock_irqrestore(&mapping->i_pages, flags); 675 676 if (mapping->a_ops->freepage) 677 mapping->a_ops->freepage(page); 678 679 put_page(page); /* pagecache ref */ 680 return 1; 681 failed: 682 xa_unlock_irqrestore(&mapping->i_pages, flags); 683 return 0; 684 } 685 686 static int do_launder_page(struct address_space *mapping, struct page *page) 687 { 688 if (!PageDirty(page)) 689 return 0; 690 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 691 return 0; 692 return mapping->a_ops->launder_page(page); 693 } 694 695 /** 696 * invalidate_inode_pages2_range - remove range of pages from an address_space 697 * @mapping: the address_space 698 * @start: the page offset 'from' which to invalidate 699 * @end: the page offset 'to' which to invalidate (inclusive) 700 * 701 * Any pages which are found to be mapped into pagetables are unmapped prior to 702 * invalidation. 703 * 704 * Return: -EBUSY if any pages could not be invalidated. 705 */ 706 int invalidate_inode_pages2_range(struct address_space *mapping, 707 pgoff_t start, pgoff_t end) 708 { 709 pgoff_t indices[PAGEVEC_SIZE]; 710 struct pagevec pvec; 711 pgoff_t index; 712 int i; 713 int ret = 0; 714 int ret2 = 0; 715 int did_range_unmap = 0; 716 717 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 718 goto out; 719 720 pagevec_init(&pvec); 721 index = start; 722 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 723 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 724 indices)) { 725 for (i = 0; i < pagevec_count(&pvec); i++) { 726 struct page *page = pvec.pages[i]; 727 728 /* We rely upon deletion not changing page->index */ 729 index = indices[i]; 730 if (index > end) 731 break; 732 733 if (xa_is_value(page)) { 734 if (!invalidate_exceptional_entry2(mapping, 735 index, page)) 736 ret = -EBUSY; 737 continue; 738 } 739 740 lock_page(page); 741 WARN_ON(page_to_index(page) != index); 742 if (page->mapping != mapping) { 743 unlock_page(page); 744 continue; 745 } 746 wait_on_page_writeback(page); 747 if (page_mapped(page)) { 748 if (!did_range_unmap) { 749 /* 750 * Zap the rest of the file in one hit. 751 */ 752 unmap_mapping_pages(mapping, index, 753 (1 + end - index), false); 754 did_range_unmap = 1; 755 } else { 756 /* 757 * Just zap this page 758 */ 759 unmap_mapping_pages(mapping, index, 760 1, false); 761 } 762 } 763 BUG_ON(page_mapped(page)); 764 ret2 = do_launder_page(mapping, page); 765 if (ret2 == 0) { 766 if (!invalidate_complete_page2(mapping, page)) 767 ret2 = -EBUSY; 768 } 769 if (ret2 < 0) 770 ret = ret2; 771 unlock_page(page); 772 } 773 pagevec_remove_exceptionals(&pvec); 774 pagevec_release(&pvec); 775 cond_resched(); 776 index++; 777 } 778 /* 779 * For DAX we invalidate page tables after invalidating page cache. We 780 * could invalidate page tables while invalidating each entry however 781 * that would be expensive. And doing range unmapping before doesn't 782 * work as we have no cheap way to find whether page cache entry didn't 783 * get remapped later. 784 */ 785 if (dax_mapping(mapping)) { 786 unmap_mapping_pages(mapping, start, end - start + 1, false); 787 } 788 out: 789 cleancache_invalidate_inode(mapping); 790 return ret; 791 } 792 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 793 794 /** 795 * invalidate_inode_pages2 - remove all pages from an address_space 796 * @mapping: the address_space 797 * 798 * Any pages which are found to be mapped into pagetables are unmapped prior to 799 * invalidation. 800 * 801 * Return: -EBUSY if any pages could not be invalidated. 802 */ 803 int invalidate_inode_pages2(struct address_space *mapping) 804 { 805 return invalidate_inode_pages2_range(mapping, 0, -1); 806 } 807 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 808 809 /** 810 * truncate_pagecache - unmap and remove pagecache that has been truncated 811 * @inode: inode 812 * @newsize: new file size 813 * 814 * inode's new i_size must already be written before truncate_pagecache 815 * is called. 816 * 817 * This function should typically be called before the filesystem 818 * releases resources associated with the freed range (eg. deallocates 819 * blocks). This way, pagecache will always stay logically coherent 820 * with on-disk format, and the filesystem would not have to deal with 821 * situations such as writepage being called for a page that has already 822 * had its underlying blocks deallocated. 823 */ 824 void truncate_pagecache(struct inode *inode, loff_t newsize) 825 { 826 struct address_space *mapping = inode->i_mapping; 827 loff_t holebegin = round_up(newsize, PAGE_SIZE); 828 829 /* 830 * unmap_mapping_range is called twice, first simply for 831 * efficiency so that truncate_inode_pages does fewer 832 * single-page unmaps. However after this first call, and 833 * before truncate_inode_pages finishes, it is possible for 834 * private pages to be COWed, which remain after 835 * truncate_inode_pages finishes, hence the second 836 * unmap_mapping_range call must be made for correctness. 837 */ 838 unmap_mapping_range(mapping, holebegin, 0, 1); 839 truncate_inode_pages(mapping, newsize); 840 unmap_mapping_range(mapping, holebegin, 0, 1); 841 } 842 EXPORT_SYMBOL(truncate_pagecache); 843 844 /** 845 * truncate_setsize - update inode and pagecache for a new file size 846 * @inode: inode 847 * @newsize: new file size 848 * 849 * truncate_setsize updates i_size and performs pagecache truncation (if 850 * necessary) to @newsize. It will be typically be called from the filesystem's 851 * setattr function when ATTR_SIZE is passed in. 852 * 853 * Must be called with a lock serializing truncates and writes (generally 854 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 855 * specific block truncation has been performed. 856 */ 857 void truncate_setsize(struct inode *inode, loff_t newsize) 858 { 859 loff_t oldsize = inode->i_size; 860 861 i_size_write(inode, newsize); 862 if (newsize > oldsize) 863 pagecache_isize_extended(inode, oldsize, newsize); 864 truncate_pagecache(inode, newsize); 865 } 866 EXPORT_SYMBOL(truncate_setsize); 867 868 /** 869 * pagecache_isize_extended - update pagecache after extension of i_size 870 * @inode: inode for which i_size was extended 871 * @from: original inode size 872 * @to: new inode size 873 * 874 * Handle extension of inode size either caused by extending truncate or by 875 * write starting after current i_size. We mark the page straddling current 876 * i_size RO so that page_mkwrite() is called on the nearest write access to 877 * the page. This way filesystem can be sure that page_mkwrite() is called on 878 * the page before user writes to the page via mmap after the i_size has been 879 * changed. 880 * 881 * The function must be called after i_size is updated so that page fault 882 * coming after we unlock the page will already see the new i_size. 883 * The function must be called while we still hold i_mutex - this not only 884 * makes sure i_size is stable but also that userspace cannot observe new 885 * i_size value before we are prepared to store mmap writes at new inode size. 886 */ 887 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 888 { 889 int bsize = i_blocksize(inode); 890 loff_t rounded_from; 891 struct page *page; 892 pgoff_t index; 893 894 WARN_ON(to > inode->i_size); 895 896 if (from >= to || bsize == PAGE_SIZE) 897 return; 898 /* Page straddling @from will not have any hole block created? */ 899 rounded_from = round_up(from, bsize); 900 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 901 return; 902 903 index = from >> PAGE_SHIFT; 904 page = find_lock_page(inode->i_mapping, index); 905 /* Page not cached? Nothing to do */ 906 if (!page) 907 return; 908 /* 909 * See clear_page_dirty_for_io() for details why set_page_dirty() 910 * is needed. 911 */ 912 if (page_mkclean(page)) 913 set_page_dirty(page); 914 unlock_page(page); 915 put_page(page); 916 } 917 EXPORT_SYMBOL(pagecache_isize_extended); 918 919 /** 920 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 921 * @inode: inode 922 * @lstart: offset of beginning of hole 923 * @lend: offset of last byte of hole 924 * 925 * This function should typically be called before the filesystem 926 * releases resources associated with the freed range (eg. deallocates 927 * blocks). This way, pagecache will always stay logically coherent 928 * with on-disk format, and the filesystem would not have to deal with 929 * situations such as writepage being called for a page that has already 930 * had its underlying blocks deallocated. 931 */ 932 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 933 { 934 struct address_space *mapping = inode->i_mapping; 935 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 936 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 937 /* 938 * This rounding is currently just for example: unmap_mapping_range 939 * expands its hole outwards, whereas we want it to contract the hole 940 * inwards. However, existing callers of truncate_pagecache_range are 941 * doing their own page rounding first. Note that unmap_mapping_range 942 * allows holelen 0 for all, and we allow lend -1 for end of file. 943 */ 944 945 /* 946 * Unlike in truncate_pagecache, unmap_mapping_range is called only 947 * once (before truncating pagecache), and without "even_cows" flag: 948 * hole-punching should not remove private COWed pages from the hole. 949 */ 950 if ((u64)unmap_end > (u64)unmap_start) 951 unmap_mapping_range(mapping, unmap_start, 952 1 + unmap_end - unmap_start, 0); 953 truncate_inode_pages_range(mapping, lstart, lend); 954 } 955 EXPORT_SYMBOL(truncate_pagecache_range); 956