1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/mm.h> 15 #include <linux/swap.h> 16 #include <linux/export.h> 17 #include <linux/pagemap.h> 18 #include <linux/highmem.h> 19 #include <linux/pagevec.h> 20 #include <linux/task_io_accounting_ops.h> 21 #include <linux/buffer_head.h> /* grr. try_to_release_page, 22 do_invalidatepage */ 23 #include <linux/cleancache.h> 24 #include <linux/rmap.h> 25 #include "internal.h" 26 27 static void clear_exceptional_entry(struct address_space *mapping, 28 pgoff_t index, void *entry) 29 { 30 struct radix_tree_node *node; 31 void **slot; 32 33 /* Handled by shmem itself */ 34 if (shmem_mapping(mapping)) 35 return; 36 37 if (dax_mapping(mapping)) { 38 dax_delete_mapping_entry(mapping, index); 39 return; 40 } 41 spin_lock_irq(&mapping->tree_lock); 42 /* 43 * Regular page slots are stabilized by the page lock even 44 * without the tree itself locked. These unlocked entries 45 * need verification under the tree lock. 46 */ 47 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, 48 &slot)) 49 goto unlock; 50 if (*slot != entry) 51 goto unlock; 52 radix_tree_replace_slot(slot, NULL); 53 mapping->nrexceptional--; 54 if (!node) 55 goto unlock; 56 workingset_node_shadows_dec(node); 57 /* 58 * Don't track node without shadow entries. 59 * 60 * Avoid acquiring the list_lru lock if already untracked. 61 * The list_empty() test is safe as node->private_list is 62 * protected by mapping->tree_lock. 63 */ 64 if (!workingset_node_shadows(node) && 65 !list_empty(&node->private_list)) 66 list_lru_del(&workingset_shadow_nodes, 67 &node->private_list); 68 __radix_tree_delete_node(&mapping->page_tree, node); 69 unlock: 70 spin_unlock_irq(&mapping->tree_lock); 71 } 72 73 /** 74 * do_invalidatepage - invalidate part or all of a page 75 * @page: the page which is affected 76 * @offset: start of the range to invalidate 77 * @length: length of the range to invalidate 78 * 79 * do_invalidatepage() is called when all or part of the page has become 80 * invalidated by a truncate operation. 81 * 82 * do_invalidatepage() does not have to release all buffers, but it must 83 * ensure that no dirty buffer is left outside @offset and that no I/O 84 * is underway against any of the blocks which are outside the truncation 85 * point. Because the caller is about to free (and possibly reuse) those 86 * blocks on-disk. 87 */ 88 void do_invalidatepage(struct page *page, unsigned int offset, 89 unsigned int length) 90 { 91 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 92 93 invalidatepage = page->mapping->a_ops->invalidatepage; 94 #ifdef CONFIG_BLOCK 95 if (!invalidatepage) 96 invalidatepage = block_invalidatepage; 97 #endif 98 if (invalidatepage) 99 (*invalidatepage)(page, offset, length); 100 } 101 102 /* 103 * If truncate cannot remove the fs-private metadata from the page, the page 104 * becomes orphaned. It will be left on the LRU and may even be mapped into 105 * user pagetables if we're racing with filemap_fault(). 106 * 107 * We need to bale out if page->mapping is no longer equal to the original 108 * mapping. This happens a) when the VM reclaimed the page while we waited on 109 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 110 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 111 */ 112 static int 113 truncate_complete_page(struct address_space *mapping, struct page *page) 114 { 115 if (page->mapping != mapping) 116 return -EIO; 117 118 if (page_has_private(page)) 119 do_invalidatepage(page, 0, PAGE_SIZE); 120 121 /* 122 * Some filesystems seem to re-dirty the page even after 123 * the VM has canceled the dirty bit (eg ext3 journaling). 124 * Hence dirty accounting check is placed after invalidation. 125 */ 126 cancel_dirty_page(page); 127 ClearPageMappedToDisk(page); 128 delete_from_page_cache(page); 129 return 0; 130 } 131 132 /* 133 * This is for invalidate_mapping_pages(). That function can be called at 134 * any time, and is not supposed to throw away dirty pages. But pages can 135 * be marked dirty at any time too, so use remove_mapping which safely 136 * discards clean, unused pages. 137 * 138 * Returns non-zero if the page was successfully invalidated. 139 */ 140 static int 141 invalidate_complete_page(struct address_space *mapping, struct page *page) 142 { 143 int ret; 144 145 if (page->mapping != mapping) 146 return 0; 147 148 if (page_has_private(page) && !try_to_release_page(page, 0)) 149 return 0; 150 151 ret = remove_mapping(mapping, page); 152 153 return ret; 154 } 155 156 int truncate_inode_page(struct address_space *mapping, struct page *page) 157 { 158 loff_t holelen; 159 VM_BUG_ON_PAGE(PageTail(page), page); 160 161 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE; 162 if (page_mapped(page)) { 163 unmap_mapping_range(mapping, 164 (loff_t)page->index << PAGE_SHIFT, 165 holelen, 0); 166 } 167 return truncate_complete_page(mapping, page); 168 } 169 170 /* 171 * Used to get rid of pages on hardware memory corruption. 172 */ 173 int generic_error_remove_page(struct address_space *mapping, struct page *page) 174 { 175 if (!mapping) 176 return -EINVAL; 177 /* 178 * Only punch for normal data pages for now. 179 * Handling other types like directories would need more auditing. 180 */ 181 if (!S_ISREG(mapping->host->i_mode)) 182 return -EIO; 183 return truncate_inode_page(mapping, page); 184 } 185 EXPORT_SYMBOL(generic_error_remove_page); 186 187 /* 188 * Safely invalidate one page from its pagecache mapping. 189 * It only drops clean, unused pages. The page must be locked. 190 * 191 * Returns 1 if the page is successfully invalidated, otherwise 0. 192 */ 193 int invalidate_inode_page(struct page *page) 194 { 195 struct address_space *mapping = page_mapping(page); 196 if (!mapping) 197 return 0; 198 if (PageDirty(page) || PageWriteback(page)) 199 return 0; 200 if (page_mapped(page)) 201 return 0; 202 return invalidate_complete_page(mapping, page); 203 } 204 205 /** 206 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 207 * @mapping: mapping to truncate 208 * @lstart: offset from which to truncate 209 * @lend: offset to which to truncate (inclusive) 210 * 211 * Truncate the page cache, removing the pages that are between 212 * specified offsets (and zeroing out partial pages 213 * if lstart or lend + 1 is not page aligned). 214 * 215 * Truncate takes two passes - the first pass is nonblocking. It will not 216 * block on page locks and it will not block on writeback. The second pass 217 * will wait. This is to prevent as much IO as possible in the affected region. 218 * The first pass will remove most pages, so the search cost of the second pass 219 * is low. 220 * 221 * We pass down the cache-hot hint to the page freeing code. Even if the 222 * mapping is large, it is probably the case that the final pages are the most 223 * recently touched, and freeing happens in ascending file offset order. 224 * 225 * Note that since ->invalidatepage() accepts range to invalidate 226 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 227 * page aligned properly. 228 */ 229 void truncate_inode_pages_range(struct address_space *mapping, 230 loff_t lstart, loff_t lend) 231 { 232 pgoff_t start; /* inclusive */ 233 pgoff_t end; /* exclusive */ 234 unsigned int partial_start; /* inclusive */ 235 unsigned int partial_end; /* exclusive */ 236 struct pagevec pvec; 237 pgoff_t indices[PAGEVEC_SIZE]; 238 pgoff_t index; 239 int i; 240 241 cleancache_invalidate_inode(mapping); 242 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 243 return; 244 245 /* Offsets within partial pages */ 246 partial_start = lstart & (PAGE_SIZE - 1); 247 partial_end = (lend + 1) & (PAGE_SIZE - 1); 248 249 /* 250 * 'start' and 'end' always covers the range of pages to be fully 251 * truncated. Partial pages are covered with 'partial_start' at the 252 * start of the range and 'partial_end' at the end of the range. 253 * Note that 'end' is exclusive while 'lend' is inclusive. 254 */ 255 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 256 if (lend == -1) 257 /* 258 * lend == -1 indicates end-of-file so we have to set 'end' 259 * to the highest possible pgoff_t and since the type is 260 * unsigned we're using -1. 261 */ 262 end = -1; 263 else 264 end = (lend + 1) >> PAGE_SHIFT; 265 266 pagevec_init(&pvec, 0); 267 index = start; 268 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 269 min(end - index, (pgoff_t)PAGEVEC_SIZE), 270 indices)) { 271 for (i = 0; i < pagevec_count(&pvec); i++) { 272 struct page *page = pvec.pages[i]; 273 274 /* We rely upon deletion not changing page->index */ 275 index = indices[i]; 276 if (index >= end) 277 break; 278 279 if (radix_tree_exceptional_entry(page)) { 280 clear_exceptional_entry(mapping, index, page); 281 continue; 282 } 283 284 if (!trylock_page(page)) 285 continue; 286 WARN_ON(page_to_pgoff(page) != index); 287 if (PageWriteback(page)) { 288 unlock_page(page); 289 continue; 290 } 291 truncate_inode_page(mapping, page); 292 unlock_page(page); 293 } 294 pagevec_remove_exceptionals(&pvec); 295 pagevec_release(&pvec); 296 cond_resched(); 297 index++; 298 } 299 300 if (partial_start) { 301 struct page *page = find_lock_page(mapping, start - 1); 302 if (page) { 303 unsigned int top = PAGE_SIZE; 304 if (start > end) { 305 /* Truncation within a single page */ 306 top = partial_end; 307 partial_end = 0; 308 } 309 wait_on_page_writeback(page); 310 zero_user_segment(page, partial_start, top); 311 cleancache_invalidate_page(mapping, page); 312 if (page_has_private(page)) 313 do_invalidatepage(page, partial_start, 314 top - partial_start); 315 unlock_page(page); 316 put_page(page); 317 } 318 } 319 if (partial_end) { 320 struct page *page = find_lock_page(mapping, end); 321 if (page) { 322 wait_on_page_writeback(page); 323 zero_user_segment(page, 0, partial_end); 324 cleancache_invalidate_page(mapping, page); 325 if (page_has_private(page)) 326 do_invalidatepage(page, 0, 327 partial_end); 328 unlock_page(page); 329 put_page(page); 330 } 331 } 332 /* 333 * If the truncation happened within a single page no pages 334 * will be released, just zeroed, so we can bail out now. 335 */ 336 if (start >= end) 337 return; 338 339 index = start; 340 for ( ; ; ) { 341 cond_resched(); 342 if (!pagevec_lookup_entries(&pvec, mapping, index, 343 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 344 /* If all gone from start onwards, we're done */ 345 if (index == start) 346 break; 347 /* Otherwise restart to make sure all gone */ 348 index = start; 349 continue; 350 } 351 if (index == start && indices[0] >= end) { 352 /* All gone out of hole to be punched, we're done */ 353 pagevec_remove_exceptionals(&pvec); 354 pagevec_release(&pvec); 355 break; 356 } 357 for (i = 0; i < pagevec_count(&pvec); i++) { 358 struct page *page = pvec.pages[i]; 359 360 /* We rely upon deletion not changing page->index */ 361 index = indices[i]; 362 if (index >= end) { 363 /* Restart punch to make sure all gone */ 364 index = start - 1; 365 break; 366 } 367 368 if (radix_tree_exceptional_entry(page)) { 369 clear_exceptional_entry(mapping, index, page); 370 continue; 371 } 372 373 lock_page(page); 374 WARN_ON(page_to_pgoff(page) != index); 375 wait_on_page_writeback(page); 376 truncate_inode_page(mapping, page); 377 unlock_page(page); 378 } 379 pagevec_remove_exceptionals(&pvec); 380 pagevec_release(&pvec); 381 index++; 382 } 383 cleancache_invalidate_inode(mapping); 384 } 385 EXPORT_SYMBOL(truncate_inode_pages_range); 386 387 /** 388 * truncate_inode_pages - truncate *all* the pages from an offset 389 * @mapping: mapping to truncate 390 * @lstart: offset from which to truncate 391 * 392 * Called under (and serialised by) inode->i_mutex. 393 * 394 * Note: When this function returns, there can be a page in the process of 395 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 396 * mapping->nrpages can be non-zero when this function returns even after 397 * truncation of the whole mapping. 398 */ 399 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 400 { 401 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 402 } 403 EXPORT_SYMBOL(truncate_inode_pages); 404 405 /** 406 * truncate_inode_pages_final - truncate *all* pages before inode dies 407 * @mapping: mapping to truncate 408 * 409 * Called under (and serialized by) inode->i_mutex. 410 * 411 * Filesystems have to use this in the .evict_inode path to inform the 412 * VM that this is the final truncate and the inode is going away. 413 */ 414 void truncate_inode_pages_final(struct address_space *mapping) 415 { 416 unsigned long nrexceptional; 417 unsigned long nrpages; 418 419 /* 420 * Page reclaim can not participate in regular inode lifetime 421 * management (can't call iput()) and thus can race with the 422 * inode teardown. Tell it when the address space is exiting, 423 * so that it does not install eviction information after the 424 * final truncate has begun. 425 */ 426 mapping_set_exiting(mapping); 427 428 /* 429 * When reclaim installs eviction entries, it increases 430 * nrexceptional first, then decreases nrpages. Make sure we see 431 * this in the right order or we might miss an entry. 432 */ 433 nrpages = mapping->nrpages; 434 smp_rmb(); 435 nrexceptional = mapping->nrexceptional; 436 437 if (nrpages || nrexceptional) { 438 /* 439 * As truncation uses a lockless tree lookup, cycle 440 * the tree lock to make sure any ongoing tree 441 * modification that does not see AS_EXITING is 442 * completed before starting the final truncate. 443 */ 444 spin_lock_irq(&mapping->tree_lock); 445 spin_unlock_irq(&mapping->tree_lock); 446 447 truncate_inode_pages(mapping, 0); 448 } 449 } 450 EXPORT_SYMBOL(truncate_inode_pages_final); 451 452 /** 453 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 454 * @mapping: the address_space which holds the pages to invalidate 455 * @start: the offset 'from' which to invalidate 456 * @end: the offset 'to' which to invalidate (inclusive) 457 * 458 * This function only removes the unlocked pages, if you want to 459 * remove all the pages of one inode, you must call truncate_inode_pages. 460 * 461 * invalidate_mapping_pages() will not block on IO activity. It will not 462 * invalidate pages which are dirty, locked, under writeback or mapped into 463 * pagetables. 464 */ 465 unsigned long invalidate_mapping_pages(struct address_space *mapping, 466 pgoff_t start, pgoff_t end) 467 { 468 pgoff_t indices[PAGEVEC_SIZE]; 469 struct pagevec pvec; 470 pgoff_t index = start; 471 unsigned long ret; 472 unsigned long count = 0; 473 int i; 474 475 pagevec_init(&pvec, 0); 476 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 477 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 478 indices)) { 479 for (i = 0; i < pagevec_count(&pvec); i++) { 480 struct page *page = pvec.pages[i]; 481 482 /* We rely upon deletion not changing page->index */ 483 index = indices[i]; 484 if (index > end) 485 break; 486 487 if (radix_tree_exceptional_entry(page)) { 488 clear_exceptional_entry(mapping, index, page); 489 continue; 490 } 491 492 if (!trylock_page(page)) 493 continue; 494 495 WARN_ON(page_to_pgoff(page) != index); 496 497 /* Middle of THP: skip */ 498 if (PageTransTail(page)) { 499 unlock_page(page); 500 continue; 501 } else if (PageTransHuge(page)) { 502 index += HPAGE_PMD_NR - 1; 503 i += HPAGE_PMD_NR - 1; 504 /* 'end' is in the middle of THP */ 505 if (index == round_down(end, HPAGE_PMD_NR)) 506 continue; 507 } 508 509 ret = invalidate_inode_page(page); 510 unlock_page(page); 511 /* 512 * Invalidation is a hint that the page is no longer 513 * of interest and try to speed up its reclaim. 514 */ 515 if (!ret) 516 deactivate_file_page(page); 517 count += ret; 518 } 519 pagevec_remove_exceptionals(&pvec); 520 pagevec_release(&pvec); 521 cond_resched(); 522 index++; 523 } 524 return count; 525 } 526 EXPORT_SYMBOL(invalidate_mapping_pages); 527 528 /* 529 * This is like invalidate_complete_page(), except it ignores the page's 530 * refcount. We do this because invalidate_inode_pages2() needs stronger 531 * invalidation guarantees, and cannot afford to leave pages behind because 532 * shrink_page_list() has a temp ref on them, or because they're transiently 533 * sitting in the lru_cache_add() pagevecs. 534 */ 535 static int 536 invalidate_complete_page2(struct address_space *mapping, struct page *page) 537 { 538 unsigned long flags; 539 540 if (page->mapping != mapping) 541 return 0; 542 543 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 544 return 0; 545 546 spin_lock_irqsave(&mapping->tree_lock, flags); 547 if (PageDirty(page)) 548 goto failed; 549 550 BUG_ON(page_has_private(page)); 551 __delete_from_page_cache(page, NULL); 552 spin_unlock_irqrestore(&mapping->tree_lock, flags); 553 554 if (mapping->a_ops->freepage) 555 mapping->a_ops->freepage(page); 556 557 put_page(page); /* pagecache ref */ 558 return 1; 559 failed: 560 spin_unlock_irqrestore(&mapping->tree_lock, flags); 561 return 0; 562 } 563 564 static int do_launder_page(struct address_space *mapping, struct page *page) 565 { 566 if (!PageDirty(page)) 567 return 0; 568 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 569 return 0; 570 return mapping->a_ops->launder_page(page); 571 } 572 573 /** 574 * invalidate_inode_pages2_range - remove range of pages from an address_space 575 * @mapping: the address_space 576 * @start: the page offset 'from' which to invalidate 577 * @end: the page offset 'to' which to invalidate (inclusive) 578 * 579 * Any pages which are found to be mapped into pagetables are unmapped prior to 580 * invalidation. 581 * 582 * Returns -EBUSY if any pages could not be invalidated. 583 */ 584 int invalidate_inode_pages2_range(struct address_space *mapping, 585 pgoff_t start, pgoff_t end) 586 { 587 pgoff_t indices[PAGEVEC_SIZE]; 588 struct pagevec pvec; 589 pgoff_t index; 590 int i; 591 int ret = 0; 592 int ret2 = 0; 593 int did_range_unmap = 0; 594 595 cleancache_invalidate_inode(mapping); 596 pagevec_init(&pvec, 0); 597 index = start; 598 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 599 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 600 indices)) { 601 for (i = 0; i < pagevec_count(&pvec); i++) { 602 struct page *page = pvec.pages[i]; 603 604 /* We rely upon deletion not changing page->index */ 605 index = indices[i]; 606 if (index > end) 607 break; 608 609 if (radix_tree_exceptional_entry(page)) { 610 clear_exceptional_entry(mapping, index, page); 611 continue; 612 } 613 614 lock_page(page); 615 WARN_ON(page_to_pgoff(page) != index); 616 if (page->mapping != mapping) { 617 unlock_page(page); 618 continue; 619 } 620 wait_on_page_writeback(page); 621 if (page_mapped(page)) { 622 if (!did_range_unmap) { 623 /* 624 * Zap the rest of the file in one hit. 625 */ 626 unmap_mapping_range(mapping, 627 (loff_t)index << PAGE_SHIFT, 628 (loff_t)(1 + end - index) 629 << PAGE_SHIFT, 630 0); 631 did_range_unmap = 1; 632 } else { 633 /* 634 * Just zap this page 635 */ 636 unmap_mapping_range(mapping, 637 (loff_t)index << PAGE_SHIFT, 638 PAGE_SIZE, 0); 639 } 640 } 641 BUG_ON(page_mapped(page)); 642 ret2 = do_launder_page(mapping, page); 643 if (ret2 == 0) { 644 if (!invalidate_complete_page2(mapping, page)) 645 ret2 = -EBUSY; 646 } 647 if (ret2 < 0) 648 ret = ret2; 649 unlock_page(page); 650 } 651 pagevec_remove_exceptionals(&pvec); 652 pagevec_release(&pvec); 653 cond_resched(); 654 index++; 655 } 656 cleancache_invalidate_inode(mapping); 657 return ret; 658 } 659 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 660 661 /** 662 * invalidate_inode_pages2 - remove all pages from an address_space 663 * @mapping: the address_space 664 * 665 * Any pages which are found to be mapped into pagetables are unmapped prior to 666 * invalidation. 667 * 668 * Returns -EBUSY if any pages could not be invalidated. 669 */ 670 int invalidate_inode_pages2(struct address_space *mapping) 671 { 672 return invalidate_inode_pages2_range(mapping, 0, -1); 673 } 674 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 675 676 /** 677 * truncate_pagecache - unmap and remove pagecache that has been truncated 678 * @inode: inode 679 * @newsize: new file size 680 * 681 * inode's new i_size must already be written before truncate_pagecache 682 * is called. 683 * 684 * This function should typically be called before the filesystem 685 * releases resources associated with the freed range (eg. deallocates 686 * blocks). This way, pagecache will always stay logically coherent 687 * with on-disk format, and the filesystem would not have to deal with 688 * situations such as writepage being called for a page that has already 689 * had its underlying blocks deallocated. 690 */ 691 void truncate_pagecache(struct inode *inode, loff_t newsize) 692 { 693 struct address_space *mapping = inode->i_mapping; 694 loff_t holebegin = round_up(newsize, PAGE_SIZE); 695 696 /* 697 * unmap_mapping_range is called twice, first simply for 698 * efficiency so that truncate_inode_pages does fewer 699 * single-page unmaps. However after this first call, and 700 * before truncate_inode_pages finishes, it is possible for 701 * private pages to be COWed, which remain after 702 * truncate_inode_pages finishes, hence the second 703 * unmap_mapping_range call must be made for correctness. 704 */ 705 unmap_mapping_range(mapping, holebegin, 0, 1); 706 truncate_inode_pages(mapping, newsize); 707 unmap_mapping_range(mapping, holebegin, 0, 1); 708 } 709 EXPORT_SYMBOL(truncate_pagecache); 710 711 /** 712 * truncate_setsize - update inode and pagecache for a new file size 713 * @inode: inode 714 * @newsize: new file size 715 * 716 * truncate_setsize updates i_size and performs pagecache truncation (if 717 * necessary) to @newsize. It will be typically be called from the filesystem's 718 * setattr function when ATTR_SIZE is passed in. 719 * 720 * Must be called with a lock serializing truncates and writes (generally 721 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 722 * specific block truncation has been performed. 723 */ 724 void truncate_setsize(struct inode *inode, loff_t newsize) 725 { 726 loff_t oldsize = inode->i_size; 727 728 i_size_write(inode, newsize); 729 if (newsize > oldsize) 730 pagecache_isize_extended(inode, oldsize, newsize); 731 truncate_pagecache(inode, newsize); 732 } 733 EXPORT_SYMBOL(truncate_setsize); 734 735 /** 736 * pagecache_isize_extended - update pagecache after extension of i_size 737 * @inode: inode for which i_size was extended 738 * @from: original inode size 739 * @to: new inode size 740 * 741 * Handle extension of inode size either caused by extending truncate or by 742 * write starting after current i_size. We mark the page straddling current 743 * i_size RO so that page_mkwrite() is called on the nearest write access to 744 * the page. This way filesystem can be sure that page_mkwrite() is called on 745 * the page before user writes to the page via mmap after the i_size has been 746 * changed. 747 * 748 * The function must be called after i_size is updated so that page fault 749 * coming after we unlock the page will already see the new i_size. 750 * The function must be called while we still hold i_mutex - this not only 751 * makes sure i_size is stable but also that userspace cannot observe new 752 * i_size value before we are prepared to store mmap writes at new inode size. 753 */ 754 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 755 { 756 int bsize = 1 << inode->i_blkbits; 757 loff_t rounded_from; 758 struct page *page; 759 pgoff_t index; 760 761 WARN_ON(to > inode->i_size); 762 763 if (from >= to || bsize == PAGE_SIZE) 764 return; 765 /* Page straddling @from will not have any hole block created? */ 766 rounded_from = round_up(from, bsize); 767 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 768 return; 769 770 index = from >> PAGE_SHIFT; 771 page = find_lock_page(inode->i_mapping, index); 772 /* Page not cached? Nothing to do */ 773 if (!page) 774 return; 775 /* 776 * See clear_page_dirty_for_io() for details why set_page_dirty() 777 * is needed. 778 */ 779 if (page_mkclean(page)) 780 set_page_dirty(page); 781 unlock_page(page); 782 put_page(page); 783 } 784 EXPORT_SYMBOL(pagecache_isize_extended); 785 786 /** 787 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 788 * @inode: inode 789 * @lstart: offset of beginning of hole 790 * @lend: offset of last byte of hole 791 * 792 * This function should typically be called before the filesystem 793 * releases resources associated with the freed range (eg. deallocates 794 * blocks). This way, pagecache will always stay logically coherent 795 * with on-disk format, and the filesystem would not have to deal with 796 * situations such as writepage being called for a page that has already 797 * had its underlying blocks deallocated. 798 */ 799 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 800 { 801 struct address_space *mapping = inode->i_mapping; 802 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 803 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 804 /* 805 * This rounding is currently just for example: unmap_mapping_range 806 * expands its hole outwards, whereas we want it to contract the hole 807 * inwards. However, existing callers of truncate_pagecache_range are 808 * doing their own page rounding first. Note that unmap_mapping_range 809 * allows holelen 0 for all, and we allow lend -1 for end of file. 810 */ 811 812 /* 813 * Unlike in truncate_pagecache, unmap_mapping_range is called only 814 * once (before truncating pagecache), and without "even_cows" flag: 815 * hole-punching should not remove private COWed pages from the hole. 816 */ 817 if ((u64)unmap_end > (u64)unmap_start) 818 unmap_mapping_range(mapping, unmap_start, 819 1 + unmap_end - unmap_start, 0); 820 truncate_inode_pages_range(mapping, lstart, lend); 821 } 822 EXPORT_SYMBOL(truncate_pagecache_range); 823