xref: /openbmc/linux/mm/truncate.c (revision cd4d09ec)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
22 				   do_invalidatepage */
23 #include <linux/cleancache.h>
24 #include <linux/rmap.h>
25 #include "internal.h"
26 
27 static void clear_exceptional_entry(struct address_space *mapping,
28 				    pgoff_t index, void *entry)
29 {
30 	struct radix_tree_node *node;
31 	void **slot;
32 
33 	/* Handled by shmem itself */
34 	if (shmem_mapping(mapping))
35 		return;
36 
37 	spin_lock_irq(&mapping->tree_lock);
38 
39 	if (dax_mapping(mapping)) {
40 		if (radix_tree_delete_item(&mapping->page_tree, index, entry))
41 			mapping->nrexceptional--;
42 	} else {
43 		/*
44 		 * Regular page slots are stabilized by the page lock even
45 		 * without the tree itself locked.  These unlocked entries
46 		 * need verification under the tree lock.
47 		 */
48 		if (!__radix_tree_lookup(&mapping->page_tree, index, &node,
49 					&slot))
50 			goto unlock;
51 		if (*slot != entry)
52 			goto unlock;
53 		radix_tree_replace_slot(slot, NULL);
54 		mapping->nrexceptional--;
55 		if (!node)
56 			goto unlock;
57 		workingset_node_shadows_dec(node);
58 		/*
59 		 * Don't track node without shadow entries.
60 		 *
61 		 * Avoid acquiring the list_lru lock if already untracked.
62 		 * The list_empty() test is safe as node->private_list is
63 		 * protected by mapping->tree_lock.
64 		 */
65 		if (!workingset_node_shadows(node) &&
66 		    !list_empty(&node->private_list))
67 			list_lru_del(&workingset_shadow_nodes,
68 					&node->private_list);
69 		__radix_tree_delete_node(&mapping->page_tree, node);
70 	}
71 unlock:
72 	spin_unlock_irq(&mapping->tree_lock);
73 }
74 
75 /**
76  * do_invalidatepage - invalidate part or all of a page
77  * @page: the page which is affected
78  * @offset: start of the range to invalidate
79  * @length: length of the range to invalidate
80  *
81  * do_invalidatepage() is called when all or part of the page has become
82  * invalidated by a truncate operation.
83  *
84  * do_invalidatepage() does not have to release all buffers, but it must
85  * ensure that no dirty buffer is left outside @offset and that no I/O
86  * is underway against any of the blocks which are outside the truncation
87  * point.  Because the caller is about to free (and possibly reuse) those
88  * blocks on-disk.
89  */
90 void do_invalidatepage(struct page *page, unsigned int offset,
91 		       unsigned int length)
92 {
93 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
94 
95 	invalidatepage = page->mapping->a_ops->invalidatepage;
96 #ifdef CONFIG_BLOCK
97 	if (!invalidatepage)
98 		invalidatepage = block_invalidatepage;
99 #endif
100 	if (invalidatepage)
101 		(*invalidatepage)(page, offset, length);
102 }
103 
104 /*
105  * If truncate cannot remove the fs-private metadata from the page, the page
106  * becomes orphaned.  It will be left on the LRU and may even be mapped into
107  * user pagetables if we're racing with filemap_fault().
108  *
109  * We need to bale out if page->mapping is no longer equal to the original
110  * mapping.  This happens a) when the VM reclaimed the page while we waited on
111  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
112  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
113  */
114 static int
115 truncate_complete_page(struct address_space *mapping, struct page *page)
116 {
117 	if (page->mapping != mapping)
118 		return -EIO;
119 
120 	if (page_has_private(page))
121 		do_invalidatepage(page, 0, PAGE_CACHE_SIZE);
122 
123 	/*
124 	 * Some filesystems seem to re-dirty the page even after
125 	 * the VM has canceled the dirty bit (eg ext3 journaling).
126 	 * Hence dirty accounting check is placed after invalidation.
127 	 */
128 	cancel_dirty_page(page);
129 	ClearPageMappedToDisk(page);
130 	delete_from_page_cache(page);
131 	return 0;
132 }
133 
134 /*
135  * This is for invalidate_mapping_pages().  That function can be called at
136  * any time, and is not supposed to throw away dirty pages.  But pages can
137  * be marked dirty at any time too, so use remove_mapping which safely
138  * discards clean, unused pages.
139  *
140  * Returns non-zero if the page was successfully invalidated.
141  */
142 static int
143 invalidate_complete_page(struct address_space *mapping, struct page *page)
144 {
145 	int ret;
146 
147 	if (page->mapping != mapping)
148 		return 0;
149 
150 	if (page_has_private(page) && !try_to_release_page(page, 0))
151 		return 0;
152 
153 	ret = remove_mapping(mapping, page);
154 
155 	return ret;
156 }
157 
158 int truncate_inode_page(struct address_space *mapping, struct page *page)
159 {
160 	if (page_mapped(page)) {
161 		unmap_mapping_range(mapping,
162 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
163 				   PAGE_CACHE_SIZE, 0);
164 	}
165 	return truncate_complete_page(mapping, page);
166 }
167 
168 /*
169  * Used to get rid of pages on hardware memory corruption.
170  */
171 int generic_error_remove_page(struct address_space *mapping, struct page *page)
172 {
173 	if (!mapping)
174 		return -EINVAL;
175 	/*
176 	 * Only punch for normal data pages for now.
177 	 * Handling other types like directories would need more auditing.
178 	 */
179 	if (!S_ISREG(mapping->host->i_mode))
180 		return -EIO;
181 	return truncate_inode_page(mapping, page);
182 }
183 EXPORT_SYMBOL(generic_error_remove_page);
184 
185 /*
186  * Safely invalidate one page from its pagecache mapping.
187  * It only drops clean, unused pages. The page must be locked.
188  *
189  * Returns 1 if the page is successfully invalidated, otherwise 0.
190  */
191 int invalidate_inode_page(struct page *page)
192 {
193 	struct address_space *mapping = page_mapping(page);
194 	if (!mapping)
195 		return 0;
196 	if (PageDirty(page) || PageWriteback(page))
197 		return 0;
198 	if (page_mapped(page))
199 		return 0;
200 	return invalidate_complete_page(mapping, page);
201 }
202 
203 /**
204  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
205  * @mapping: mapping to truncate
206  * @lstart: offset from which to truncate
207  * @lend: offset to which to truncate (inclusive)
208  *
209  * Truncate the page cache, removing the pages that are between
210  * specified offsets (and zeroing out partial pages
211  * if lstart or lend + 1 is not page aligned).
212  *
213  * Truncate takes two passes - the first pass is nonblocking.  It will not
214  * block on page locks and it will not block on writeback.  The second pass
215  * will wait.  This is to prevent as much IO as possible in the affected region.
216  * The first pass will remove most pages, so the search cost of the second pass
217  * is low.
218  *
219  * We pass down the cache-hot hint to the page freeing code.  Even if the
220  * mapping is large, it is probably the case that the final pages are the most
221  * recently touched, and freeing happens in ascending file offset order.
222  *
223  * Note that since ->invalidatepage() accepts range to invalidate
224  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
225  * page aligned properly.
226  */
227 void truncate_inode_pages_range(struct address_space *mapping,
228 				loff_t lstart, loff_t lend)
229 {
230 	pgoff_t		start;		/* inclusive */
231 	pgoff_t		end;		/* exclusive */
232 	unsigned int	partial_start;	/* inclusive */
233 	unsigned int	partial_end;	/* exclusive */
234 	struct pagevec	pvec;
235 	pgoff_t		indices[PAGEVEC_SIZE];
236 	pgoff_t		index;
237 	int		i;
238 
239 	cleancache_invalidate_inode(mapping);
240 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
241 		return;
242 
243 	/* Offsets within partial pages */
244 	partial_start = lstart & (PAGE_CACHE_SIZE - 1);
245 	partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
246 
247 	/*
248 	 * 'start' and 'end' always covers the range of pages to be fully
249 	 * truncated. Partial pages are covered with 'partial_start' at the
250 	 * start of the range and 'partial_end' at the end of the range.
251 	 * Note that 'end' is exclusive while 'lend' is inclusive.
252 	 */
253 	start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
254 	if (lend == -1)
255 		/*
256 		 * lend == -1 indicates end-of-file so we have to set 'end'
257 		 * to the highest possible pgoff_t and since the type is
258 		 * unsigned we're using -1.
259 		 */
260 		end = -1;
261 	else
262 		end = (lend + 1) >> PAGE_CACHE_SHIFT;
263 
264 	pagevec_init(&pvec, 0);
265 	index = start;
266 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
267 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
268 			indices)) {
269 		for (i = 0; i < pagevec_count(&pvec); i++) {
270 			struct page *page = pvec.pages[i];
271 
272 			/* We rely upon deletion not changing page->index */
273 			index = indices[i];
274 			if (index >= end)
275 				break;
276 
277 			if (radix_tree_exceptional_entry(page)) {
278 				clear_exceptional_entry(mapping, index, page);
279 				continue;
280 			}
281 
282 			if (!trylock_page(page))
283 				continue;
284 			WARN_ON(page->index != index);
285 			if (PageWriteback(page)) {
286 				unlock_page(page);
287 				continue;
288 			}
289 			truncate_inode_page(mapping, page);
290 			unlock_page(page);
291 		}
292 		pagevec_remove_exceptionals(&pvec);
293 		pagevec_release(&pvec);
294 		cond_resched();
295 		index++;
296 	}
297 
298 	if (partial_start) {
299 		struct page *page = find_lock_page(mapping, start - 1);
300 		if (page) {
301 			unsigned int top = PAGE_CACHE_SIZE;
302 			if (start > end) {
303 				/* Truncation within a single page */
304 				top = partial_end;
305 				partial_end = 0;
306 			}
307 			wait_on_page_writeback(page);
308 			zero_user_segment(page, partial_start, top);
309 			cleancache_invalidate_page(mapping, page);
310 			if (page_has_private(page))
311 				do_invalidatepage(page, partial_start,
312 						  top - partial_start);
313 			unlock_page(page);
314 			page_cache_release(page);
315 		}
316 	}
317 	if (partial_end) {
318 		struct page *page = find_lock_page(mapping, end);
319 		if (page) {
320 			wait_on_page_writeback(page);
321 			zero_user_segment(page, 0, partial_end);
322 			cleancache_invalidate_page(mapping, page);
323 			if (page_has_private(page))
324 				do_invalidatepage(page, 0,
325 						  partial_end);
326 			unlock_page(page);
327 			page_cache_release(page);
328 		}
329 	}
330 	/*
331 	 * If the truncation happened within a single page no pages
332 	 * will be released, just zeroed, so we can bail out now.
333 	 */
334 	if (start >= end)
335 		return;
336 
337 	index = start;
338 	for ( ; ; ) {
339 		cond_resched();
340 		if (!pagevec_lookup_entries(&pvec, mapping, index,
341 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
342 			/* If all gone from start onwards, we're done */
343 			if (index == start)
344 				break;
345 			/* Otherwise restart to make sure all gone */
346 			index = start;
347 			continue;
348 		}
349 		if (index == start && indices[0] >= end) {
350 			/* All gone out of hole to be punched, we're done */
351 			pagevec_remove_exceptionals(&pvec);
352 			pagevec_release(&pvec);
353 			break;
354 		}
355 		for (i = 0; i < pagevec_count(&pvec); i++) {
356 			struct page *page = pvec.pages[i];
357 
358 			/* We rely upon deletion not changing page->index */
359 			index = indices[i];
360 			if (index >= end) {
361 				/* Restart punch to make sure all gone */
362 				index = start - 1;
363 				break;
364 			}
365 
366 			if (radix_tree_exceptional_entry(page)) {
367 				clear_exceptional_entry(mapping, index, page);
368 				continue;
369 			}
370 
371 			lock_page(page);
372 			WARN_ON(page->index != index);
373 			wait_on_page_writeback(page);
374 			truncate_inode_page(mapping, page);
375 			unlock_page(page);
376 		}
377 		pagevec_remove_exceptionals(&pvec);
378 		pagevec_release(&pvec);
379 		index++;
380 	}
381 	cleancache_invalidate_inode(mapping);
382 }
383 EXPORT_SYMBOL(truncate_inode_pages_range);
384 
385 /**
386  * truncate_inode_pages - truncate *all* the pages from an offset
387  * @mapping: mapping to truncate
388  * @lstart: offset from which to truncate
389  *
390  * Called under (and serialised by) inode->i_mutex.
391  *
392  * Note: When this function returns, there can be a page in the process of
393  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
394  * mapping->nrpages can be non-zero when this function returns even after
395  * truncation of the whole mapping.
396  */
397 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
398 {
399 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
400 }
401 EXPORT_SYMBOL(truncate_inode_pages);
402 
403 /**
404  * truncate_inode_pages_final - truncate *all* pages before inode dies
405  * @mapping: mapping to truncate
406  *
407  * Called under (and serialized by) inode->i_mutex.
408  *
409  * Filesystems have to use this in the .evict_inode path to inform the
410  * VM that this is the final truncate and the inode is going away.
411  */
412 void truncate_inode_pages_final(struct address_space *mapping)
413 {
414 	unsigned long nrexceptional;
415 	unsigned long nrpages;
416 
417 	/*
418 	 * Page reclaim can not participate in regular inode lifetime
419 	 * management (can't call iput()) and thus can race with the
420 	 * inode teardown.  Tell it when the address space is exiting,
421 	 * so that it does not install eviction information after the
422 	 * final truncate has begun.
423 	 */
424 	mapping_set_exiting(mapping);
425 
426 	/*
427 	 * When reclaim installs eviction entries, it increases
428 	 * nrexceptional first, then decreases nrpages.  Make sure we see
429 	 * this in the right order or we might miss an entry.
430 	 */
431 	nrpages = mapping->nrpages;
432 	smp_rmb();
433 	nrexceptional = mapping->nrexceptional;
434 
435 	if (nrpages || nrexceptional) {
436 		/*
437 		 * As truncation uses a lockless tree lookup, cycle
438 		 * the tree lock to make sure any ongoing tree
439 		 * modification that does not see AS_EXITING is
440 		 * completed before starting the final truncate.
441 		 */
442 		spin_lock_irq(&mapping->tree_lock);
443 		spin_unlock_irq(&mapping->tree_lock);
444 
445 		truncate_inode_pages(mapping, 0);
446 	}
447 }
448 EXPORT_SYMBOL(truncate_inode_pages_final);
449 
450 /**
451  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
452  * @mapping: the address_space which holds the pages to invalidate
453  * @start: the offset 'from' which to invalidate
454  * @end: the offset 'to' which to invalidate (inclusive)
455  *
456  * This function only removes the unlocked pages, if you want to
457  * remove all the pages of one inode, you must call truncate_inode_pages.
458  *
459  * invalidate_mapping_pages() will not block on IO activity. It will not
460  * invalidate pages which are dirty, locked, under writeback or mapped into
461  * pagetables.
462  */
463 unsigned long invalidate_mapping_pages(struct address_space *mapping,
464 		pgoff_t start, pgoff_t end)
465 {
466 	pgoff_t indices[PAGEVEC_SIZE];
467 	struct pagevec pvec;
468 	pgoff_t index = start;
469 	unsigned long ret;
470 	unsigned long count = 0;
471 	int i;
472 
473 	pagevec_init(&pvec, 0);
474 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
475 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
476 			indices)) {
477 		for (i = 0; i < pagevec_count(&pvec); i++) {
478 			struct page *page = pvec.pages[i];
479 
480 			/* We rely upon deletion not changing page->index */
481 			index = indices[i];
482 			if (index > end)
483 				break;
484 
485 			if (radix_tree_exceptional_entry(page)) {
486 				clear_exceptional_entry(mapping, index, page);
487 				continue;
488 			}
489 
490 			if (!trylock_page(page))
491 				continue;
492 			WARN_ON(page->index != index);
493 			ret = invalidate_inode_page(page);
494 			unlock_page(page);
495 			/*
496 			 * Invalidation is a hint that the page is no longer
497 			 * of interest and try to speed up its reclaim.
498 			 */
499 			if (!ret)
500 				deactivate_file_page(page);
501 			count += ret;
502 		}
503 		pagevec_remove_exceptionals(&pvec);
504 		pagevec_release(&pvec);
505 		cond_resched();
506 		index++;
507 	}
508 	return count;
509 }
510 EXPORT_SYMBOL(invalidate_mapping_pages);
511 
512 /*
513  * This is like invalidate_complete_page(), except it ignores the page's
514  * refcount.  We do this because invalidate_inode_pages2() needs stronger
515  * invalidation guarantees, and cannot afford to leave pages behind because
516  * shrink_page_list() has a temp ref on them, or because they're transiently
517  * sitting in the lru_cache_add() pagevecs.
518  */
519 static int
520 invalidate_complete_page2(struct address_space *mapping, struct page *page)
521 {
522 	struct mem_cgroup *memcg;
523 	unsigned long flags;
524 
525 	if (page->mapping != mapping)
526 		return 0;
527 
528 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
529 		return 0;
530 
531 	memcg = mem_cgroup_begin_page_stat(page);
532 	spin_lock_irqsave(&mapping->tree_lock, flags);
533 	if (PageDirty(page))
534 		goto failed;
535 
536 	BUG_ON(page_has_private(page));
537 	__delete_from_page_cache(page, NULL, memcg);
538 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
539 	mem_cgroup_end_page_stat(memcg);
540 
541 	if (mapping->a_ops->freepage)
542 		mapping->a_ops->freepage(page);
543 
544 	page_cache_release(page);	/* pagecache ref */
545 	return 1;
546 failed:
547 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
548 	mem_cgroup_end_page_stat(memcg);
549 	return 0;
550 }
551 
552 static int do_launder_page(struct address_space *mapping, struct page *page)
553 {
554 	if (!PageDirty(page))
555 		return 0;
556 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
557 		return 0;
558 	return mapping->a_ops->launder_page(page);
559 }
560 
561 /**
562  * invalidate_inode_pages2_range - remove range of pages from an address_space
563  * @mapping: the address_space
564  * @start: the page offset 'from' which to invalidate
565  * @end: the page offset 'to' which to invalidate (inclusive)
566  *
567  * Any pages which are found to be mapped into pagetables are unmapped prior to
568  * invalidation.
569  *
570  * Returns -EBUSY if any pages could not be invalidated.
571  */
572 int invalidate_inode_pages2_range(struct address_space *mapping,
573 				  pgoff_t start, pgoff_t end)
574 {
575 	pgoff_t indices[PAGEVEC_SIZE];
576 	struct pagevec pvec;
577 	pgoff_t index;
578 	int i;
579 	int ret = 0;
580 	int ret2 = 0;
581 	int did_range_unmap = 0;
582 
583 	cleancache_invalidate_inode(mapping);
584 	pagevec_init(&pvec, 0);
585 	index = start;
586 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
587 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
588 			indices)) {
589 		for (i = 0; i < pagevec_count(&pvec); i++) {
590 			struct page *page = pvec.pages[i];
591 
592 			/* We rely upon deletion not changing page->index */
593 			index = indices[i];
594 			if (index > end)
595 				break;
596 
597 			if (radix_tree_exceptional_entry(page)) {
598 				clear_exceptional_entry(mapping, index, page);
599 				continue;
600 			}
601 
602 			lock_page(page);
603 			WARN_ON(page->index != index);
604 			if (page->mapping != mapping) {
605 				unlock_page(page);
606 				continue;
607 			}
608 			wait_on_page_writeback(page);
609 			if (page_mapped(page)) {
610 				if (!did_range_unmap) {
611 					/*
612 					 * Zap the rest of the file in one hit.
613 					 */
614 					unmap_mapping_range(mapping,
615 					   (loff_t)index << PAGE_CACHE_SHIFT,
616 					   (loff_t)(1 + end - index)
617 							 << PAGE_CACHE_SHIFT,
618 					    0);
619 					did_range_unmap = 1;
620 				} else {
621 					/*
622 					 * Just zap this page
623 					 */
624 					unmap_mapping_range(mapping,
625 					   (loff_t)index << PAGE_CACHE_SHIFT,
626 					   PAGE_CACHE_SIZE, 0);
627 				}
628 			}
629 			BUG_ON(page_mapped(page));
630 			ret2 = do_launder_page(mapping, page);
631 			if (ret2 == 0) {
632 				if (!invalidate_complete_page2(mapping, page))
633 					ret2 = -EBUSY;
634 			}
635 			if (ret2 < 0)
636 				ret = ret2;
637 			unlock_page(page);
638 		}
639 		pagevec_remove_exceptionals(&pvec);
640 		pagevec_release(&pvec);
641 		cond_resched();
642 		index++;
643 	}
644 	cleancache_invalidate_inode(mapping);
645 	return ret;
646 }
647 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
648 
649 /**
650  * invalidate_inode_pages2 - remove all pages from an address_space
651  * @mapping: the address_space
652  *
653  * Any pages which are found to be mapped into pagetables are unmapped prior to
654  * invalidation.
655  *
656  * Returns -EBUSY if any pages could not be invalidated.
657  */
658 int invalidate_inode_pages2(struct address_space *mapping)
659 {
660 	return invalidate_inode_pages2_range(mapping, 0, -1);
661 }
662 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
663 
664 /**
665  * truncate_pagecache - unmap and remove pagecache that has been truncated
666  * @inode: inode
667  * @newsize: new file size
668  *
669  * inode's new i_size must already be written before truncate_pagecache
670  * is called.
671  *
672  * This function should typically be called before the filesystem
673  * releases resources associated with the freed range (eg. deallocates
674  * blocks). This way, pagecache will always stay logically coherent
675  * with on-disk format, and the filesystem would not have to deal with
676  * situations such as writepage being called for a page that has already
677  * had its underlying blocks deallocated.
678  */
679 void truncate_pagecache(struct inode *inode, loff_t newsize)
680 {
681 	struct address_space *mapping = inode->i_mapping;
682 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
683 
684 	/*
685 	 * unmap_mapping_range is called twice, first simply for
686 	 * efficiency so that truncate_inode_pages does fewer
687 	 * single-page unmaps.  However after this first call, and
688 	 * before truncate_inode_pages finishes, it is possible for
689 	 * private pages to be COWed, which remain after
690 	 * truncate_inode_pages finishes, hence the second
691 	 * unmap_mapping_range call must be made for correctness.
692 	 */
693 	unmap_mapping_range(mapping, holebegin, 0, 1);
694 	truncate_inode_pages(mapping, newsize);
695 	unmap_mapping_range(mapping, holebegin, 0, 1);
696 }
697 EXPORT_SYMBOL(truncate_pagecache);
698 
699 /**
700  * truncate_setsize - update inode and pagecache for a new file size
701  * @inode: inode
702  * @newsize: new file size
703  *
704  * truncate_setsize updates i_size and performs pagecache truncation (if
705  * necessary) to @newsize. It will be typically be called from the filesystem's
706  * setattr function when ATTR_SIZE is passed in.
707  *
708  * Must be called with a lock serializing truncates and writes (generally
709  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
710  * specific block truncation has been performed.
711  */
712 void truncate_setsize(struct inode *inode, loff_t newsize)
713 {
714 	loff_t oldsize = inode->i_size;
715 
716 	i_size_write(inode, newsize);
717 	if (newsize > oldsize)
718 		pagecache_isize_extended(inode, oldsize, newsize);
719 	truncate_pagecache(inode, newsize);
720 }
721 EXPORT_SYMBOL(truncate_setsize);
722 
723 /**
724  * pagecache_isize_extended - update pagecache after extension of i_size
725  * @inode:	inode for which i_size was extended
726  * @from:	original inode size
727  * @to:		new inode size
728  *
729  * Handle extension of inode size either caused by extending truncate or by
730  * write starting after current i_size. We mark the page straddling current
731  * i_size RO so that page_mkwrite() is called on the nearest write access to
732  * the page.  This way filesystem can be sure that page_mkwrite() is called on
733  * the page before user writes to the page via mmap after the i_size has been
734  * changed.
735  *
736  * The function must be called after i_size is updated so that page fault
737  * coming after we unlock the page will already see the new i_size.
738  * The function must be called while we still hold i_mutex - this not only
739  * makes sure i_size is stable but also that userspace cannot observe new
740  * i_size value before we are prepared to store mmap writes at new inode size.
741  */
742 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
743 {
744 	int bsize = 1 << inode->i_blkbits;
745 	loff_t rounded_from;
746 	struct page *page;
747 	pgoff_t index;
748 
749 	WARN_ON(to > inode->i_size);
750 
751 	if (from >= to || bsize == PAGE_CACHE_SIZE)
752 		return;
753 	/* Page straddling @from will not have any hole block created? */
754 	rounded_from = round_up(from, bsize);
755 	if (to <= rounded_from || !(rounded_from & (PAGE_CACHE_SIZE - 1)))
756 		return;
757 
758 	index = from >> PAGE_CACHE_SHIFT;
759 	page = find_lock_page(inode->i_mapping, index);
760 	/* Page not cached? Nothing to do */
761 	if (!page)
762 		return;
763 	/*
764 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
765 	 * is needed.
766 	 */
767 	if (page_mkclean(page))
768 		set_page_dirty(page);
769 	unlock_page(page);
770 	page_cache_release(page);
771 }
772 EXPORT_SYMBOL(pagecache_isize_extended);
773 
774 /**
775  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
776  * @inode: inode
777  * @lstart: offset of beginning of hole
778  * @lend: offset of last byte of hole
779  *
780  * This function should typically be called before the filesystem
781  * releases resources associated with the freed range (eg. deallocates
782  * blocks). This way, pagecache will always stay logically coherent
783  * with on-disk format, and the filesystem would not have to deal with
784  * situations such as writepage being called for a page that has already
785  * had its underlying blocks deallocated.
786  */
787 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
788 {
789 	struct address_space *mapping = inode->i_mapping;
790 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
791 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
792 	/*
793 	 * This rounding is currently just for example: unmap_mapping_range
794 	 * expands its hole outwards, whereas we want it to contract the hole
795 	 * inwards.  However, existing callers of truncate_pagecache_range are
796 	 * doing their own page rounding first.  Note that unmap_mapping_range
797 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
798 	 */
799 
800 	/*
801 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
802 	 * once (before truncating pagecache), and without "even_cows" flag:
803 	 * hole-punching should not remove private COWed pages from the hole.
804 	 */
805 	if ((u64)unmap_end > (u64)unmap_start)
806 		unmap_mapping_range(mapping, unmap_start,
807 				    1 + unmap_end - unmap_start, 0);
808 	truncate_inode_pages_range(mapping, lstart, lend);
809 }
810 EXPORT_SYMBOL(truncate_pagecache_range);
811