xref: /openbmc/linux/mm/truncate.c (revision e23feb16)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
21 				   do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include "internal.h"
24 
25 
26 /**
27  * do_invalidatepage - invalidate part or all of a page
28  * @page: the page which is affected
29  * @offset: start of the range to invalidate
30  * @length: length of the range to invalidate
31  *
32  * do_invalidatepage() is called when all or part of the page has become
33  * invalidated by a truncate operation.
34  *
35  * do_invalidatepage() does not have to release all buffers, but it must
36  * ensure that no dirty buffer is left outside @offset and that no I/O
37  * is underway against any of the blocks which are outside the truncation
38  * point.  Because the caller is about to free (and possibly reuse) those
39  * blocks on-disk.
40  */
41 void do_invalidatepage(struct page *page, unsigned int offset,
42 		       unsigned int length)
43 {
44 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
45 
46 	invalidatepage = page->mapping->a_ops->invalidatepage;
47 #ifdef CONFIG_BLOCK
48 	if (!invalidatepage)
49 		invalidatepage = block_invalidatepage;
50 #endif
51 	if (invalidatepage)
52 		(*invalidatepage)(page, offset, length);
53 }
54 
55 /*
56  * This cancels just the dirty bit on the kernel page itself, it
57  * does NOT actually remove dirty bits on any mmap's that may be
58  * around. It also leaves the page tagged dirty, so any sync
59  * activity will still find it on the dirty lists, and in particular,
60  * clear_page_dirty_for_io() will still look at the dirty bits in
61  * the VM.
62  *
63  * Doing this should *normally* only ever be done when a page
64  * is truncated, and is not actually mapped anywhere at all. However,
65  * fs/buffer.c does this when it notices that somebody has cleaned
66  * out all the buffers on a page without actually doing it through
67  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
68  */
69 void cancel_dirty_page(struct page *page, unsigned int account_size)
70 {
71 	if (TestClearPageDirty(page)) {
72 		struct address_space *mapping = page->mapping;
73 		if (mapping && mapping_cap_account_dirty(mapping)) {
74 			dec_zone_page_state(page, NR_FILE_DIRTY);
75 			dec_bdi_stat(mapping->backing_dev_info,
76 					BDI_RECLAIMABLE);
77 			if (account_size)
78 				task_io_account_cancelled_write(account_size);
79 		}
80 	}
81 }
82 EXPORT_SYMBOL(cancel_dirty_page);
83 
84 /*
85  * If truncate cannot remove the fs-private metadata from the page, the page
86  * becomes orphaned.  It will be left on the LRU and may even be mapped into
87  * user pagetables if we're racing with filemap_fault().
88  *
89  * We need to bale out if page->mapping is no longer equal to the original
90  * mapping.  This happens a) when the VM reclaimed the page while we waited on
91  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
92  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
93  */
94 static int
95 truncate_complete_page(struct address_space *mapping, struct page *page)
96 {
97 	if (page->mapping != mapping)
98 		return -EIO;
99 
100 	if (page_has_private(page))
101 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
102 
103 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
104 
105 	ClearPageMappedToDisk(page);
106 	delete_from_page_cache(page);
107 	return 0;
108 }
109 
110 /*
111  * This is for invalidate_mapping_pages().  That function can be called at
112  * any time, and is not supposed to throw away dirty pages.  But pages can
113  * be marked dirty at any time too, so use remove_mapping which safely
114  * discards clean, unused pages.
115  *
116  * Returns non-zero if the page was successfully invalidated.
117  */
118 static int
119 invalidate_complete_page(struct address_space *mapping, struct page *page)
120 {
121 	int ret;
122 
123 	if (page->mapping != mapping)
124 		return 0;
125 
126 	if (page_has_private(page) && !try_to_release_page(page, 0))
127 		return 0;
128 
129 	ret = remove_mapping(mapping, page);
130 
131 	return ret;
132 }
133 
134 int truncate_inode_page(struct address_space *mapping, struct page *page)
135 {
136 	if (page_mapped(page)) {
137 		unmap_mapping_range(mapping,
138 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
139 				   PAGE_CACHE_SIZE, 0);
140 	}
141 	return truncate_complete_page(mapping, page);
142 }
143 
144 /*
145  * Used to get rid of pages on hardware memory corruption.
146  */
147 int generic_error_remove_page(struct address_space *mapping, struct page *page)
148 {
149 	if (!mapping)
150 		return -EINVAL;
151 	/*
152 	 * Only punch for normal data pages for now.
153 	 * Handling other types like directories would need more auditing.
154 	 */
155 	if (!S_ISREG(mapping->host->i_mode))
156 		return -EIO;
157 	return truncate_inode_page(mapping, page);
158 }
159 EXPORT_SYMBOL(generic_error_remove_page);
160 
161 /*
162  * Safely invalidate one page from its pagecache mapping.
163  * It only drops clean, unused pages. The page must be locked.
164  *
165  * Returns 1 if the page is successfully invalidated, otherwise 0.
166  */
167 int invalidate_inode_page(struct page *page)
168 {
169 	struct address_space *mapping = page_mapping(page);
170 	if (!mapping)
171 		return 0;
172 	if (PageDirty(page) || PageWriteback(page))
173 		return 0;
174 	if (page_mapped(page))
175 		return 0;
176 	return invalidate_complete_page(mapping, page);
177 }
178 
179 /**
180  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
181  * @mapping: mapping to truncate
182  * @lstart: offset from which to truncate
183  * @lend: offset to which to truncate (inclusive)
184  *
185  * Truncate the page cache, removing the pages that are between
186  * specified offsets (and zeroing out partial pages
187  * if lstart or lend + 1 is not page aligned).
188  *
189  * Truncate takes two passes - the first pass is nonblocking.  It will not
190  * block on page locks and it will not block on writeback.  The second pass
191  * will wait.  This is to prevent as much IO as possible in the affected region.
192  * The first pass will remove most pages, so the search cost of the second pass
193  * is low.
194  *
195  * We pass down the cache-hot hint to the page freeing code.  Even if the
196  * mapping is large, it is probably the case that the final pages are the most
197  * recently touched, and freeing happens in ascending file offset order.
198  *
199  * Note that since ->invalidatepage() accepts range to invalidate
200  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
201  * page aligned properly.
202  */
203 void truncate_inode_pages_range(struct address_space *mapping,
204 				loff_t lstart, loff_t lend)
205 {
206 	pgoff_t		start;		/* inclusive */
207 	pgoff_t		end;		/* exclusive */
208 	unsigned int	partial_start;	/* inclusive */
209 	unsigned int	partial_end;	/* exclusive */
210 	struct pagevec	pvec;
211 	pgoff_t		index;
212 	int		i;
213 
214 	cleancache_invalidate_inode(mapping);
215 	if (mapping->nrpages == 0)
216 		return;
217 
218 	/* Offsets within partial pages */
219 	partial_start = lstart & (PAGE_CACHE_SIZE - 1);
220 	partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
221 
222 	/*
223 	 * 'start' and 'end' always covers the range of pages to be fully
224 	 * truncated. Partial pages are covered with 'partial_start' at the
225 	 * start of the range and 'partial_end' at the end of the range.
226 	 * Note that 'end' is exclusive while 'lend' is inclusive.
227 	 */
228 	start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
229 	if (lend == -1)
230 		/*
231 		 * lend == -1 indicates end-of-file so we have to set 'end'
232 		 * to the highest possible pgoff_t and since the type is
233 		 * unsigned we're using -1.
234 		 */
235 		end = -1;
236 	else
237 		end = (lend + 1) >> PAGE_CACHE_SHIFT;
238 
239 	pagevec_init(&pvec, 0);
240 	index = start;
241 	while (index < end && pagevec_lookup(&pvec, mapping, index,
242 			min(end - index, (pgoff_t)PAGEVEC_SIZE))) {
243 		mem_cgroup_uncharge_start();
244 		for (i = 0; i < pagevec_count(&pvec); i++) {
245 			struct page *page = pvec.pages[i];
246 
247 			/* We rely upon deletion not changing page->index */
248 			index = page->index;
249 			if (index >= end)
250 				break;
251 
252 			if (!trylock_page(page))
253 				continue;
254 			WARN_ON(page->index != index);
255 			if (PageWriteback(page)) {
256 				unlock_page(page);
257 				continue;
258 			}
259 			truncate_inode_page(mapping, page);
260 			unlock_page(page);
261 		}
262 		pagevec_release(&pvec);
263 		mem_cgroup_uncharge_end();
264 		cond_resched();
265 		index++;
266 	}
267 
268 	if (partial_start) {
269 		struct page *page = find_lock_page(mapping, start - 1);
270 		if (page) {
271 			unsigned int top = PAGE_CACHE_SIZE;
272 			if (start > end) {
273 				/* Truncation within a single page */
274 				top = partial_end;
275 				partial_end = 0;
276 			}
277 			wait_on_page_writeback(page);
278 			zero_user_segment(page, partial_start, top);
279 			cleancache_invalidate_page(mapping, page);
280 			if (page_has_private(page))
281 				do_invalidatepage(page, partial_start,
282 						  top - partial_start);
283 			unlock_page(page);
284 			page_cache_release(page);
285 		}
286 	}
287 	if (partial_end) {
288 		struct page *page = find_lock_page(mapping, end);
289 		if (page) {
290 			wait_on_page_writeback(page);
291 			zero_user_segment(page, 0, partial_end);
292 			cleancache_invalidate_page(mapping, page);
293 			if (page_has_private(page))
294 				do_invalidatepage(page, 0,
295 						  partial_end);
296 			unlock_page(page);
297 			page_cache_release(page);
298 		}
299 	}
300 	/*
301 	 * If the truncation happened within a single page no pages
302 	 * will be released, just zeroed, so we can bail out now.
303 	 */
304 	if (start >= end)
305 		return;
306 
307 	index = start;
308 	for ( ; ; ) {
309 		cond_resched();
310 		if (!pagevec_lookup(&pvec, mapping, index,
311 			min(end - index, (pgoff_t)PAGEVEC_SIZE))) {
312 			if (index == start)
313 				break;
314 			index = start;
315 			continue;
316 		}
317 		if (index == start && pvec.pages[0]->index >= end) {
318 			pagevec_release(&pvec);
319 			break;
320 		}
321 		mem_cgroup_uncharge_start();
322 		for (i = 0; i < pagevec_count(&pvec); i++) {
323 			struct page *page = pvec.pages[i];
324 
325 			/* We rely upon deletion not changing page->index */
326 			index = page->index;
327 			if (index >= end)
328 				break;
329 
330 			lock_page(page);
331 			WARN_ON(page->index != index);
332 			wait_on_page_writeback(page);
333 			truncate_inode_page(mapping, page);
334 			unlock_page(page);
335 		}
336 		pagevec_release(&pvec);
337 		mem_cgroup_uncharge_end();
338 		index++;
339 	}
340 	cleancache_invalidate_inode(mapping);
341 }
342 EXPORT_SYMBOL(truncate_inode_pages_range);
343 
344 /**
345  * truncate_inode_pages - truncate *all* the pages from an offset
346  * @mapping: mapping to truncate
347  * @lstart: offset from which to truncate
348  *
349  * Called under (and serialised by) inode->i_mutex.
350  *
351  * Note: When this function returns, there can be a page in the process of
352  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
353  * mapping->nrpages can be non-zero when this function returns even after
354  * truncation of the whole mapping.
355  */
356 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
357 {
358 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
359 }
360 EXPORT_SYMBOL(truncate_inode_pages);
361 
362 /**
363  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
364  * @mapping: the address_space which holds the pages to invalidate
365  * @start: the offset 'from' which to invalidate
366  * @end: the offset 'to' which to invalidate (inclusive)
367  *
368  * This function only removes the unlocked pages, if you want to
369  * remove all the pages of one inode, you must call truncate_inode_pages.
370  *
371  * invalidate_mapping_pages() will not block on IO activity. It will not
372  * invalidate pages which are dirty, locked, under writeback or mapped into
373  * pagetables.
374  */
375 unsigned long invalidate_mapping_pages(struct address_space *mapping,
376 		pgoff_t start, pgoff_t end)
377 {
378 	struct pagevec pvec;
379 	pgoff_t index = start;
380 	unsigned long ret;
381 	unsigned long count = 0;
382 	int i;
383 
384 	/*
385 	 * Note: this function may get called on a shmem/tmpfs mapping:
386 	 * pagevec_lookup() might then return 0 prematurely (because it
387 	 * got a gangful of swap entries); but it's hardly worth worrying
388 	 * about - it can rarely have anything to free from such a mapping
389 	 * (most pages are dirty), and already skips over any difficulties.
390 	 */
391 
392 	pagevec_init(&pvec, 0);
393 	while (index <= end && pagevec_lookup(&pvec, mapping, index,
394 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
395 		mem_cgroup_uncharge_start();
396 		for (i = 0; i < pagevec_count(&pvec); i++) {
397 			struct page *page = pvec.pages[i];
398 
399 			/* We rely upon deletion not changing page->index */
400 			index = page->index;
401 			if (index > end)
402 				break;
403 
404 			if (!trylock_page(page))
405 				continue;
406 			WARN_ON(page->index != index);
407 			ret = invalidate_inode_page(page);
408 			unlock_page(page);
409 			/*
410 			 * Invalidation is a hint that the page is no longer
411 			 * of interest and try to speed up its reclaim.
412 			 */
413 			if (!ret)
414 				deactivate_page(page);
415 			count += ret;
416 		}
417 		pagevec_release(&pvec);
418 		mem_cgroup_uncharge_end();
419 		cond_resched();
420 		index++;
421 	}
422 	return count;
423 }
424 EXPORT_SYMBOL(invalidate_mapping_pages);
425 
426 /*
427  * This is like invalidate_complete_page(), except it ignores the page's
428  * refcount.  We do this because invalidate_inode_pages2() needs stronger
429  * invalidation guarantees, and cannot afford to leave pages behind because
430  * shrink_page_list() has a temp ref on them, or because they're transiently
431  * sitting in the lru_cache_add() pagevecs.
432  */
433 static int
434 invalidate_complete_page2(struct address_space *mapping, struct page *page)
435 {
436 	if (page->mapping != mapping)
437 		return 0;
438 
439 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
440 		return 0;
441 
442 	spin_lock_irq(&mapping->tree_lock);
443 	if (PageDirty(page))
444 		goto failed;
445 
446 	BUG_ON(page_has_private(page));
447 	__delete_from_page_cache(page);
448 	spin_unlock_irq(&mapping->tree_lock);
449 	mem_cgroup_uncharge_cache_page(page);
450 
451 	if (mapping->a_ops->freepage)
452 		mapping->a_ops->freepage(page);
453 
454 	page_cache_release(page);	/* pagecache ref */
455 	return 1;
456 failed:
457 	spin_unlock_irq(&mapping->tree_lock);
458 	return 0;
459 }
460 
461 static int do_launder_page(struct address_space *mapping, struct page *page)
462 {
463 	if (!PageDirty(page))
464 		return 0;
465 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
466 		return 0;
467 	return mapping->a_ops->launder_page(page);
468 }
469 
470 /**
471  * invalidate_inode_pages2_range - remove range of pages from an address_space
472  * @mapping: the address_space
473  * @start: the page offset 'from' which to invalidate
474  * @end: the page offset 'to' which to invalidate (inclusive)
475  *
476  * Any pages which are found to be mapped into pagetables are unmapped prior to
477  * invalidation.
478  *
479  * Returns -EBUSY if any pages could not be invalidated.
480  */
481 int invalidate_inode_pages2_range(struct address_space *mapping,
482 				  pgoff_t start, pgoff_t end)
483 {
484 	struct pagevec pvec;
485 	pgoff_t index;
486 	int i;
487 	int ret = 0;
488 	int ret2 = 0;
489 	int did_range_unmap = 0;
490 
491 	cleancache_invalidate_inode(mapping);
492 	pagevec_init(&pvec, 0);
493 	index = start;
494 	while (index <= end && pagevec_lookup(&pvec, mapping, index,
495 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
496 		mem_cgroup_uncharge_start();
497 		for (i = 0; i < pagevec_count(&pvec); i++) {
498 			struct page *page = pvec.pages[i];
499 
500 			/* We rely upon deletion not changing page->index */
501 			index = page->index;
502 			if (index > end)
503 				break;
504 
505 			lock_page(page);
506 			WARN_ON(page->index != index);
507 			if (page->mapping != mapping) {
508 				unlock_page(page);
509 				continue;
510 			}
511 			wait_on_page_writeback(page);
512 			if (page_mapped(page)) {
513 				if (!did_range_unmap) {
514 					/*
515 					 * Zap the rest of the file in one hit.
516 					 */
517 					unmap_mapping_range(mapping,
518 					   (loff_t)index << PAGE_CACHE_SHIFT,
519 					   (loff_t)(1 + end - index)
520 							 << PAGE_CACHE_SHIFT,
521 					    0);
522 					did_range_unmap = 1;
523 				} else {
524 					/*
525 					 * Just zap this page
526 					 */
527 					unmap_mapping_range(mapping,
528 					   (loff_t)index << PAGE_CACHE_SHIFT,
529 					   PAGE_CACHE_SIZE, 0);
530 				}
531 			}
532 			BUG_ON(page_mapped(page));
533 			ret2 = do_launder_page(mapping, page);
534 			if (ret2 == 0) {
535 				if (!invalidate_complete_page2(mapping, page))
536 					ret2 = -EBUSY;
537 			}
538 			if (ret2 < 0)
539 				ret = ret2;
540 			unlock_page(page);
541 		}
542 		pagevec_release(&pvec);
543 		mem_cgroup_uncharge_end();
544 		cond_resched();
545 		index++;
546 	}
547 	cleancache_invalidate_inode(mapping);
548 	return ret;
549 }
550 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
551 
552 /**
553  * invalidate_inode_pages2 - remove all pages from an address_space
554  * @mapping: the address_space
555  *
556  * Any pages which are found to be mapped into pagetables are unmapped prior to
557  * invalidation.
558  *
559  * Returns -EBUSY if any pages could not be invalidated.
560  */
561 int invalidate_inode_pages2(struct address_space *mapping)
562 {
563 	return invalidate_inode_pages2_range(mapping, 0, -1);
564 }
565 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
566 
567 /**
568  * truncate_pagecache - unmap and remove pagecache that has been truncated
569  * @inode: inode
570  * @newsize: new file size
571  *
572  * inode's new i_size must already be written before truncate_pagecache
573  * is called.
574  *
575  * This function should typically be called before the filesystem
576  * releases resources associated with the freed range (eg. deallocates
577  * blocks). This way, pagecache will always stay logically coherent
578  * with on-disk format, and the filesystem would not have to deal with
579  * situations such as writepage being called for a page that has already
580  * had its underlying blocks deallocated.
581  */
582 void truncate_pagecache(struct inode *inode, loff_t newsize)
583 {
584 	struct address_space *mapping = inode->i_mapping;
585 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
586 
587 	/*
588 	 * unmap_mapping_range is called twice, first simply for
589 	 * efficiency so that truncate_inode_pages does fewer
590 	 * single-page unmaps.  However after this first call, and
591 	 * before truncate_inode_pages finishes, it is possible for
592 	 * private pages to be COWed, which remain after
593 	 * truncate_inode_pages finishes, hence the second
594 	 * unmap_mapping_range call must be made for correctness.
595 	 */
596 	unmap_mapping_range(mapping, holebegin, 0, 1);
597 	truncate_inode_pages(mapping, newsize);
598 	unmap_mapping_range(mapping, holebegin, 0, 1);
599 }
600 EXPORT_SYMBOL(truncate_pagecache);
601 
602 /**
603  * truncate_setsize - update inode and pagecache for a new file size
604  * @inode: inode
605  * @newsize: new file size
606  *
607  * truncate_setsize updates i_size and performs pagecache truncation (if
608  * necessary) to @newsize. It will be typically be called from the filesystem's
609  * setattr function when ATTR_SIZE is passed in.
610  *
611  * Must be called with inode_mutex held and before all filesystem specific
612  * block truncation has been performed.
613  */
614 void truncate_setsize(struct inode *inode, loff_t newsize)
615 {
616 	i_size_write(inode, newsize);
617 	truncate_pagecache(inode, newsize);
618 }
619 EXPORT_SYMBOL(truncate_setsize);
620 
621 /**
622  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
623  * @inode: inode
624  * @lstart: offset of beginning of hole
625  * @lend: offset of last byte of hole
626  *
627  * This function should typically be called before the filesystem
628  * releases resources associated with the freed range (eg. deallocates
629  * blocks). This way, pagecache will always stay logically coherent
630  * with on-disk format, and the filesystem would not have to deal with
631  * situations such as writepage being called for a page that has already
632  * had its underlying blocks deallocated.
633  */
634 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
635 {
636 	struct address_space *mapping = inode->i_mapping;
637 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
638 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
639 	/*
640 	 * This rounding is currently just for example: unmap_mapping_range
641 	 * expands its hole outwards, whereas we want it to contract the hole
642 	 * inwards.  However, existing callers of truncate_pagecache_range are
643 	 * doing their own page rounding first.  Note that unmap_mapping_range
644 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
645 	 */
646 
647 	/*
648 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
649 	 * once (before truncating pagecache), and without "even_cows" flag:
650 	 * hole-punching should not remove private COWed pages from the hole.
651 	 */
652 	if ((u64)unmap_end > (u64)unmap_start)
653 		unmap_mapping_range(mapping, unmap_start,
654 				    1 + unmap_end - unmap_start, 0);
655 	truncate_inode_pages_range(mapping, lstart, lend);
656 }
657 EXPORT_SYMBOL(truncate_pagecache_range);
658